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We give a complete characterization of the smoothness and curvature of this marginal function.We are motivated by an interesting application in Statistics (see Section 5), where the solutionof an equation involving v(�) is required. In order to apply Newton's method to solve such anequation, we need to know the value of the �rst derivative v0(�). But the mathematical questions weanswer in this paper go far beyond this point. We show that the marginal function is continuouslydi�erentiable in its domain. There are two possible scenarios in which the �rst derivative is notdi�erentiable at speci�c points. If we exclude these undesirable points, then the marginal functionhas in�nite continuous derivatives. We also show that the marginal function can be either convex,concave, or both. We feel that these results are quite surprising and con�rm the elegance of trustregions.This paper is structured as follows. We start in Section 2 by applying the sensitivity theorydeveloped for nonlinear programming. However, this is clearly not enough to answer our mathe-matical questions. So we explicitly calculate formulae for the marginal function and its �rst andsecond derivatives. These calculations are described in great detail in Section 3, where we providea full characterization of the smoothness of the marginal function. Section 4 characterizes the cur-vature of the marginal function. In Section 5 we discuss the application in Statistics. The readermay skip Section 2 and start with the analysis of Section 3.2 Applying sensitivity theory for nonlinear programmingThe marginal function in nonlinear programming has been studied by, among others, Gauvin [2],Gauvin and Dubeau [3], Gauvin and Tolle [4], Hogan [7], Janin [8], Rockafellar [17], Seeger [18],and Shapiro [19].In [3], the authors consider marginal functions arising from perturbations of the data of the leftand right sides of the constraints and of the objective function. The work in [2], [4] applies directlyto our context since the marginal function depends only on perturbations of the right side of theconstraints. The nonlinear program considered in [2], [4] is of the form:minimize f(x)subject to gi(x) � yi ; i = 1; : : : ; n1 ;hj(x) = yj ; j = n1 + 1; : : : ; n1 + n2 ;where the y's are perturbation parameters.A direct application of Theorem 2 and Corollary 1 in [2] yields the following result. We pointout that the regularity conditions R1 and R2 considered in [2] are trivially satis�ed by problem(1.1).Theorem 2.1 The marginal function v(�) de�ned in (1.2) is Lipschitz continuous in (0;+1).Furthermore, the marginal function has left and right derivatives in (0;+1).The following result is an application of the Corollary of Theorem 4 in [17]. (Again, we point outthat the conditions and constraint quali�cations required to apply this result are trivially satis�edby problem (1.1).) This result provides a formula for the derivative of the marginal function v(�) inthe case where problem (1.1) has a unique solution and a corresponding unique Lagrange multiplier.2



Theorem 2.2 Assume for a given �, that problem (1.1) has a unique optimal solution s(�) with aunique Lagrange multiplier �(�). Then the marginal function v(�) de�ned in (1.2) is di�erentiableat � and v0(�) = ��(�)�:From the results in [8], we know also that the marginal function v(�) given by (1.2) has a rightderivative at � = 0. Thus this marginal function is Lipschitz continuous in [0;+1).A general characterization of the second-order directional derivatives of the marginal functionin nonlinear programming is given in the papers [18], [19]. These results have some implications forproblem (1.1), but we will omit them since they are too general and they do not cover all possiblescenarios in (1.1).3 Characterization of the smoothness of the marginal functionIn this section we give a complete characterization of the smoothness of the marginal function (1.2).We also provide formulae for the �rst and second derivatives. The analysis uses the properties ofthe trust-region problem given by the following two propositions.Proposition 3.1 The problem (1.1) has no solutions at the boundary fs : ksk = �g if and only ifH is positive de�nite and kH�1gk < �.A proof of this simple fact can be found in [15].Proposition 3.2 The point s(�) is an optimal solution of the problem (1.1) if and only if ks(�)k �� and there exists �(�) � 0 such thatH + �(�)I is positive semi-de�nite; (3.1)�H + �(�)I�s(�) = �g ; and (3.2)�(�) (�� ks(�)k) = 0 : (3.3)The optimal solution s(�) is unique if H + �(�)I is positive de�nite.The su�cient part of these conditions was independently discovered by Gay [5] and Sorensen[20]. The necessary part of these conditions is just an application of the �rst-order and second-ordernecessary optimality conditions for nonlinear programming. These conditions were independentlydiscovered by Karush [9] and Kuhn and Tucker [10] and are usually called the Karush-Kuhn-Tucker(KKT) conditions. The parameter �(�) is the Lagrange multiplier associated with the trust-regionconstraint ksk � �.From the KKT condition (3.2) we can writev(�) = g>s(�) + 12s(�)>Hs(�)= �s(�)>�H + �(�)I�s(�) + 12s(�)>Hs(�)= �12s(�)>�H + �(�)I�s(�)� 12�(�)ks(�)k2 : (3.4)3



3.1 Computing the derivativesWe consider three cases separately corresponding to three di�erent situations: (i) H is positivede�nite; (ii) H is not positive de�nite but the hard case does not occur; (iii) H is not positivede�nite and the hard case occurs.For the analysis, we consider the eigenvalue decomposition of H ,H = Q�Q> ;where � is the diagonal matrix formed by the eigenvalues �1; : : : ; �n of H , and Q is orthogonal andcontains the corresponding eigenvectors. Let �1 be the smallest eigenvalue of H and assume thatit has multiplicity m1: �1 = � � � = �m1 < �m1+1 � � � � � �n :The subspace E(�1) = fs : Hs = �1sg is the eigenspace corresponding to the smallest eigenvalue�1. Also let �g = Q>g :Case I. H is positive de�niteLet us de�ne �� as �� = kH�1gk:Since in this case q(s) is strictly convex, �H�1g is its unconstrained minimizer. Thus, if� > ��, then s(�) = �H�1g is the optimal solution of problem (1.1). In this case we havev(�) = �12g>H�1g ;v0(�) = 0 ;v00(�) = 0 ; 9>>=>>; for � > �� :If 0 < � < ��, then we know from Propositions 3.1 and 3.2 that the optimal solution s(�) ofproblem (1.1) satis�es s(�) = � �H + �(�)I��1g ;ks(�)k = � : (3:5)Using this and the expression (3.4) for v(�) we obtainv(�) = �12g>�H + �(�)I��1g � 12�(�)�2 : (3:6)To calculate v0(�), we note that (3.5) impliesg>�H + �(�)I��2g = �2 : (3:7)From the eigenvalue decomposition of H , this equation is equivalent tonXi=1 �g2i(�i + �(�))2 = �2 :4



By taking derivatives in both sides of this equation we obtain�0(�) = � �g>�H + �(�)I��3g : (3:8)Now we use (3.6) and (3.7) to calculate the �rst derivative of v(�):v0(�) = 12g>�H + �(�)I��2g�0(�)� �(�)�� 12�0(�)�2= ��(�)� :Using (3.7) and (3.8), we can calculate the second derivative of v(�) for 0 < � < �� :v(�) = �12g>�H + �(�)I��1g � 12�(�)�2 ;v0(�) = ��(�)� ;v00(�) = ��(�) + �2g>�H+�(�)I��3g ; 9>>>>>=>>>>>; for 0 < � < �� : (3:9)The functions v(�), v0(�), and v00(�) are plotted in Figure 1 for an example where H is positivede�nite. The special cases � = 0 and � = �� are considered in Sections 3.2 and 3.3, respectively.The plots in Figures 1 through 4 were obtained using Matlab 5.0. To solve the trust-regionproblem, the Fortran 77 subroutine dgqt.f of Minpack-2 was called through a MEX interface forMatlab. This Minpack-2 subroutine is available by anonymous ftp in info.mcs.anl.gov underthe directory /pub/MINPACK-2/gqt.Case II. H not positive de�nite | easy caseWe consider now the case where g is not orthogonal to E(�1). In this case, it follows from thegeometry of the rational functionh(�) = g>�H + �I��2g = nXi=1 �g2i(�i + �)2that ��1 is its rightmost pole. For any value of � > 0, there is always a �(�) > ��1 such that h(�)intersects �2 (see Figure 2). Thus s(�) = ��H + �(�)I��1g and �(�) satisfy all the necessaryand su�cient conditions given in Proposition 3.2. Thus, this case reduces to the case where H ispositive de�nite and � < ��. For any � 2 (0;+1), the expressions for v(�), v0(�), and v00(�)are given as in (3.9). See Figure 3 for plots of v(�), v0(�), and v00(�) corresponding to an examplein this case. The case � = 0 is analyzed separately in Section 3.2.Case III. H not positive de�nite | hard caseIt remains to consider the case where H is not positive de�nite and g is orthogonal to E(�1). Inthis case the rational function h(�) has the formh(�) = g>�H + �I��2g = nXi=m1+1 �g2i(�i + �)2 ;5
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Cases Formulae for v(�), v0(�), and v00(�)H PD� > �� v(�) = �12g>H�1gv0(�) = 0v00(�) = 0H PD0 < � < ��H not PDEasy CaseH not PDHard Case0 < � < �# v(�) = �12g>�H + �(�)I��1g � 12�(�)�2v0(�) = ��(�)�v00(�) = ��(�) + �2g>�H+�(�)I��3gH not PDHard Case� > �# v(�) = �12p>�H � �1I�p+ 12�1�2v0(�) = �1�v00(�) = �1Table 1: Formulae for v(�), v0(�), and v00(�).3.3 Non-di�erentiability of the �rst derivativeThe only points where v(�) and v0(�) can be non-di�erentiable, or di�erentiable but not contin-uously di�erentiable, are �� in Case I and �# in Case III. So, we need to compute the left andright derivatives of v(�) and v0(�) at these points. In fact it can be shown thatv0�(��) = v0+(��) = 0 andv0�(�#) = v0+(�#) = �1�# = �1�Pni=m1+1 �g2i(�i��1)2�12 :As result of this we have the following theorem.Theorem 3.2 The marginal function v(�) de�ned in (1.2) is continuously di�erentiable in [0;+1).10



Similar calculations in the respective cases lead to:v00�(��) = lim�!��� v00(�) = Pni=1 �g2i =�2iPni=1 �g2i =�3i ;v00+(��) = lim�!��+ v00(�) = 0 ;v00�(�#) = lim�!�#� v00(�) = �1 + Pni=m1+1 �g2i =(�i��1)2Pni=m1+1 �g2i =(�i��1)3 ;v00+(�#) = lim�!�#+ v00(�) = �1 : (3:11)Theorem 3.3If H is positive de�nite, the marginal function v(�) de�ned in (1.2) is not twice di�erentiableat ��.If H is not positive de�nite, but g is orthogonal to E(�1), the marginal function v(�) de�nedin (1.2) is not twice di�erentiable at �#.Although in these cases v(�) is not twice di�erentiable, it has a Schwartz second derivative (see[6, Section 5.3]) since v00�(��) + v00+(��) and v00�(�#) + v00+(�#) are �nite.4 Curvature of the marginal functionTo study the curvature of the marginal function v(�) we look at the sign of the second derivativev00(�) in its domain. We already know what values v00+(�) takes when � = 0 (see (3.10)). We shownext that v00(�) is monotone decreasing in its domain.A simple derivation using (3.8) yields0B@��(�) + �2g>�H + �(�)I��3g1CA0 = 3��g>�H + �(�)I��3g�2 � 3�3�g>�H + �(�)I��4g��g>�H + �(�)I��3g�3 :Since by the Cauchy-Schwartz inequality�g>�H + �(�)I��3g�2 = ��(H + �(�)I)�1 g�> �(H + �(�)I)�2 g��2� �g>�H + �(�)I��2g� �g>�H + �(�)I��4g� ;we have that 0B@��(�) + �2g>�H + �(�)I��3g1CA0 � 0 :From this, from the expressions for v00(�) given in Table 1, and from the values for v00�(�) and v00+(�)given in equations (3.10) and (3.11), we immediately conclude that v00(�) is monotone decreasingin its domain. 11



The curvature of v(�) depends then on the signs of v00+(0) and lim�!+1 v00(�). The value forv00+(0) is given in (3.10). To �nd lim�!+1 v00(�) for all possible cases, all we need is the followingcalculation: lim�!+10B@��(�) + �2g>�H + �(�)I��3g1CA = �1 ;for the case where H is not positive de�nite and the easy case occurs. This limit can be easilyproved since from the asymptotic behavior of h(�), � �! ��1 when � �! +1. From Table 1,the conclusion is that lim�!+1 v00(�) = 0 ;if H is positive de�nite, and lim�!+1 v00(�) = �1 ;if H is not positive de�nite.By collecting all possible situations, we obtain a complete characterization of the curvature ofthe marginal function v(�) de�ned in (1.2).Theorem 4.1If H is positive de�nite, the marginal function is convex in [0;+1).If H is not positive de�nite, we have several cases:If v00+(0) � 0, then the marginal function is concave in [0;+1).If v00+(0) > 0, then either �1 = 0 and the marginal function is convex in [0;+1), or�1 < 0 and there exists �� > 0 such that the marginal function is convex in [0; ��] andconcave in [ ��;+1).5 A Statistical ProblemWe describe in this section the application from statistics that motivated this work. The two-groupgaussian discriminant analysis problem of statistics1 assumes that there are two n-dimensionalpopulations with gaussian distributions, for which we wish to �nd a method to determine andexploit di�erences of the two groups. In this work, we assume that the mean vectors, �1; �2 2 IRn,and covariance matrices, �1;�2 2 IRn�n, are known, that �1 6= �2, and that the populations areequally likely. The covariance matrices are assumed to be positive de�nite.We will use the following property of the gaussian distribution: Suppose Xi; i = 1; 2 are gaussianrandom vectors with the corresponding means and covariances given above. For a given � > 0 wede�ne the ellipsoidal setsEi(�) = fx : (x� �i)>��1i (x� �i) � �g; i = 1; 2: (5:1)1The books by McLachlan [11] and Ripley [16] have extended de�nitions and examples of the discriminant problemin statistics. 12



The gaussian distribution has the property that for any value for the means, covariances and �P [X1 2 E1(�)] = P [X2 2 E2(�)] : (5:2)That is, the ellipsoids have equal size (in terms of probability under their respective distribution)as long as the ellipsoids are determined by the same �. Note that Ei(0) = f�ig and that Ei(�)grows to contain all of IRn as �!1.One way to approach the discriminant analysis problem is to examine measures of separation. Astandard measure of separation of the groups is given by the squared Mahalanobis distance betweenthe means mi = (�1 � �2)>��1i (�1 � �2): (5:3)If the covariance matrices are equal, then m1 = m2, and this distance is useful. However, if thecovariance matrices are di�erent, then the mi's are not equal, and using one or the other wouldnot be \fair" since it ignores the structure of the other group. Using property (5.2), a metric ofseparation can be constructed that takes into account the covariance structure of both groups:supf� � 0 : E1(�)\ E2(�) = ;g: (5:4)In words, this means that we are looking for the largest equal-probability ellipsoids that do notoverlap. If we de�ne�(�) = minf(x� �1)>��11 (x� �1) : (x� �2)>��12 (x� �2) � �g; (5:5)then the solution to the nonlinear equation �(�) = � (5:6)is also the solution to problem (5.4). Problem (5.5) is easily reparameterized into the form (1.2)(see Section 6). Thus, we can use the results of this paper to calculate the derivative of (5.5) andso solve (5.6) using Newton's method.This method was implemented in the S-PLUS statistical software package, using the routinedgqt.f from Minpack-2 to solve the trust-region subproblem. Using the quantities de�ned inequation (5.3), the initial point used for Newton's method is�0 = m1m2m1 +m2 : (5:7)This is obtained from linearly interpolating the function � at the points � = 0 and � = m2, usingthe fact that �(0) = m1 and �(m2) = 0. This interpolant, ��, is then used to get �0 by solving��(�) = �. Note that the results of this paper can be used to get derivatives of � at � = 0 and� = m2 in terms of the mean vectors and covariance matrices. Thus higher order interpolantscould be used in calculating �0. However, our experiments have shown that �0 given by equation(5.7) is a su�ciently good starting point.We present results in Table 2 on three datasets obtained from the Machine Learning DataRepository at the University of California at Irvine [12]. We used the maximum likelihood estimatesof the mean and covariance as the inputs to the routine. For dataset iris, we used the Virginicaand Versicolor groups of Fisher's iris data [1], a classic dataset in discriminant analysis. Thisdata consists of four measurements on �fty irises from each of two varieties. The wdbc (Wisconsin13



Diagnostic Breast Cancer) dataset consists of ten mean measurements of cell nuclei taken from abreast mass that is independently assigned to either a benign or malignant group. There are 357benign and 212 malignant observations. The wine dataset consists of 13 chemical measurementsof wine made from two di�erent cultivars of grape grown in the same region of Italy. There are 59observations in the �rst group and 71 in the second.Dataset Dimension No. of Iterationsiris 4 7wdbc 10 10wine 13 7Table 2: Summary of results for application of Newton's method in solving the statistical distanceproblem (5.5)-(5.6). The dimension of the data is given, along with the number of iterations ofNewton's method needed to achieve j�(�)��j � 10�14.If � is the solution of the problem (5.5)-(5.6), there is a unique x such that(x� �1)>��11 (x� �1) = (x� �2)>��12 (x� �2) = �;which is same as saying E1(�) and E2(�) are tangent at x, and so share a common (n � 1)-dimensional tangent plane, P . If w is a vector orthogonal to P , we may project the data into IRalong w. This projection preserves the separation of the two ellipsoids, and so also preserves theseparation of the data. The gaussian distribution is conserved under projections, so that we mayalso project the data into P and then repeat the entire process in n � 1 dimensions, obtaining asecond projection of the data into IR. Combining these two projections we may look at the datain IR2, and the data should be well separated. Thus the method described here is useful for datavisualization. Such a procedure was used on the iris dataset to generate Figure 5.6 Final remarksThe results given in this paper can be extended for more general forms of the trust-region problem(1.1). For instance, any trust-region problem of the formminimize g>�s + 12 �s>H�ssubject to kW �sk � � ; (6:1)where W has n linearly independent columns, is equivalent to (1.1). The change of variabless = (W>W ) 12 �s reduces this trust-region problem to (1.1).Mor�e [14] considers another generalization of the formminimize g>s + 12s>Hssubject to c(s) � � ;where c(s) = d>s + 12s>Cs is another quadratic function. A characterization of smoothness andcurvature similar to the one given in this paper could be easily developed for the marginal functionassociated with this problem. 14
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