
A Merit Function Approach for Direct Search

S. Gratton∗ L. N. Vicente†

May 2, 2014

Abstract

In this paper it is proposed to equip direct-search methods with a general procedure to
minimize an objective function, possibly non-smooth, without using derivatives and subject
to constraints on the variables.

One aims at considering constraints, most likely nonlinear or non-smooth, for which
the derivatives of the corresponding functions are also unavailable. The novelty of this
contribution relies mostly on how relaxable constraints are handled. Such constraints, which
can be relaxed during the course of the optimization, are taken care by a merit function and,
if necessary, by a restoration procedure. Constraints that are unrelaxable, when present, are
treated by an extreme barrier approach.

One is able to show that the resulting merit function direct-search algorithm exhibits
global convergence properties for first-order stationary constraints. As in the progressive
barrier method [6], we provide a mechanism to indicate the transfer of constraints from the
relaxable set to the unrelaxable one.

Keywords: Derivative-free optimization, direct-search methods, constraints, merit function, penalty
parameter, random directions, non-smooth optimization.

1 Introduction

Consider the problem

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr.
(1)

The feasible region of this problem is defined by relaxable and/or unrelaxable constraints. The
non-relaxable constraints correspond to Ωnr ⊆ Rn. Such constraints have to be satisfied at all
iterations in an algorithmic framework for which the objective function is evaluated. Typically
they are bounds or linear constraints but they can also include hidden constraints (constraints

∗ENSEEIHT, INPT, rue Charles Camichel, B.P. 7122 31071, Toulouse Cedex 7, France
(serge.gratton@enseeiht.fr).

†CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (lnv@mat.uc.pt).
Support for this resarch was provided by FCT under grants PTDC/MAT/116736/2010 and PEst-
C/MAT/UI0324/2011 and by the Réseau Thématique de Recherche Avancée, Fondation de Coopération Sciences
et Technologies pour l’Aéronautique et l’Espace, under the grant ADTAO.

1

which are not part of the problem specification/formulation and their manifestation comes in
the form of some indication that the objective function could not be evaluated). In contrast,
relaxable constraints need only to be satisfied approximately or asymptotically. In our notation
Ωr is the set of relaxable constraints, which is assumed to take the form

Ωr = {x ∈ Rn : ci(x) ≤ 0, ∀i ∈ I} .

Finally, the objective function f : Rn → R and the relaxable constraint functions ci are only
assumed to be locally Lipschitz continuous (in the sense that the convergence analysis holds if
f and the ci’s are Lipschitz continuous near an accumulation point produced by the algorithm).
Most of the globally convergent derivative-free approaches for handling nonlinear constrained
problems have been of direct search or line search type1.

Feasible methods may be the only option when all the constraints are unrelaxable (Ωr = Rn).
In addition they generate a sequence of feasible points, thus allowing the iterative process to be
terminated prematurely with a guarantee of feasibility for the best point tested so far. One way
of designing feasible methods is by means of the barrier function

fΩnr(x) =

{
f(x) if x ∈ Ωnr,
+∞ otherwise.

(2)

Following the notation in [5], we refer to such a barrier function as the extreme barrier function.
It is not necessary to evaluate f at infeasible points since the value of the extreme barrier function
is set to +∞ at such points. Direct-search methods take action solely based on function values
comparisons and are thus appropriate to use in conjunction with an extreme barrier function.
In the context of direct-search methods of directional type using such functions, there are two
known ways of designing globally convergent algorithms. In any of the cases, one must use sets
of directions whose union (after normalization if needed) is asymptotically dense in the unit
sphere of Rn, even if the objective function is smooth. The first approach requires only a simple
decrease to accept new iterates but imposes integer requirements throughout the algorithm (and
in particular in the generation of the directions). This approach is known as mesh adaptive
direct-search (MADS) and has been developed by Audet and Dennis [5]. One can, however,
relax such integer lattice requirements and freely generate the directions densely in the unit
sphere at the price of imposing a sufficient decrease condition on the acceptance of new iterates
(see Vicente and Custódio [25]) — in practice, sufficient decrease can be imposed as not to differ
much from simple decrease. An alternative to extreme barrier when designing feasible methods
is the use of projections onto the feasible set, although this might require the knowledge of the
derivatives of the constraints and be expensive or unpractical in many instances (see Lucidi,
Sciandrone, and Tseng [21] for such an approach).

In the case where there are no unrelaxable constraints, one can use a penalty term by adding
to the objective function a measure of constraint violation multiplied by a penalty parameter, and
thus allowing to start infeasible with respect to the relaxable constraints. In this vein, Lewis and
Torczon [18] (see also [17]) suggested an approach based on an augmented Lagrangian method.
They consider the solution of a sequence of subproblems where the augmented Lagrangian
function takes into account only the nonlinear constraints and is minimized subject to the

1On the model-based trust-region side of optimization without derivatives, nonlinear constraints have been
considered mostly in implementations (see [8, 9, 11, 12, 24]), and as far as we know no convergence theory has
yet been developed.

2

remaining constraints (bounds on the variables or more general linear constraints). Each problem
can then be approximately solved using an appropriate directional direct-search method. This
application of augmented Lagrangian methods yields global convergence results to first-order
stationary points of the same type of those obtained under the presence of derivatives. Diniz-
Ehrhardt, Mart́ınez, and Pedroso [15] studied a more general augmented Lagrangian setting
where the problem constraints imposed as subproblem constraints are not necessarily of linear
type. In turn, Liuzzi and Lucidi [19] and Liuzzi, Lucidi, and Sciandrone [20] developed and
analyzed algorithms for inequality constrained problems, based on nonsmooth and smooth,
respectively, penalty functions. They imposed sufficient decrease and handled bound and linear
constraints separately, proving that a subset of the set of limit points of the sequence of iterates
satisfy the first-order necessary conditions of the original problem. Mart́ınez and Sobral [22]
proposed an algorithm for problems with ‘thin’ constraints based on relaxing feasibility and
performing a subproblem restoration procedure. Filter methods may also be appropriate to
handle relaxable constraints, and the first step in this direction was done by Audet and Dennis [4].
The filter approach of Dennis, Price, and Coope [14] guarantees global convergence to a first-
order stationary point by means of an envelope around the filter as means of measuring sufficient
decrease.

The first general approach to consider both relaxable and unrelaxable constraints is called
progressive barrier and has been suggested by Audet and Dennis [6], exhibiting some global
convergence properties. It allows the handling of both types of constraints, by combining mesh
adaptive direct search for unrelaxable constraints with non-dominance filter type concepts for
the relaxable constraints (see the consequent developments in [7]). An interesting feature is that
a constraint can be considered relaxable until it becomes feasible whereupon it is transferred to
the set of unrelaxable constraints.

In this paper, we develop an alternative approach to progressive barrier [6], handling the
relaxable constraints by means of a merit function instead of a filter. For such a purpose, we
consider a constraint violation function of the type

g(x) =
∑
i∈I

max(ci(x), 0) (3)

and the merit function
M(x;µ) = f(x) + µg(x), (4)

where µ ∈ R is a positive penalty parameter. The merit function and the corresponding penalty
parameter are only used in the evaluation of an already computed step, to decide whether it will
be accepted or not. The merit function (4) using (3) is known in Nonlinear Programming (see [23,
Section 17.2]) as the ℓ1 penalty function and has been extensively used in implementations
(see [23, Section 17.5]).

Our treatment of the non-relaxable constraints will implicitly consider the use of extreme
barrier functions of the type (2). In practice what we optimize is fΩnr since the non-relaxable
constraints restrict the evaluation of the objective function f . For generality, one considers
here that Ωnr also constrains the evaluation of the relaxable constraints, and thus implicitly
consider gΩnr instead of g in our proposed algorithm. Due to the presence of (derivative-free)
unrelaxable constraints and/or of the non-smoothness of the objective function, the directions
used in the algorithm must be generated densely in the unit sphere of Rn.

Our merit function approach has been designed in a simple and modular way. A successful
iteration is defined by a sufficient decrease in the constraint violation measure (3) (sufficiently

3

away from feasibility) or a sufficient decrease in the merit function (4) for an appropriate value
of the penalty parameter. Whenever a sufficient decrease in the constraint violation measure (3)
is observed at the expense of a significant increase in the objective function, a restoration of
feasibility mode is entered with the single purpose of minimizing (3).

The paper is organized as follows. We start by describing the merit function algorithm in
Section 2. The convergence theory of the proposed approach is then divided in four sections:
Section 3 for the behavior of the step size parameter; Section 4 for the case where restoration
is only entered a finite number of times; Section 5 for the case where restoration is entered but
never left; Section 6 for the case where restoration is entered an infinite number of times. In
Section 7 we discuss how the theory particularizes in the presence of smoothness. In Section 8
we show a few runs of the algorithm as a proof of concept. Finally, Section 9 contains some
concluding remarks and Appendix A summarizes a few notions of Clarke non-smooth calculus
needed in the paper.

2 A merit function algorithm

In our algorithm framework an iteration is considered successful in two situations. To describe
them in some detail let us assume a given iterate xk and a step size αk > 0. Each iteration
is divided in a search and a poll step, but the latter is the one responsible for the convergence
properties of the algorithm (and thus we ignore the search step for most of this discussion).
Let also d be a direction considered in the poll step and ρ(α) a forcing function, i.e., a positive
and non-decreasing function verifying limα↓0 ρ(α)/α = 0. The directions used in the poll step
belong to a set Dk which does not necessarily have to span Rn with non-negative coefficients as
it happens in traditional direct-search methods for smooth problems.

The first possibility of success is that a certain sufficient decrease in the constraint violation
measure g is attained (g(xk+αkd) < g(xk)−ρ(αk)) and one is sufficiently away from the feasible
region g(xk) > Cρ(αk), for some constant C > 1.

The other situation where success is declared is when the merit function is sufficiently de-
creased (M(xk+αkdk;µk) < M(xk;µk)−ρ(αk)) for a certain choice of the penalty parameter µk.
The update of the penalty parameter follows a classical one [23, Formula (18.33)] since what we
use in (5) below is essentially the formula

[f(xk + αkdk)− f(xk)]/αk

ρ(αk)/αk
,

where the nominator corresponds to ∇f(xk)
⊤dk in the classical update (where f is typically

continuously differentiable) and the denominator replaces the value of g(xk) in the classical
update (and we will observe later that when ρ(αk)/αk goes to zero so does in principle g(xk),
see Theorems 4.1, 5.1-ii, and 6.1 and their proofs). We summarize below the definition of a
successful point (to be used in both search and poll steps).

Begin (successful point).
Given xk and αk, a point yk (either in the search or in the poll step) is successful if

g(yk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

or, if that is false, if
M(yk;µk) < M(xk;µk)− ρ(αk),

4

where

µk = max

{
µ̄,

f(yk)− f(xk)

Cρ(αk)

}
(5)

and µ̄ > 0 and C > 1 are constants independent of k.
End (successful point).

However, before measuring success, our algorithm framework considers a phase to restore
feasibility or decrease the amount of constraint violation. A Restoration is entered (in the poll
step) when there exists a d ∈ Dk such that g(xk + αkd) < g(xk)− ρ(αk), g(xk) > Cρ(αk), and
M(xk + αkd; µ̄) ≥ M(xk; µ̄), for a sufficiently large value µ̄ of the penalty parameter. Notice
that the first and third of these conditions imply

f(xk + αkd)− f(xk) ≥ µ̄[g(xk)− g(xk + αkd)] > µ̄ρ(αk).

Thus, when Restoration is entered it is because a direction d has been found for which g is
sufficiently reduced (g(xk + αkd) < g(xk) − ρ(αk)) at a point xk sufficiently away from being
feasible (g(xk) > Cρ(αk)) and for which f has considerably increased (f(xk + αkd) − f(xk) >
µ̄ρ(αk)). Restoration can also be entered in the search step and so we define below the notion
of a Restoration identifier in general terms, to be used in both search and poll steps.

Begin (Restoration identifier).
Given xk and αk, a point yk is a Restoration identifier (either in the search or in the poll step)
if

g(yk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

and
M(yk; µ̄) ≥ M(xk; µ̄),

where µ̄ > 0 and C > 1 are constants independent of k.
End (Restoration identifier).

Our merit function approach is described below in Algorithm 2.1. All directions in the sets
Dk for all k are considered normalized.

Algorithm 2.1 (A merit function algorithm (Main))

Initialization
Choose x0 ∈ Ωnr, α0, µ̄ > 0, C > 1, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

1. Search step (optional): Evaluate the functions f and g at a finite number of points
in Ωnr. Enter Restoration (with kr = k) if any of those points is a Restoration
identifier. Otherwise, if any of those points (say x) is a successful point, then set
xk+1 = x, declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Select a finite subset of directions Dk. If xk + αkd /∈ Ωnr for all d ∈ Dk,
the iteration is declared unsuccessful. Otherwise, remove from Dk all directions d
such that xk + αkd /∈ Ωnr.

If any of the points xk + αkd, with d ∈ Dk, is a Restoration identifier, then enter
Restoration (with kr = k).

5

Otherwise, if there is a successful point of the form xk + αkdk with dk ∈ Dk, then
xk+1 = xk + αkdk and declare the iteration and the poll step successful.

Otherwise, declare the iteration unsuccessful and set xk+1 = xk.

3. Step size parameter update: If the iteration was successful, then maintain or
increase the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step size
parameter: αk+1 ∈ [β1αk, β2αk].

As we said before, if g can be sufficiently reduced (sufficiently away from feasibility) while
f is considerably increased, we need to focus totally on a reduction of the constraint violation,
and such procedure is described below in Algorithm 2.2. Restoration is then left when progress
in the reduction of the constraint violation cannot be further achieved and such a considerable
increase in f is no longer observed (we will later see in Section 5 the appropriateness of such a
leaving criterion).

Algorithm 2.2 (A merit function algorithm (Restoration))

Initialization
Start from xkr ∈ Ωnr given from the Main algorithm and consider the same parameters as
in there.

For k = kr, kr + 1, kr + 2, . . .

1. Search step (optional):

Evaluate the function g at a finite number of points in Ωnr. If any of those points
(say x) is such that g(x) < g(xk) − ρ(αk) and g(xk) > Cρ(αk), then set xk+1 = x,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Select a finite subset of directions Dk. If xk + αkd /∈ Ωnr for all d ∈ Dk,
the iteration is declared unsuccessful. Otherwise, remove from Dk all directions d
such that xk + αkd /∈ Ωnr.

Declare the poll step and the iteration successful if there exists a dk ∈ Dk such that

g(xk + αkdk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

In such a case, set xk+1 = xk + αkdk.

Otherwise, declare the iteration unsuccessful and set xk+1 = xk.

Leave Restoration and return to the Main algorithm (starting at a new (k + 1)-th
iteration using xk+1 and αk+1) if the iteration is unsuccessful and M(xk + αkd; µ̄) <
M(xk; µ̄) for some d ∈ Dk.

3. Step size parameter update: As in Step 3 of the Main algorithm.

3 Step size behavior

As it is classic in direct-search methods or other techniques for derivative-free optimization, we
start our analysis of global convergence by showing that the step size parameter approaches
zero. We will do this under the condition that Restoration is not entered an infinite number of
times (and postpone to Section 6 the analysis of this situation).

6

Theorem 3.1 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Then,
lim inf
k→+∞

αk = 0.

Proof. Suppose that there exists k̄ ∈ N and ᾱ > 0 such that αk ≥ ᾱ and the k-th iteration
is a Main one for every k ≥ k̄.

Let us assume now that there exists an infinite subsequence J1 of successful iterations after k̄.
We thus know that xk ∈ Ωnr ∀k ∈ J1. In the derivation below we will omit the unsuccessful
iterations, since at those iterations the iterates do not move.

If [g(xk+1) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)] is true for sufficiently large k ∈ J1, then

g(xk+1) < g(xk)− ρ(αk) ≤ g(xk)− ρ(ᾱ)

for those indices k, which renders a contradiction since g is bounded below by 0.
Thus, there must exists an infinite subsequence J2 ⊆ J1 of iterates for which M(xk+1;µk) <

M(xk;µk)− ρ(αk). Here we consider two possibilities.
In the first case, all these iterates are such that µk = µ̄ for sufficiently large k. In such an

occurrence one has that

M(xk+1; µ̄) < M(xk; µ̄)− ρ(αk) ≤ M(xk; µ̄)− ρ(ᾱ)

for all k ∈ J2 sufficiently large. However, in the successful iterations where [g(xk+1) < g(xk) −
ρ(αk) and g(xk) > Cρ(αk)], since Restoration was not entered (k̄ was considered sufficiently
large for this purpose), one knows that M(xk+1; µ̄) < M(xk; µ̄). Thus, M(xk; µ̄) tends to −∞
which is a contradiction given the boundedness from below of both f and g.

In the second possibility, there is an infinite number of iterations in J2 such that

µk =
f(xk+1)− f(xk)

Cρ(αk)
.

Let us choose just one of these iterations. For such an iteration k, either g(xk+1) ≥ g(xk)−ρ(αk)
or g(xk) ≤ Cρ(αk). Thus, either

f(xk+1)− f(xk) = µkCρ(αk) ≥ µk[g(xk)− g(xk+1)]

(since C > 1) or

f(xk+1)− f(xk) = µkCρ(αk) ≥ µkg(xk) ≥ µk[g(xk)− g(xk+1)],

both leading to M(xk+1;µk) ≥ M(xk;µk) which contradicts M(xk+1;µk) < M(xk;µk)− ρ(αk).
We have proved under the assumption of contradiction that one cannot have an infinity

of successful iterations. But if all iterations are unsuccessful after a certain order that also
contradicts the assumption of contradiction. �

The following corollary organizes the relevant information regarding unsuccessful iterations
and step size behavior for the analysis in the next sections.

7

Corollary 3.1 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Then, there exists at least one refining subsequence of Main iterations (i.e., a subsequence K
composed of unsuccessful Main iterations for which αk → 0 for k ∈ K).

Proof. The proof can be found for instance in [13] but it is given here for completeness. From
Theorem 3.1 we conclude that there must exist a subsequence J of unsuccessful iterations (or
unsuccessful poll steps). Thus, from the way we update the step size parameter, there must
exist a subsequence of unsuccessful iterations K ⊂ J such that αk+1 → 0 for k ∈ K. Since,
αk ≤ (1/β1)αk+1 for k ∈ K, we obtain αk → 0 for k ∈ K. �

4 Convergence assuming restoration is never entered after a
certain order

The analysis of global convergence of Algorithm 2.1 is made by inspecting the sign of appropri-
ate Clarke directional derivatives. Let h (e.g., h = f, g) be Lipschitz continuous near x∗ and
restricted to Ωnr ⊆ Rn. We will use the following definition of the Clarke generalized derivative
of h at x∗ along d

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t
,

where d must be in the hypertangent TH
Ωnr

(x∗) cone to Ωnr at x∗ (i.e., d must be in the interior of

the tangent cone TCl
Ωnr

(x∗) to Ωnr at x∗). In the Appendix of this paper we provide the rigorous
definitions of these derivatives as well as the definitions of tangent and hypertangent cones. We
assume throughout this paper that the hypertangent TH

Ωnr
(x∗) is nonempty.

The sign of the Clarke derivatives is then analyzed at limit points of refining subsequences
along refining directions. As we said before, by a refining subsequence [3], we mean a subsequence
of unsuccessful Main iterates for which the step-size parameter converges to zero. By a refining
direction [5] (in TH

Ωnr
(x∗)) associated with a refining subsequenceK converging to x∗, one means a

limit point of {dk} (in TH
Ωnr

(x∗)) where k ∈ K is taken sufficiently large such that xk+αkdk ∈ Ωnr.
Given that our working directions in the sets Dk’s are normalized so are the refining directions.

4.1 Results on feasibility

We start by considering the determination of feasibility. (Note that since Ωnr is not necessarily
by assumption a closed set, one must assume below that the limit point of a refining subsequence
verifies the non-relaxable constraints.)

Theorem 4.1 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and assume that d ∈ TH
Ωnr

(x∗)
is a refining direction associated with K and x∗. Assume that g is Lipschitz continuous near x∗.
Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.

8

Proof. By assumption there exists a subsequence K1 ⊆ K and a corresponding subsequence
{dk}k∈K1 of polling directions such that {dk} converges to d ∈ TH

Ωnr
(x∗) in K1 and αk goes to

zero in K1. Thus, one must necessarily have that xk +αkdk ∈ Ωnr for k sufficiently large in K1.
Since the iteration k ∈ K1 is unsuccessful, g(xk +αkdk) ≥ g(xk)− ρ(αk) or g(xk) ≤ Cρ(αk),

and then either there exists an infinite number of the first or of the second. In the latter case,
it is then trivial to obtain g(x∗) = 0 from the fact that αk → 0 in K1 and the continuity of g.
In the former case, there exists a subsequence K2 ⊆ K1 such that

g(xk + αkdk)− g(xk)

αk
≥ −ρ(αk)

αk
∀k ∈ K2.

On the other hand, from the definitions of lim sup and K2,

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≥ lim sup

k∈K2

g(xk + αkd)− g(xk)

αk
.

Since g is Lipschitz continuous near x∗ (with constant Lg),

g(xk + αkdk)− g(xk)

αk
− Lg∥dk − d∥ ≤ g(xk + αkd)− g(xk)

αk
.

One then obtains g◦(x∗; d) ≥ 0 since both ∥dk − d∥ and ρ(αk)/αk tend to zero in K2. �
By assuming that appropriate refining directions are dense in TCl

Ωnr
(x∗)∩{d ∈ Rn : ∥d∥ = 1},

one can show that the limit point x∗ is Clarke stationary for the constraint violation problem

min g(x)

s.t. x ∈ Ωnr.
(6)

Theorem 4.2 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr. Assume that g is Lipschitz
continuous near x∗.

Assume that TCl
Ωnr

(x∗) has a non-empty interior.
Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or if the set of refining directions

associated with K ′ (where K ′ is formed by the indices in K such that g(xk + αkdk) ≥ g(xk) −
ρ(αk)) and x∗ is dense in TCl

Ωnr
(x∗)∩{d ∈ Rn : ∥d∥ = 1}, then g◦(x∗; v) ≥ 0 for all v ∈ TCl

Ωnr
(x∗),

and x∗ is a stationary point of the constraint violation problem (6).

Proof. Following the proof of Theorem 4.1, if there exists an infinite number of cases where
g(xk) ≤ Cρ(αk), then g(x∗) = 0.

Now, let v be such that v ∈ TCl
Ωnr

(x∗) and ∥v∥ = 1. Then v is the limit of a sequence D of refin-

ing directions d associated with K ′ and x∗ such that d ∈ TH
Ωnr

(x∗). For each such d one can apply
the proof of Theorem 4.1 and obtain g◦(x∗; d) ≥ 0. Thus, g◦(x∗; v) = limd∈TH

Ωnr
(x∗),d∈D g◦(x∗; d) ≥

0. The result then holds for non-normalized v’s given that TCl
Ωnr

(x∗) is a cone and the Clarke
derivatives are homogeneous in their second arguments. �

9

4.2 Results on optimality

We now move to an intermediate optimality result. One does not explicitly use x∗ ∈ Ωr in the
proof, but one notes that g◦(x∗; d) ≤ 0 only describes the cone of first order linearized directions
under the feasibility assumption x∗ ∈ Ωr.

Theorem 4.3 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f and g are
Lipschitz continuous near x∗. Assume that d ∈ TH

Ωnr
(x∗) is a refining direction associated with K

and x∗ such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K1 ⊆ K and a corresponding subsequence
{dk}k∈K1 of polling directions such that {dk} converges to d ∈ TH

Ωnr
(x∗) in K1 and αk goes to

zero in K1. Thus, one must necessarily have that xk +αkdk ∈ Ωnr for k sufficiently large in K1.
Since the iteration k ∈ K1 is unsuccessful, one is sure that M(xk +αkdk;µk) ≥ M(xk;µk)−

ρ(αk), where µk is given by (5).
If µk = [f(xk+αkdk)−f(xk)]/[Cρ(αk)], then it is because [f(xk+αkdk)−f(xk)]/[Cρ(αk)] ≥

µ̄, and thus
f(xk + αkdk)− f(xk)

αk
≥ Cµ̄

ρ(αk)

αk
. (7)

If not, then M(xk + αkdk; µ̄) ≥ M(xk; µ̄)− ρ(αk), and thus

f(xk + αkdk)− f(xk)

αk
≥ µ̄

g(xk)− g(xk + αkdk)

αk
− ρ(αk)

αk
. (8)

On the other hand, from the definition of lim sup and the assumption g◦(x∗; d) ≤ 0,

lim sup
k∈K1

g(xk + αkd)− g(xk)

αk
≤ lim sup

x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≤ 0.

Since g is Lipschitz continuous near x∗ and the fact that dk → d (and using an argument already
seen in the proof of Theorem 4.1),

lim sup
k∈K1

g(xk + αkdk)− g(xk)

αk
= lim sup

k∈K1

g(xk + αkd)− g(xk)

αk
≤ 0.

Thus, one can say that there exists {ϵk}, with ϵk → 0, such that

g(xk + αkdk)− g(xk)

αk
≤ ϵk ∀k ∈ K1,

which then implies when (8) occurs

f(xk + αkdk)− f(xk)

αk
≥ −µ̄ϵk −

ρ(αk)

αk
. (9)

10

Now we know already that

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

f(x+ td)− f(x)

t
≥ lim sup

k∈K1

f(xk + αkd)− f(xk)

αk

= lim sup
k∈K1

f(xk + αkdk)− f(xk)

αk
.

The proof is completed since the right-hand-sides of (7) and (9) tend to zero in K1. �
Finally, we make use of the density of the refining directions in the set

T (x∗) = TH
Ωnr

(x∗) ∩ {d ∈ Rn : ∥d∥ = 1, g◦(x∗; d) ≤ 0} (10)

to derive the complete optimality result.

Theorem 4.4 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f and g are
Lipschitz continuous near x∗.

Assume that TH
Ωnr

(x∗) ∩ {d ∈ Rn : g◦(x∗; d) ≤ 0} has a non-empty interior.
If the set of refining directions associated with K and x∗ is dense in T (x∗), then f◦(x∗; v) ≥ 0

for all v ∈ TCl
Ωnr

(x∗) such that g◦(x∗; v) ≤ 0, and x∗ is a stationary point of (1).

Proof. Let v be such that v ∈ TCl
Ωnr

(x∗), g
◦(x∗; v) ≤ 0, and ∥v∥ = 1. Then v is the limit

of a sequence D of refining directions d associated with K and x∗ such that d ∈ TH
Ωnr

(x∗) and
g◦(x∗; d) ≤ 0. For each such d one can apply Theorem 4.3 and obtain f◦(x∗; d) ≥ 0. Thus,
f◦(x∗; v) = limd∈TH

Ωnr
(x∗),d∈D f◦(x∗; d) ≥ 0. The result then holds for non-normalized v’s given

that TCl
Ωnr

(x∗) is a cone and the Clarke derivatives are homogeneous in their second arguments.
�

5 Never leaving restoration

The analysis of an infinite run of consecutive steps inside Restoration shows that such a behavior
would lead to feasibility and optimality results similar as in the previous case. By a refining
subsequence below, we now mean a subsequence of unsuccessful Restoration iterates for which
the step-size parameter converges to zero. The definition of refining direction is the same as
before. (Again, since Ωnr is not necessarily by assumption a closed set, one must assume below
that x∗ belongs to Ωnr.)

Theorem 5.1 Assume that f is bounded below. Assume that Restoration is entered and never
left.

(i) Then there exists a refining subsequence.
(ii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and assume that d ∈

TH
Ωnr

(x∗) is a refining direction associated with K and x∗. Assume that g is Lipschitz continuous
near x∗. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.

(iii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω and assume that d ∈ TH
Ωnr

(x∗)
is a refining direction associated with K and x∗ such that g◦(x∗; d) ≤ 0. Assume that f is also
Lipschitz continuous near x∗. Then f◦(x∗; d) ≥ 0.

11

Proof. (i) There must exist a refining subsequence K within this call of the Restoration
(this is essentially the argument of the third paragraph of the proof of Theorem 3.1). By
assumption there exists a subsequence K1 ⊆ K and a corresponding subsequence {dk}k∈K1 of
polling directions such that {dk} converges to d ∈ TH

Ωnr
(x∗) in K1 and αk goes to zero in K1.

Thus, one must necessarily have that xk + αkdk ∈ Ωnr for k sufficiently large in K1.
(ii) Since the iteration k ∈ K1 is unsuccessful in the Restoration, g(xk+αkdk) ≥ g(xk)−ρ(αk)

or g(xk) ≤ Cρ(αk), and the proof follows an argument already seen (in the second paragraph of
the proof of Theorem 4.1).

(iii) Since at the unsuccessful iteration k ∈ K1, Restoration is not left, it must be because
M(xk+αkdk; µ̄) ≥ M(xk; µ̄) for all k ∈ K1, and the proof follows an argument also already seen
(see the fourth paragraph of the proof of Theorem 4.3). �

By assuming density of appropriate refining directions in certain cones, we could establish
also stationary results for problems (1) and (6) as in Theorem 4.2 and 4.4, respectively

6 Entering and leaving restoration an infinite number of times

It remains to analyze the case when one enters (and thus leave) Restoration an infinite number
of times. In this case the conditions under which the global convergence results are derived are
not the ideal ones since we will have the need to assume that the search step is not performed
(or not performed when it requires restoration) and that the step size is not increased (or not
increased as frequently as it is decreased).

Theorem 6.1 Assume that f is bounded below. Assume that Restoration is entered and left an
infinite number of times.

Assume that αk is never increased, that the search step is not applied in the Main algorithm,
and that {xk} converges to x∗.

Let d be a direction which is the limit point of {dk} for both the sequences where Restoration
is entered and left.

Assume that f and g are Lipschitz continuous near x∗. Then x∗ ∈ Ωnr and either g(x∗) = 0
(implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or g◦(x∗; d) ≥ 0. Furthermore, f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.

Proof. Let J1 and J2 be two subsequences of iterations where Restoration is entered and
left respectively.

Since for k ∈ J2 one knows that αk is reduced and the step parameter is never increased,
one obtains αk → 0.

Also, by assumption there exists a subsequence J3 ⊆ J2 and a corresponding subsequence
{dk}k∈J3 of polling directions such that {dk} converges to d ∈ TH

Ωnr
(x∗) in J3 and αk goes to

zero in J3. Thus, one must necessarily have that xk + αkdk ∈ Ωnr for k sufficiently large in J3.
Thus, from g(xk + αkdk) ≥ g(xk)− ρ(αk) or g(xk) ≤ Cρ(αk), for all k ∈ J3, one concludes that
g◦(x∗; d) ≥ 0 or g(x∗) = 0.

Now, for k ∈ J1, M(xk +αkdk; µ̄) ≥ M(xk; µ̄), and from this we conclude that f◦(x∗; d) ≥ 0
if g◦(x∗; d) ≤ 0. �

To derive a result of the form of Theorem 4.4, one would need to impose that the directions
used when entering Restoration are dense in the set (10).

To establish Theorem 6.1 we needed to make sure that αk goes zero, and since we already
had a subsequence of step size decreases, one way to ensure such a property was to rule out

12

step size increases. Note also that we can allow search steps as long as they are skipped when
require restoration.

An alternative to this result is to consider a certain maximum number N of Restoration calls,
after which one decides to unrelax the relaxable constraints. In this approach, at the (N +1)-th
call to Restoration, one enters a slightly different Restoration algorithm with the single purpose
of minimizing g (i.e., Algorithm 2.2 without the condition of leaving Restoration). After such a
call, if one arrives at a point where g is zero, one redefines Ωnr as the intersection of the originals
Ωnr and Ωr, and start from there an approach strictly based on the minimization of the extreme
barrier function fΩnr . This procedure can be applied to the relaxable constraints ci(x) ≤ 0,
i ∈ I, individually.

7 Particularization to smoother settings

When f is strictly differentiable at x∗ in the sense of Clarke [10], there exists ∇f(x∗) such that
f◦(x∗; d) = ⟨∇f(x∗), d⟩ for all d. Furthermore, if the ci’s are smoother (for instance continuously
differentiable at x∗), then g in (3) is regular [10], and its Clarke directional derivatives coincide
with the traditional ones, i.e., g◦(x∗; d) = g′(x∗; d). Thus, under these smoother assumptions,
the results would read as follows: (i) g′(x∗; d) ≥ 0 (in the relaxable constraints criticality result
of Theorem 4.1); (ii) the projection of ∇f(x∗) is zero onto the set of directions v such that
v ∈ TCl

Ωnr
(x∗) and g′(x∗; v) ≤ 0 (in the optimality result of Theorem 4.4).

When f and ci, i ∈ I, are continuously differentiable and Ωnr = Rn, there is no need to
use sets of polling directions dense in the unit sphere. The algorithms (Main and Restoration)
can then consider in this smooth setting, in their poll steps, directions belonging to positive
spanning sets Dk. To better extend the result of Theorem 4.1 to such a setting one would have
to consider a continuously differentiable version for g, such as

g(x) =
∑
i∈I

[max(ci(x), 0)]
2. (11)

Theorem 7.1 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗. Suppose that Dk converges in K to a
positive spanning set D∗. Assume that Ωnr = Rn, that ci, i ∈ I, are continuously differentiable
at x∗, and that g is given by (11). Then either g(x∗) = 0 (and thus x∗ ∈ Ω) or ∇g(x∗) = 0.

Proof. Since the iteration k ∈ K is unsuccessful, g(xk+αkdk) ≥ g(xk)−ρ(αk) for all d ∈ Dk

or g(xk) ≤ Cρ(αk), and then either there exists an infinite number of the first or of the second.
In the latter case, it is then trivial to obtain g(x∗) = 0 from the fact that αk → 0 in K and the
continuity of g. In the former case, there exists a subsequence K1 ⊆ K such that

g(xk + αkd)− g(xk)

αk
≥ −ρ(αk)

αk
∀d ∈ Dk, ∀k ∈ K1.

Applying the mean value theorem, for some tdk ∈ (0, 1),

⟨∇g(xk + tdkαkd), d⟩ ≥ −ρ(αk)

αk
∀d ∈ Dk, ∀k ∈ K1,

13

which then implies ⟨∇g(x∗), d⟩ ≥ 0 for all d ∈ D∗, and thus ∇g(x∗) = 0. �
Theorem 4.3 can also be adapted to the continuously differentiable case.

Theorem 7.2 Assume that f is bounded below. Assume that Restoration is entered finitely
many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that Ωnr = Rn and that
f , ci, i ∈ I, are continuously differentiable at x∗. Let g be given by (3) or (11). Suppose that
Dk converges to a set D∗ containing positive generators for

G(x∗) = {v ∈ Rn : g′(x∗; v) ≤ 0} = {v ∈ Rn : ⟨∇ci(x∗), v⟩ ≤ 0 when ci(x∗) = 0}. (12)

Then the projection of ∇f(x∗) onto G(x∗) is zero.

Proof. The proof of Theorem 4.3 shows that for all limit points d of polling directions, if
d ∈ G(x∗), then ⟨∇f(x∗), d⟩ ≥ 0. Thus, for all positive generators of G(x∗) in D∗, ⟨∇f(x∗), d⟩ ≥
0, and this implies the result. �

8 Numerical illustration

We illustrate the performance of the merit function algorithm on three test problems, which
were also tested in [6] to assess the progressive barrier method. The first two problems are
defined by a simple algebraic formulation whereas the third one comes from an application.

A simple implementation of Algorithm 2.1 was made in MATLAB without any parameter
tuning. The step size updating parameters were set to α0 = 1, β1 = β2 = 0.5, and γ = 2. The
forcing function was set chosen as ρ(α) = min{10−5, 10−5α2

k}. For the update of the penalty
parameter we picked µ̄ = max{10, g(x0)} and C = 100. No search step was attempted. The
measure of constraint violation was the non-smooth one (3). As for the polling directions, those
were randomly generated each step with norm one. We show results for |Dk| = n/2, n + 1, 2n.
There is no guarantee, even in the cases |Dk| = n + 1, 2n, of having computed a positive
spanning set, but one knows that that is not required in the convergence theory. A study of
random positive spanning sets is out of the scope of this paper. The results presented are the
average of 40 runs (corresponding to 40 values of the seed of the MATLAB random generator
randn).

In the first problem [5], one minimizes a linear function in a convex domain:

min

n∑
i=1

xi

s.t.

n∑
i=1

x2i ≤ 3n.

(13)

Two starting points are considered, one feasible (0, . . . , 0)⊤ and the other infeasible (3, . . . , 3)⊤.
There is a single (global) solution (−

√
3, . . . ,−

√
3)⊤, with optimal value −

√
3n. In the second

problem [6], the objective is still linear but the feasible region is non-convex:

min xn

s.t.

n∑
i=1

(xi − 1)2 ≤ n2 ≤
n∑

i=1

(xi + 1)2.
(14)

14

Two starting points are also considered, one feasible (n, 0, . . . , 0)⊤ and the other infeasible
(n, 0, . . . , 0,−n)⊤. There is a single (global) solution (1, . . . , 1, 1−n)⊤, with optimal value 1−n.

The results for problems (13)–(14) are depicted in Figures 1–2 for the case n = 50. One can
see that convergence is attained in all the cases and that the results must be considered good
when compared to those reported in [6]. One observes the non-monotonicity in the value of
the objective function (especially when starting infeasible), while reaching feasibility or within
the compromise promoted by the merit function. This effect is even visible while approaching
the minimizer (which lies at the boundary) for problem (13). One also observes that most of
the progress is made within the first 10000 function evaluations (5000 for |Dk| = n/2), which
is reasonable given the size of the problem and the lack of modeling. The version |Dk| = n/2
seems to be the less robust for these test problems. In addition, the number of iterations is
much lower (most of the cases below 1000 and never exceeding 2000 for the chosen budget size)
meaning that the parallelization of the algorithm would bring significant gains in the overall
computational time.

0 0.5 1 1.5 2 2.5 3

x 10
4

−80

−70

−60

−50

−40

−30

−20

−10

0
Convex feasible region (feasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

2.4 2.6 2.8 3

x 10
4

−86.6

−86.4

−86.2

(a) Starting feasible.

0 0.5 1 1.5 2 2.5 3

x 10
4

−50

0

50

100

150
Convex feasible region (infeasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

2.4 2.6 2.8 3

x 10
4

−86.5

−86

−85.5

(b) Starting infeasible.

Figure 1: Two runs of Algorithm 2.1 on problem (13) when n = 50 (and a budget of 600n is
given). The optimal value is approximately 86.6025. On the left (resp. on the right) the starting
point is feasible (resp. infeasible).

We also ran the code on the truth model of a problem defined by the optimization of a styrene
process production process (see [2]). The problem has 8 variables, 4 unrelaxable constraints (of
the type yes-no), and 7 relaxable constraints. The variables have lower and upper bounds
(xi ∈ [0, 100], i = 1, . . . , n) which were treated by us as unrelaxable constraints. We interfaced
the C++ code available in NOMAD [1] for this problem to our MATLAB optimizer. We
considered the two initial points also used in [6], namely

x0 = 100[0.54, 0.66, 0.86, 0.08, 0.29, 0.51, 0.32, 0.15]⊤ (feasible for the relaxable const.)

x0 = 100[0.44, 0.99, 0.76, 0.39, 0.39, 0.48, 0.43, 0.05]⊤ (infeasible for the relaxable const.).

The plots in Figure 3 depict the performance of the algorithm for these two starting points when
using n/2, n+ 1, and 2n polling directions. Again the version |Dk| = n/2 appeared as the less
robust one. One can see that the results for this third problem must also be considered good
when compared to those reported in [6].

15

0 0.5 1 1.5 2 2.5 3

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Nonconvex feasible region (feasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

2.4 2.6 2.8 3

x 10
4

−49

−48.5

(a) Starting feasible.

0 0.5 1 1.5 2 2.5 3

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5
Nonconvex feasible region (infeasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

2.4 2.6 2.8 3

x 10
4

−49

−48.5

(b) Starting infeasible.

Figure 2: Two runs of Algorithm 2.1 on problem (14) when n = 50 (and a budget of 600n is
given). The optimal value is −49. On the left (resp. on the right) the starting point is feasible
(resp. infeasible).

0 50 100 150 200 250 300
−3.5

−3

−2.5

−2

−1.5

−1
x 10

7 Styrene problem (feasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

(a) Starting feasible.

0 50 100 150 200 250 300
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

7 Styrene problem (infeasible start. point)

number of obj. func. evaluations

ob
j.

fu
nc

. v
al

ue
s

n+1
2*n
n/2

(b) Starting infeasible.

Figure 3: Two runs of Algorithm 2.1 on the styrene problem for a budget of 300 function
evaluations. On the left (resp. on the right) the starting point is feasible (resp. infeasible) with
respect to the unrelaxable constraints.

Finally, we point out that, for all the instances run, the returned points were always feasible
with respect to the relaxable constraints and that the update of the penalty parameter has never
posed any problem of scaling or magnitude. Restoration was only entered a negligible number
of times.

9 Concluding remarks

We have introduced a globalization procedure to include relaxable constraints in direct-search
methods, allowing starting infeasible with respect to these constraints. The procedure introduced
requires the evaluation of a merit function for the purposes of measuring success of an iteration.

16

The penalty parameter present in the merit function does not, thus, play any explicit role in
the computation of the step. It is also important to stress that no type of boundedness of the
penalty parameter was assumed to derive the global convergence results. We included a scheme
to restore feasibility associated with these constraints (or just to significantly reduce such a
constraint violation) as it seemed to us as a potentially useful tool.

The convergence analysis is organized depending on the number of times Restoration is
entered. When Restoration is entered finitely often, we showed in Theorem 4.2 that the limit
points of certain subsequences of iterates (called refining and composed of unsuccessful iterations
for which αk goes to zero) are either feasible or Clarke stationary for the constraint violation
problem (6). Then, we showed in Theorem 4.4 that such limit points, when feasible to the original
problem, are Clarke stationary for (1). Our theory provides similar results when Restoration is
entered but never left (see Section 5). The remaining case is when Restoration is entered and
left an infinite number of times (Section 6). Here, to guarantee the same type of results we
required the algorithm to meet two additional criteria related to the application of the search
step and the update of the step size αk in successful iterations.

As a referee pointed out to us, our algorithmic framework could be simplified by setting
µk = µ̄ without affecting the theoretical properties. Having µk = µ̄ would implicitly maintain
the presence of a penalty parameter. For sake of generality and algorithmic flexibility, we
maintained the more general penalty parameter update.

A number of issues remain to be better investigated, in particular how our approach would
rank in a comprehensive numerical comparison of the existing direct-search type methods for
nonlinear constrained derivative-free optimization. The few numerical tests made until now are
relatively promising and indicated the need to a better understanding of the use of random
directions and random positive spanning sets in direct search, a study which we are currently
undertaking. Other algorithmic options are likely to have also a significant impact like the
application of a search step, the choice of parameters such as the initial threshold µ̄ for the
penalty parameter, and the resetting of the step size before and after a change in optimization
state (such as the restoration).

A Cones and derivatives in the constrained case

A vector is said tangent to Ωnr at x if it satisfies the following definition.

Definition A.1 A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ωnr ⊆ Rn at
the point x in the closure of Ωnr if for every sequence {yk} of elements of Ωnr that converges to x
and for every sequence of positive real numbers {tk} converging to zero, there exists a sequence
of vectors {wk} converging to d such that yk + tkwk ∈ Ωnr.

The Clarke tangent cone to Ωnr at x, denoted by TCl
Ωnr

(x), is then defined as the set of all
Clarke tangent vectors to Ωnr at x. The Clarke tangent cone generalizes the tangent cone in
Nonlinear Programming [23], but one can think about the latter one for gaining the necessary
geometric motivation.

Given x∗ ∈ Ωnr and d ∈ TCl
Ωnr

(x), one is not sure that x + td ∈ Ωnr for x ∈ Ωnr arbitrarily
close to x∗. Thus, for this purpose, one needs to consider directions in the interior of the Clarke
tangent cone. The hypertangent cone appears then as the interior of the Clarke tangent cone
(when such interior is nonempty, as we assume in this paper). In the sequel, B(z; r) denotes
{w ∈ Rn : ∥w − z∥ < r}.

17

Definition A.2 A vector d ∈ Rn is said to be a hypertangent vector to the set Ωnr ⊆ Rn at the
point x in Ωnr if there exists a scalar ϵ > 0 such that

y + tw ∈ Ωnr, ∀y ∈ Ωnr ∩B(x; ϵ), w ∈ B(d; ϵ), and 0 < t < ϵ.

The hypertangent cone to Ωnr at x, denoted by TH
Ωnr

(x), is then the set of all hypertangent
vectors to Ωnr at x. The closure of the hypertangent cone is the Clarke tangent one (when the
former is nonempty).

If we assume that h is Lipschitz continuous near x∗, we can define the Clarke-Jahn generalized
derivative along directions d in the hypertangent cone to Ωnr at x∗,

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t

= lim
ϵ↓0

sup
x ∈ B(x∗; ϵ) ∩ Ωnr

t ∈ (0, ϵ), x+ td ∈ Ωnr

{
h(x+ td)− h(x)

t

}
.

These derivatives are essentially the Clarke generalized directional derivatives [10], general-
ized by Jahn [16] to the constrained setting. Given a direction v in the tangent cone, one
can consider the Clarke-Jahn generalized derivative to Ωnr at x∗ as the limit h◦(x∗; v) =
limd∈TH

Ωnr
(x∗),d→v h

◦(x∗; d) (see [5]).

The point x∗ is considered stationary for problem (1) when Ω = Ωnr if f◦(x∗; v) ≥ 0,
∀v ∈ TCl

Ωnr
(x∗).

When Ωr ̸= Rn, then the point x∗ is considered stationary for problem (1) if f◦(x∗; v) ≥ 0,
∀v ∈ TCl

Ωnr
(x∗) ∩ {d ∈ Rn : g◦(x∗; d) ≤ 0}.

Acknowledgements

The authors thank the two referees, in particular one of them, for their constructive comments
and suggestions which led to an improved version of the paper. We are also grateful to A. Ismael
F. Vaz for his help in running the application problem.

References

[1] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and C. Tribes. The NOMAD
project. Software available at http://www.gerad.ca/nomad.

[2] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization through mesh adaptive direct
search and variable neighborhood search. J. Global Optim., 41:299–318, 2008.

[3] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim., 13:889–903,
2002.

[4] C. Audet and J. E. Dennis Jr. A pattern search filter method for nonlinear programming without
derivatives. SIAM J. Optim., 14:980–1010, 2004.

[5] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

18

[6] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear programming.
SIAM J. Optim., 20:445–472, 2009.

[7] C. Audet, J. E. Dennis Jr., and S. Le Digabel. Globalization strategies for Mesh Adaptive Direct
Search. Comput. Optim. Appl., 46:193–215, 2010.

[8] F. V. Berghen. CONDOR: A Constrained, Non-Linear, Derivative-Free Parallel Optimizer for Con-
tinuous, High Computing Load, Noisy Objective Functions. PhD thesis, Université Libre de Bruxelles,
Belgium, 2004.

[9] R. Brekelmans, L. Driessen, H. Hamers, and D. den Hertog. Constrained optimization involving
expensive function evaluations: A sequential approach. European J. Oper. Res., 160:121–138, 2005.

[10] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

[11] B. Colson. Trust-Region Algorithms for Derivative-Free Optimization and Nonlinear Bilevel Pro-
gramming. PhD thesis, Département de Mathématique, FUNDP, Namur, Belgium, 2003.

[12] A. R. Conn, K. Scheinberg, and Ph. L. Toint. A derivative free optimization algorithm in practice. In
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, St. Louis, Missouri, September 2-4, 1998.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[14] J. E. Dennis Jr., C. J. Price, and I. D. Coope. Direct search methods for nonlinearly constrained
optimization using filters and frames. Optim. Eng., 5:123–144, 2004.

[15] M. A. Diniz-Ehrhardt, J. M. Mart́ınez, and L. G. Pedroso. Derivative-free methods for nonlinear
programming with general lower-level constraints. Comput. Appl. Math., 30:19–52, 2011.

[16] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, Berlin, 1996.

[17] T. G. Kolda, R. M. Lewis, and V. Torczon. A generating set direct search augmented Lagrangian
algorithm for optimization with a combination of general and linear constraints. Technical Report
SAND2006-5315, Sandia National Laboratories, USA, 2006.

[18] R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search algorithm
for optimization with general constraints and simple bounds. SIAM J. Optim., 12:1075–1089, 2002.

[19] G. Liuzzi and S. Lucidi. A derivative-free algorithm for inequality constrained nonlinear programming
via smoothing of an ℓ∞ penalty function. SIAM J. Optim., 20:1–19, 2009.

[20] G. Liuzzi, S. Lucidi, and M. Sciandrone. Sequential penalty derivative-free methods for nonlinear
constrained optimization. SIAM J. Optim., 20:2614–2635, 2010.

[21] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained optimiza-
tion. Math. Program., 92:37–59, 2002.

[22] J. M. Mart́ınez and F. N. C. Sobral. Derivative-free constrained optimization on thin domains. J.
Global Optim., 56:1217–1232, 2013.

[23] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition, 2006.

[24] M. J. D. Powell. A direct search optimization method that models the objective and constraint func-
tions by linear interpolation. In S. Gomez and J.-P. Hennart, editors, Advances in Optimization and
Numerical Analysis, Proceedings of the Sixth Workshop on Optimization and Numerical Analysis,
Oaxaca, Mexico, volume 275 of Math. Appl., pages 51–67. Kluwer Academic Publishers, Dordrecht,
1994.

[25] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Math.
Program., 133:299–325, 2012.

19

