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t. This paper adds to the development of the �eld of augmented Lagrangian multipliersmethods for general nonlinear programming by introdu
ing a new update for multipliers 
orrespond-ing to inequality 
onstraints. The update naturally maintains the nonnegativity of the multiplierswithout the need for a positive-orthant proje
tion, as result of the veri�
ation of the �rst-orderne
essary 
onditions for the minimization of a modi�ed augmented Lagrangian penalty fun
tion.In the new multipliers method the roles of the multipliers are inter
hanged: the multipliers
orresponding to inequality 
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itly whereas the multipliers 
orrespondingto equality 
onstraints are impli
itly approximated. It is shown that the basi
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al
onvergen
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tion. We 
onsider the general nonlinear programming problem, inthe format min f(x) s.t. h(x) = 0; x � 0;(1.1)where x 2 IRn, the fun
tions f and h are 
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 �!IR and h : 
 �! IRm, n and m are positive integers satisfying n > m, and 
 is anopen set of IRn.The multipliers method [1, 2℄ is based on the augmented Lagrangian penaltyfun
tionL(x;�; �) = f(x) + h(x)>�+ 12�h(x)>h(x) = `(x; �) + 12�h(x)>h(x) ;where � > 0 is a penalty parameter and`(x; �) = f(x) + h(x)>�is the Lagrangian of f with respe
t to the equality 
onstraints h(x) = 0, with 
or-responding multipliers � 2 IRm. Note that the Lagrangian term of the augmentedLagrangian penalty fun
tion involves only the equality 
onstraints h(x) = 0. In ea
houter iteration of this method, the primal iterate xk is 
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for some �k and �k > 0. The multipliers method [1℄ updates the multipliers � for thenext iteration by using the formula�k+1 = �k + 1�k h(xk) :Thus, the multipliers � 
orresponding to the equality 
onstraints h(x) = 0 are updatedexpli
itly. The nonnegative multipliers w 2 IRn, 
orresponding to the inequality 
on-straints x � 0 in problem (1.1), 
an be impli
itly approximated from the multipliersasso
iated with x � 0 in problem (1.2), see [2℄.The question addressed in this paper is the inter
hange of the impli
it vs expli
itroles of the multipliers in the multipliers method. It turns out that it is possible toderive a multipliers method where the multipliers w 
orresponding to the inequality
onstraints are updated expli
itly | and kept nonnegative | whereas the multipliers
orresponding to the equality 
onstraints are impli
itly approximated.For this purpose let us 
onsider the duality part of the �rst-order ne
essary opti-mality 
onditions for problem (1.1),rf(x) +rh(x)� � w = 0 ;and the 
orresponding least-squares Lagrange multipliers estimate (when rh(x) hasfull rank), �(x;w) = � (rh(x)>rh(x))�1rh(x)>(rf(x) � w):It is therefore possible to 
onsider an augmented Lagrangian penalty fun
tion in thevariables x, parameterized by the penalty parameter � > 0 and by the multipliersw � 0, P (x;w; �) = f(x) + h(x)>�(x;w) + 12�h(x)>h(x);and to pose the 
orresponding penalized problemmin P (x;w; �) s.t. x � 0:(1.3)Ea
h outer iteration of the new multipliers method involves the 
omputation ofthe primal variables xk by solving the problemmin P (x;wk; �k) s.t. x � 0;(1.4)for some wk � 0 and �k > 0. The outer iteration provides then a formula to updatew for the next iteration: wk+1 = rP (xk ;wk; �k):(1.5)This formula results naturally from the �rst-order ne
essary 
onditions for prob-lem (1.4) and guarantees the nonnegativity of the new multipliers estimate wk+1.In this paper we establish the lo
al 
onvergen
e properties of the new multipliersmethod based on (1.4) and (1.5) for general programming problems of the form (1.1).Although the analysis presented here has a lot in 
ommon with the proof of lo
al
onvergen
e for the original multipliers method [1℄, several diÆ
ulties inherent to thenature of the new update had to be over
ome. In parti
ular, it is shown that the2



neighborhood of lo
al 
onvergen
e is smaller than in the original multipliers method,see (3.4). The new multipliers method was originally developed in [6℄ for nonlinearoptimization problems of the formmin f(y; u) s.t. 
(y; u) = 0; (y; u) � 0;(1.6)where it was assumed that the partial Ja
obian of 
 with respe
t to y is square andinvertible.The paper is stru
tured as follows. In se
tion 2 we des
ribe the new multipliersmethod for (1.1) in more detail. The lo
al 
onvergen
e properties are then presentedin se
tion 3. In se
tion 4 we state some 
on
lusions and 
omments. The proof of themain result of the lo
al 
onvergen
e analysis, stated in theorem 3.2, is given in theappendix of the paper.2. The new multipliers method. A point x satis�es the �rst-order ne
essaryoptimality 
onditions for problem (1.1) if there exist � 2 IRm and w 2 IRn su
h thatrx`(x; �)� w = 0;(2.1a) h(x) = 0; x � 0;(2.1b) x>w = 0; w � 0:(2.1
)Conditions (2.1a)-(2.1
) are know as the �rst-order Karush-Kuhn-Tu
ker 
onditionsand 
an be written in the equivalent formZ(x)>(rf(x) � w) = 0;h(x) = 0; x � 0;x>w = 0; w � 0;where Z(x) is a matrix whose 
olumns form an orthonormal basis for the null spa
eof rh(x)>, i.e., where Z(x) satis�esZ(x)>Z(x) = I and rh(x)>Z(x) = 0:The matrix Z(x) 
an be obtained from the QR fa
torization of rh(x).Note that the matrixZ(x)Z(x)> = I �rh(x) (rh(x)>rh(x))�1rh(x)>is an orthogonal proje
tor onto the null spa
e N (rh(x)>) of the matrix rh(x)>.Similarly, I �Z(x)Z(x)> is an orthogonal proje
tor onto R (rh(x)), the range spa
eof rh(x).First and se
ond order derivatives of the penalty fun
tion P require se
ond andthird order derivatives of f and h, respe
tively. To establish lo
al 
onvergen
e proper-ties we will therefore need the following assumptions that will be assumed throughoutthis paper.A.1 The fun
tions f and h are three times 
ontinuously di�erentiable in 
, where
 is an open set of IRn. The Ja
obian matrix rh(x)> of h(x) has full rankin 
.We point out that an implementation of the multipliers method (with or withouta globalization s
heme) 
ould require only �rst or se
ond order derivatives.3



To derive the �rst-order ne
essary 
onditions for problem (1.3), we need �rst to
al
ulate the gradient of P (x;w; �) with respe
t to x. First, we note thatrx�(x;w) = � �r2xx`(x; �(x;w))rh(x) +R(x;w)>� (rh(x)>rh(x))�1 ;where the i-th row of R(x;w) is given byR(x;w)i = (rx`(x; �(x;w)) � w)>r2hi(x) ; i = 1; :::;m:Thus, the gradient of P (x;w; �) is given byrP (x;w; �) = G1(x;w; �) +G2(x;w; �) +G3(x;w; �);(2.2)whereG1(x;w; �) = Z(x)Z(x)>rf(x) + (I � Z(x)Z(x)>)w;G2(x;w; �) = � �r2xx`(x; �(x;w))rh(x) +R(x;w)>� (rh(x)>rh(x))�1 h(x);G3(x;w; �) = 1�rh(x)h(x):To alleviate the notation, we will omit the arguments x and x� when it is 
learfrom the 
ontext where the fun
tions are evaluated. For instan
e, rh = rh(x) andrf� = rf(x�).A point x satis�es the �rst-order ne
essary 
onditions for problem (1.3) if thereexists �w 2 IRn su
h thatZZ>rf + (I � ZZ>)w � (r2xx`rh+R>) (rh>rh)�1 h+ 1�rh h� �w = 0;(2.3a) x � 0;(2.3b) x> �w = 0; �w � 0:(2.3
)Equation (2.3a) provides an update formula for the multipliers 
orresponding to the
onstraints x � 0, that is the basis of the multipliers method 
onsidered in this paper.The penalty fun
tion P , together with the penalized problem (1.3) and the equa-tion (2.3a), suggest a new multipliers method to solve the nonlinear programmingproblem (1.1), whi
h is presented below without any globalization strategy.Algorithm 2.1.Step 0. Choose initial values: �0 for the penalty parameter and w0 for the approxi-mation of the multipliers.Step 1. For k = 0; 1; 2; ::: do1.1 Solve problem (1.4).1.2 Update the multipliers approximation:wk+1 = ZZ>rf + (I � ZZ>)wk � �r2xx`rh+R>� (rh>rh)�1 h+ 1�krhh;where the fun
tions rf , h, rh, and Z are evaluated at the solution~x(wk; �k) obtained in step 1.1, and the fun
tions r2xx` and R are eval-uated at (~x(wk ; �k); �(~x(wk; �k); wk)).1.3 Update the penalty parameter �k+1.The lo
al 
onvergen
e analysis of the multipliers method, based on algorithm 2.1,is presented in se
tion 3 and 
orresponds to the analysis given in Bertsekas [1℄ for thetraditional augmented Lagrangian multipliers method.4



3. Lo
al 
onvergen
e analysis. The study of the rate of lo
al 
onvergen
eof the multipliers method (as des
ribed in algorithm 2.1) requires se
ond derivativesof the penalty fun
tion P (x;w; �). One 
an easily show that the Hessian matrix ofP (x;w; �) is given byr2P (x;w; �) = H1(x;w; �) +H2(x;w; �) +H3(x;w; �);(3.1)where H1(x;w; �) = r2xx`ZZ> �RT (rh>rh)�1rhT ;H2(x;w; �) = � (I � ZZ>)r2xx`�rh (rh>rh)�1R + mXi=1 hir2xx�i;H3(x;w; �) = 1�rhrh> + 1� mXi=1 hir2hi;
orrespond to the derivatives of G1(x;w; �), G2(x;w; �), and G3(x;w; �) in (2.2),respe
tively.We start by showing that the penalty fun
tion P (x;w; �) exhibits some exa
tnessproperties. The result stated in the next theorem will be helpful later in the analysisof lo
al 
onvergen
e, in parti
ular the fa
t that the Hessian of P (x;w; �) is positivede�nite for � in (0; ��℄, where �� > 0 is spe
i�ed later, provided that x satis�esthe se
ond-order suÆ
ient 
onditions for the original problem (1.1) with multipliers�(x;w) and w.Theorem 3.1. Let assumptions A.1 hold. If (x; �(x;w)) satis�es the se
ond-order ne
essary (resp. suÆ
ient) 
onditions for the original problem (1.1), with mul-tipliers w 
orresponding to x � 0, then there exists �� > 0 su
h that x satis�es these
ond-order ne
essary (resp. suÆ
ient) 
onditions for the penalized problem (1.3),for this w and for any � 2 (0; ��℄.Proof. We start by pointing out that be
ause the matrix� Z(x)>rh(x)> �is nonsingular, the equation (2.3a), when h(x) = 0, is equivalent toZ(x)>(rf(x) � �w) = 0 and rh(x)>(w � �w) = 0:Thus, from the fa
t that x satis�es the �rst-order ne
essary 
onditions for the originalproblem (1.1) with multipliers �(x;w) and w, we 
on
lude that x also satis�es the�rst-order ne
essary 
onditions (2.3) for the penalized problem (1.3) with multipliers�w = w.Now, let us prove the result 
on
erning the se
ond-order suÆ
ient 
onditions. Forthis purpose, let �x satisfy(�x)i = 0 if xi = 0 and �wi > 0;(3.2a) (�x)i � 0 if xi = 0 and �wi = 0:(3.2b)Sin
e h(x) = 0 and R(x;w) = 0, we have�x>r2P (x;w; �)�x =�x>ZZ>r2xx`ZZ>�x��x>(I � ZZ>)r2xx`(I � ZZ>)�x + 1��x>rhrh>�x:5



On the other hand, the se
ond-order suÆ
ient 
onditions for the original prob-lem (1.1) say that r2xx`(x; �(x;w)) has to be positive de�nite for all ve
tors �xsatisfying (3.2) and rh(x)>�x = 0, i.e., �x = ZZ>�x. Thus,�x>ZZ>r2xx`ZZ>�x > 0for all ve
tors �x satisfying (3.2).So, sin
e I � ZZ> = rh(rh>rh)�1rh>,�x>r2P (x;w; �)�x> �x>rh��(rh>rh)�1rh>r2xx`rh(rh>rh)�1 + 1�I�rh>�x;and the proof is 
ompleted by setting:�� = 8><>: any positive real if (rh>rh)�1rh>r2xx`rh(rh>rh)�1is negative semi-de�nite,1�(x;w) otherwise,where �(x;w) is the largest eigenvalue of (rh>rh)�1rh>r2xx`rh(rh>rh)�1.The lo
al 
onvergen
e properties of the multipliers method are established underassumptions A.1 and A.2, where A.2 is given below.A.2 The point x� 2 
 is a nondegenerate point (i.e., the gradients of the fun
tionsde�ning the a
tive 
onstraints are linearly independent) satisfying the se
ond-order suÆ
ient 
onditions for problem (1.1) with 
orresponding multipliers�(x�; �w�) and �w�. The pair (x�; �w�) satis�es stri
t 
omplementarity.The main result is presented in theorem 3.2 and bounds the distan
e between alo
al minimizer of (1.3) and (x�; �w�) by the penalty parameter � times the distan
ebetween the approximation w and the 
orresponding multipliers �w�. The proof of thistheorem is quite long and te
hni
al and is postponed to the appendix of this paper.Theorem 3.2. Let x�, with 
orresponding multipliers �w�, satisfy assumptionsA.1-A.2. There exist positive s
alars ��, Æ, �, �1, and �2 su
h thatZ�Z�>r2xx`�Z�Z�> � (I � Z�Z�>)r2xx`�(I � Z�Z�>) + 1��rh�rh�>is positive de�nite, the problemmin P (x;w; �) s.t. x � 0; x 2 B(x�; �);(3.3)has an unique solution ~x(w; �) for all (w; �) inD� = �(w; �) : kw � �w�k < min�Æ; Æ�� ; 0 < � � ��� ;(3.4)the fun
tion ~x(w; �) is 
ontinuously di�erentiable in D�, and for all (w; �) 2 D�, wehave k~x(w; �)� x�k � �1�kw � �w�k;(3.5a) k ~w(w; �) � �w�k � �2�kw � �w�k;(3.5b) 6



where ~w = ~w(w; �) are the multipliers 
orresponding to ~x = ~x(w; �), and~w = Z(~x)Z(~x)>rf(~x) + (I � Z(~x)Z(~x)>)w� �r2xx`(~x;w)rh(~x) +R(~x;w)>� (rh(~x)>rh(~x))�1 h(~x) + 1�rh(~x)h(~x):(3.6)Theorem 3.2 
an be used to state the basi
 lo
al 
onvergen
e properties of themultipliers method given in algorithm 2.1, whi
h we summarize in the next 
orollary.Corollary 3.3. Let x�, with 
orresponding multipliers �w�, satisfy assumptionsA.1-A.2. There exist s
alars Æ0 2 (0; Æ℄, � 2 (0; 1), and �0 2 (0; ��℄ su
h that ifthe sequen
e f�kg is monotone de
reasing and jjw0 � �w�jj < minnÆ0; Æ0�0o, then thesequen
e fwkg, generated by wk+1 = rP (~x(wk ; �k);wk; �k), is well de�ned (in thesense that (wk ; �k) 2 D� for all k) and satis�eslim supk!+1 kwk+1 � �w�kkwk � �w�k � �;(3.7)when limk!+1 �k > 0, and limk!+1 kwk+1 � �w�kkwk � �w�k = 0;(3.8)when limk!+1 �k = 0. In both 
ases, we havelimk!+1 ~x(wk ; �k) = x�;(3.9) limk!+1wk = �w�:(3.10)Proof. The limits (3.7), (3.8) and (3.10) follow from inequality (3.5b). The limit(3.9) is a 
onsequen
e of (3.5a).It is also worthwhile to note that the multipliers update (3.6) 
an be seen as anapproximation to the steepest as
ent iteration applied to the dual fun
tion asso
iatedwith problem (3.3); see [6℄ for details on how this was 
arried out in the 
ontext ofproblem (1.6).4. Con
lusions and future resear
h. The augmented Lagrangian multipliersmethod proposed in this paper is based on the solution of a sequen
e of bound-
onstrained minimization problems. Ea
h outer iteration of the method involvesthe minimization, within the bounds, of the augmented Lagrangian penalty fun
-tion P (x;w; �) for spe
i�
 values of the penalty parameter � and of the multipliers w.The evaluation of P (x;w; �) and of its gradient requires the solution of systems oflinear equations with rh(x)>rh(x). The gradient of P (x;w; �) involves a 
ross termwhere se
ond-order derivatives of the problem fun
tions f and h appear. Thus, ea
hinner or minor iteration, i.e., ea
h iteration of the iterative pro
ess applied to minimizeP (x;w; �) within the bounds, is relatively 
ostly.This augmented Lagrangian multipliers method was proposed originally in [6℄for a 
lass of nonlinear programming problems with a stru
ture arising from optimal
ontrol or design, see (1.6). There, the role of the matrix rh(x)>rh(x) is played by7



the matrix 
y(y; u), the partial Ja
obian of 
(y; u) with respe
t to the state variables y.The 
omputation of the gradient of the penalty fun
tion involves there the solutionof linear systems with 
y(y; u) (linearized state equations) and with 
y(y; u)> (adjointequations), for whi
h solvers are available in many appli
ations, see [4℄.One major open question is weather a globalization s
heme, similar to what wasdeveloped in [2℄ for the original multipliers method, would be appli
able to the newmultipliers method of this paper, yielding the same type of global 
onvergen
e. In
ontrast to what happens in [2℄, we do not have here the equality rP (x;w; �) =rx`(x; �(x; �w)) that seems to us to be 
ru
ial to the derivation of global 
onvergen
e.What we get instead is the following:rP (x;w; �) �rx`(x; �(x; �w)) =�Z(x)Z(x)>(r2xx`(x; �(x;w))rh(x) +R(x;w)>) (rh(x)>rh(x))�1 h(x):(4.1)When h(x) = 0 we do have, of 
ourse, rP (x;w; �) = rx`(x; �(x; �w)). The fa
t thatthere is a term depending on the size of the feasibility fun
tion h(x) in (4.1) makesthe global analysis 
onsiderably more diÆ
ult.Numeri
al results obtained for small-s
ale dimension problems have shown thatthe method is 
ompetitive with Lan
elot [3℄, sharing some of the advantages anddisadvantages of the 
lass of augmented Lagrangian multipliers methods.Appendix. We prove here the main result of lo
al 
onvergen
e established intheorem 3.2. We will use the following notation. The symbol e represents a ve
torof ones with appropriate size and ei denotes a ve
tor whose i-th 
omponent is unityand the others zero. Also, for any ve
tor v, V is the diagonal matrix for whi
h thediagonal elements are the elements of v.Although the stru
ture of the proof follows the one in [1, proposition 2.4℄, wehave additional diÆ
ulties here due to the presen
e of the bound 
onstraints on thevariables. Another diÆ
ulty arises when dealing with the 
ross term in the multipliersupdate. This term is not multiplied by 1�k but involves wk . A 
onsequen
e of havingto handle this extra term is that the region D� in (3.4) be
omes smaller than the onein [1, proposition 2.4℄, where instead of minfÆ; Æ=�g we only have Æ=�.We need �rst to organize some of the 
al
ulations that will appear later. Thederivative of s(x) = (rh(x)>rh(x))�1h(x) is given byrs(x)> = (rh>rh)�1rh> � (rh>rh)�1 mXi=1 r(rh>rh)i �(rh>rh)�1h�idef=(rh>rh)�1rh> � F (h);where we have omitted the argument x in the right hand side. The size of F (h(x))varies 
ontinuously with h(x).Further, we note that from rh(x)>Z(x) = 0 one obtainsrh(x)>rZ(x)>j = �0BB� Z(x)>j r2h(x)1...Z(x)>j r2h(x)m 1CCA ;(4.2)for j = 1; :::; n�m, where Z(x)j denotes the j-th 
olumn of Z(x). By using (4.2), we8




an write0BB� (rf � w)>(I � ZZ>)rZ>1...(rf � w)>(I � ZZ>)rZ>n�m 1CCA = �Z> mXi=1 �(rh>rh)�1rh>(rf � w)�ir2hi:We have assumed that Z(x) is di�erentiable. Goodman [5℄ has shown how to extendlo
ally an orthonormal basis Z(x) given by the QR fa
torization of rh(x) so thatZ(x) exhibits the same smoothness of h(x).We �nally get an expression that will be used later on:0BB� (rf � w)>rZ>1...(rf � w)>rZ>n�m 1CCA = 0BB� (rf � w)>ZZ>rZ>1...(rf � w)>ZZ>rZ>n�m 1CCA� Z>r2f + Z>r2xx`:(4.3)We are ready now to prove theorem 3.2. The proof is divided in six major steps.Proof. A. Preparing the system of nonlinear equations. Consider, for� > 0, the system of nonlinear equations that results from the �rst-order ne
essary
onditions (2.3a)-(2.3
) for problem (1.3). If we multiply equation (2.3a) by rh> andZ>, we obtain the equivalent systemrh>w �rh>(r2xx`(x;w)rh+R(x;w)>) (rh>rh)�1 h+ 1�rh>rh h�rh> �w = 0;(4.4a) Z>rf � Z>(r2xx`(x;w)rh +R(x;w)>) (rh>rh)�1 h� Z> �w = 0;(4.4b) X �We = 0:(4.4
)Now we multiply equation (4.4a) by � and perform the 
hanges of variablesr = �(w � �w�);(4.5a) s = w � �w�;(4.5b)to obtain the system of nonlinear equationsrh>r � �rh>(r2xx`(x; �w� + s)rh+R(x; �w� + s)>) (rh>rh)�1 h+rh>rhh+ �rh> �w� � �rh> �w = 0;(4.6a) Z>rf � Z>(r2xx`(x; �w� + s)rh+R(x; �w� + s)>) (rh>rh)�1 h�Z> �w = 0;(4.6b) X �We = 0;(4.6
)that we write as J(x;w; �) = 0:We analyze this system for � 2 [0; ��℄, where �� is su
h that�Z�Z�>r2xx`�Z�Z�> � �(I � Z�Z�>)r2xx`�(I � Z�Z�>) +rh�rh�>(4.7) 9



is positive de�nite for all � 2 (0; ��℄. The existen
e of su
h �� > 0 is guaranteed bytheorem 3.1.B. Nonsingularity at the solution when the penalty parameter is zero.When r = s = 0 and � 2 [0; ��℄, it is easy to 
he
k that the system (4.6a)-(4.6
) hasthe solution (x�; �w�). For r = s = 0, the Ja
obian of (4.6a)-(4.6
) with respe
t to(x; �w), at the point (x�; �w�), is given byJ�(0; 0; �) = 0BB� ��rh�>r2xx`� (I � Z�Z�>) +rh�>rh�rh�> ��rh�>Z�>r2xx`�Z�Z�> �Z�>�W � X� 1CCA :When � = 0, J�(0; 0; �) redu
es toJ�(0; 0; 0) = 0BB� rh�>rh�rh�> 0Z�>r2xx`�Z�Z�> �Z�>�W � X� 1CCA :(4.8)One 
an see that J�(0; 0; 0) is nonsingular. In fa
t, the assumptions on (x�; �w�) implythat the following matrix is nonsingular:0BB� rh�> 0 0Z�Z�>r2xx`�Z�Z�> rh� �I�W � 0 X� 1CCA :(4.9)The nonsingularity of (4.9) implies the nonsingularity of (4.8).C. Nonsingularity at the solution for positive values of the penaltyparameter. Let (�x;�w) be a solution of the homogeneous linear system with thematrix J�(0; 0; �):���rh�>r2xx`� (I � Z�Z�>) +rh�>rh�rh�>��x� �rh�>�w = 0;(4.10a) Z�>r2xx`�Z�Z�>�x� Z�>�w = 0;(4.10b) �W ��x+X��w = 0:(4.10
)The equation (4.10
) and stri
t 
omplementarity between x� and �w� imply�x>�w = 0. By multiplying (4.10a) and (4.10b) on the left by rh� (rh�>rh�)�1and �Z�, respe
tively, we obtain��� (I � Z�Z�>)r2xx`� (I � Z�Z�>) +rh�rh�>��x� � (I � Z�Z�>)�w = 0;�Z�Z�>r2xx`�Z�Z�>�x� �Z�Z�>�w = 0:Thus,�Z�Z�>r2xx`�Z�Z�>�x� � (I � Z�Z�>)r2xx`� (I � Z�Z�>)�x +rh�rh�>�x���w = 0:10



By multiplying this equation on the left by �x>, we derive�x> ��Z�Z�>r2xx`�Z�Z�> � � (I � Z�Z�>)r2xx`� (I � Z�Z�>) +rh�rh�>��x = 0:Sin
e (4.7) is positive de�nite for � 2 (0; ��℄, we 
on
lude that �x = 0. Now, using�x = 0, we get rh�>�w = 0 and Z�>�w = 0, implying that �w = 0. We havetherefore proved that J�(0; 0; �) is nonsingular for � 2 (0; ��℄.D. The use of the impli
it fun
tion theorem. We now apply the impli
itfun
tion theorem [1, page 12℄ to the system (4.6a)-(4.6
). By identifying the setK = f0g � f0g � [0; ��℄ as the 
ompa
t set �X of that theorem, we guarantee theexisting of positive s
alars � and Æ and unique 
ontinuously di�erentiable fun
tionsx̂ = x̂(r; s; �) and ŵ = ŵ(r; s; �), de�ned on a neighborhood of K,B (K; Æ) = f(r; s; �) : k(r; s; �)� (0; 0; �0)k < Æ for some (0; 0; �0) 2 Kg ;satisfying (4.6a)-(4.6
) with x = x̂ = x̂(r; s; �) and �w = ŵ = ŵ(r; s; �), and su
h that���������� x̂(r; s; �)� x�ŵ(r; s; �)� �w� !���������� � �for all (r; s; �) 2 B (K; Æ). Using (4.6
) and stri
t 
omplementarity of the pair (x�; �w�),and redu
ing � and Æ if ne
essary, one 
an easily show for all (r; s; �) 2 B (K; Æ)that: x̂(r; s; �) � 0; ŵ(r; s; �) � 0; the pair (x̂(r; s; �); ŵ(r; s; �)) also veri�es stri
t
omplementarity; the gradients of the a
tive 
onstraints are linearly independent atx̂(r; s; �).E. The bounds (3.5a)-(3.5b). We di�erentiate (4.6a)-(4.6
) with respe
t to(r; s; �), and writeJ(r; s; �) rrx̂(r; s; �)> rsx̂(r; s; �)> r�x̂(r; s; �)>rrŵ(r; s; �)> rsŵ(r; s; �)> r�ŵ(r; s; �)> ! = �B(r; s; �):(4.11)Here J(r; s; �) is the Ja
obian of the ve
tor fun
tion of the left-hand side of (4.6) withrespe
t to x and �w, given by0BB� ��rh>r2xx` (I � ZZ>) +rh>rhrh> ��rh>Z>r2xx`ZZ> �Z>Ŵ X̂ 1CCA+0BBBBBBBBBBBBBB�
A11 � �rh>R> (rh>rh)�1rh> + �rh> �r2xx`rh+R>�F (h)�� mXi=1 rx(rh>(r2xx`rh+R>))i[(rh>rh)�1 h℄i + mXi=1 hir(rh>rh)i 0A21 � mXi=1 �(rh>rh)�1h�irx(Z> �r2xx`rh+R>�)i+Z> �r2xx`rh+R>�F (h)� Z>R> (rh>rh)�1rh> 00 0

1CCCCCCCCCCCCCCA ;
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where the fun
tions h, Z, rh, r2hi, i = 1; :::;m, are evaluated at x̂(r; s; �) and thefun
tions r2xx` and R are evaluated at (x̂(r; s; �); ŵ(r; s; �)), and where the rows ofA11 are given by (A11)i = (r + �( �w� � �w))>r2hi, i = 1; :::;m. The term A21 is givenby A21 = 0BB� (rf � �w)>rZ>1...(rf � �w)>rZ>n�m 1CCA+ Z>r2f � Z>r2xx`= 0BB� (rf � �w)>ZZ>rZ>1...(rf � �w)>ZZ>rZ>n�m 1CCA ;where the last equality is justi�ed by the derivation (4.3).In (4.11), B is the Ja
obian of the ve
tor fun
tion of the left-hand side of (4.6)with respe
t to r, s and �, de�ned byB(r; s; �) = 0BB� B11(r; s; �) B12(r; s; �) B13(r; s; �)0 B22(r; s; �) 00 0 0 1CCA ;with B11(r; s; �) = rh>;B12(r; s; �) ej = ��rh> mXi=1 �(rh>rh)�1rh>ej�ir2hi rh(rh>rh)�1h+�rh>0BB� (ZZ>ej)>r2h1...(ZZ>ej)>r2hm 1CCA (rh>rh)�1h;B13(r; s; �) = �rh> ��r2xx` rh+R>� (rh>rh)�1 h+ �w� � ŵ(r; s; �)� ;B22(r; s; �) ej = �Z> mXi=1 �(rh>rh)�1rh>ej�ir2hi rh(rh>rh)�1h+Z>0BB� (ZZ>ej)>r2h1...(ZZ>ej)>r2hm 1CCA (rh>rh)�1h;where j = 1; :::; n.Hen
e, for all (r; s; �) 2 B (K; Æ), we have x̂(r; s; �)� x�ŵ(r; s; �)� �w� ! =  x̂(r; s; �)� x̂(0; 0; 0)ŵ(r; s; �)� ŵ(0; 0; 0) != � Z 10 J(�r; �s; ��)�1B(�r; �s; ��)0� rs� 1A d�:12



Sin
e J�(0; 0; �) is nonsingular for all � 2 [0; ��℄, we 
an show that for � and ÆsuÆ
iently small, J(r; s; �)�1 is bounded onf(r; s; �) : k(r; s)k < Æ; � 2 [0; ��℄g � B(K; Æ):In fa
t, it is quite 
lear from the 
ontinuity assumptions, that the �rst matrix termof J(r; s; �) is a perturbation of size Æ and � of J�(0; 0; 0). If we look 
arefully at these
ond term of J(r; s; �), we 
ome to the 
on
lusion that all the expressions involveddepend 
ontinuously on either r, �, h, R or Z>(rf � �w), quantities that are of sizeÆ and �.Now we 
an �nally show (3.5a)-(3.5b). By appealing to���������� x̂(r; s; �)� x�ŵ(r; s; �)� �w� !���������� � max�2[0;1℄ kJ(�r; �s; ��)�1k Z 10 ������������B(�r; �s; ��)0� rs� 1A������������ d�;and by applying the 
ontinuity assumptions to the terms that appear in B11(r; s; �),B12(r; s; �), B13(r; s; �), B22(r; s; �), we 
an assume the existen
e of positive 
onstants�3-�7 su
h thatkx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � �3krk+ �4�kskd(r; s; �) + �5�d(r; s; �) +�6� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k+�7kskd(r; s; �);whered(r; s; �) = max�2[0;1℄ kfrh (x̂(�r; �s; ��))>rh (x̂(�r; �s; ��))g�1h (x̂(�r; �s; ��)) k:Furthermore, from (4.6a) we write, with x̂ = x̂(r; s; �) and ŵ = ŵ(r; s; �),h (x̂) = rh (x̂)>rh (x̂)���rh (x̂)> �r2xx` (x̂; ŵ)rh (x̂) +R (x̂; ŵ)>�+rh (x̂)>rh (x̂)rh (x̂)>rh (x̂)	�1rh (x̂)> (�r + �ŵ � � �w�) :(4.12)Thus, the 
hoi
e of �� and the 
ontinuity assumptions, together with the expres-sion (4.12) for h (x̂), imply thatd(r; s; �) � �8krk+ �9� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k;for some positive 
onstants �8 and �9. Sin
e � � �� and ksk < Æ, there exist positive
onstants �10 and �11 su
h thatkx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � �10krk+ �11� max�2[0;1℄ kŵ(�r; �s; ��) � �w�k;from whi
h we get for (r; s; �) repla
ed by (�r; �s; ��),max�2[0;1℄ kŵ(�r; �s; ��) � �w�k � �101� �11�krk;for � 2 [0; ��℄, with �� < minn��; 1�11o. Therefore,kx̂(r; s; �)� x�k+ kŵ(r; s; �)� �w�k � ��10 + �10�11�1��11� � krk� �101��11 ���kw � �w�k:(4.13) 13



For � 2 (0; ��℄ and kw � �w�k < minnÆ; Æ�o, let us de�ne~x(w; �) = x̂(r; s; �) = x̂ (� (w � �w�) ; w � �w�; �) ;~w(w; �) = ŵ(r; s; �) = ŵ (� (w � �w�) ; w � �w�; �) :(4.14)Hen
e, the bounds (3.5a)-(3.5b) follow immediately from (4.13).F. Optimality of ~x(w;�). We �nish the proof by showing that ~x(w; �) is thesolution of problem (3.3). First we point out that (~x(w; �); ~w(w; �)) satis�es the �rst-order ne
essary 
onditions for (3.3) as it 
an be seen by rewriting system (4.6a)-(4.6
)using the 
hanges of variables (4.5a)-(4.5b) and (4.14). The �rst equation of the�rst-order ne
essary 
onditions is, with ~x = ~x(w; �) and ~w = ~w(w; �),Z(~x)Z(~x)>rf(~x) + (I � Z(~x)Z(~x)>)w � �r2xx`(~x;w)rh(~x) +R(~x;w)>�(rh(~x)>rh(~x))�1 h(~x) + 1�rh(~x)h(~x)� ~w = 0;(4.15)and (3.6) is 
learly true. We show now that the Hessian of P (x;w; �) is positivede�nite at ~x(w; �) for all ve
tors(�x)i = 0 if (~x(w; �))i = 0 and ( ~w(w; �))i > 0:(4.16)The 
ase (�x)i � 0 is eliminated, be
ause the pair (~x(w; �); ~w(w; �)) is stri
tly 
om-plementary. The s
alar � 
an be 
hosen suÆ
iently small so that we 
an 
onsider(�x)i = 0 if x�i = 0 and ( �w�)i > 0:This means that we 
an 
he
k the positive de�niteness of the Hessian of P (x;w; �)in the same subspa
e that we 
onsider for P (x�; �w�; �). Moreover, we proved intheorem 3.1 that the Hessian of P (x�; �w�; �) is positive de�nite for � 2 (0; ��℄ inthe above mentioned subspa
e. To a
hieve our goal, we show that the Hessian ofP (~x(w; �);w; �) is a perturbation of size � and Æ of the Hessian of P (x�; �w�; �). Infa
t, the Hessian of P (~x(w; �);w; �) is given byr2xx`ZZ> �RT (rh>rh)�1rhT � (I � ZZ>)r2xx`�rh (rh>rh)�1R;+ mXi=1 hir2xx�i + 1�rhrh> + 1� mXi=1 hir2hi;see (3.1), with the Lagrangian and the residual R evaluated at (~x(w; �); w) and theremaining fun
tions at ~x(w; �). The termr2xx`ZZ> �RT (rh>rh)�1rhT � (I � ZZ>)r2xx`�rh (rh>rh)�1R+ 1�rhrh>is a perturbation of size � and Æ of the Hessian of P (x�; �w�; �). To bound the remainingterms, we 
an rewrite (4.15), using ~x = ~x(w; �) and ~w = ~w(w; �), as1�h(~x) = rh(~x)>rh(~x)f��rh(~x)> �r2xx`(~x;w)rh(~x) +R(~x;w)>�+(I � Z(~x)Z(~x)>)g�1rh(~x)> ( ~w � w) :14



Thus, using the 
ontinuity assumptions and adding and subtra
ting �w�, we obtain,for some positive 
onstant �12,�������� 1�h(~x(w; �))�������� � �12 (jj ~w(w; �)� �w�jj+ jjw � �w�jj)� �12(�+ Æ)and jjh(~x(w; �))jj � ���12(�+ Æ):The 
on
lusion is that mXi=1 hir2xx�i + 1� mXi=1 hir2hi is also of size Æ and �, and theproof that the Hessian of P (x;w; �) is positive de�nite for all ve
tors �x satisfying(4.16) is terminated.The proof also shows that �1 and �2 in the bounds (3.5) grow with the 
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