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Abstract. In this paper we extend the design of a class of composite-taist—region SQP methods and their global
convergence analysis to allow inexact problem informatibime inexact problem information can result from iteratinear
systems solves within the trust-region SQP method or frgsnosgimations of first—order derivatives. Accuracy reqoisnts
in our trust—region SQP methods are adjusted based onifiagibd optimality of the iterates. Our accuracy requieeTts
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implementations of SQP methods. In the absence of inexacimer global convergence theory is equal to that of Dennis,
El-Alem, Maciel (SIAM J. Optim., 7 (1997), pp. 177-207). IFiterates are feasible, i.e., if all iterates satisfy tlgiality
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information for unconstrained optimization.
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1. Introduction. In this paper we study a class of trust—region sequentiadrgia program-
ming (SQP) algorithms for the solution of minimization pleins with nonlinear equality con-
straints. Our aim is to extend the design of these algoritamastheir convergence theory to allow
the use of inexact problem information that originates finexact first—order derivative information
or from the use of inexact linearized constraint equatioadjoint equation solves.

The problems we are interested in are of the form

min  f(y,u),

(1.2)

st C(y,u) =0,
wherey € R, u € R" ™, f: R" — R,C : R" — IR™, m < n. Our theory assumes
that f andC' are at least twice continuously differentiable. Variantshe algorithms, however,
require only first—order derivative information. Our resdais motivated by discretized optimal
control problems [16, 18, 21], parameter identificationgbeans and inverse problems [28, 31], and
design optimization [4, 24]. In these applicatiansepresents the discretized state variablesiand
represents the discretized controls, parameters, ormgaiipbles, respectively, and the nonlinear
constraintC'(y, u) = 0 is the discretized state equation. For many of the aboveiaret applica-
tions the solution of linear equations of the type

(12) Cylywz=d o Cylyu)Tz=d,

wherey, u andd are given and wher€',(y,u) andC, (y, ) are the partial Jacobians with respect
to y andu, respectively, is costly and has to be accomplished bytiteranethods. In optimal
control, parameter identification, or optimal design peoh$ the equations (1.2) are related to the
linearized state equations and the adjoint equationseotisply, and it is often desirable to solve
such equations using application specific methods such @suisubspace, multigrid, or domain
decomposition methods. Hence exact solutions of lineaesys (1.2) are not available; only ap-
proximate solutions with a specified residual tolerancelmaabtained.
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Composite step trust-region SQP methods are used sudbessholve large scale optimiza-
tion problems. However, existing convergence theorieschvhare nicely reviewed in [5], rely on
the exact solution of linear systems of the form (1.2). Mogs$teng implementations of SQP meth-
ods, use dense or sparse linear algebra methods to accoimglisnear system solves. As we have
mentioned before this is not feasible for several of the iappibns we have in mind. Our main
motivation of this paper is the control of inexactness agdrom iterative system solves (1.2) in
composite—step trust—region SQP methods. However, oumgins on the inexactness are more
general and cover inexact first—order derivative infororatiThe novel aspect of our work is the
ability to deal with inexact first—order derivative infortian or inexact linearized constraint equa-
tion solves. Of course, we also allow the inexact solutiotra$t—region subproblems, which is a
standard ingredient of trust-region convergence thearidsmplementations.

In the context of Newton methods for nonlinear equationswar@bnstrained optimization, the
control of inexactness is relatively well understood. %eg., [2, 7, 12, 13, 14, 25]. Generalizations
of the inexact Newton method concepts to the local converganalysis of inexact SQP methods
can be found, e.g., in [8, 9, 15, 22, 26]. In [23] global cogsrce of line-search reduced SQP
methods is studied. The influence of inexact problem infaionaon the global convergence of
trust—region SQP methods, however, is to our knowledge abstudied. Our analysis and our
assumptions on inexactness are different from [23]. Ini@aler, our bounds on the inexactness do
not rely on Lipschitz constants, derivative bounds, anaotuantities that are difficult to obtain
in practice. Our bounds on the inexactness depend on gearttiat are readily available in our
algorithms.

We give a global convergence analysis of a class of compesép trust—region SQP algorithms
for (1.1), which are reviewed in [5, 15.4] and [10§ 4]. In the absence of inexactness our global
convergence theory is that of [10]. If all iterates are fekssii.e., if all iterates satisf¢ (yx, ux) = 0,
then our results are related to the convergence analysgsahfpr trust—region methods with inexact
function and gradient information for unconstrained ojtition.

This paper is organized as follows. In section 2 we will cdesithe reduced problem
min f(y(u),u) obtained from (1.1) by eliminating the variablesWe will briefly discuss the con-
vergence analyses in [3] and [$, 8.4,10.6] for trust—region methods with inexact functiomgoa-
dient information for the reduced problem. This will reveame useful problem information and it
will later motivate our assumptions on the inexactness fobjem (1.1). Section 3 contains a brief
review of the composite—step trust-region SQP algorithmasodi their global convergence analyses
given in [10]. Our inexact trust—region SQP algorithms amelrtglobal convergence analyses will
be described in section 4. Assumptions on the inexactnessciion 4 are stated in a general way.
In section 5 we will discuss how they could be satisfied in apl@mentation. In the conclusions,
section 6, we point to some possible extensions.

We use the following notation. We often set= (y,u) and usez, andz, to represent the
subvectors ot € IR™ corresponding to thg andu components, respectively. The SQP iterates
are indexed by: and the symbol of a function with subscripts used to represent the value of that
function atz; and, possibly)\;. For instancef;, = f(zr) = f(yk,ur). The vector and matrix
norms used are thie norms, i.e.|| - || = || - ||2. Thel x [ identity matrix is denoted by;.

2. Trust-region methods for the black—box formulation with inexactness.Under the as-
sumptions of the implicit function theorem, the probleniljican be locally reduced to an uncon-
strained problem in the variable Since the type of inaccuracies we are interested in fo) (&late
to function and gradient inaccuracies for the reduced prabit is worthwhile to review existing
results on trust-region methods with inexact function aratiggnt evaluations for unconstrained
problems. To simplify this presentation, we impose coodgithat ensure that (1.1) is equivalent to
an unconstrained problem. We suppose that for @l R"~™ the constraint equatiofi(y,u) = 0
has a unique solutiop and thatC, (y, v) is invertible for all(y, u) with C(y, ) = 0. In this case
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the implicit function theorem guarantees the existencetafiee continuously differentiable func-
tion u — y(u) defined through the solution @f(y, ) = 0. Instead of (1.1) we can consider the
equivalent reduced problem

~

(2.1) min f(u) = f(y(u), u).

This problem is also called the black—box formulation ofdipéimization problem (1.1) because the
solution of C'(y, u) = 0 is treated as a black—box in the optimization algorithmg2ot). It can be
shown that

(22) vf(’u’) = W(?Ja U)TVf(y, U)‘y=y(u) = W(?Ja U)Tvz(y u, A)‘y:y(u),/\Z/\(u)a

where

2.3) W (y.u) = ( ~Cy(y,u) ' Culy, u) )

Infm

andX(u) solvesCy (y(u), u)TX\ = =V, f(y(u),u). For details see, e.g., [11, 19].

Now, suppose that the nonlinear equatia@figy,ur) = 0 can not be solved exactly for
yr = y(ug), but that an approximatiof(uy) of yx = y(ux) is computed by applying an it-
erative method ta’(y,ur) = 0. In this case the functiogf and its gradient can not be eval-
uated exactly. Gradient computation also requires thetisolwf a linear system of the form
Cyyr,ur)Tz = =V, f(yr, ur); if such systems are solved iteratively, this will introéuanother
source of inexactness in the gradient. How does one needtootthe inexactness in function val-
ues and gradients in trust-region methods for (2.1)? Thednfle of inexact gradient information is
analyzed in [3], [5§ 8.4], [35] (for a detailed literature review see [5, p. 29 the influence of
inexact function evaluations is studied in §510.6]. We want to ensure that our inexactness assump-
tions for the trust—region method for (1.1) are compatibia the existing inexactness assumptions
for trust—region methods for (2.1) in the case that the S@Rt&(yy., uy) satisfiesC (v, ur) = 0.
Therefore we briefly review the theory in [§ 8.4,10.6].

In a trust—region method for the solution of (2.1) one corepwn approximate solution of

min My (sy) = fk + §,{su + %sfflksu,

lsull <Ak
whereg;, is an approximation on(uk) and H, repIacesVQf(uk). The decision about the ac-
ceptance ofu, + (s,)r as the next iterate and about how to update the trust-regiding is
based on the ratio of actual decreased, = f(uk) - f(uk + (s«)r) and predicted decrease
p/raik = m(0) — mr((su)r). Letne € (0,1) be the constant so that the trust—region radius is
reduced if and only ih/r&ik/p/re\dk < 19 and lety; € (0,n2] be the constant so that the step is
rejected if and only itﬁ&ik/p/re\dk <M.

In [5, § 8.4] it is shown that if the relative gradient error satisfies

~

(2.4) lge = Vf (wn)ll/llgell < € < (1 =n2)/2,

then global convergence of the trust—region algorithmatianary points can be guaranteed. This
accuracy requirement for the gradient approximation isaaiveak.

Inexact evaluation ofinfluences the computation a/faik. The influence of inexact function
evaluations is analyzed in [§,10.6]. It is sufficient that

2.5) £ @), un) = f(y(un),un)| < mopredy,
@k + (su)k)sur + (su)r) — fy(ue + (Su)k), uk + (su)k)| < nopredy,
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whereny < imi. In particular, these accuracy requirements guarantesfttiee ratio of actual
and predicted decreases indicates acceptance of the.stefaired /pred;, > 1, whereared,, is

computed with the inexact function values, then one stilhots a sufficient decreagéu; ) — f(uk +
(su)k) > (m — 2no)pred, in the exact function values. Note also that the accuracyireaent
for f(y(ug),ur) depends on the trust-region st ), which is not known wherf (g (u), uy) is

computed the first time. Thereforg(y(uy), ur) might have to be recomputedpfed, becomes
too small to meet the required accuracy requirement. Foemetails see [5; 10.6].

3. Trust—-Region SQP Methods.In this section we describe the class of composite—step-trus
region algorithms assuming exattandC' derivative information and assuming exact solutions of
linear systems of the form (1.2). Our representation foigh0, 11]. This section is needed to
introduce some basic terminology and notation, as well @escribe later on what can go wrong if
f or C derivative information, or linear system (1.2) solutions mexact.

3.1. The main components of our composite—step trust—regicalgorithms. Given a local
minimizerz, = (y.,u.) for problem (1.1), there exists a Lagrange multiplier such that the
gradientV{(z., \.) of the Lagrangian function

0y, u,\) = f(y,u) + ATCy, u)

is zero. IfCy(xz.) is assumed to be nonsingular, then the Lagrange multipliés determined by
Vol(z, ) = Vyf(z.) + Cy(z.)TA = 0, and the first-order necessary optimality conditions
can be written as

Vil(zi, Mz)) = W(z )TV f(z,) = 0,

(3.1) Val(z., Mz,)) = Cz,) = 0,

whereW (z..) is given by (2.3).

Given approximations; = (yx,ux) and )\ for the solution(y.,u.) and the corresponding
Lagrange multipliet, of (1.1), SQP algorithms compute an (approximate) solutfdhe quadratic
programming (QP) problem

min g (s) = Ok, M) + Val(ze, M) Ts + 3T Hys,

(3.2)
s.t. Cy(zg)sy + Cuxg)sy + Clxy) =0,

where H;, is a symmetric approximation to the Hessidft ¢(zx, \r) of the Lagrangian at
(yk,ur, A\x) or the Hessian itself, and then generate a new itgate; , ui11) from this QP so-
lution and, possibly, the corresponding Lagrange mudiplj.;.;. To ensure global convergence, a
trust—region condition of the fornjs|| < Ay is imposed. However, the linear constraints in (3.2)
and this trust-region constraint can be incompatible. Tal déth the possibility of incompatible
constraints, composite—step trust—region algorithmsynséwhich are reviewed in [5; 15.4], [10,

§ 4], split the steps as a sum of two steps' ands'. We assume thaf, (zy) is invertible. In this
case the step decomposition takes the form

s sh st
Su 0 Su

3.1.1. The quasi—normal step towards feasibility.First, composite—step trust—region algo-
rithms compute a so—called quasi—normal stgpwhich is responsible to move towards feasibility.
Since we assume thét, () is invertible, they—component o}, is an approximate solution of

min [|Cy(zk)sy + C(zy)l],

(3.3)
st [|s] < A,
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and theu—component o8}, is given by(s,); = 0. Subproblem (3.3) is not solved exactly. A rather
coarse solution is sufficient to guarantee basic globalem®nce. The quasi—normal compongnt
is required to satisfy

(3.4) ICkII* = ICy(x)(s)k + Crl* > w1]|Cll min{wol|Crll, Ax},
wherex; andks are positive constants independentof
3.1.2. The tangential step towards optimality.In a second step, composite—step trust—region

algorithms compute a so—called tangential sfgpvhich is responsible to move towards optimality
but has to maintain linearized feasibility, i.e., has torbthie null-space of the linearized constraints.
The tangential step is an approximate solution of

min  gg (s} + s*)
(3.5) st Cy(wzg)sy + Culzr)sy =0,

Isull < A

From the constraints in (3.5) we see that= Wy s,, whereW), is defined in (2.3). Therefore we
can write
(3.6) ar(sh + s') = q(s}h) + (Wi (Hesh + szk))Tsu + LI W H Wy s,
and pose the problem (3.5) entirelydp:

PR . T
min G (sy) = ar(sy) + (WkT(Hks',; + fok)) Su + %(SU)TW,?Hka(su)

(3.7)
st |[sull < Ag.

Reduced SQP algorithms do not approximate the HeSgiar (xx, \x) but the reduced Hes-
sian W,fvixé(xk,)\k)wk. In this caseWkTHka in (3.7) is replaced by the reduced Hessian
approximationlfllC and the termf}, s}, is approximated. The details of the latter approximatian ar
not important in our global analysis and we refer to, e.d.fdimore details.

The tangential step does not need to solve (3.5) or (3.7}lgx#ds sufficient that the tangential
components,, ) satisfies a fraction of Cauchy decrease condition assdoieth the trust—region
subproblem (3.7). In other word&;,, ), has to provide as much decrease in the quadfafic,) as
the decrease achieved in the directioW gy, (0) = —W,[ (Hy,s} + V() inside the trust region. It
can be proved that such a condition implies

(3.8) @1 (0) — @i ((su)k) > Kal|W) (Hys}, + Vo €y,)|| min {H5||WkT(HkSZ + Vol "'?GAk};

whereky, k5, andkg are positive constants independent:of

3.1.3. Measuring progress and evaluating the trial stepTo decide about acceptance of the
stepsy = s}, + s}, we follow [10] and use the augmented Lagrangian merit famcti

L(z, X p) = f(z) + \TC(z) + pC(2)T C(z) = £(z, \) + pC(z)T C(z).

The decision about acceptance of the step and update oiteregion radiug; is based on the
ratio of actual decreaseed(sy; pr), given by

(3.9) ared(sk; pr) = L(xk, \is pr) — L(@k + 8k, Arss pk)
and predicted decreageed(sy; pr), given by
(3.10) pred(s; pr) = L(zk, Ax; o) — (i (sk) + AN (Jesk + Cr) + prllJesk + Crll?)
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whereg;, is defined in (3.2), wherd (y,u) = (Cy(y,u) | Cyu(y,u)) is the Jacobian o', and
whereAX, = A\+1 — A. Since the tangential step lies in the null spac&gfwe haveJs! =
Cy(zr)(sy)k + Culzr)(su)r = 0, and it can be easily seen that

pred(sk; pr) = @x(0) — G ((su)r)
(3.11) + 41 (0) = qr(sp) — (AX)T(Cy (2r) (s5)k + Ch)
+ ok (IICk1? = 1Cy (1) (s))k + Cll?) -

Recall thagy, ((su)r) = gk (s, + Wi(su)r) (see (3.7)).

Because of the requirements (3.4), (3.8) on the quasi—ri@termand tangential step, respec-
tively, we have thaf (0) — Gx((su)x) + pi ([ICkI* = ICy (2x)(s))x + Ck||?) > 0, providedz;,
does not satisfy the first—order necessary optimality doondi (3.1). To ensure thated(sg; px) IS
sufficiently positive the penalty paramejgris increased if necessary. In fact, the penalty parameter
pr. Will be chosen so that

pred(sii pi) > B2 (ICHIIP = 10, (o2 () + Cl?)

(see step 2.6 in algorithm 3.1 below).

3.2. Statement of the algorithm. This leads to the following class of trust-region SQP algo-
rithms. They are the same as the trust-region SQP algoritin[h8], but are adapted to our problem
context and to our notation.

ALGORITHM 3.1 (Trust-Region SQP Algorithms).
1 Choosery andAq > 0, and calculatég. Setp_; > 1 ande;,; > 0. Choosexy, 11, Apin,
Ajnaz, andp suchthad < ay,m <1, 0 < Apin < Apae, andp > 0.

2 Fork=0,1,2,...do
2.1 Computes], satisfying (3.13) and (3.4).
2.2 ComputdV,” Vgy(s}).
2.3 If|Ck|| + W Var(sh)|| < eror, Stop and returm, as an approximate solution for

problem (1.1).

2.4 Computes, ) satisfying (3.8).
2.5 Compute\yy; and setAX, = Agpp1 — Ag.
2.6 Update the penalty parameter.

It pred(si; pr—1) > 25 (IChlI? = ICy (@a) ()i + Cill? ), then set

Pk = Pk—1-

Otherwise set

= (= (0) + @i ((3u)x) — ax(0) + ar(sh) + AN (Cy(zx)(s3)k + Ci))
’ ICIZ = 11Cy (@) (s})k + Crl?

+ 7.
2.7 Comput€s},)r = —C,(xx) ' Culzr)(su)r (if not already done in step 2.4).
2.8 Ifared(sg; pr)/pred (s}, (su)r; pr) < m, set

Appr = aymax {[|sg [, [|(su)rl}

and rejectsy,.
Otherwise accept;, and choose\;,; such that

maX{AminaAk} < Apt1 £ Apae-
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2.9 If s;, was rejected sety 1 = xp andAp+1 = \i. Otherwise sety; = z + s and
let \;1+1 be the vector computed in step 2.5.

REMARK 3.2.In reduced SQP methods one uses

0 O
(0 2)

In this caseH s}, = 0 and steps 2.1 and 2.7 can be merged into a step 2.4a. Insteadoiiting
steps 2.1 and 2.7, one computes in step 2.4a an approximat®sqs, ), of

min (|G, (xx)s, + Claw),

(3.12)
st [ls,ll < Ay

which satisfie¢3.13)and(3.4). In this cas€(s )« in steps 2.6 and 2.8 is replaced by, ).

3.3. First—order global convergence of the algorithm.Dennis, El-Alem, and Maciel [10]
have proved that the class of trust-region SQP algorithrhgs3globally convergent. Their con-
vergence theory requires the set of assumptions given betowall iterationsk we assume that
T, Tx + i € Q, wheref is an open subset dR™.

A.1 The functionsf, ¢;, i = 1,...,m are twice continuously differentiable functions fh
Herec;(z) represents the-th component of’ ().

A.2 The partial Jacobia@', () is nonsingular for alk: € Q.

A.3 The functionsf, V£, V2f, C, J, V3¢, i = 1,...,m, are bounded if). The matrix
Cy(z)~! is uniformly bounded in.

A.4 The sequencegH .}, {W;}, and{\;} are bounded.

Dennis, EI-Alem, and Maciel [10] show that for a subsequesfabe iterates the first—order
necessary optimality conditions (3.1) of problem (1.1)satisfied in the limit.

THEOREM 3.3. Let assumptions A.1-A.4 hold. The sequences of iterateraged by the
trust-region SQP algorithms 3.1 satisfy

timinf (W79 fell +[1C]l) = 0.
k—o0

We remark that inequality (3.4) and A.3 imply the existentep> 0, independent ok, such
that

(3.13) skl < w3l Crll-

In fact, using||Cy (z)(s}), + Ck|| < ||Ck|| and the boundedness f, (z,) '} we find that
skl < 11Cy (@)~ (IICy(xk)(SZ)y + Crll + IICkII) < 2)1Cy () T HICwll-

In [10] the condition (3.13) is imposed as an additional ¢bod on the quasi-normal step, because
more general quasi—normal steps are allowed.

4. Trust—region SQP methods with inexactnessNow we allow f andC' derivative informa-
tion, as well as linear system (1.2) solutions to be inex&é. assume, however, that the user is
able to adjust the level of inexactness. We will investidedes algorithm 3.1 has to be modified to
cope with this inexactness. Our aim is to devise conditianthe allowable level of inexactness that
meet three criteria. First, we want our conditions to be aaknas possible to admit inexpensive
problem information when the iteratég, ux) are far away from the solution. Secondly, we want
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our conditions to be comparable with the conditions on icekanction and gradient information
for unconstrained trust-region methods applied to thelblbox formulation (2.1), which have been
reviewed in section 2. Thirdly, while our conditions on thimwable level of inexactness will be
general, we want them to be implementable. In particularctinditions on the allowable level of
inexactness should not depend on derivative bounds, Ligsobnstants, and other quantities that
can not be computed in practice.

4.1. The main components of our composite—step trust—regioalgorithms with inexact
problem information.

4.1.1. The quasi—normal step.The assumption (3.4) on the quasi—normal step turns out to be
rather weak and can be satisfied using several algorithnditlato our inexactness framework.
This issue will be discussed in section 5.1. Notice alsodkatmption (3.4) is already expressed in
terms of the right hand sidé@;, and the residuad,‘y(xk)s; + O}, of the linear systemjy(xk)s; =
—Ck.

4.1.2. Theu—component of the tangential step.The computation of the tangential stejp
allowing inexact information is more complicated. Amonget things, we can not assume that
s}, is in the null-space of the linearized constraints. Thisdition, expressed ag = Wps,, was
used repeatedly in sections 3.1.2 and 3.1.3. It will be vesful to discuss the computation of the
u—component and the computation of tiecomponent of the tangential step separately.

If exact derivative information and exact linearized systeolves are available, then the
component of the tangential step is the approximate solwfd3.7). Now, only approximations
of WE(Hksg + V.¢;) and W,fHka will be available and we compute, as the approximate
solution of

min My (Su) &t qk(s',‘c) + @fsu + %SZWLTHI@WLSu
(4.2)
st [lsull> < Ap.

In (4.1) the symbol™ over W/l H, W}, indicates that the reduced Hessian approximation may be
inexact. What are the accuracy requirementgoand oanT H,W}.?

If (yx,ur) were feasible, i.e., iU (yx,ur) = 0, thens] = 0 (see (3.4)) andV f(ux) =
WL (Hys? + V.0;) (see (2.2)). In this case the theory of §53.4] for the reduced problem (2.1),
which was reviewed in section 2, suggests an accuracy eqaint of the form

(4.2) gk — Wi (Hish + Vali)|| < & |Gl

with some¢; € (0, 1) which is related to the parameters in the trust-region éhyar(c.f., (2.4)).
We need a slightly stronger condition, namely

(4.3) Gk — Wi (Hpsh + Vali)|| < & min {[[gill, Ax},

where&; > 0. In (4.3) the constarg; is not tied to the parameters in the trust-region algoritinm,
particular we do not neeg] < 1, but the absolute error in the reduced gradient approxanatiust
be less thafigy || andAy.

In section 5.2 we show how (4.3) can be enforced in practiecgrars in the reduced gradient
are due to inexact linear system solves. There we will seenthide (4.3) is slightly stronger than
(4.2), the fact that we can give up the restrictforn< 1 makes it preferable from an implementation
point of view.

REMARK 4.1.Imposing the inexactness condition

~

(4.4) gk = Vf(ur)]] < & min {{|grl, Ax},
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where&; > 0, instead of(2.4) also gives the standarim inf global convergence result for the
unconstrained problerg2.1). This may be seen using the proof in [27, Th. 4.10] and apgl{dm™)
in the estimate fofx (sx) — V f(zx) T si| on page 278 of [27].

The approximate reduced Hessian has to satisfy

(4.5) (52)TWT HWi(s)k < &ll(s) 1

for some&, > 0 independent ok. If W,” H, W, is evaluated exactly, then (4.5) is implied by
assumption A.4.

The approximate solutiofs,, ), of (4.1) computed in step 2.4 of algorithm 3.1 must provide a
fraction of Cauchy decrease on this approximate meéggli.e.,

(4.6) i (0) = i (su)k) > Gl min {rslGell, Ko},

where, as in (3.8)4, k5, andkg are positive constants independen&ofOne method to actually
computes,, satisfying (4.6) will be discussed in section 5.3.

4.1.3. Measuring progress, updating the penalty parameteand evaluating the trial step.
The reformulation (3.11) of the predicted decrepsel(s;; px) defined in (3.10) is only valid if},
is in the null-space of the linearized constraints. If tsisdt the case, then

pred(si; pr) = qk(0) — Gr((5u)k)
+ qx(0) — qr(s}) — (AM) (Cy(zr)(sh)k + Cr)

+ pi (ICKI1? = 1|Cy (k) (s3)k + Cill?)

o

—(AN)T(r}) — mllnllz’—?m (r) ™ (Cy(@r) () + Ci)

where

(4.7) i = Cylar)(sy)k + Culzr)(su)k-

Moreover, the reduced quadratic moggldefined in (3.2) is now replaced by, defined in (4.1).
We define

pred(sy, (su)k; pe) = mi(0) — my((su)k) + qx(0) — qr(sy)
—(AX)T(Cy (k) (s5)k + Cr) + pr (IICEN? = 1Oy (1) (s)k + Ci|?)

(4.8)
and

(4.9)  rpred(rl; pr) = —(AN)T(r}) — prllrk]l® — 206 ()T (Cy () (s2)i + Ci) -
We now view
pred(sy, (su)k; pr) + rpred(ry; px)

as the quadratic model of the Lagrangian.

This predicted reductiopred (s}, (su)x; px) depends only on} and(s,); and can be readily
computed. In fact, the quantities (0), my((su)x) andCy(zx)(sy)r + Cx are typically already
computed during the computation of tiecomponent of the tangential step and the computation of
the quasi—normal step, respectively.

Because of the requirements (3.4) and (4.63pand(s.,), respectively, we have that, (0) —
M ((su)i) + ok (ICk]1> = |Cy (2)(s3)k + Cil|”) > 0, provided(yy, u;) does not satisfy the first—
order necessary optimality conditions (3.1). We updatepthalty parametes, if necessary, to
ensure sufficient positivity gfred (s}, (s4)r; px). See step i2.6 in algorithm 4.3 below.

The evaluation of the stepy = s}, + s}, (we will discuss the computation ¢f} ) in a moment)
will be based on the ratiered(s; px.) /pred(sy, (Su)k; pr)-
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4.1.4. They—component of the tangential step.As we have noted in the previous section, the
quadratic model of the Lagrangiarpised (s}, (su)x; px) +rpred(r}; px). However, step evaluations
are performed based ged(s}, (s.)x; px) Only. To ensure that the inexactness in the tangential
step(s;, )« does not dominate this quadratic model, we require that

(4.10) rpred(ry; pi)| < mopred(sy, (su)k: pr),

wherern, € (0,1 — ;) is a given constant angy is the parameter in step 2.8 of the trust—region
algorithm, and that

(4.11) Ikl < & Axll(su)kll

for some constarg; > 0 independent of. If we estimaterpred(r; pr.)| < prllrbII> + (|| AX]| +
2p||Cy(z1) (s)k + Cil))lIry|| and insert this upper bound into (4.10), we see that inety(li10)
is implied by

(4.12) Il < =0+ /0 + nopred(sy, (s.)k: 1)/

whereos = ||Cy(zx)(sy)r + Cill + [|AXe|[/(2p%). Inequalities (4.10) and (4.11) are satisfied for
the exact solution of, (z1) (s} )k = —Cu(zk)(su)r- The quantityl|ry || is the residual accuracy of
an inexact solution;, of Cy (zy)s}, = —Cy(x1)(s4)r- Sincesy, (su)r andpred(sy, (su)x; px) are
known, a stefts}, ) with (4.10) and (4.11) can be computed.

REMARK 4.2. i. Condition(4.10)is motivated by(2.5). We need to control the accuracy of
pred(s}, (su)k; pr) + rpred(r); pr), whereag(2.5) controls the accuracy of the actual reduction.
However, the effects of both conditions on the ratio of dcna predicted reduction are similar.

ii. Notice that(s!,)r = —C) (xx) ™" Culzr)(su)k + Cy(zx)~'r} and that(4.11)implies

(4.13) 1Cy (zk) 7 rill < &y,

for someé& > 0. In other words, it implies that the norm of the residual @antial) step
Cy(zx)~'r} is bounded by a constant time the trust—region radius. If iee/ ¥, (z;)~'r} as a
second (tangential) step, or as a spacer (tangential) stepthen identify4.13)as a condition that
has already been imposed on steps of such types in the cohtgabal convergence of trust-region
algorithms for unconstrained optimization [$,10.4], [6].

We note that the amount of positivity ired (s}, (s.)x; px) iS determined by the reductions
M (0) — Mg ((su)r) @nd||Ci || = [|Cy (1) (s} )k + Ci||*. Thus we can allow the more inaccuracy in
the (s}, ). computation, which typically translates into less expeméi; ), computation, the larger
the linearized feasibility gaifiC || — [|Cy, (1) (s} )« + Ci ||* achieved by the quasi-normal stamd
the larger the optimality gaifm (0) — m ((s.)x) achieved by thee—component of the tangential
step. In particular, even iCy||*> — [|Cy(zx)(s3)k + Cil|* is small, butig (0) — mk((su)r) is
large (which is likely the case at a poim}, = (yx,u) that is almost feasible, but away from
being optimal) the accuracy requirement @f)) is rather weak. Our criterion also seems to be
closely aligned with the SQP philosophy which allows to &raghins in feasibility for gains in
optimality. Another important point worth noting is thataircuracy in(s, ), does not enter the
penalty parameter update. If it would, the penalty paranratght increase faster. Since too large
penalty parameteys, can slow down the convergence of SQP methods this is anoghefibof our
accuracy requirement.

Our initial and somewhat straight forward approach [20, ®6§ieal with inaccuracy did not
use the splitpred (s}, (su)k; pr) + rpred(r}; px). Rather, the predicted decrease was defined by
(3.10). After determination of], satisfying (3.4) we computed a tangential step that, amadinero
conditions, satisfied

(4.14) ICHII® = [Tk (s} + k) + Crll* < & (ICkI* = lICy (za) (s3)x + Ckl1?)
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with & € (0,1). Thus accuracy ofs!,), depended only on the linearized feasibility giti.||> —
1Cy (x) (s})x + Ci||* achieved by the quasi-normal step. Moreover, when

Prk—1
2

pred(si; pr-1) < 22 (ICKII — [17e(s) + s) + Cill?),

wherepred(sy; pi) is given by (3.10), we used the update

2 (—qi(0) + qi(sk) + AN (Jisk + Ci))

(4.15) Pk = A ‘ +p.
1Ckll® = [Tk (s} + s}) + Crll?

The condition (4.14) often lead to very stringent accurayuirements fo(s; ), and the update
(4.15) often lead to large increases in the penalty paramegpecially when the current iter-
ate (yx,uy) happened to be almost feasible. The approach presenteib ipaper represents the
quadratic model of the Lagrangian ps:d(s}, (su)x; pr) + rpred(r}; pr), separates the computa-
tion of theu— and they—component of the tangential step, bases the accuracyeewgt or(s} )«

on feasibilityandoptimality gains, and bases the penalty parameter updajaamtities that are not
contaminated by inaccuracies(is, ) ..

4.1.5. Computation of the Lagrange multiplier estimate. Finally, the computation ok 1
in step 2.5 of the exact trust-region SQP algorithms 3.1kislyi to involve inexact calculations.
However, as we have seen in theorem 3.3, global convergereetationary point requires only
boundedness from the sequence of Lagrange multipjie$. This requirement is not only fairly
mild from a theoretical point of view, but under assumptiéis-A4 also easy to impose computa-
tionally even when inexactness is present.

4.2. Statement of the algorithm. The inexact trust-region SQP algorithms are defined simi-
larly as their exact counter-part, algorithm 3.1, but witkps 2.1 to 2.8 modified to accommodate
the inexact calculations discussed above.

ALGORITHM 4.3 (Inexact Trust-Region SQP Algorithms).
1 The same initializations as in step 1 of algorithm 3.1.
2 Fork=0,1,2,...do
i2.1 Computes}, satisfying (3.13) and (3.4).
i2.2 Compute an approximatigi to W,” Vg, (s?) satisfying (4.3).
i2.3 If [|Cr|| + |9kl < €tor, Stop and returmy, = (yi, ux) as an approximate solution for
problem (1.1).
i2.4 Computgs, ) satisfying (4.6).
i2.5 Compute\,1 and setA g, = g1 — Ag.
i2.6 Update the penalty parameter.
If pred(sp., (su)xi pr—1) > 25 (IICKI12 = 1Cy () ()1 + Ci?), then set
Pk = Pk—1-
Otherwise set

2 (= (0) + 7 ((su)i) — 01 (0) + i (s}) + AN (Cy (i) (5])k + Ci)) s
1CkII* = [ICy (k) () + Crll?

pr =

i2.7 Compute(s}, ) So that the residual vecto]; satisfies (4.10) and (4.11).
i2.8 Computepred(s}, (su)x; pr) using (4.8).
If ared(sk; pr)/pred(sh, (su)r; pr) < 1, Set

Appr = aymax {[|sg [, [|(su)rll}



12 M. HEINKENSCHLOSS AND L. N. VICENTE

and rejectsy,.
Otherwise accept;, and choose\;,; such that

maX{AminaAk} S AlH»l S Amaz-

i2.9 The same step and multiplier updates as in step 2.9 ofitiign 3.1.

REMARK 4.4. In reduced SQP methods whelk s;, = 0 the algorithm can be slightly reor-
ganized to save one linear system solve with system nfétyix,. See also Remak2 Steps 2.1
and 2.7 can be merged into a step 2.4a. Instead of executpg &1 and 2.7, one computes in step
2.4a an approximate solutiofs, ), of (3.12)which satisfieg3.13)and(3.4). In this casg(s})y is
replaced by(s, ). in the remaining steps of the algorithm ad,), = 0.

4.3. First—order global convergence of the algorithm.The global convergence property of
the inexact trust-region SQP algorithms 3.1 is stated irfdhewing theorem.

THEOREM 4.5. Let assumptions A.1-A.4 hold. The sequences of iteratesraged by the
inexact trust-region SQP algorithrds3 satisfy

(4.16) timint (|1 +11Cx]) = 0.
k— oo
Furthermore, we have

(4.17) lim inf (||W,3"ka|| + ||Ck||) =0.
k— o0

Proof. The proof of (4.16) follows the convergence analysis giefiL0] with the predicted
decrease used there always replacediwyl(s}, (s.)x; px) as defined in (4.8). Only a very few
steps in the convergence analysis change and we will reviem in detail.

The first modification concerns the relationship betweersthe of the step;, and the trust—
region radius\;. The convergence analysis requires that

skl < Kz Ak
and, if sy, is rejected, that
Apy1 > rgl|sell.

In our inexact trust—region SQP algorithms the first ineiqu#bllows from the trust-region con-
straints in (3.3), (4.1), and from (4.11) and assumption Al second inequality is a consequence
of the update of the trust-region radius in i2.8.

The second modification is in the estimates of the differdrateseen actual decrease and pre-
dicted decrease. Sinagred(r}; px) is different from zero, the upper bounds on the difference
between actual and predicted decreases given in [10, L7 B}are now different. We will be able
to show

|ared(s; pi) — pred(s, (su); i) — rpred(ri; pi))|

(4.18) ; )
< ko Agllsell + kroprllskll® + w11 pellslP[|Crll

instead of [10, L. 7.4], and
(4.19) ared(sg; pr) — pred(sp, (su)r; pr) — rpred(ri; pr)| < c12pk Ak lsk ||

instead of [10, L. 7.5].
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The estimates (4.18) and (4.19) can be verified as followsd.the definitions (4.8) and (4.9)
we can see that

pred(s}, (su)r; pi) + rpred(ry; pr)

. 1 T 1
= —0; (5u)k — §(Su)kTWngWk(8u)k — V.l sh — 582THk82

—A)\{ (Jksk + Ok) + Pk (||Ck||2 — ||Jk8k + Ck||2) .

With the definition (3.9) of the actual decrease, the previolentity, andWV ! (Hy.s} + V,£;,) =
WI'Vqi(s}) we obtain

ared(sk; pr) — (pred(sy, (su)r; pr) + rpred(ry; p))
= Lk, M) + Pl Crll® = €(@rrr, A1) — prllCrga |12
—pred(sg, (su)r; o) — rpred(ry; pr)
= lwp, M) — L@k 1, Ak) + U@rg1, Ak) — LTt Aks)
+(Hes) + Val) " Wi(su)r + 2(su)f W H Wi (s + Vo lh s} + L3 7 Hys)
(@ — WV () sk + () F W HWi ()i — 3 (520 FWE HWi(50)
+AN (Jesk + Ck) = pr([|Chga|I” = [ Jesk + Cill?)
= —U(pt1, M) + @k (k) — @ (sk) + G ((5u)r)
+(@Gk = W Var(si) T (su)k + %(Su)gWEEWk(SU)k — 5 (5 W HiWi(su )i
(4.20) +AN] (=Cly1 + Jisi + Ck) — pi (IICk1ll* = | Tusk + Cil?) -
Using Taylor expansion and the definition (3.2)gfgives
(4.21) | = l(@rqr, M) + ar(s0)| < 5l1Hi = Vi 0k + thse, M) skl

with somet}, € (0,1). Using the definitions (3.2) and (3.7) of andg, respectively, (3.6), and
(4.7) we find that

| = ar(sr) + @ ((su)k)]
< |Hpsh — Vol(zr, M)l sk — Wi(su)ill + SITHl 551 + $IW HeWel| [l (s2) 11
(4.22) [|Hrsh — VoL@, M)IICy (o) " I+ SIHEN B + SIWE He Wl [l ()il
With
skl < llsh = Wa(su)rll + W (su)ill < 1Cy (o) = ekl + Wl (sl
and (4.11), equation (4.22) implies
| = ar(sk) + G ((su)r)]
< &l Hish = Val(@r, M) Cy(r) 7 Akll(su)l
+3 [ HRI (ENCy (1) HPATL + 28 Wil 1Cy (zx) 1Ak + [[WIP) [l (su)xll?
(4.23)  +5[IW H Wil [[(su)x 1.
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The inequalities (4.3) and (4.5) give
(9 — WkTVQk(S?c))T( Wk + 5(8 DEWTH W (s.)5 - 5 (su)k Wi Hi Wi (su)k
(4.24) < &A(sill + 5 (52 + W H WDl (su)ell?.
Using Taylor expansion we obtam
ANL (—Ck+1 + Jisk + Cr) = pr (1Ck111? = 1Tk sk + Cill?)
=-1 Z (AXg)isyV2ci(xy, + thsk)sk

i=1
m

ch (z1 + t3sp)(sk) T Viei(zr + tis)(sk)
i=1

+(30)T I (2 + )T (i + i) (k) = (30)T T (@) T (1) (s1)),

—Pk

//

wheret?, t3 € (0,1). Now we expand; (zy. +t; s ) arounde; (z1.). This expansion and assumptions
A.1-A.4 give

AX] (=Chrs1 + Tisi + Ck) = pie (IICk411” = | Jesk + Cil?)
(4.25) < kropkllsll® + K11pnl15k] | Crll-

If we insert (4.21)—(4.25) into (4.20) and use assumptior® A.4 and (4.11), we arrive at the
desired estimate (4.18) for some positive constapts<ig, andx;;. Inequality (4.19) is then a
direct consequence of inequality (4.18) and the factghat 1.

We can now bound the difference between the actual and peelditecreases in the inexact
context. Combining (4.18) with (4.10), yields

|lared(sy; pi) — pred(sy, (su)k; pr)]

< |ared(sk; pr) — pred(si, (su)r; pi) — rpred(ry; p)| + [rpred(ri; pr)
(4.26) < koAgllsell + mroprllsel® + m11prllskl*ICk I + 1o [pred(sf, (su)w; pi)] -
Similarly, combining (4.19) with (4.10), gives
(4.27)  |ared(sg; pi) — pred(sy, (su)ri pr)| < K12pk Ak |5kl + no [pred(sg, (su)r; pr)l -

The estimates (4.26) and (4.27) are used in the analysisidrén rejection occurs in step i2.8.
If s, is rejected, we know that

ared(sy; pr)
pred(sy, (su)k; pk)

O<1_771§ _1:

which in our inexact context implies

ared(sk; pi) — pred(sy, (su)k; pr) — rpred(ry; pr)
pred(sy, (su)k: pr)
Thus, when the estimate (4.19) is required, we obtain

1-m<

‘|‘7’}0.

K12k Aglsk]|
pred(s}, (su)ki pr)”
and the analysis in [10] remains unchanged except for thtfata different lower bountl — 7y —

m € (0,1) is used. A similar bound is obtained when the estimate isgye(4.18).
The proof of (4.17) follows from the conjunction of (4.16)tlv{4.3) and (3.13)1

0<1l—-mo—m<
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5. Implementation in the presence of inexactnessin this section we discuss how the re-
quirements on the approximate reduced gradient and ongpecstnponents introduced in section
4 can be satisfied in practice. Our discussion leads to areimghtable version of algorithm 4.3.
However, other implementations are possible. This se@iont meant to be comprehensive. Rather
it is meant to support our claim made in the introduction atnith@ beginning of section 4 that our
conditions on the allowable level of inexactness are géhetamplementable.

5.1. Computation of the quasi—-normal component.The quasi—normal componesi is an
approximate solution of the trust—region subproblem (8r8) it is required to satisfy the condition
(3.4).

If |(s5)xll < Ay satisfies the fraction of Cauchy decrease condition

S1Cy (@) (s7)y + Crll?
(5.1) < min{%HCy(mk)s +Cp? - s= —tC’y(a:k)TC’k, Is|| < Ak} ,

then a result due to Powell [29, Th. 4] (see also§[6,3], [27, L. 4.8]) shows that (3.4) is satisfied.
The papers [17], [32] describe two iterative methods baseagirglov subspaces for the computation
of steps(s} ) satisfying

ICHI2 = 11Cy (i) (53)y + Cell* > BICKIE = ICy (@r)(5)). + Ci?).

where(sy). is the solution of (3.3). In particular these steps alss8a(B.4). The iterative method
in [32] uses a restart technique that allows specificatiostafage limitations by the user, which is
important for large scale problems. The iterative methad4 7] and in [32] require the evaluation
of Cy (zx)v andCy (z) T'u for givenv andu.

For some applications, the evaluation of matrix—vectodpatsC, (zx) T v is more expensive
than the evaluation of', (xx)v, and therefore it may be more efficient to use methods thatiavo
the use ofC, (z1)Tv. In this case one can apply nonsymmetric Krylov subspacéaedstbased
on minimum residual approximations, such as GMRERQ]. In the context of nonlinear system
solving the use of such methods is described e.g. in [2]. dh¢bntext, trust-region subproblems
of the type (3.3) also have to be solved and the solvers ind2]be applied in our situation as well.
If GMRES(]) is used to project the quasi-normal step prob{(8r8) onto thed—dimensional Krylov
subspace and if

(5.2) %Cip (C’y(ﬂ?k)T + Cy(ﬂfk))ck > Bl Ckll?

holds with3 > 0, then (3.4) is satisfied. The condition (5.2) is implied bg gositive definiteness
of the symmetric part of’, (1), a condition also important for the convergence of nonsytrime
Krylov subspace methods. A proof of this result and moreildetmncerning the use of these
methods can be found in [36].

Finally, we can also use the following simple procedure. @otes;, such thai|C,(z)s], +
Ckll < {|ICk|l, where¢ < 1, and then scale this step back into the trust region, i.e., se

5 1 if (30| < Ay,
st = ( &k Sk >’ where ¢, = | kH_ k
0 Ap/lIsh|l  otherwise.

The steps], also satisfies (3.4) (see [36]).
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5.2. Computation of an approximate reduced gradient. We show how (4.3) can be en-
forced, if errors in the reduced gradient are due to inexaeal system solves.

Ifwe setd = Hy s}, +V,{; and denote thg— andu—component of by d,, andd,,, respectively,
then Wl (Hys}, + V.t) = —(C)T(Cy), "d, + d,. We suppose that the inexactness in the
computation oﬂ/VkT(Hst + V.{;) is due to the use of an iterative solver for the linear system
(Cy)Tz = —d,. More precisely, we assume that

(5.3) 9k = (Cu)i 2+ du,
wherez satisfies
(5.4) (C)FZ=—d, —e

with a residual erroe. The following result is easy to prove.
LEMMA 5.1.If g is given by(5.3), (5.4)and if

(5.5) llel| < min{er [(Cu)i 2 + dull, c2Ax},

wherecy, ¢, > 0 are given, thert4.3)is satisfied with¢; = max{cy, c2}||(C.)¥ (Cy)5 " |-
Proof. Equations (5.3), (5.4) implg, = —(C.)7 (C,); " (dy + €) + d,, and

19k = Wi (His + Vali) | = [[(C)E (Cy)i Tell < 1HCu)E (Cy) Tl el
Hence, using (5.3), (5.5),
19k = Wil (Hisp + Vali) || < [[(Cu)f (Cy)y Tl minfer[[gell, 2}

which yields the desired estimafe.

At first sight the inequality (5.5) seems impractical sineghe and (C,)} Z + d,, depend on
z. However, (5.5) can be enforced if an iterative method fergblution of(Cy)7 z = —d,, is used
and matrix—vector products of the for(@, )7 v for a givenv can be easily computed. The latter
is the case for many control problems. In fact, 46t be thejth iterate in the solution method for
(C))¥z = —d, and leteV) = —d, — (C,)F20) be the corresponding residual. (if,,)? 2) can
be easily computed, then we can monite€',)7 2/) + d, || and we can truncate the iterative linear
system solver when

D] < min{ey [|(Cu)T 29 + ||, 2 Ar}.

Note that the truncation criterion (5.5) for the iteratiireelr system solver is only applicable,
because; > 0in (4.3) is not restricted. If it were required th&t € (0, 1), say, then we would
need an estimate fof(C.,)7 (C,), * ||. Thus, while (4.3) is slightly stronger than (4.2), the fdett
we can give up the restrictiagfi < 1 makes it preferable from an implementation point of view.

5.3. Computation of theu—component of the tangential component An approximate solu-
tion s, of (4.1) that satisfies (4.6) can be computed, e.g., usingghg@igate gradient (cg) method
with a modification as suggested by Steihaug [33] and Touit [Here the cg method with starting
values,, = 0 is applied to the minimization oh,. The conjugate gradient method is stopped if an
approximate minimum of the quadratic modge], is reached, if negative curvature is detected, or
if the iterates leave the trust—region bound. The first ieeiiathe Steihaug—Toint cg method is the
Cauchy-step for théu;, and therefore (4.6) is satisfied for the first iterate of thait&tug—Toint cg
method. IfW,] H,W,. can be applied exactly, which is the case in a reduced SQPochethere
WIH W, = Hy, then the conjugate gradient method ensuressthatlecreases monotonically
and (4.6) remains satisfied for all Steihaug—Toint cg iesatf W,” H, W}, is applied inexactly, then
one has to compare the function valu@s at the first Steihaug—Toint cg itera¢¢ and at the final
Steihaug-Toint cg iterat€] . If 7 (s]) < Mg (sl), then(s,), = sf; otherwise(s, ) = s

ur
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5.4. Computation of they—component of the tangential component.In section 4.1.4 we
have already shown that (4.10), (4.11) are satisfiéd, i, satisfiesC, (z)s;, = —Cu(@r)(50)r+7}
with residual

(5.6) Irell < min{ngkll(su)kll,—UJr \/02 +770pred(51:a(5u)k§Pk)/Pk};

wheres = [|Cy (zx)(s})x + Ckl| + [[AMk||/(2p1). Note that all quantities on the right hand side of
(5.6) are known by the timgs; ). needs to be computed.

6. Conclusions.In this paper we have extended the design of a class of cotepetep trust—
region SQP algorithms and their convergence theory to ah@use of inexact first—order derivative
information or the use of inexact linearized constraintatgun solves. The challenge was the for-
mulation of accuracy requirements that are sufficient torgutee global convergence to a point
satisfying the first—order optimality conditions, but a& #ame time can be implemented in a practi-
cal algorithm and are not overly stringent. Our accuracyiregnents are based on the structure of
the composite—step trust-region SQP algorithms and tHeyfthe SQP philosophy which allows
to trade gains in feasibility for gains in optimality. The imanotivation of this paper is the control
of inexactness arising from iterative system solves (h2just—region SQP methods. This is im-
portant, e.g., for the solution of discretized optimal cohproblems governed by partial differential
equations. However, our assumptions on the inexactneswalmsed on this particular source of
inexactness and are applicable more broadly.

We focused on a specific class of problems (1.1) and on a limltess of algorithms to enhance
the clarity of our presentation. An extension of our analysithe influence of inexact first—order
derivative information or the use of inexact linearizedstoaint equation solves to a broader range of
problems and global SQP algorithms is useful. Some extessice rather straight forward, although
tedious. For example, we believe our analysis can be géredab the affine—scaling interior—point
trust—region SQP algorithms in [11], which tackle problefhd) with additional simple bounds
onu. In fact, the predecessor [20] of this paper contains marthetechnical details of such an
extension, although the assumptions on the inexactness im§20] are stronger than those in this
paper.

Acknowledgments. The authors would like to thank the two anonymous referedstanasso-
ciate editor for their constructive comments on the firssigar of this paper, which lead to significant
improvements in the presentation.
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