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Abstract. In this paper we study the relationship between bilevel optimization and multicriteria optimiza-
tion. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of
the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower
level problem of the bilevel optimization problem is convex and continuously differentiable in the lower level
variables, this order relation is equivalent to a second, more tractable order relation.

Then, we show how to construct a (nonconvex) cone for which we can prove that the nondominated
points with respect to the order relation induced by the cone are also nondominated points with respect
to any of the two order relations mentioned before. We also comment on the practical and computational
implications of our approach.
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1. Introduction

In a bilevel optimization problem (see formulation (5) in this paper), some of the vari-
ables (the lower level variables) are constrained to be the solution of a inner or lower
level problem. The remaining variables are called the upper level variables and parame-
terize the lower level problem. Similarly, the problem’s objective function is called the
upper level function. The objective function of the lower level problem is referred to as
the lower level function.

Although several authors have attempted to establish a link between bicriteria opti-
mization and bilevel optimization in the linear case (Bard (Ref. 1) and Ünlü (Ref. 2)),
none have succeeded thus far in proposing conditions that guarantee that the optimal
solution of a given bilevel program is nondominated for both upper and lower level
objective functions (counter-examples were reported by Candler (Ref. 3), Clarke and
Westerberg (Ref. 4), Haurie, Savard, and White (Ref. 5), and Marcotte (Ref. 6)). Wen
and Hsu (Ref. 7) suggested a sufficient condition for that to happen (
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� �
and

���
are the cost vectors of the upper level variables for upper and lower level ob-

jective functions, respectively) but a counter-example by Marcotte and Savard (Ref. 8)
showed that that was also false.

An attempt to address this issue was reported by Fülöp (Ref. 9) and described in a
section about the relationships between bilevel and multicriteria optimization included
in the recent book by Dempe (Ref. 10). It is shown that the feasible set (sometimes
called induced region) of a linear bilevel program can be written as the set of nondomi-
nated points of a multicriteria problem with the standard ordering cone with � criteria,
where � is the rank of a given matrix plus � . In our work, not only we consider nonlinear
bilevel optimization problems, but we also characterize solutions of the bilevel problem
(not just feasible points) as solutions of a multicriteria problem. Fülöp (Ref. 9) was,
however, the first who observe that more than just two criteria are needed to establish
the link between bilevel optimization and multicriteria optimization.

It should not be seen as a surprise that the optimal solution of a bilevel problem
can be dominated in terms of upper and lower level functions. The hierarchical nature
of the two levels is, in the authors’ view, a natural justification for this occurrence.
Our approach differs from the ones mentioned above in the sense that we build the
multicriteria optimization problem not directly from the upper and lower level objective
functions but by using information from the whole bilevel optimization problem. In
particular, we use the optimality of the lower level problem with respect to the lower
level variables.

This paper is divided as follows. We provide the necessary background about mul-
ticriteria and bilevel optimization in Sections 2 and 3, respectively. Our multicrite-
ria (more precisely, four-criteria) optimization approach to bilevel optimization is ex-
plained in Section 4 for unconstrained bilevel optimization. Section 5 covers the prac-
tical implications of this approach and considers extensions to constrained bilevel op-
timization and three-level optimization. In the last section of this paper we summarize
our contribution and discuss its potential in applications of bilevel optimization with
expensive function evaluations.

We use � �����	��

��� ����
�� 
��
and � ����������
���� ����

� 
��

. The norm � � �
used in this paper is arbitrary and � � � � denotes the � � norm.

2. Multicriteria optimization

In this section we provide a brief introduction of the concepts in multicriteria optimiza-
tion that are used later in this paper. Readers familiar with multicriteria optimization
may wish to proceed directly to the next section.

In multicriteria optimization, several functions, say, � � �"!�!"!�� �$#%�&� ��')(+*,� � ( -.�/
), have to be minimized simultaneously. Such a problem can be conveniently stated in

the form
“min” �0�1� � ' (+*,� � # �

(1)

where �)�324� � �"!�!"! �$#65 � , and the meaning of “ 798;: ” still has to be specified. The reason
for this formulation is that there is no standard total order for the image space � � #

.
In contrast to this situation, in the classical single-criterion case one always uses the
standard total order defined by 
�<>=?�A@9BC=9(�
���� �D��� ( 
 � =E��� � ). Nevertheless,
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the idea of specifying an order by using a specific set defining it can be conveniently
employed in multicriteria optimization, as the following discussion will show.

If an arbitrary order relation � on � � #
and a set � ��� � #

are given, the vector� � � � #
is called minimal or a minimizer w.r.t. � in � if � ��� and ����� for all� ��� . (Here, � is the reflexive hull of � , i.e., �	�
� if and only if � � � or � � � .)

Minimal points usually do not exist, one reason being that it is seldom the case that �
is a total order. A weaker concept, the concept of domination is therefore needed. A
point � dominates a point � , if � � � and ���� � holds. A point � is nondominated in � ,
if � �	� and there does not exist a point 
 ��� with 
�� � and 
 �� � . This approach
raises the question about which of the many orders in � � #

one should choose when
solving multicriteria problems.

Let ��� � � #
be an arbitrary set. Define the order


 <�� = �A@9B = ( 
 ��� !
(2)

The next theorem is well known, e.g., (Ref. 11).

Theorem 1. Let ��� � � #
be a set and let <�� be the binary relation defined by � as

in (2). Then, the following statements hold:

1. If

 ��� then <�� is reflexive.

2. If ��������� then < � is transitive.
3. If � is a cone containing no lines, i.e., ���?(���� � 
�� (such a cone is also called

pointed), then < � is anti-symmetric.
4. The order < � is total if and only if ���E(��.� � � #

.
5. The set � is closed if and only if the relation < � is “continuous at



” in the follow-

ing sense. For all � � � � #
and all sequences 2 ���! #" 5  %$'& ( in � � #

with );8 7  +* �-, �.�! #" �� and

 < � �.�! #" for all / � & ( it follows that


 < � � holds.

Note that �0�1�2�3� holds if � is a convex cone. Moreover, suppose that � is
a pointed cone such that the order <4� is total. Then, consider 5 � �35 #46

�
��� � #

, the� � � � -sphere. Since < � is total, 27�8��5 5-�
2 (��8��5 5��95 . But � is pointed, so for
��:� we have ( 
<;�=� , and therefore 2%�>��5 5?�
2 (��>�@5 5��9A . With 5 endowed
by the induced topology, 5 is an open set and can therefore not be written as the union
of two disjoint closed sets. Therefore, � is not closed, a rather problematic situation
with respect to numerical algorithms. According to the theorem above, practicioners
prefer to choose a closed convex cone � with


 �@� which contains no lines to define
the partial order < � . (Note that the lexicographic order in � � #

is defined by a cone
which is not closed.) Moreover, in our context the space � � #

will be the image space of
functions to be minimized. As a consequence, it is important for numerical reasons to
have scale-invariance of the induced order. This means that if 
�<B� = and C?� 


then
C�
0<��DC�= , a property which holds if and only if the set � is a cone.

Using a fixed set � to define an order relation as in (2) has one additional advantage.
For an arbitrary relation � , the sets

E 2 � 5 �A�>� � � � � #9F � � � � ( � (3)

are constant if there exists a set � such that �>�	< � holds. Indeed, if �%��< � thenE 2 � 5 �%� � � � � # F � � � � �%� � � � � # F � < � � � �>� � � � � # F � ( � �@� � � � ��� .
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This means that � is translation-invariant, i.e., 
 � � � = � � for all � if and only if
�� = .
To summarize the discussion above: we are in search for a convex cone � with
 � � in order to define an order <4� . Other attributes of � that can be used to our

advantage are closedness, pointedness, and � � (�� ��� � #
but, as pointed out before,

we can not have all of these at the same time.
Usually, � is just the positive orthant without the origin, �C��� � #� � � 
�� , which

gives exactly the standard definition of order in multicriteria optimization. The set of
solutions (i.e., the set of efficient or Pareto points) of the problem (1) is the preimage of
all nondominated points of the set � with respect to the order <4� .

The standard strategy to compute nondominated elements w.r.t. < � is now as fol-
lows. First, we need a technical definition, generalizing the concept of monotonicity.

Definition 1 (Monotonicity). Let � � � � #
be a cone, � � � � #

a set, and � � � (+*� � a function. The function � is called � -monotonically increasing in � if � < � �
implies � 2 � 5 � � 2 � 5 for all � � � �@� . The function � is called strictly � -monotonically
increasing in � if � < � � � ���� � implies � 2 � 5 <�� 2 � 5 for all � � � ��� .

The set � that we will use in what follows will be the image set of the function � ,
i.e., � � � � 2 � � ' 5 .

Functions monotone with respect to an arbitrary binary relation � are also called
consistent with respect to � , see (Ref. 12, Chapter 1), or order-preserving, see (Ref. 13,
Chapter 7) for an overview. These functions play an important role in multicriteria
optimization, as it is shown in the next theorems.

Theorem 2. Let � � � � #
be a cone with


 � � and � 
�� �� � �� � � #
, and let

� �%� � #
be a set. Let � � � ( * � � be a � -monotone increasing function, and let� �	� be a minimum of � over � . If � is unique or if � is strictly � -monotone in � ,

then � is nondominated in � with respect to < � .

The proofs can be found in (Ref. 14, Chapter 2) or in (Ref. 11, Section 2.20).
The simplest, most widely used � -monotone functions are the linear forms in

int 2%����5 , where ��� is the dual cone of � defined by

� � �%�	� F�
 � ��� �
��� � ��� � 
�� �
with � � � � � the (standard) inner product in � � #

. Other, nonlinear � -monotone functions
have only recently attracted some attention, mainly for numerical reasons (Ref. 15). It
turns out that in the case of convex cones and sets, only these linear forms need to be
considered, at least in theory. More precisely, we need the linear forms from the quasi-
interior of � � , i.e., the set � � � �%�	� � � � #9F�
 � � � � � 
�� �
��� � ��� � 
�� . With this,
it turns out that basically “all” efficient points can be found by minimizing functions of
the form ��� � � � over � , as the following theorem shows.

Theorem 3. Let � � � � � � #
and define

� 27� � �E5 �A�>� � ��� F � nondominated in � w.r.t < � �
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as well as � 2 � � �E5 �A� �
� $ �������
	 798;: � ��� � ��� F � ��� � !

Then, the following statements hold:

1. Let � be a convex cone with

 �@� and � 
�� ���� �� � � #

. Then� 27� � � 5 � � 2 � � � 5 !
2. Let � be a closed convex cone with


 ��� such that � contains no lines. Let �
be closed and convex. Then

� 2 � � �E5 � cl 2 � 2 � � � 5 5 !
3. Let � � � � #� and � polyhedral. Then

� 27� � �E5 � � 2 � � � 5 !
Different proofs can be found in various textbooks and original articles. See,

e.g., (Ref. 11, Section 2.22), (Ref. 16, Page 74), or (Ref. 17). The first proof of Part 2 is
due to Arrow, Barankin, and Blackwell (Ref. 18).

So, in the convex case, by varying the function � over “all” monotone functions
we can generate “all” nondominant points in � 2 � � ' 5 w.r.t. < � and their corresponding
preimages by solving the problems

798;: � 24� 2 
+5 5
s.t. 
0� � � ' ! (4)

Some boundary points (more precisely, a subset of measure zero) are left out in the
convex case, but this is a detail rarely of importance in applications.

It is also possible to use quadratic functions to generate nondominated points. In-
deed, � -monotone quadratic functions have recently attracted some attention, mainly
due to their favorable numerical properties. We start by giving a characterization of
� -monotonically increasing quadratic functions. We will make use of the notation� � �A� � � 
 F 
 � � �

, for arbitrary matrices
� �.� � #
��#

and arbitrary sets
� � � � #

.

Theorem 4. Let � � � � #
be a closed convex cone, let � � � � #

be a nonempty convex
set and � be the subspace parallel to aff 27�%5 , the affine hull of � . Let

� � � � #���#
be

a symmetric positive semidefinite matrix and define the function � by � 2 
 56� � � � 
 � 
 �
for all 
0�@� . Then � is � -monotonically increasing on � if and only if� � �1� � �����
holds. Furthermore, if � is closed and int 27� � ��� � 5 �� A , then � is strictly � -
monotonically increasing on relint 27�%5 if and only if�

relint 27�%5 � relint 2%� � 5-�����
holds.
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The proof of this theorem as well as more details about � -monotonically increasing
quadratic functions can be found in (Ref. 15). The next result describes one way to gen-
erate nondominated elements w.r.t. < � when considering quadratic functions (Ref. 15).

Theorem 5. Let � be a convex cone and � be a convex set with nonempty interior. Let
the sets

� 27� � �E5 and
� 27� � � 5 be defined as in Theorem 3. For an arbitrary set � of

matrices in � � #
��#
define

� 27� � � 5 �A� �
� $�� ���
	 798;:�� � � = � = � F =)��� � !

1. Let ����� � � �>� � �)� � #
��#
positive definite

F � � �1� � � !
Then � 2 � � ���	� � 5 � � 27� � �E5 !

2. Let � � � � � #��� and � � � � #��� . Define

����� � �A�%� diag 2�� � ; � ����!"!"!�� � ' ; � ' 5 F � ��� � � �@� � � !

Then � 27� � �E5 � � 2 � � 
����� � 5 !

3. Bilevel optimization

A common formulation for the bilevel optimization problem is as follows:

798;:�
� $�� ��� � � ��� $�� � � � ���+2 
��
� 
�� 5

s.t. � � 2 
 � 5 � 

 � � ���
	 798;:�� � � � � ��� "���� � � 2 
 � � � 5 �
(5)

where � � � � � ��� � ' �! � � ' � (+* � � are the upper level and lower level objective func-
tions, respectively, and � � ��� � ' � ( * � �#" , � � ��� � ' �$ � � ' � ( * � �&% define the upper
level and lower level constraints, respectively.

Let us define the set of lower level minimizers for a given 
 � by


 � 2 
 � 5 � � � 	 798;: ��� � 2 
 � � � 5 F � � 2 
 � � � 5 � 
�� !
The feasible region of the bilevel problem, also called the induced region, is thus defined
by the set

� 2 
 � � 
 � 5 �)� � ' �' � � ' � F � � 2 
 � 5 � 
 � 
 � � 
 � 2 
 � 5 � !
The induced region is typically a nonconvex set even if all the functions defining it are
linear. In the presence of upper level constraints of the form � � 2 
 � 5 � 


the induced
region is a connected set. However, if we consider upper level constraints involving
the lower level variables, of the form � � 2 
 � � 
 � 5 � 


, then the induced region could
become a disconnected set.
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It is possible to derive optimality conditions for the bilevel problem in the case
where 
 � 2 
 � 5 is a singleton and in the case where it is not. Also, it is possible to
guarantee, under appropriate conditions, that the set 
 � 2 
 � 5 is a singleton. We refer
the reader to the books on bilevel optimization by Bard (Ref. 19), Dempe (Ref. 10),
Shimizu, Ishizuka, and Bard (Ref. 20), and Migdalas, Pardalos and Värbrand (Ref. 21).
Moreover, if the lower level problem is convex and continuously differentiable in the
lower level variables then it admits a necessary and sufficient representation in terms
of its first-order necessary conditions (under the presence of a constraint qualification).
The resulting problem is a (one-level) optimization problem.

4. A multicriteria approach to bilevel optimization

Now let us consider a bilevel problem with no upper or lower level constraints:

7 8;:� � $�� � � � � � � $�� � � � � � 2 
 �
� 
 � 5

s.t. 
 � � ���
	 7 8;:�� � 2 
 � � � 5 (6)

specified by two functions � � � � � �&� � ' �' � � ' � (+* � � . Our goal is to define a (nonre-
flexive) order � that captures exactly the optimality properties of the bilevel problem,
and then proceed by looking at what set might induce this order. We want to define an
order � in such a way that all solutions to the bilevel problem (6) are nondominated
elements of � ��' �  � ��' � with respect to � . And, of course, it would be desirable if all
nondominated elements of � are solutions to (6).

For 
)� 2 
 � � 
�� 5 � � � ' �  � � ' � we have the following chain of equivalences:


 solves 2 � 5
@9B 
 feasible and

� � = � � � ' �  � � ' � �1= feasible and ���+2 =�5 <����+2 
+5
@9B � ���
���� � � ' � � �
��2 
 � � �
 � 5 <��
��2 
+5

and
� � =9�32 =�� � =�� 5 � � � ' �  � � ' � �1=�� � � � 	 798 :6�
��2 = � � � 5

and � � 2 =�5 <�� � 2 
 5 !
Therefore,


 does not solve 2 � 5
@9B ���
��D�)� � ' � � � ��2 
�� � �
�� 5 < � ��2 
 5

or
� =9�32 = � � =�� 5 � � � ' �$ � � ' � �&=�� � ���
	 798;:D�
��2 =�� � � 5

and ��� 2 =�5 <����+2 
 5 !
Now let 
 �%2 
�� � 
 � 5 � = �%2 = � � =�� 5 � � � ' �  � � ' � be given and define


@� =)�A@9B�� 
 � � = � and � � 2 
 5 < � � 2 =�5	�
or

� 
 � � � � 	 798;:�� � 2 
 � � � 5 and � � 2 
+5 < � � 2 =�5
� !
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We then have the following result.

Theorem 6. The point � � 2 � � � � � 5 �)� � ' �  � � ' � solves the bilevel problem (6) if and
only if � is nondominated with respect to � .

Proof: The proof follows immediately from the definition of � . In fact, if � does not
solve the bilevel problem (6) then it is either because it is not feasible and there would
be an � �.2�� � � � � 5 such that � � � � � and � � 2��D5 <�� � 2 � 5 , yielding �8� � , or it is
because there is a � �32�� � � � � 5 such that � � � � � 	 798 :�� � 2�� � � � 5 and � � 2��D5 < � � 2 � 5 ,
also yielding �3� � . The other implication is proved similarly.

��

Unfortunately, � is a difficult relation to work with. In fact, given
E 2 
+5 defined as

in (3), it is not clear how to get
E 2 
 5 (0
 � E 2 =�5 (?= 
 
 � = . Therefore, we suggest the

use of a weaker relation,
�� , defined under suitable differentiability assumptions by


 �� =)�A@9B�� 
 � ��= � and � � 2 
 5 < � � 2 =�5	�
or

� ��� � � � 2 
 � � 
 � 5"��� 

and � � 2 
+5 < � � 2 =�5
� �

where �
� � � 2 
 � � 
 � 5 denotes the gradient of � � with respect to the second argument 
 �

and � � � is an arbitrary norm (for instance � � � � ). Of course, if � � 2 
 � � � 5 is convex
for all 
 � , we have that � and

�� are the same. However, we always have, even in the
nonconvex case, that 
@� = ��B 
 �� = ! (7)

So, the set of nondominated points of
�� is included in the set of nondominated points

of � .
The question now is how can we compute the set of nondominated points of

�� . For
this purpose, we introduce the function

� �1
 � 2 
�� � 
�� 5
	 (+* 2 
 � � ���+2 
 5 � �
��2 
+5 � ��� � �
��2 
 5"��5 !
The image space of this function is � ��� � � � ' �  � �  � �  � � . In this space, we then
define the cone

� �A� � 2 
 � � � � � � � � 5 �)� �
� F 2 
 � 

and � � � 
 5 or 24� � � 
 and

� � 
 5 �
and the induced order < � by (2). The following result provide us a scheme to compute
nondominated points w.r.t. to

�� .

Theorem 7. If
� 2 � 5 �)� � � is nondominated with respect to < � , for some � �%2 � � � � � 5 �� � ' �  � � ' � , then � is nondominated with respect to

�� .

Proof: Let us assume that there exists no
�� � � �
� such that

�� <�� � 2 � 5 , i.e., such that� 2 � 5&( �� �@� . Consequently, there exists no
� 2��65 , with � �%2��&� � �#� 5 �)� � ' �  � � ' � ,

such that
� 2 � 5 ( � 2��65 � � , in other words there exists no � such that

� � � � � � and � � 2��65 < � � 2 � 5
�
or

� ��� � � � 2�� � � � � 5�� � ��� � � � 2 � � � � � 5"� and � � 2��D5 <�� � 2 � 5
� !
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This in turn implies that ��� � � � 2 � � � � � 5"�9� 

because otherwise there would be an ��

such that �� � � � � and � � 2 ��65 < � � 2 � 5 contradicting what we have just stated above.
Thus, there exists no � � 2�� � � � � 5 �)� � ' �' � � ' � such that

� � � � � � and � ��2��65 < � ��2 � 5
�
or

�;��� � �
��2�� � � � � 5"��� 

and ��� 2��D5 <���� 2 � 5	� �

which proves that � is nondominated with respect to
�� .

��

The following corollaries are simple consequences of Theorems 6 and 7 and impli-
cation (7).

Corollary 1. If
� 2 � 5 � � � � is nondominated with respect to < � , for some � �%2 � � � � � 5 �� � ' �' � � ' � , then � is nondominated with respect to � .

Corollary 2. If
� 2 � 5 � � � � is nondominated with respect to < � , for some � �%2 � � � � � 5 �� � ' �' � � ' � , then � is an optimal solution of the bilevel problem (6).

5. Practical aspects and extensions

Unfortunately, the cone � is not convex (but rather the union of two convex cones) and
due to conv 2%� 5 � � � � , we get � � � � 
�� . We are allowed to use a cone � larger
than � , i.e., � � � , but of course the identities conv 2 � 5 � � ��� and � � � � 
��
follow immediately. As a consequence, the standard scalarization approach outlined
in Section 2 can not be directly used here.

5.1. Scalarizations

An alternative strategy is to define the convex cones � � �A� � 2 
 � � � � � � � � 5?� � �
� F
>� 

and � � � 
��

and � � �A� � 2 
 � � �$� � � � � 5 �%� �
� F � � � 

and

� � 
��
. Then

� � � � ��� � . Now let �  be a �  -monotone function ( /6� / � � ) (easy to construct,
since the cones �  are convex) and define � 2 
+5 �A��798 : � � � 2 
+5 � � � 2 
+5 � . This function
� is � -monotone and continuous, and the corresponding optimization problem (4) is
equivalent to solving two optimization problems, one with objective function � ��� �
and one with objective function � � � � . Let us illustrate this cone decoupling with the
following example

798 :��� $�� � � � � $�� � 
��
s.t. 
 � � � � 	 798 : 2 
 � (E
 �� 5

�
;&� !

The function
� 2 
 � � 
 � 5 is defined as
� �1
 � 2 
 � � 
�� 5
	 (+* 2 
�� � 
�� � 2 
�� ( 


�
� 5
�
;1� � 2 
�� ( 


�
� 5
�
5

and thus

� � 2 � 2 
 � � 
 � 5 5 ��
 � 
 � ��
��&2 
 � ( 

�
� 5
�
;1� � � � 2 � 2 
 � � 
 � 5 5 � 
 � 
 � ��
�� 2 
 � ( 


�
� 5
� !
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Here we used � � � �� instead of � � � � . Also, we have

� � �>� 
��  � �  � � ���  � � � � � � � �  � � ���  � �  � � � !
The constants 
 �$� 
 � � 
 � � 
�� satisfy

2%
 �$� 
 � 
 � � 
 5 �@� �� � � �  � 
��  � � �  � 
��
and 2 
 � 
 � � 
 � 
���5 �@� �� �>� 
��  � ���  � 
��  � ��� !
We also have

� � � 2 � � � � ��5 ��� �  � �  � ���  � ��� !
This example shows that this cone decoupling strategy together with linear scalar-
izations might not be appropriate. In fact, by choosing 
 � �� 


and 
�� � � � arbi-
trary we immediately see that the function � � 2 � 2 
 � � 
 � 5 5 is unbounded below. In this
case the � � 	 798;: operator in the definition of

� 2 � � � � 5 in Theorem 3 returns the
empty set. When 
 � � 


, � � 	 798 : � � 2 � 2 
�� � 
�� 5 5 coincides with the induced region� 2 
 � � 
 ��2 
 ��5 5 F 
�� � � � �
of the bilevel problem. A similar situation happens when

minimizing � � 2 � 2 
 � � 
 � 5 5 : if 
 � � 

then � � 	 798 : � � 2 � 2 
 � � 
 � 5 5 � A , otherwise

� � 	 798;: � � 2 � 2 
 � � 
 � 5 5 is the same as � 2 
�� � 
���2 
 ��5 5 F 
��3��� � �
. With these parame-

ter values, the minimization of 798 : � � � 2 
+5 � � � 2 
+5 � yields points in the induced region
but it is not able to identify the optimal solution 2 
 � 
 5 of the bilevel problem.

However, we have mentioned in the end of Section 2 that quadratic scalarizations
can be used too to generate nondominated points w.r.t. to an order relation defined by a
closed convex cone. To construct a � � -monotone quadratic function on � , Theorem 4,
Part 1, tells us that we have to look for symmetric positive semidefinite matrices

�
with

� � � � �� . For the sake of simplicity let us consider diagonal matrices
� �

diag 2 � �1� � � � � � � � � 5 only. Then, �
� � � � can be chosen arbitrarily, we have to choose

� � � 

necessarily, � � � � � � is arbitrary, and � � � 


necessarily again. However,
we need � � � 


to get positive semidefiniteness. Likewise, � � -monotone quadratic
functions with diagonal matrices

�
have to fulfill �

� � � � � � � � 

, while � � ��� � �

can be chosen arbitrarily. The corresponding quadratic functions on � � � � � can be
written as � � 2 
 � � � � � � � � 5 � � � � 
 � � � � � �� and � � 2 
 � � � � � � � � 5 �A� � �

� �
, respectively

(with � � � � � � , � � � � � � , and � � � � � � ). In the end, we arrive at scalarizations of the
form

� � 2 � 2 
 � � 
 � 5 5 � � � 

�
� � � �&2 
 � (E


�
� 5 � ;�� � � � 2 � 2 
 � � 
 � 5 5 � � � 2 
 � ( 


�
� 5 � !

For �
� � � � � 


the first objective function is bounded below, and the second objective
function is bounded below for all feasible parameter values � � � 


. Moreover, for
� �1� � �0� 


the unique minimizer of 798 : � ��� � is the unique solution to the original
bilevel problem (despite the fact that Theorem 5, Part 1, is not applicable here since
� � � � �0� 


yields a non positive definite matrix
�

). So, for this instance problem,
by choosing “sensible” parameter values we were able to solve the bilevel problem by
solving parameterized (one-level) optimization problems.

In general we would have to choose a finite set of parameters to get a finite number
of (one-level) optimization problems. A natural question is what type of scalarization to
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use (linear, quadratic, or other) and how to choose the set of parameters. These questions
are hard to answer and seem to be highly problem dependent. The parameters could be
chosen a priori based on some information about the problem or corrected a posteriori
after analyzing information gained during the solution of a first set of parameterized
(one-level) optimization problems.

5.2. The constrained bilevel case

We consider here briefly constrained bilevel problems of the form given in (5). Let
 � 2 
 � � 
 � 5 � = �%2 = � � = � 5 �)� � ' �' � � ' � be given and define


@� = � @9B�� 
�� � = � and � ��2 
 5 <��
��2 =�5	�
or�

 � � ���
	 798;:� � � � � ��� " � � � � 2 
 �

� � 5 and � � 2 
 5 < � � 2 =�5�� !

as well as � �A� ��
 � � � ' � F ��� 2 
 ��5 � 
��  � � ' � !
Then, � �,2 � � � � � 5)� � � ' �  � � ' � solves the bilevel problem (5) if and only if � is
nondominated with respect to � in

�
.

Using the same strategy as above, define


 �� = �A@ B�� 
 � � =�� and �
� 2 
+5 < �
��2 =�5
�
or�
� proj � � 2 � � �
��2 
 � � 
 � 5 5"��� 


and ���+2 
 5 <���� 2 =�5�� �
where proj �
� 2 � 5 is the projection operator (see, e.g., (Ref. 22)) onto the set of feasible
points of the lower level problem, � � � � � ' � F ����2 
 � � � 5 � 
�� . Likewise, we consider
now the function

�
defined by

� �1
 �32 
 � � 
 � 5
	 (+* 2 
 � � � � 2 
 5 � � � 2 
+5 � � proj �
� 2 � � � � 2 
+5 5"��5 !
and it is clear that the strategy outlined above for the unconstrained case would also
work for the constrained case.

5.3. The three-level case

Let us now consider three-level optimization problems of the form

7 8;:��� $�� � � � � �
	 $�� � � 	 � ��� $�� � � � � � 2 
 �$� 
 � � 
 � 5
s.t. 2 
 � � 
 ��5 solve

798 :�
 	 � 
 � � � 2 
 �$��� � ��� � 5
s.t.

�
� � ���
	 798;:D� � 2 
 � ��� � � � 5 !

For 
 � ��� � ' � fixed, the feasibility for the problem above is controlled by the bilevel
problem 798 :�
 	 � 
 � � � 2 
 �$��� � ��� ��5

s.t.
�
� � � � 	 7 8;:�� � 2 
 �1��� � � � 5 !
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Using the result from Section 4, we define the order � � � on 2 � � ' 	  � � ' � 5  2 � � ' 	  � � ' � 5 for two points 2 
 � � 
 ��5 and 2 = � � = ��5 by

2 
 � � 
 � 5 � ��� 2 = � � = � 5�� @9B�� 
 � ��= � and � � 2 
 � � 
 � � 
 � 5 < � � 2 
 � � = � � = � 5	�
or

� 
 � � � � 	 7 8;:�� � 2 
 �1� 
 � � � 5
and � � 2 
 �1� 
 � � 
 � 5 < � � 2 
 �$� = � � = �"5
� !

This parameterized order relation could then be used to define a order relation for the
original three-level problem. We give a couple of alternatives in the next paragraph but
none of which seems totally satisfactory. It is important to stress the high complexity of
hierarchical optimization problems and to convey the point that the jump from two-level
to three-level should not be regarded as a simple increase in dimensionality.

One possibility would be to define the order relation as


@� = �A@ B � 
 � � = � and 2 
 � � 
 ��5 � � � 2 = � � = ��5
�
or � 2 
 � � 
 ��5 is nondominated w.r.t. � � � and � � 2 
 5 < � � 2 =�5
� �

reflecting well the structure of the original problem but leading to a relation that is diffi-
cult to check since it involves global information ( 2 
 � � 
 � 5 is nondominated w.r.t. � ��� ).
Another possibility would be to define the order relation as


@� = �A@ B�� 
 � ��= � and 2 
 � � 
 � 5 � � � 2 = � � = � 5
�
or � 2 
 � � 
 � 5 � � � 2 = � � = � 5 and � � 2 
 � � 
 � � 
 � 5 < � � 2 = � � = � � = � 5	� !

Now the problem is that we are checking optimality of 2 = � � = � � = ��5 against points2 
 � � 
 � � 
 � 5 that are not necessarily feasible.

6. Concluding remarks and future work

Bilevel optimization problems appear in a wide range of applications (Ref. 19; 10; 20)
and, in particular, in engineering applications related with optimal design (Ref. 23).
Many of these latter problems are defined by black-box simulation codes related with
different engineering disciplines, where derivatives frequently are unavailable. The use
of derivative-free methods in bilevel optimization was part of the motivation for the
theoretical investigations reported in this paper. Given that there exist already several
sophisticated algorithms and implementations for derivative-free (one-level) optimiza-
tion, a natural approach to derivative-free bilevel optimization would be to reformulate
the bilevel problem into a one-level optimization problem, to allow the application of
such derivative-free techniques.

Such approach is also supported from the fact that one encounters frequently (one-
level) optimization problems where derivatives are unavailable and that resulted from
the linear combination of functions appearing in an multicriteria optimization problem.
Our approach has the same flavor. However, since there is a hierarchical structure in-
volved, it would be wrong to address the derivative-free bilevel optimization problem
as a derivative-free bicriteria optimization problem. We have therefore investigated how
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to repose bilevel optimization problems as appropriate multicriteria (more precisely,
four-criteria) optimization problems and how to choose the corresponding appropriate
scalarizations.

We would certainly like to improve our current knowledge in many directions. As
discussed in Section 5.1, the choice of type of scalarization and of scalarization param-
eters is quite important in practice. We hope to learn more about this opening issue by
looking at particular classes of bilevel optimization problems.
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