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Abstract

In this paper, we suggest two ways of calculating interpolation models for unconstrained
smooth nonlinear optimization when Hessian-vector products are available. The main idea is
to interpolate the objective function using a quadratic on a set of points around the current
one and concurrently using the curvature information from products of the Hessian times
appropriate vectors, possibly defined by the interpolating points. These enriched interpo-
lating conditions form then an affine space of model Hessians or model Newton directions,
from which a particular one can be computed once an equilibrium or least secant principle
is defined.

A first approach consists of recovering the Hessian matrix satisfying the enriched interpo-
lating conditions, from which then a Newton direction model can be computed. In a second
approach we pose the recovery problem directly in the Newton direction. These techniques
can lead to a significant reduction in the overall number of Hessian-vector products when
compared to the inexact or truncated Newton method, although simple implementations
may pay a cost in the number of function evaluations and the dense linear algebra involved
poses a scalability challenge.

Keywords: Nonlinear/Nonconvex Optimization, Hessian-Vector Products, Quadratic Interpolation,
Newton Direction, Hessian Recovery.

1 Introduction
Let us consider the minimization of a twice continuously differentiable function f,

min f(z),

in a context where the following information is available: Given z € R™, one can compute f(z),
Vf(z), and V2f(x)v for any vector v € R™.
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1.1 Literature review

Newton-based methods for unconstrained nonlinear optimization require the solution of a linear
system at each iteration. The matrix of this system is the Hessian of f and its right-hand side
is the negative of the gradient. In many application instances, the Hessian is not available for
factorization or is too large to factorize at a reasonable cost, but Hessian-vector products are
available and affordable. In such cases, the linear systems cannot be solved directly, but an
iterative method can be applied. When solving certain application problems, it becomes rela-
tively cheap to compute true Hessian-vector products for arbitrary vectors using the problem’s
structure. Examples are problems governed by differential equations [1, 5, 30] and the training
of neural networks for deep learning [31, 34]. When the problem structure cannot be used to
calculate Hessian-vector products, one can use techniques from numerical analysis and computer
science to accurately compute these products, either by applying finite-differences using gradient
calls [21, 37|, or by using automatic differentiation techniques (see [3, 6, 27]) in particular those
tailored to the calculation of Hessian-vector products [16, 29].

When one is using an iterative method to solve the linear system, it is known that there is
a residual error in the application of the iterative solver and that such a residual can be made
smaller by asking more from the solver. This reasoning gave rise to the so-called inexact or
truncated Newton methods which have formed an important numerical tool for many decades.
(We will compare the approaches of our paper against the inexact Newton method.) It is well
known since the contribution [11] what conditions one should impose on the norm of the residual
of the linear system to obtain linear, superlinear, or quadratic local convergence in the iterates
of the underlying method (see [37]). Global convergence of inexact Newton methods is also
well studied [17, 28]. Omne knows well also how to deal with negative curvature while solving
the linear system using Krylov-type methods (Conjugate Gradients or Lanczos), either using a
trust-region technique [24, 40] or a line search [35].

When Hessian or Hessian-vector products are not available, estimating the Hessian within
an optimization approach can then play an important role, however the existing approaches
are not entirely satisfactory. If the Hessian matrix is sparse and its sparsity pattern is known,
the approach in [20] enforces multiple secant equations in a least squares sense, solving then a
positive semi-definite system of equations in the nonzero Hessian components. Their approach
does not show a significant improvement compared to the L-LBGS or Newton trust-region
methods. In [39] the Hessian is estimated by finite differences in the gradient, but by dividing
the Hessian columns first into groups. Using symmetry and the known sparsity of the Hessian,
it is possible to find approximations to different Hessian columns at once. This method is cheap
in computer arithmetic and provided better results when compared to [10]. A more recent
approach [33, 23] imposes the secant equations componentwise, leading to fewer equations when
taking into account the available sparsity pattern. The numerical results show that the algorithm
can find the Hessian approximation fast and accurately when the number of nonzero entries per
row is relatively low.

1.2 The contribution of the paper

In this paper two techniques are proposed and analyzed for the Hessian-free scenario where only
Hessian-vector products are available for use. Our goal is to use as few of these products as
possible without losing the ability to converge to a solution or a stationary point of the original
problem. Having this in mind we form a quadratic model around a point z, using function



and gradient values at z and function values at the interpolating points 3, £ = 1,...,p. The
matrix H of this model or some kind of Newton step has then to be recovered.

Our first approach enriches these interpolating conditions with the information coming from
a single true Hessian-vector product V2 f(zx)(y — ), for a point y different from any of the y*’s
of those conditions. In fact, to avoid degeneracy in the enriched interpolating conditions (which
are affine conditions on H), one has to choose y differently from those y’s and one cannot
consider more than one of these products. The computation of the model Hessian is carried
out by minimizing its norm or its distance to a previous model Hessian (say from a previous
iteration of the optimization method) subject to the enriched interpolating conditions. Such a
Hessian recovery can then lead to the computation of an approximate Newton step.

The case of minimizing the distance to a previous model Hessian resembles the spirit of
quasi-Newton methods [12, 13, 18] when they are motivated by least-change secant updating
principles [14]. Limited memory quasi-Newton methods [36, 32] have been extensively used
for large-scale problems since they avoid the storage and the factorization updates of n x n
secant/quasi-Newton approximation matrices. Anyhow, quasi-Newton or limited memory quasi-
Newton techniques are typically applied when no second-order information whatsoever is avail-
able. They have been used in derivative-free optimization when the gradient is approximated
by a simplex gradient [22] or a finite-difference gradient [4].

Our second approach allows us to consider more than one Hessian-vector product in the
model formulation. The interpolating conditions are now enriched by the second-order infor-
mation coming from the Hessian-vector products V2f(z)(y* — x), £ = 1,...,p. Then, avoiding
degeneracy and the inverse of the Hessian model, the recovery is done in the space of the Newton
direction models, using a modified set of enriched interpolating conditions. Again, the compu-
tation of the Newton direction model is carried out by minimizing its norm or its distance to a
previous Newton direction model subject to the modified enriched interpolating conditions.

In both cases we will provide some theoretical support for the recoveries by proving that the
absolute error (in model Hessian or in model Newton direction) is decreasing in the case where
the enriched interpolating conditions are underdetermined. The main result will be established
for the case where f is quadratic but theoretical insight will be given for the non-quadratic case
as well. We will also provide accuracy-type upper bounds for the absolute error coming from
the enriched interpolating conditions (in a determined situation). We report numerical results
to confirm that both approaches are sound and can lead to a significant reduction in the number
of Hessian-vector products. The dimension of the problems tested is rather small. The linear
algebra is dense, and the number of functions evaluations used can be relatively high. It is left
for future research the application to medium/large-scale problems. The second approach based
on a Newton direction model can be easily parallelized (see Section 4).

The paper is organized as follows. In Section 2 we present our first approach, the one for
the recovery of a model Hessian. In Section 3 we describe our second approach, the one for the
recovery of a model Newton direction. In both cases we report illustrative numerical results for
small problems. The paper is finished in Section 4 with some final remarks and prospects of
future work. The notation O(A) will be used to represent the product of a constant times A
whenever the multiplicative constant is independent of A. All vector and matrix norms are
Euclidian unless otherwise specified.



2 Hessian recovery from Hessian-vector products

Let x be a given point. Suppose also that we have calculated f and Vf at = as well as f
at a number of points y',...,y?. We can then use quadratic interpolation to fit the data by
determining a symmetric matrix H such that

1
F@)+ V@) ¢ —o)+ 50 —2) Hy —2) = f0), (=1,....p (1)
Furthermore, given a set of vectors v',...,v™, with m possibly much smaller than n, suppose
that we have calculated w/ = V2f(z)v?, j = 1,...,q. Hence we could then ask our symmetric
Hessian model H to satisfy Hv/ = w’, j = 1,...,q. However it is important to notice two

immediate facts, reported in Remarks 2.1 and 2.2.

Remark 2.1 First we cannot have ¢ > 1. Any use of a pair v',v? would make the conditions

Ho' = w!' and Hv? = w? degenerate in H, in the sense that the matriz multiplying the compo-
nent variables of H would be rank deficient. This fact can be easily confirmed from multiplying
each by the other vector, i.e., by looking at (v?)" Hv' = (v¥)Tw! and (v') T Hv? = (v')Tw?. For
illustration suppose that n = 2. These two equations would look like

()10 1har + [(v2)2(v)1 + (0)1(0)a]hiz + (v¥)2(v!)2hos,
(W1 (V)11 + [(v1)2(0*)1 + (v1)1(0)2] Rz + (01)2(v%)2hs2,

and one can see that the two rows multiplying the H components are the same.

Remark 2.2 Secondly, even when taking ¢ = 1, one cannot consider v = y* —x, for any ¢, for
the exact same reason. In fact, multiplying H(y* — x) = w' on the left by (1/2)(y* — )" would

lead us to 1 1
SW =) H(y' —2) = Sy —2) ',

which, together with the corresponding interpolating condition in (1),

1
S =) H{y' —2) = () = f(@) = V(@) (v =),
would form two linearly dependent equations in the H components.

2.1 Hessian recovery

From Remark 2.1, we know that we can only consider one vector v for the Hessian multiplication
w = V2 f(z)v, and from Remark 2.2, we know that this vector cannot be any of the interpolation
vectors y* — 2. Then, in the same vein as it was done in [9, Section 5.4] for derivative-free
optimization, a model Hessian H could then be calculated from the solution of the recovery
problem

m}}n norm(H) s.t. (1) and Hv = w. (2)

The norm(H) could be taken in a certain ¢; sense, leading to a linear program (see [2]). It
could also be set as the Frobenius norm, norm(H) = ||H||r, leading to a quadratic program.



Alternatively, one can recover a model Hessian in a least secant fashion (as done in [38] for
derivative-free optimization using the Frobenius norm)

mI}n norm(H — HP™") s.t. (1) and Hv = w, (3)

where HP"™ is a previously computed model Hessian (say, from a previous iteration of an
optimization scheme).

2.2 Theoretical motivation (error decrease)

We will now see that when f is quadratic the error in the difference between the optimal solution

H* of (3) and the true Hessian decreases relatively to the previous estimate HP"*’. To prove
such a result it is convenient to use the Frobenius norm in (3) and consider:
: 1 rev |2
min §HH_HP |z st. (1) and Hv =w, (4)
Let us first write the quadratic f centered at x
T 1 T
fly) = a+b (y—2)+5(y—2) Cly-a), (5)

where a = f(z), b = Vf(x), and C is a symmetric matrix. The non-quadratic case will be
analyzed after the theorem.

Theorem 2.1 Let f be given by (5) and assume that the system of linear equations defined
by (1) and Hv = w is feasible and underdetermined in H. Let H* be the optimal solution of
problem (4). Then

|H* = C|F < |H" = C|3

Proof. The proof follows the arguments in [38] that lead to [38, Equation (1.8)]. From (1),
we have (y* —2)"(C — H*)(y* —2) =0, £ = 1,...,p. We also have (C' — H*)v = 0. Hence,
C — H* is a feasible direction for the affine space in H defined by (1) and Hv = w. It then turns
out that the function

1 * rev *
m(0) = SI(H" - H"™) +0(C - H )13
has a minimum at & = 0. From the trace definition of the Frobenius norm
m/(0) = [(H* — HP"®") +6(C — H")]" (C — H*).

Hence,
(H* o Hprev)T(C_H*) = 0,

which then implies (given the symmetry of the matrices and considering only the diagonal entries
of the above matrix product)

ZZ — HI'™)(Cy — H;) = 0.

i=1 j=1



The rest of the proof requires the following calculations:

IIHWU = Ol = |1H" = HP"™" ||} — [|[H* - C|]%

SN ) — (a — HE (11— Gy

i=1 j=1

_ Z Z[(ngjrev o Cij + H:; o H%rev)(Hfjrev o Cij - H:; + Hg"ev) (Ha; Cij)2]

i—lj—l

- 3 Yl ~ Co e — G 1 1 + )
= 1] 1

=23 S~ G ) = 0
=1 j=1

Hence we have established that
|H* = C||7 = [[H”"® = C||3 — [|H* — H"||%
< [|HP™ = C[%.

g

When f is not quadratic, a similar result can be obtained under the price of more Hessian-
vector products. We will obtain the result by considering the quadratic function that results
from a second-order Taylor expansion of f centered at x:

Fw) = f@)+ Vi) (g —2)+ 2

S =) VA @)y - ). (6)

The values of f and f coincide at z up to second-order derivatives: f(a;) = f(x), Vf(x) =Vf(x),
and V2f(2) = V2f(z). That is not the case for the function values at 3¢, but if we are willing
to pay the price of computing p more Hessian-vector products, V2f(z)(y* — z), £ = 1,...,p,
then one can indeed calculate f(y*) using (6). The new interpolating conditions for H are then
given by

~ ~ 1

f(l‘)+Vf(9C)T(yz—w)+§(y£—fﬂ)TH(yé—x) = ), t=1....p. (7)

Then, H can be calculated like in (4) but with (1) replaced by (7):
1
mhirn §HH_HW€U”12V st. (7) and Hv = w. (8)

Corollary 2.1 Assume that the system of linear equations defined by (7) and Hv = w is feasible
and underdetermined in H. Let H* be the optimal solution of problem (8). Then

1H* =V f(@)llF < B =V f@)l[F = [|H" = V2@ )| 9)

Proof. The proof follows from elegantly applying Theorem 2.1 to the quadratic f . We then
establish
|H* = V2 f(2)|F < [|H = V2 f ()|l



from which the result of the corollary is obtained using V2f(x) = V2f(2"") = V2f(z). O

Further improving the bound of Corollary 2.1, in the sense of having HP"® — V2 f(zP"") in
the right-hand side of (9), seems out of reach because it would require incorporating V2 f(xP"¢")
in the objective function of the recovery subproblem (8).

2.3 Theoretical motivation (error bound)

Let « represent the coefficients of H in (1/2)w'Hw in terms of the monomial basis. The
quadratic components of this basis are of the form (1/2)wi2, i=1,...,nand wyw;, 1 <i<j<n.
So, we have (1/2)hj1w? = a1[(1/2)w?], ..., (1/2)hpw? = a,[(1/2)w2], hiowiws = a1 [wiws]
and so on. The recovery problem (4) can then be formulated approximately! as

1
min §||04—Ozpm’H2 st. Mo = 6, (10)
«

where

Mla = : , M20z:Hv,

F@P) = fx) = Vf(2) T (y? —x)

Another piece of motivation for this approach comes from the fact that the enriched inter-
polating conditions defined by (1) and Hv = w, once determined (i.e., with as many equations
as variables), may produce a model Hessian H that used together with V f(z) can give rise to a

fully quadratic model. Such a model has the same orders of accuracy as a Taylor-based model [8]
(see also [9]).

Theorem 2.2 If p is chosen such that p+n = ”2% and if M is nonsingular, then the model

Hessian H resulting from Ma = 6 in (10) can give rise to a fully quadratic model, in other
words, one has

1H = V2f(@)ll = O(Ay),

where Ay = maxi</<p HyZ — azH and the constant multiplying A, depends on the inverse of an
appropriate scaled version of M.

Proof. First we follow the argument in [8, Theorem 4.2] and consider that x is at the origin,
without any lost of generality. One can start by making a Taylor expansion of f around x along
all the displacements v’ — z, £ =1,...,p, leading to

§'— Mo = O(A)), (11)

'The norm used in (10) for « is a minor variation of the Frobenius norm of H.



where o stores the components of V2 f(z) and each component of the right-hand side is bounded
by (1/6)Ly2y|ly* — x||3, with Ly the Lipschitz constant of V?f. From (11) and M'a = §', we
obtain

M'(a—a") = O(AY). (12)

On the other hand, one also has
M?*(a —a®) = 0.

Now we divide each row of (12) by Ag. The proof is concluded by considering [M*/ AZ; M?]
as the scaled version of M alluded in the statement of the result. O

2.4 Numerical results for the determined case

As we have discussed in Theorem 2.2, if p is chosen such that p4+n = "2% and if the matrix M is
nonsingular and well conditioned, the model Hessian H resulting from M« = 6 in (10) becomes
fully quadratic. The error between the Hessian model H and V2f(x) is then of the O(A,),
where A, = max; <<, ||y — |

In this section we will report some illustrative numerical results to confirm that an approach
built on such an Hessian model can lead to an economy of Hessian-vector products. Our term
of comparison will be the inexact Newton method (as described in [37, Section 7.1]), where the
system V2f(z)d!N = —V f(x) is solved by applying a truncated linear conjugate (CG) method
(stopping once a direction of negative curvature is found or a relative error criterion is met). In
our case, after computing H from solving Ma = ¢ in (10), to compute our search direction d™#
we apply the exact same truncated CG method to HdM# = —V f(x) as in the inexact Newton
method. The computed directions d' or dM# are necessarily descent in the sense of making
an acute angle with —V f(z).

For both the inexact Newton method and our model Hessian approach, a new iterate is of
the form z + ad, where d is given by d'V or dM# respectively. The same cubic interpolation line
search [41, Section 2.4.2] is used to compute the stepsizes a'N and o™H  In this line search, the
objective function is approximated by a cubic polynomial with function values at three points
and a derivative value at one point. The line search starts with a unit stepsize and terminates
either successfully with a value « satisfying a sufficient decrease condition for the function (of
the form f(z + ad) < f(x) + c1aV f(x)Td, with ¢; = 107*) or unsuccessfully with a stepsize
smaller than 10710,

To form the model described in (2) one needs p interpolation points y',...,%” and one
vector v for Hessian multiplication. We have used the following scheme: Before the initial
iteration, we have randomly generated a set of p points, {y',... 4P}, and a vector v, in the
unit ball B(0;1) centered at the origin. Then, at each iteration xj, the interpolation points
used were of the form xj + rkyﬁ, {=1,...,p, and the vector v, of the form 7y v, where r, =
min{1072 max{10~4, ||z — z1_1|}}, k= 1,2,....

For the purpose of this numerical illustration, we selected 48 unconstrained (smooth and
nonlinear) very small problems from the CUTEst collection (see Appendix B), also used in
the papers [23, 26]. Both methods were stopped when an iterate xj was found such that
IV f(zx)|| < 107°. We built performance profiles (see Appendix A) using as performance metric
the numbers of Hessian-vector products and iterations (Figure 1) and the number of function
evaluations and CPU time (Figure 2). One can see that our approach can effectively lead to



a significant reduction on the number of Hessian-vector products. Both approaches take on
average 2 CG inner iterations to compute a direction, and the number of main iterations is
comparable. Hence, we estimate that this reduction is approximately 50% as we only do one
Hessian-vector product per main iteration. Of course, one has to pay a significant cost in number
of function evaluations which is of the order of n? per main iteration.

Number of Hessian-vector products (very small problems) Number of iterations (very small problems)
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Figure 1: Testing the Hessian recovery within a line-search algorithm. Performance profiles for
the numbers of Hessian-vector products and iterations, for the set of very small problems of
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Appendix B. The value of p was set to % —n.
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Figure 2: Testing the Hessian recovery within a line-search algorithm. Performance profiles for
number of function evaluations and CPU time, for the set of very small problems of Appendix B.

The value of p was set to ”2% —n.

2.5 Numerical results for the determined case when the Hessian sparsity is
known

In many optimization problems, the Hessian matrix of the objective function is sparse and the
corresponding sparsity pattern is known in advance. This is the case for problems governed by
partial differential equations [1, 5, 29, 30], and, in general, for all problems involving partially
separable functions of the form f(z) = >, fi(xz), where each of the element functions f;



depends on only a few components of = (see [7, 43]). The CUTEst [25] collection lists many
constrained and unconstrained sparse problems, and tools for accessing the sparsity pattern
of the Hessian of the objective functions are made available. CUTEst problems for which the
sparsity pattern of the Hessian of the objective function is accessible arise from interconnected
markets, power network, circuit simulation, computational fluid dynamics, chemical process
simulation, among many other applications. Taking advantage of the Hessian sparsity pattern
to approximate Hessian values has thus been the subject of research [19, 20, 39, 42].

Let Q(V2f) = {(i,7) : i < j,V2f;j(z) = 0 for all z} be the sparsity pattern of V2f. When
|Q(V2f)| < n(n + 1)/2, it is then beneficial and often necessary to use specialized algorithms
and data structures that take advantage of the known sparsity pattern. One can tailor our
model Hessian approach to problems with sparse Hessian matrices when the sparsity patterns
are known. We require the Hessian model to share the same sparsity pattern of the true Hessian,
recovering only the nonzero elements. In fact, instead of solving problem (10) with respect to
the whole Hessian matrix, we solve problem

min 1HOzQ —ay? st. Moag = 6, (13)
ag 2
where the elements in the rows of Mg and in the vector aq correspond now only to nonzero
entries.

We have tested our sparse Hessian recovery approach using the same algorithmic environment
of Subsection 2.4, the only difference being in the usage of the model equation Mgagq = § in (13)
and a smaller value of p (now given by the difference between the number of nonzeros of the
Hessian and n, so that the matrix Mq is squared). The sparse problems used are listed in
Appendix C. The experiments are reported in Figures 3 and 4 in the form of performance
profiles. The conclusions are similar to those in Subsection 2.4.

Number of Hessian-vector products (small sparse problems) Number of iterations (small sparse problems)
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Figure 3: Testing the Hessian recovery within a line-search algorithm. Performance profiles for
the numbers of Hessian-vector products and iterations, for the set of small sparse problems of
Appendix C. The value of p was set to number of nonzeros minus n.
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Figure 4: Testing the Hessian recovery within a line-search algorithm. Performance profiles
for number of function evaluations and CPU time, for the set of small sparse problems of
Appendix C. The value of p was set to number of nonzeros minus n.

2.6 Recovery cost in the general case
The necessary and sufficient optimality conditions for the convex QP (10) can be stated as

O(—OépTEU—MTAZO

14
Ma =6, (14)

where A denotes the Lagrange multipliers. Such multipliers can then be recovered by solving

MM\ = §— MaP™®. (15)

The system (15) can either be solved directly or iteratively. If solved directly the cost is of the
order of (p + n)*n? to form MM ' and of (p + n)® to factorize it, and the overall storage of
the order of (p + n)2. If the Conjugate Gradient (CG) method is applied, the overall cost is of
the order of c4(p + n)n?, where ¢, is the number of CG iterations. In fact, each matrix vector
multiplication with either M " or M costs O((p + n)n?). Solving the KKT system (14) using
an indefinite factorization is even less viable given that the storage space would be of the order
of (n? +p)2.

3 Newton direction recovery from Hessian-vector products

In this section, we introduce a new approach to recover the Newton direction from Hessian-vector
products that does not require an explicit recovery of the Hessian matrix.

3.1 Newton direction recovery

Let us first consider a quadratic Taylor expansion of the form

F@) +VI@) T )+ 50 -0 V@ -0 = f6), (=L.p (16)

11



made using a sample set {y',...,y?}. We will synchronize expansion (16) with Hessian-vector
products along y’ —x, £ = 1,...,p. In fact, we require the calculation of

2= V2fa)yt—x), L£=1,...,p. (17)

Since our interest relies specifically on the calculation of the Newton direction, assuming
that the model Hessian V2 f(x) is nonsingular, we obtain from (16) and (17)

f@) + (V2 (@) IV f(2)) TV f () (" —2) + %(yZ —2)' 2 > f(yY), f=1....p. (18)

Then, introducing the model vector d ~ —V?2f(x) "'V f(x), one arrives at a new set of enriched
interpolating conditions

1
(27d = —f@) + (@) + 50" —0)T (=1,...p. (19)
Equations (19) lead then to a new recovery problem
mjn norm(d — d’"®?) s.t. (19). (20)

When dP"®’ is the previously recovered Newton direction, we are following the spirit of a quasi-
Newton least secant approach. One could also consider the case dP"™¥ = 0 as it was done in some
derivative-free approaches for Hessian recovery. Let us now give two arguments to motivate this
approach.

3.2 Theoretical motivation (error decrease)

First, as we did in Subsection 2.2 for the Hessian recovery approach, we can provide motivation
for the Newton direction recovery approach when f is assumed quadratic (5), this time with a
nonsingular Hessian C. Here we need to consider the square of the ¢3-norm in (20)

1
min  Zfld—d|? st (19). (21)

We will show that in the quadratic case the error in the approximation of the Newton direction
is monotonically non increasing. The non-quadratic case will be discussed at the end of this
subsection.

Theorem 3.1 Let f be given by (5) with C nonsingular and assume that the system of linear
equations (19) is feasible and underdetermined in d. Let d* be the optimal solution of prob-
lem (21). Then

ld* = (=C7'0)[|* < a7 — (=C7D)|1*. (22)

Proof. From the expression (5) for f, one has
1
J@) = a+(C70) CW —u) + 54" —2) ' Cly' —2), L=1,....p.
and hence, using 2* = C(y* — ), £ =1,...,p, and (19), one arrives at (z) " (d* — (—~C~'b)) = 0.
The conclusion is that d* — (—=C~!b) is a feasible direction for the affine space in d defined

by (19).
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The rest of the proof follows the same lines as in the proof of Theorem 2.1. The function
1
m(0) = gll(d* — ") +0(-C"'b— )|

has a minimum at § = 0, from which we conclude that (d* — d@’"**) " (~C~1b — d*) = 0. From

here we obtain

”d* o (_C—lb)HQ — Hdprev . (_C—lb)HQ o Hd* B dprevHQ
< |l — (—c-1h)|2.
O

This result does not measure, however, the decrease in the absolute error occurred in the
current approximate Newton direction because the gradient at zP™® is not b but rather b +
C (2P — z). Hence, what we would like to have in the right-hand side of the bound (22) of
Theorem 3.1 is

dqrrev — (_Cflvf(xprev)) — gPrev _ (_Cfl(b + C(xprev o 1‘)))

To achieve such a result we need to change (21) to
1
mc}n §||d — (dP"V 4 2P — |2 st (19), (23)
and the next corollary states it rigorously.

Corollary 3.1 Let f be given by (5) with C nonsingular and assume that the system of linear
equations (19) is feasible and underdetermined in d. Let d* be the optimal solution of prob-
lem (23). Then

ld" = (=CT'Vf(@)[P < [ = (=CTIV f (") (24)
Proof. All we need to do is to apply Theorem 3.1 to problem (23) instead, which leads to
[d* = (=CTIB)|I* < (@ + 2P —z) — (=C71)|1%. (25)

Finally, notice that dP™®’ 4+ 2P — gz — (—C~1b) = dP™® — (—=C~1(b + C(zP™ — x))). O

As we did in Corollary 2.1 for the Hessian recovery approach of Section 2, we can also
shed some light on what happens when f is non-quadratic. Consider the quadratic function
in (6) that results from the second-order Taylor expansion of f centered at x. Again, the
values of f and f coincide at z up to second-order derivatives (f(x) = f(x), V.f(z) = Vf(z),
and V2f(z) = V2f(x)), but that is not the case for the function values at y’. However, we
can calculate f(y%) using (6) and the Hessian-vector products (17). The new set of enriched

interpolating conditions is then given by
~ = 1
(ZZ)Td = _f(ye) + f(ﬂj) + i(ye - J")Tzéu = ]-7 Y 2 (26)
and a new recovery problem is formulated as

1
min - Jfld— (@7 + 27 —2)|? st (26). (27)
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Corollary 3.2 Assume that V2 f(x) is non-singular and the system of linear equations (26) is
feasible and underdetermined in d. Let d* be the optimal solution of problem (27). Then

ld* = (=V2f (@) V@) < (a7 = (=2 F @) IV F ). (28)

Proof. The proof is a combination of the proofs of Corollaries 2.1 and 3.1. U

Note that V2 f(zP"?) is equal to V2 f(z), not to V2f(zP"¢?). Note also that V f(xP"¢") is not
the same as V f(2P"V). Having the Hessian and the gradient of f at 2P™" in the right-hand side
of the bound (28) would require the knowledge of the true Hessian or true Newton direction
at xPrev.

3.3 Theoretical motivation (error bound)

The second argument establishes the accuracy of the recovery under the assumption that p > n
(see the end of this subsection for a discussion about this assumption and how to circumvent it
practice). We will establish a bound on the norm of the absolute error of the recovered Newton
direction d"V based on A, = maxj<i<, ||y’ — ||, A, = max;<s<, ||2*||, and the conditioning of

the matrix M7}, whose rows are (1/A) (2T, £=1,...,p, in other words,
ST
e
ML -
A, :
(=")"

Theorem 3.2 Suppose that p > n, the matriz M7 is full column rank, and V2f(x) is invertible.
Then, if dV satisfies (19), in a least squares sense when p > n, one has

3
|-V 1) V(@) - V]| < 2.0 (i) ,

where A is a bound on the norm of the left inverse of M; and the multiplicative constant in O
depends on the Lipschitz constant of V2f.

Proof. Expanding f at y’ around x in (19) yields
(=) Td" = =V @) (4 —2) + O(A))
= ()T (=V2f(2)'Vf(@)+ OAY), t=1,...,p,

where the constant in O (AS) depends on the Lipschitz constant of V2 f. Multiplying both terms
by the left inverse of M7,

AL (V2 f(2) V(@) - dV) = —(Mf)lO(Al).
Hence, the result follows by dividing both terms by A, and then taking norms. O

One can derive an estimate solely dependent on A, and on the conditioning of the matrix
MY formed by the rows (1/A,)(y* —2)", £=1,....,p,
-
) )
Ay

(y' — =z
M] = :
(y? — )"
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In fact, from
AMIV f(z) = MM

one has A
] - 3
|y = S

with
Ry = (V@)Y S(@) V@) (29)

Corollary 3.3 Suppose that p > n, the matriz M7F is full column rank, and V2f(x) is invertible.
Then, if dN satisfies (19), one has

|=V2f @)V f(z) = d™[| < [[Ry[O(AD),
where the multiplicative constant in O depends on the Lipschitz constant of V2f.

Hence by controlling the geometry of the points y¢, £ = 1,...,p, around z one can provide
an accurate bound when the Hessian of f is invertible and p > n. In general, we can attempt to
control the conditioning of M7, replacing some of the points y" if necessary. Such a conditioning
must eventually become adequate if the vectors y* — z are sufficiently linearly independent and
lie in eigenspaces of V2f(x) corresponding to eigenvalues not too close to zero. (See Section 4
for a modified Newton direction recovery approach where the curvature values ()7 (y¢ — z),
¢=1,...,p, are taken into consideration.)

Using p = n Hessian-vector products at each iteration is certainly not a desirable strategy
as that would be equivalent to access the entire Hessian matrix. It is however possible to use
p < n and still obtain an accurate Newton direction model. The possibility we have in mind
is to build upon a previously computed Newton direction model calculated using p = n. Let
Zprev be such an iterate, y;mw e be the corresponding sample points, and zzl) z

n
7yp7’e1_) revy t ) Tprev
be the corresponding Hessian-vector products. Suppose we are now at a new iterate x and

we would like to reuse f(yllmv), e ,f(y;}mv) and z;m) = V2f(3:prev)(y11mv — Tprev), - - - Zprev =
sz(xprey)(y;}rw — Zprev). In such a case what we will have in (19) is

Zzl;rev = v2f(xp7"ev)(y£rev — Tprev) = Vf(yf;rev) —Vf(@prev), €=1,....p,

but what we wish we would have is
l _ 2 ¢ 12 _
z =V f(x)(yprev - $> = vf(yprer) - Vf(.I), = 17 Ry 2
So, one can obtain an approximation to z¢ from
z£T6v+Vf(a:preU) - Vf(x), £=1,...,p. (30)

The error in such an approximation is of the O(maX{Hy;;Tw — Tpren]|?, ||y£rev —x|?}), which would
then has to be divided by A, in the context of Theorem 3.2. Of course, if we then keep applying
this strategy the error will accumulate over the iterations, but there are certainly remedies such
as bringing a few new, fresh z’s at each iteration and applying restarts with p = n whenever the
conditioning of M7 becomes large.
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3.4 Numerical results for the determined case using a correction

To use as few Hessian-vector products as possible, we start by using p = n products at iteration
zero, to then replace only one interpolation point at each iteration. We choose to replace the
point farthest away from the current iterate x. (A perhaps more sound approach would have
been to choose the z¢ that has contributed the most to the conditioning of M 7-) A new point
is then added, generated in the ball B(z;r), where r = min{1072, max{10™%, |z — prev|} }-
Therefore, only one more Hessian-vector product and one more function evaluation is required
at each iteration. We then replace all other zﬁrev’s by (30). We monitor the condition number
of M%, and apply a restart (with p = n as in iteration 0) whenever cond(M3) > 10°.

A Newton direction model @V is then calculated by solving (19) directly. To guarantee that
we have a descent direction d, meaning that —V f(x)"d > 0, we modify the d"V from (19) so
that d = d¥ — BV f(z) where 3 is such that cos(d, —V f(x)) =7, and 1 was set to 0.95.

The modified Newton direction model was then used in a line-search algorithm using the
same cubic line search procedure of Subsection 2.4. The comparison is again against the inexact
Newton method (as described in [37, Section 7.1]). First we tested the very small problems of
Appendix B. Again, we plot performance profiles (see Appendix A) using as performance metric
the numbers of Hessian-vector products and iterations (Figure 5) and the number of function
evaluations and CPU time (Figure 6). The results are quite encouraging. We then selected
a benchmark of 26 unconstrained nonlinear small problems from the CUTEst collection [25],
listed in Appendix D. The experiments are reported in Figures 7 and 8 in the form of the same
performance profiles. The results are similar and again promising.

Number of Hessian-vector products (very small problems)

Number of iterations (very small problems)

Figure 5: Testing the Newton direction recovery within a line-search algorithm. Performance
profiles for the numbers of Hessian-vector products and iterations, for the set of very small
problems of Appendix B.
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Number of function evaluations (very small problems)

CPU time (small problems)

—&—IN
— & NDE)
0.3 . . . . . . . 0.3 . . . . . . .
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Figure 6: Testing the Newton direction recovery within a line-search algorithm. Performance
profiles for the numbers of function evaluations and CPU time, for the set of very small problems
of Appendix B.

Number of iterations (small problems)
T T T T

Figure 7: Testing the Newton direction recovery within a line-search algorithm. Performance
profiles for the numbers of Hessian-vector products and iterations, for the set of small problems
of Appendix D.
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Number of function evaluations (small problems) CPU time (small problems)

i
‘ E — &-- ND(C)
‘

0.4

L L L L L L
2 4 6 8 10 12 14 16

Figure 8: Testing the Newton direction recovery within a line-search algorithm. Performance
profiles for the numbers of function evaluations and CPU time, for the set of small problems of
Appendix D.

4 Final remarks

In this paper we showed how to use interpolation techniques from Derivative-Free Optimization
to model Hessian-vector products. We aimed at presenting new, refreshing ideas, laying down the
theoretical groundwork for future more elaborated algorithmic developments. Two approaches
were presented and analyzed?. In the first one, one aims at recovering a model of the Hessian
matrix, possibly sparse if the true Hessian sparsity pattern is known. A drawback of this
approach is that at most one Hessian-vector product can be used in the recovery. The second
approach aims at directly recovering the Newton direction itself, and it may incorporate several
Hessian-vector products at the same time. However, a dense system of linear equations needs
to be solved.

It is left for future work the development of competitive versions of these two approaches
for medium/large scale problems. In the particular case of the second approach based on the
calculation of a Newton direction model, one can consider solving the linear system (19) using
an iterative solver. In such a case, one can easily envision a parallel procedure for the storage of
the matrix M} (storing row-wise the vectors 2¥’s) and the calculation of the products M 7 times
a vector required when applying an iterative solver.

Another open question is how to incorporate the concept of a modified Newton method in the
approach where the Newton direction is modeled. Recall from Section 3 that we built a Newton
direction model based on f(z), Vf(x), f(y), £ = 1,...,p, and the Hessian-vector products (17),
2t =V2f(x)(y* —x), £=1,...,p. We developed the approach by introducing V2f(x)~! in the
quadratic Taylor expansion (16), resulting in (18). In the spirit of a modified Newton method,
we add to the Hessian of f at  a multiple 7 > 0 of the identity, and consider instead

f($)+((VQf(ﬂﬂ)+TI)_1Vf(fU))T(V2f(fL‘)+TI)(y€—w)+%(y£—fv)Tz£ ~ f(y), £=1....p.

2 A third recovery approach can also be derived, where the Newton direction and the inverse of the Hessian are
recovered at once (possibly never storing the whole inverse, rather forming its product times the gradient). This
approach has performed the worse, and we have decided to leave the details out of this paper.
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Now d ~ —(V2f(z)+7I)~'V f(x) is a vector that models the modified Newton direction. Using
the Hessian-vector products (17), the new set of enriched interpolating conditions is given by

1
(ze + T (ye — x))Td = —f(yg) + f(z) + i(yg — :p)Tze, {=1,...,p.
The matrix of this linear system is now

(' 7yt —2)’

(2 + 7P — )T

How to initialize and update 7 will be certainly crucial for the performance of this modified
approach. Setting 7 to positive values would depend on the sign and magnitude of the curvature
values (2°) T (y’ — x). Notice also that the geometry of the points 3¢, £ = 1,...,p, around z, has
a more direct impact on the conditioning of the linear system of the recovery.
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A Performance profiles

Performance profiles [15] are used to compare the performance of several solvers on a set of
problems. Let S be a set of solvers and P a set of problems. Let ¢, s be the performance metric
of the solver s € § on the problem p € P. Then the performance profile of solver s € § is
defined as the fraction of problems where the performance ratio is at most 7,

t
eP: Lk <7,
{p min {tpﬁs/ 18 e S} - }|

where |P| denotes the cardinality of P. The value of ps(1) expresses the percentage of problems
on which solver s performed the best. The values of ps(7) for large 7 indicate the percentage
of problems successfully solved by solver s. Hence, ps(1) and ps(7) for large 7 are, respectively,
measures of the efficiency and robustness of a given solver s. Solvers with profiles above others
are naturally preferred.

1
ps(T) = W
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B Very small test problems

Table 1: List of 48 very small CUTESst test problems.

Name Dimension Name Dimension Name Dimension
ALLINITU 4 ARGLINA 10 ARWHEAD 10
BEALE 2 BIGGS6 6 BOX3 3
BROWNAL 10 BRYBND 10 CHNROSNB 10
COSINE 10 CUBE 2 DIXMAANA 15
DIXMAANB 15 DIXMAAND 15 DIXMAANE 15
DIXMAANF 15 DIXMAANG 15 DIXMAANH 15
DIXMAANI 15 DIXMAANJ 15 DIXMAANK 15
DIXMAANL 15 DIXON3DQ 10 DQDRTIC 10
EDENSCH 10 ENGVAL2 3 EXPFIT 2
FMINSURF 15 GROWTHLS 3 HAIRY 2
HATFLDD 3 HATFLDE 3 HEARTSLS 8
HELIX 3 HILBERTA 10 HILBERTB 10
HIMMELBG 2 HUMPS 2 KOWOSB 4
MANCINO 30 MSQRTALS 4 MSQRTBLS 9
POWER 10 SINEVAL 2 SNAIL 2
SPARSINE 10 SPMSRTLS 28 TRIDIA 10
C Small sparse test problems
Table 2: List of 12 sparse small CUTESst test problems.

Name Dimension Name Dimension Name Dimension
BDQRTIC 10 BROYDNT7D 50 COSINE 200
DQRTIC 10 EDENSCH 200 ENGVALIL 200
LIARWHD 100 NONSCOMP 50 PENTDI 100

SROSENBR 50 TOINTGSS 50 TRIDIA 200
D Small test problems
Table 3: List of 26 small CUTESst test problems.
Name Dimension Name Dimension Name Dimension
BOX 200 BOXPOWER 200 BRYBND 100
CHNROSNB 50 DIXON3DQ 200 DQDRTIC 100
EDENSCH 200 ENGVALIL 200 EXTROSNB 100
GENHUMPS 100 HILBERTA 200 HILBERTB 200
INTEQNELS 100 LIARWHD 200 MOREBV 200
PENTDI 100 PENALTY1 100 POWELLSG 36
SPARSINE 100 SROSENBR 50 SROSENBR 100
TESTQUAD 100 TOINTGSS 50 TQUARTIC 100
TRIDIA 200 VAREIGVL 100
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E Average CPU times

Table 4: Average CPU times (s).

Approafhré)sblems very small problems small problems sparse problems
MH(D) 1.89 . -
SMH(D) - - 112
ND(C) 0.16 1.79 ~

IN 0.34 7.67 0.10

All methods tested were coded in Matlab R2016b. The experiments were run on a single
processor of a system comprising Intel Core i5 CPU clocked at 1.6GHz, with 8 GiB of RAM,
running the macOS High Sierra operating system.
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