
An Interface Between Optimization and Applicationfor the Numerical Solution of Optimal ControlProblemsMatthias HeinkenschlossRice UniversityandLu��s N. VicenteUniversidade de CoimbraAn interface between the application problem and the nonlinear optimization algorithm is pro-posed for the numerical solution of distributed optimal control problems. By using this interface,numerical optimization algorithms can be designed to take advantage of inherent problem featureslike the splitting of the variables into states and controls and the scaling inherited from the func-tional scalar products. Further, the interface allows the optimization algorithm to make e�cientuse of user provided function evaluations and derivative calculations.Categories and Subject Descriptors: G.4. [Mathematical Software]: User InterfacesGeneral Terms: Algorithms, DesignAdditional Key Words and Phrases: Optimization, simulation, optimal control1. INTRODUCTIONThis paper is concerned with the implementation of optimization algorithms forthe solution of smooth discretized optimal control problems. The problems underconsideration can be written as min f(y; u)s.t. c(y; u) = 0;y � y � y;u � u � u (1)This work was supported in part by the DoE under Grant DE-FG03-95ER25257, by the AFOSRunder Grant F49620{93{1{0280, by Centro de Matem�atica da Universidade de Coimbra, FCT,and Praxis XXI 2/2.1/MAT/346/94.Name: Matthias HeinkenschlossAddress: Department of Computational and Applied Mathematics, Rice University, Houston, TX77005{1892, USA, E-Mail: heinken@caam.rice.eduName: Lu��s N. VicenteAddress: Departamento de Matem�atica, Universidade de Coimbra, 3000 Coimbra, Portugal, E-Mail: lvicente@mat.uc.pt

2 � M. Heinkenschloss and L. N. Vicenteor min bf(u) = f(y(u); u)s.t. y � y(u) � y;u � u � u: (2)Here u represents the control, y and y(u) represent the state, and c(y; u) = 0represents the state equation. If the implicit function theorem is applicable, thestate equation c(y; u) = 0 de�nes a function y(�) of u and in this case the problem(1) can be reduced to (2). We note that (1) and (2) are related, but they arenot necessarily equivalent. If for given u the equation c(y; u) = 0 has more thanone solution, the implicit function theorem will select one solution branch y(u),provided the assumptions of the implicit function theorem are satis�ed. Hence, thefeasible set of (2) is contained in (1) but the feasible sets are not necessarily equal.Examples of optimal control problems of the form (1) or (2) are given, e.g., inBorggaard and Burns [1997], Chen and Ho�mann [1991], Cli�, Heinkenschloss, andShenoy [1997], Friedman and Hu [1998], Gunzburger, Hou, and Svobotny [1993],Handagama and Lenhart [1998], Ito and Kunisch [1996], Kupfer and Sachs [1992],Lions [1971], Neittaanm�aki and Tiba [1994].Discretized optimal control problems are large scale nonlinear programming prob-lems with a particular structure. Structure arises from the partitioning of the vari-ables in controls u and states y, from the underlying in�nite dimensional problem,and from the discretization. Since these problems are nonlinear programming prob-lems, they can in principle be solved using existing nonlinear programming solverssuch as LANCELOT [Conn et al. 1992], LOQO [Shanno and Vanderbei 1997; Van-derbei 1998], or SNOPT [Gill et al. 1997]. These solvers, as well as other generalnonlinear programming solvers, require user provided subroutines that evaluatethe objective function and its gradient and the constraint function and its Jaco-bian matrix. Thus, they require the evaluation of f(x), rf(x), c(x), c0(x) givenx = (y; u) for problem (1) and the evaluation of bf(u), r bf(u), y(u), y0(u) givenu for problem (2). If derivative information is not available, then general nonlin-ear programming solvers typically have an option that allows the approximation of�rst-order derivatives by �nite di�erences. For several discretized optimal controlproblems the application of general nonlinear programming solvers has been done.This approach, however, has severe limitations.Reasons that limit the applicability of codes for general nonlinear programmingproblems to discretized optimal control problems are the following:i) If discretizations are re�ned, the problems (1) and (2) tend to exhaust avail-able memory if Jacobians are stored (see, e.g., the numerical tests performed byMittelmann and Maurer [1998]).ii) The description of the optimal control problems in the sparse formats requiredby some general nonlinear programming solvers can be very di�cult. This is, e.g.,the case for optimal control problems governed by partial di�erential equationswhich are discretized using existing �nite element packages. The incorporation ofapplication dependent linear solvers such as multigrid methods for the solutionof linearized PDE state equations is very di�cult or even impossible.iii) The view of the discretized optimal control problem as a �nite dimensional

An Interface Between Optimization and Application � 3nonlinear programming problem ignores the underlying in�nite dimensional prob-lem structure. Instead of a mesh-independent convergence behavior one can oftenobserve a deterioration of the convergence as the discretization is re�ned due toimproper scaling and arti�cial ill-conditioning.In practice, optimization methods that have been proven successful for generalnonlinear programming problems are tailored to a speci�c class of discretized opti-mal control problems, often optimal control problems governed by ODEs and DAEs(see, e.g., Betts [1997], Petzold, Rosen, Gill, Jay, and Park [1997], Schulz [1997], andVarvarezos, Biegler, and Grossmann [1994]). More often, many new developmentsin optimization methods are incorporated late or not at all into solution approachesfor optimal control problems. In fact, the gradient method is still frequently usedfor the solution of unconstrained optimal control problems min bf(u).We believe that the gap between optimization methods and their application tooptimal control problems can be narrowed and in many cases even be closed bythe provision of an interface between optimization algorithms and optimal controlapplications. The purpose of this paper is to develop a framework for such aninterface. We assume that Y , U , and � are �nite dimensional Hilbert spaces ofdimension ny, nu, and ny, respectively. These Hilbert spaces can be identi�ed withIRny ; IRnu , and IRny , respectively, but are equipped with scalar products h�; �iY ,h�; �iU , and h�; �i�. The functions f : Y � U ! IR;c : Y � U ! �;are assumed to be at least once di�erentiable. In some of our discussions we willalso use second derivatives of f and c. This Hilbert space structure allows us to in-corporate scaling information into the problem description which is important for amesh-independent convergence behavior of the optimization algorithms. The inter-face explores the structure of the problem arising from the partitioning of variablesinto states and controls. In particular, this will be important for the descriptionof derivative information. Solution of systems involving partial Jacobians of c(y; u)are left to the application. This ensures that application dependent linearized stateequation solvers such as multigrid methods can be used. The interface takes intoaccount that linear system solves and function and derivative evaluations providedby the application are done inexactly. For example, this allows iterative linear sys-tem solvers on the application side and sensitivity and adjoint computations basedon the in�nite dimensional problem, not on the discretized problem which mightrequire expensive mesh sensitivities [Borggaard and Burns 1997].The interface can be used to implement a variety of optimization algorithmsfor (1) and (2), including conjugate gradient methods, Newton and quasi{Newtonmethods, augmented Lagrangianmethods, sequential quadratic programmingmeth-ods, and interior{point methods. To deal with storage limitations, matrix-free rep-resentations of linear operators in Hilbert spaces and problem scaling, Jacobiansand Hessians are not passed to the optimizer as matrices, but only their applica-tion to a given vector is available through our interface. Thus, typically the aboveoptimization algorithms have to be implemented in a matrix{free fashion using it-erative methods such as the conjugate{gradient method or GMRES for the solution

4 � M. Heinkenschloss and L. N. Vicenteof linear systems within the optimization. We believe this interface is particularlyuseful for, but not restricted to problems governed by partial di�erential equations.The description of our interface is conceptual and not tied to a speci�c pro-gramming language. We have used implementations of this interface in Fortran 77and Matlab1 to solve a variety of optimal control problems, most of which aregoverned by partial di�erential equations. Other implementations of this interfaceare possible. For example, in C++ our interface could be implemented elegantlyusing the Hilbert Class Library (HCL) of Gockenbach and Symes [1997] (see also[Gockenbach et al. 1997]). HCL is a collection of C++ classes that implementmathematical objects such as vectors, linear and nonlinear operators and somealgorithms for solving linear operator equations and unconstrained minimizationproblems. HCL is broader in scope than the interface proposed here and providesall the ingredients for a concrete implementation of our interface in C++. Our goalis to describe the information that needs to be exchanged between the applicationand derivative based optimization algorithms for the speci�c problem class (1) and(2). The description of our interface is based on the mathematical language usedfor optimal control problems and the notation used in (1) and (2). Our interface isnot tied to a speci�c programming language.This paper is structured as follows. In Section 2 we approach the scaling of theproblem and illustrate its use in a few particular instances. Section 3 addressesthe calculation of derivatives using sensitivity and adjoint equation methods. Theoptimization-application interface that we propose for the numerical solution ofdistributed optimal control problems is described in detail in Section 4. A fewcode fragments corresponding to parts of known optimization algorithms are givenin Section 5.1 to illustrate the use of this interface and Section 5.2 illustrates theinterface from an optimal control point of view. Section 6 discusses limitations andextensions of our framework.2. SCALING OF THE PROBLEMThe scalar products h�; �iY , h�; �iU , and h�; �i� induce a scaling into the problem that isimportant for the performance of the optimization algorithms. The scalar productsinuence the computation of the gradients and other derivatives, they inuencethe de�nition of adjoints, and they are present in all subtasks that require scalarproducts, such as quasi-Newton updates and Krylov subspace methods. We willdescribe their inuence on the gradient computation here and defer the discussionof their e�ect on Hessians, adjoints, and quasi-Newton updates to Appendix A.The partial gradients of f are de�ned by the relationslimhy!0 jf(y + hy; u)� f(y; u)� hryf(y; u); hyiY j=khykY = 0;limhu!0 jf(y; u+ hu)� f(y; u)� hruf(y; u); huiU j=khukU = 0: (3)In �nite dimensions all norms are equivalent and, thus, the choice of norms in thedenominators in (3) do not inuence the de�nition of the gradient. The choice ofthe scalar product in the numerator, however, does.1Matlab is a registered trademark of The MathWorks, Inc., info@mathworks.com,http://www.mathworks.com.

An Interface Between Optimization and Application � 5It will be illustrative to study the e�ect of the scalar products on the gradientcomputation in more detail. Each scalar product on IRk can be identi�ed with asymmetric positive de�nite matrix and we therefore writehy; viY = y>Tyv; (4)hu;wiU = u>Tuw; (5)h�; ci� = �>T�c; (6)where Ty; T� 2 IRny�ny and Tu 2 IRnu�nu are symmetric positive de�nite matrices.We emphasize that this is done for illustration only. The weighting matrices arenever directly accessed, but only the value of a scalar product for two given vectorsis needed.If hy; viY = y>v, hu;wiU = u>w, then (3) yieldsryf(y; u) = eryf(y; u); ruf(y; u) = eruf(y; u);where eryf(y; u) = � @@y1 f(y; u); : : : ; @@yny f(y; u)�> ;eruf(y; u) = � @@u1 f(y; u); : : : ; @@unu f(y; u)�>denote the gradient with respect to the Euclidean scalar products, i.e., the vectorsof �rst-order partial derivatives.Now we consider the two scalar products (4) and (5). Fromeryf(y; u)>v = �T�1y eryf(y; u)�> Tyv = hT�1y eryf(y; u); viY 8v ;and (3) we can see that ryf(y; u) = T�1y eryf(y; u): (7)Similarly, ruf(y; u) = T�1u eruf(y; u): (8)The representations (7) and (8) of the gradients can also be interpreted di�erently.Since Ty and Tu are symmetric positive de�nite, we can write them as the productof two symmetric positive de�nite matrices, Ty = �T 1=2y �2 and Tu = �T 1=2u �2. Now,we can de�ne ey = T 1=2y y, eu = T 1=2u u, and ef(ey; eu) = f(T�1=2y ey; T�1=2u eu). If wecompute the �rst-order partial derivatives of ef , thenrey ef(ey; eu) = T�1=2y eryf(y; u) ; reu ef(ey; eu) = T�1=2u eruf(y; u):If we scale these vectors by T�1=2y and T�1=2u , respectively, then we obtain (7) and(8). See also [Dennis and Schnabel 1983, Ch. 7].3. DERIVATIVE COMPUTATIONS: ADJOINTS AND SENSITIVITIESSensitivity and adjoint equation approaches are used to compute derivative infor-mation in optimal control problems. In this section, we briey describe what theseapproaches are in the context of this paper and how they can be used in derivativecomputations.

6 � M. Heinkenschloss and L. N. VicenteWe consider the problem min f(y; u)s.t. c(y; u) = 0 (9)with associated Lagrangian`(y; u; �) = f(y; u) + h�; c(y; u)i� (10)and the associated reduced problemmin bf(u) = f(y(u); u): (11)In (11) the function y(�) is de�ned via the implicit function theorem as a solutionof c(y; u) = 0. We assume that the assumptions of the implicit function theoremapplied to c(y; u) = 0 are satis�ed.Typically, sensitivity and adjoint equation approaches are used to compute thegradient and second-order derivative information for bf . However, the same issuesalso arise for certain �rst and second order derivative computations related to theproblem (9). The main purpose of this section is to show the commonalities inthese approaches for (9) and (11) and to establish a common framework that canbe used in many optimization algorithms for (9) and (11) and in fact for (1) and(2). For more discussions on sensitivity and adjoint equation approaches we referto the literature. See, e.g., the collection [Borggaard et al. 1998].In this section we use the sensitivity and adjoint equation approaches to computethe gradient and second-order derivative information for bf and `. The fact thatbf and f are objective functions is not important. It is only important that bf :U ! IR depends on the implicit function y(u). In general the sensitivity andadjoint equation approaches are needed when derivative information of a functionbh : U ! IR is computed that is of the form bh(u) = h(y(u); u). Thus most of whatis said in the following also applies in this context. In particular, if additionalconstraints d(y; u) = 0 and bd(u) = d(y(u); u) = 0, d : Y � U ! IRk are present in(9) or (11), respectively, then the derivations in this section can be applied to thecomponent functions bdi or the Lagrangian f(y; u) + h�; c(y; u)i� + �>d(y; u).3.1 First-order derivativesUnder the assumptions of the implicit function theorem the derivative of the im-plicitly de�ned function y(�) is given as the solution ofcy(y(u); u)y0(u) = �cu(y(u); u): (12)This equation is called the sensitivity equation and its solution is called the sensi-tivity of y. We can now compute the gradient of bf :hr bf(u); viU = hryf(y(u); u); y0(u)viY + hruf(y(u); u); viU= hryf(y(u); u);�cy(y(u); u)�1cu(y(u); u)viY + hruf(y(u); u); viU= h��cy(y(u); u)�1cu(y(u); u)��ryf(y(u); u) +ruf(y(u); u); viU :Hence,r bf(u) = ��cy(y(u); u)�1cu(y(u); u)��ryf(y(u); u) +ruf(y(u); u): (13)

An Interface Between Optimization and Application � 7The formula (13) is used in the sensitivity equation approach to compute thegradient. First, the sensitivity matrixS(y; u) = cy(y(u); u)�1cu(y(u); u)is computed and then the gradient is formed using (13).To introduce the adjoint equation approach, we rewrite the formula (13) for thegradient as follows:r bf(u) = �cu(y(u); u)��cy(y(u); u)���1ryf(y(u); u) +ruf(y(u); u):Thus one can compute the adjoint variables �(u) by solving the adjoint equationcy(y(u); u)��(u) = �ryf(y(u); u) (14)and then compute the gradient usingr bf(u) = cu(y(u); u)��(u) +ruf(y(u); u): (15)This is the adjoint equation approach to compute the gradient.Traditionally, the sensitivity equation approach and the adjoint equation ap-proach have been used in the context of the reduced problem (11). However, thesame techniques are also needed to compute derivative information for the solutionof (9).Consider the Lagrangian (10). Its partial gradients arery`(y; u; �) = ryf(y; u) + cy(y; u)��; ru`(y; u; �) = ruf(y; u) + cu(y; u)��:We see that ry`(y; u; �) = 0 corresponds to the adjoint equationcy(y; u)�� = �ryf(y; u): (16)If we de�ne �(y; u) as the solution of (16), thenru`(y; u; �)j�=�(y;u) = ruf(y; u)� cu(y; u)�(cy(y; u)�)�1ryf(y; u):In particular, r bf(u) = ru`(y; u; �)jy=y(u);�=�(u):With W (y; u) = � �cy(y; u)�1cu(y; u)Inu �we can write ru`(y; u; �)j�=�(y;u) =W (y; u)��ryf(y; u)ruf(y; u)�and r bf(u) =W (y; u)��ryf(y; u)ruf(y; u)� ���y=y(u):An optimization algorithm applied to the solution of (9) may require the evalu-ation of the Lagrangian f(y; u)+ h�(y; u); c(y; u)i�, where �(y; u) is the solution of(16). If the adjoint equation approach is used for the derivatives, the adjoint vari-ables �(y; u) can be calculated. If only the sensitivities cy(y; u)�1cu(y; u) and their

8 � M. Heinkenschloss and L. N. Vicenteadjoints are provided, adjoint variables cannot be computed from (16). In such asituation we can evaluate the corresponding value of the Lagrangian by solving thelinearized state equation cy(y; u)s = �c(y; u) (17)and by using the relationh�(y; u); c(y; u)i� = �h(cy(y; u)�)�1ryf(y; u); c(y; u)i�= �hryf(y; u); cy(y; u)�1c(y; u)iY : (18)The introduction of W (y; u) which plays an important role in solution methodsfor (16) allows an elegant and compact notation for the �rst-order derivatives and,as we will see in the following, for the second-order derivatives. It also localizesthe use of the sensitivity equation approach and the adjoint equation approach inthe derivative calculations. In all derivative computations, the sensitivity equationapproach or the adjoint equation approach is only needed to evaluate the applicationof W (y; u) and W (y; u)� onto vectors. For example, the computation of the y-component zy of z =W (y; u)du is done in two steps:Compute vy = �cu(y; u)du:Solve cy(y; u)zy = vy:If the sensitivities S(y; u) = cy(y; u)�1cu(y; u) are known, then zy = �S(y; u)du.The equation cy(y; u)zy = vy is a generalized linearized state equation, cf. (17).Similarly, for given d the matrix-vector product z = W (y; u)�d, d = (dy; du), iscomputed successively as follows:Solve cy(y; u)�vy = �dy:Compute vu = cu(y; u)�vy:Compute z = vu + du:Again, if the adjoint of the sensitivities S(y; u) = cy(y; u)�1cu(y; u) is known, thenz = �S(y; u)�dy + du. The equation cy(y; u)�vy = �dy is a generalized adjointequation, cf. (16).3.2 Second-order derivativesThe issue of sensitivities and adjoints not only arises in gradient calculations, butalso in Hessian computations. The Hessian of the Lagrangianr2xx`(y; u; �) = r2yy`(y; u; �) r2yu`(y; u; �)r2uy`(y; u; �) r2uu`(y; u; �) ! (19)and the reduced HessianbH(y; u) =W (y; u)� r2yy`(y; u; �) r2yu`(y; u; �)r2uy`(y; u; �) r2uu`(y; u; �) !W (y; u)����=�(y;u) (20)play an important role. Both matrices (19) and (20) are important in algorithmsbased on the sequential quadratic programming (SQP) approach [Fletcher 1987,

An Interface Between Optimization and Application � 9Ch. 12]. Moreover, it is known, see, e.g., [Dennis et al. 1998; Heinkenschloss 1996],that the Hessian of the reduced functional in (11) is given byr2 bf(u) = bH(y(u); u):We note that the computation of (19) and (20) requires knowledge of the adjointvariables �. In many algorithms, these are computed via the adjoint equations (16).If only the sensitivities cy(y; u)�1cu(y; u) and their adjoints are provided, adjointvariables cannot be computed from (16). If no estimate for � is available, then theoperators in (19) and (20) cannot be computed. In cases in which ryf(y; u) � 0for (y; u) near the solution, one may set � = �(y; u) � 0, cf. (16). This leads to theapproximations r2xx`(y; u; �) � r2yyf(y; u) r2yuf(y; u)r2uyf(y; u) r2uuf(y; u) ! (21)and bH(y; u) �W (y; u)� r2yyf(y; u) r2yuf(y; u)r2uyf(y; u) r2uuf(y; u) !W (y; u): (22)The situation ryf(y; u) � 0 often arises in least squares functionals f(y; u) =12ky�ydk2Y+ 2kuk2U , where yd is some desired state. In this case ryf(y; u) = y�ydand if the given data yd can be �tted well, then ryf(y; u) � 0. In this case, theapproximation (22) is the Gauss-Newton approximation to the Hessian r2 bf(u),provided y = y(u).The Hessian r2 bf(u) of the reduced objective can also be computed by usingsecond-order sensitivities. In this approach one applies the chain rule to r bf(u) =y0(u)�ryf(y(u); u) +ruf(y(u); u) and one computes the second-order derivativesof y(u) by applying the implicit function theorem to (12). Unlike (19) and (20),this approach avoids the explicit use of Lagrange multipliers.We let H(y; u; �) be the Hessian r2xx`(y; u; �) or an approximation thereof. Ifconjugate-gradient like methods are used to solve subproblems, then Newton-basedoptimization methods for (11) or reduced SQP-based optimization methods for (9)require the computation of some of the quantitiesH(y; u; �)s; hs;H(y; u; �)siX ; W (y; u)�H(y; u; �)s;W (y; u)�H(y; u; �)W (y; u)su; hsu;W (y; u)�H(y; u; �)W (y; u)suiUfor given s = (sy ; su) and su.Often, one does not approximate the Hessian r2xx`(y; u; �), but the reduced Hes-sian. This is, e.g., the case if a quasi-Newton method is used to solve (11) or a re-duced SQP method is used to solve (9). If bH(y; u) �W (y; u)�r2xx`(y; u; �)W (y; u),then this approximation �ts into the previous framework in which the full Hessianis approximated by settingH(y; u; �) = � 0 00 bH(y; u) � : (23)

10 � M. Heinkenschloss and L. N. VicenteIf H(y; u; �) is given by (23), then the de�nition of W (y; u) implies the equalitiesH(y; u; �)s = � 0bH(y;u)su� ;hs;H(y; u; �)siX = hsu; bH(y; u)suiU ; W (y; u)�H(y; u; �)s = bH(y; u)su;W (y; u)�H(y; u; �)W (y; u)su = bH(y; u)su;hsu;W (y; u)�H(y; u; �)W (y; u)suiU = hsu; bH(y; u)suiU :4. USER INTERFACETable 1 lists the functions or subroutines that are part of the user interface. In thissection, we will describe the calling sequences of these functions or subroutines usingMatlab syntax. The input parameters appear in parenthesis after the name of thefunction or subroutine whereas the output parameters are displayed in brackets.Of course, the interface is not language speci�c andMatlab is used for illustrationonly. The main purpose is to show what information needs to be passed from theapplication routines to the optimizer. We do not promote a speci�c language forthe implementation of this information transfer.Not all interface routines listed in Table 1 are needed in the implementationof all optimization algorithms. For example, if quasi-Newton updates are used toapproximate second-order derivative information, the subroutine hs exact is notused and if the optimization problem formulation (1) is used, then state is notneeded. Table 1. User provided subroutines.a. Adjoint and sensitivity equation approachesfval evaluate f(y; u)cval evaluate c(y; u)lcval evaluate cy(y; u)sy + cu(y; u)su + c(y; u)state solve c(y; u) = 0 for �xed ulinstate solve cy(y; u)sy = �cu(y; u)su � c(y; u)yprod compute hy1; y2iYuprod compute hu1; u2iUlprod compute h�1; �2i�hs exact compute r2xx`(y; u; �)sxnew (re)activate a new iterateb. Adjoint equation approachadjoint solve cy(y; u)�� = �ryf(y; u)adjval evaluate cy(y; u)��+ryf(y; u)grad evaluate cu(y; u)��+ruf(y; u) c. Sensitivity equation approachsens compute S(y; u)vsensa compute S(y; u)�vfgrad compute ryf(y; u) and ruf(y; u)More details about the user provided subroutines will be given in the followingsections. All user provided subroutines return a variable iflag, all user provided

An Interface Between Optimization and Application � 11subroutines but xnew have an input parameter tol, and all user provided subrou-tines have an input parameter user parms. The return variable iflag indicateswhether the required task could be performed. On return, the iflag should be setas follows:iflag = 0 : The required task could be performed.iflag > 0 : The required task could not be performed.iflag < 0 : The required task could be performed, but the results are not ideal.If iflag > 0 during the execution of the optimization algorithm, the optimizationalgorithm can return with an error message providing the value of iflag and theplace in the optimization code where the error occurred. A negative value of iflagcan be used to communicate, e.g., (near) singularity of matrices, or other potentiallyserious events that fall short of fatal errors. If iflag < 0 during the execution ofthe optimization algorithm, the optimization algorithm can issue a warning thatcontains the value of iflag and the place in the optimization code where the erroroccurred.The input parameter tol can be used to control inexactness. Often in practicalapplications the state equation, the linearized state and the adjoint equations aresolved using iterative linear system solvers. Moreover, the derivatives of f and cmaybe approximated by �nite di�erences. In such situations user provided informationwill never be exact and an optimization algorithm has to adapt to this situation. Infact, allowing inexact, but less expensive function and derivative information couldlead to more e�cient optimization algorithms, provided this inexactness is con-trolled properly. An example are inexact Newton methods for large scale problems[Nash and Sofer 1996, Ch. 12]. The input parameter tol allows the optimizationalgorithm to control the inexactness.Finally, all subroutines have an input parameter user parms that allows to passproblem speci�c information such as physical parameters or weighting coe�cientsin the objective function. These parameters are never accessed by the optimizer.In a Matlab implementation user parms could be a structure array.4.1 VectorsThe Hilbert spaces Y , U , and � are �nite dimensional and can be identi�ed withIRny ; IRnu , IRny , respectively. Thus vectors in these spaces can in principle bestored as arrays. In many cases, however, other representations such as derivedtypes in Fortran 90/95, objects in C++, or structure arrays in Matlab might bemore useful. In this case the user also has to provide functions that create andinitialize a vector with zeros, create a vector and copy an existing vector into thisnewly created one, multiply a vector by a scalar, and add a scalar multiple of onevector to another vector. Each of these functions has to be provided for vectors inY , U , and �, i.e., each of these functions has to be provided three times.4.2 User provided functions used in the adjoint and sensitivity equation approachesfval Given y and u evaluate f(y; u). The generic function is[f, iflag] = fval(y, u, tol, user_parms)

12 � M. Heinkenschloss and L. N. Vicentecval Given y and u evaluate c(y; u). The generic function is[c, iflag] = cval(y, u, tol, user_parms)lcval Given y, u, sy, su, and tol approximately evaluate the linearized constraintscy(y; u) sy + cu(y; u) su + c(y; u);i.e., compute lc such thatlc � �cy(y; u) sy + cu(y; u) su + c(y; u)�� � tol:The generic function is[lc, iflag] = lcval(y, u, sy, su, tol, user_parms)state Given u, an initial approximation yi, and tol compute an approximatesolution ys to the state equation c(y; u) = 0, i.e., compute ys such thatc(ys; u)� � tol:The generic function is[ys, iflag] = state(yi, u, tol, user_parms)linstate Given y, u, su, c, and tol compute an approximate solution sy of thelinearized state equationcy(y; u) sy + cu(y; u) su + c = 0 ;i.e., compute sy such thatcy(y; u) sy + cu(y; u) su + c� � tol:Particular cases of the previous task are the following ones:Given y; u; c, and tol compute an approximate solution sy of the linearizedstate equation cy(y; u) sy + c = 0. Given y; u; su, and tol compute an approx-imate solution sy of the linearized state equation cy(y; u) sy + cu(y; u) su = 0.The generic function is[sy, iflag] = linstate(y, u, su, c, job, tol, user_parms)In an optimization algorithm linstate might be called with c = 0 or su = 0.In these cases the linearized state equation simpli�es. The parameter job isused to communicate this to the user supplied linstate so that the user cantake advantage of these special cases. The parameter job has the followingmeaning:job = 1: Solve cy(y; u)sy + cu(y; u)su + c = 0 for sy.job = 2: Solve cy(y; u)sy + c = 0 for sy.If job = 2, then su is a dummy variable and should not be referenced inlinstate.

An Interface Between Optimization and Application � 13job = 3: Solve cy(y; u)sy + cu(y; u)su = 0 for sy.If job = 3, then c is a dummy variable and should not be referenced inlinstate.yprod Given y1 and y2 evaluate the scalar product hy1; y2iY . The generic functionis [yp, iflag] = yprod(y1, y2, tol, user parms)uprod Given u1 and u2 evaluate the scalar product hu1; u2iU . The generic functionis [up, iflag] = uprod(u1, u2, tol, user parms)lprod Given �1 and �2 evaluate the scalar product h�1; �2i�. The generic functionis [lp, iflag] = lprod(lambda1, lambda2, tol, user parms)hs exact Given y, u, �, sy, and su compute the product of the Hessian of theLagrangian r2xx`(y; u; �) times the vector s = (sy; su). The generic functionname is[hsy, hsu, iflag]= hs_exact(y, u, lambda, sy, su, tol, ind, user_parms)The input variables are the y-component y, the u-component u, the Lagrangemultiplier lambda, the y- and u-component sy and su of the vector s, a dummyvariable tol (this variable is included to make the parameter lists of the Hessianfunctions uniform, but is not used in this case), and an indicator ind:ind = 0: sy and su are nonzero.ind = 1: sy is zero. In this case the vector sy may never be referenced.ind = 2: su is zero. In this case the vector su may never be referenced.The return variables are the y- and the u-component hsy and hsu ofr2xx`(y; u; �) s,and the error ag iflag.Instead of r2xx`(y; u; �), one can also use approximations of r2xx`(y; u; �) suchas (21). In particular, the input parameter lambda provided by the optimizermay not be the solution of (14) or (16) but a suitable approximation.In many of the above interface functions, the input list contains a parameter job.This is included to identify special cases that in some applications may be executedmore e�ciently than the general task. The following interface function xnew is alsoadded to allow more e�cient implementations and to improve monitoring. In manyapplications a considerable overhead, such as the computation of sti�ness matricesor the adaptation of grids is associated with function or gradient evaluations. Of-ten, these computations only depend on the iterate (y; u). If (y; u) is unchanged,these computations do not need to be redone, regardless of how many function orderivative evaluations at this point are computed. In this case it may be desirableto do these computations only once per iterate and change these quantities onlyif the iterate changes. Moreover, if one knows that a certain point x = (y; u) isonly used temporarily, one may decide to keep the information corresponding tothe point x that one will return to, rather than recomputing it when one returns.The purpose of xnew is to communicate the change of x = (y; u) to the application.The optimization algorithm should call xnew whenever the argument x = (y; u)changes. Another application of xnew is the storage of intermediate information.For example, the user may wish to record the development of iterates, or to stop

14 � M. Heinkenschloss and L. N. Vicentethe optimization algorithm and to restart it at a later time. In this situation thesubroutine xnew can be used to store intermediate information on hard disk.xnew The subroutine xnew activates, or reactivates an iterate. The generic functionis [iflag] = xnew(iter, y, u, new, user parms).After the call to xnew the pair (y; u) passed to xnew is used as the argumentin all functions until the next call to xnew. The input parameter new is passedto help the user to control the action taken by xnew. The following is a set ofpossible options for this input parameter.new = 'init' : Initialize with (y; u) as the current iterate. xnew has neverbeen called before.new = 'current it': (y; u) is the current iterate.new = 'react it': (y; u) is reactivated as the current iterate.new = 'trial it': (y; u) is a candidate for the next iterate. xnew has neverbeen called with (y; u) before.new = 'new it': (y; u) will be the next iterate. xnew has been called with(y; u) and option new = 'trial it' before.new = 'temp': (y; u) is only used temporarily. Usually only one or two func-tion evaluations are made with argument (y; u).Since in xnew vital information, like sti�ness matrices or grids, may be com-puted, xnew also returns iflag.As we have mentioned before, the options for new depend on the particular opti-mization algorithm. The set of values for new above will be useful in a trust-regionor a line-search framework [Dennis and Schnabel 1983], [Nash and Sofer 1996].Trust-region algorithms generate steps (sy; su) and evaluate functions at the trialiterate (y + sy; u+ su) (new = 'trial it'). Depending on some criteria, the trialiterate (y + sy; u + su) will become the new iterate (new = 'new it'), or it willbe rejected and (y; u) will remain the current iterate (new = 'react it'). For theuse of xnew in a simple line-search algorithm see Section 5.1. The option new ='temp' will be useful, for example, in �nite di�erence approximations.The settings above are motivated by a trust-region algorithm. In other optimiza-tion algorithms more or fewer settings may be useful. For example, the steepestdescent algorithm in Section 5.1 requires fewer settings. Therefore, the actualsettings for new depend on the particular optimization algorithm and should bedescribed in the documentation of each individual optimization algorithm.4.3 User provided functions used only in the adjoint equation approachadjoint Given y, u, and tol compute an approximate solution � of the adjointequation cy(y; u)��+ryf(y; u) = 0 ;i.e., compute � such thatcy(y; u)��+ryf(y; u)Y � tol:A slightly more general task is the following:Given y, u; fy, and tol compute an approximate solution � of the generalized

An Interface Between Optimization and Application � 15adjoint equation cy(y; u)��+ fy = 0 :Here fy is an arbitrary vector and not necessarily the gradient of the objectivewith respect to y. Since the gradient ryf(y; u) often has a particular structure,e.g., has many zero entries, the equation cy(y; u)�� +ryf(y; u) = 0 might besolved more e�ciently than the equation cy(y; u)�� + fy = 0 with a genericvector fy. The generic function is[lambda, iflag] = adjoint(y, u, fy, job, tol, user_parms)The parameter job speci�es which equation has to be solved.job = 1: Solve cy(y; u)��+ryf(y; u) = 0 for �.If job = 1, then fy is a dummy variable and should not be referenced inadjoint.job = 2: Solve cy(y; u)��+ fy = 0 for �.adjval Given y, u, �, and tol approximately evaluate the residual of the adjointequation cy(y; u)��+ryf(y; u) ;i.e., compute the vector a such thata� �cy(y; u)��+ryf(y; u)�Y � tol :The generic function is[adj, iflag] = adjval(y, u, lambda, tol, user_parms)grad Given y, u, �, and tol approximately evaluate the reduced gradientcu(y; u)��+ruf(y; u) ;i.e., compute g such thatg � �cu(y; u)��+ruf(y; u)�U � tol :A slightly more general task is the following: Given y, u, �; fu, and tol ap-proximately compute cu(y; u)��+ fu :Here fu is an arbitrary vector and not necessarily the gradient of the objec-tive with respect to u. Again, we distinguish between the two cases becauseruf(y; u) is often a very simple vector. The generic function is[g, iflag] = grad(y, u, lambda, fu, job, tol, user_parms)The parameter job speci�es which expression has to be evaluated.job = 1: Compute cu(y; u)��+ruf(y; u).If job = 1, then fu is a dummy variable and should not be referenced ingrad.job = 2: Compute cu(y; u)��+ fu.

16 � M. Heinkenschloss and L. N. Vicente4.4 User provided functions used only in the sensitivity equation approachfgrad Given y, u, and tol compute approximate partial gradients ryf(y; u) andruf(y; u) of f , i.e., compute fy and fu such thatryf(y; u)� fyY � tol; ruf(y; u)� fuU � tol:The generic function is[fy, fu, iflag] = fgrad(y, u, job, tol, user_parms)The parameter job speci�es which partial gradient has to be computed and isincluded to allow the optimization algorithm to take advantage of special cases.It has the following meaning:job = 1: Compute ryf(y; u).job = 2: Compute ruf(y; u).job = 3: Compute ryf(y; u) and ruf(y; u).sensa Given y, u, and tol computez = cu(y; u)��cy(y; u)���1vapproximately, i.e., compute z such thatz � cu(y; u)��cy(y; u)���1vU � tol:The generic function is[z, iflag] = sensa(y, u, v, tol, user_parms)sens Given y, u, and tol computez = cy(y; u)�1cu(y; u)vapproximately, i.e., compute z such thatcy(y; u)z � cu(y; u)v� � tol or z � cy(y; u)�1cu(y; u)vY � tol:The generic function is[z, iflag] = sens(y, u, v, tol, user_parms)4.5 Stopping criteriaThe output parameter iflag could also be used to implement user supplied stoppingtests that augment standard convergence tests based on gradient norms, functionvalues, step norms, or iteration numbers. In addition to these standard convergencetests, the user could implement stopping criteria based on quantities computedwithin the user supplied subroutines and force the optimization algorithm to returnby setting iflag > 0.A sensible place to implement an application dependent stopping criterion couldbe in the user suplied subroutine xnew.

An Interface Between Optimization and Application � 174.6 Consistency and derivative checksFor the adjoint equation approach. In exact arithmetic, the adjoints have to sat-isfy hcy(y; u)sy; �i� = hsy; cy(y; u)��iY ; 8 sy; �;hcu(y; u)su; �i� = hsu; cu(y; u)��iU ; 8 su; �;hcy(y; u)�1c; syiY = hc; (cy(y; u)�1)�syi�; 8 c; sy:If inexact solvers are used with tolerances as described in the previous section, thenhcy(y; u)sy; �i� � hsy; cy(y; u)��iY = O(tol); 8 sy; �;hcu(y; u)su; �i� � hsu; cu(y; u)��iU = O(tol); 8 su; �;hcy(y; u)�1c; syiY � hc; (cy(y; u)�1)�syi� = O(tol); 8 c; sy:Derivative computations can be checked using �nite di�erences. If only the userprovided functions described in Sections 4.2 and 4.3 are to be used for these checks,then not all derivatives can be accessed. For example, cu(y; u)� is never computedexplicitly. Using the functions in Sections 4.2 and 4.3, one can perform the checkscy(y; u)sy � 1��c(y + �sy; u)� c(y; u)�� = O(�); (24)cu(y; u)su � 1��c(y; u+ �su)� c(y; u)�� = O(�); (25)hcy(y; u)��; syiY � 1��hc(y + �sy; u); �i� � hc(y; u); �i�� = O(�);hcu(y; u)��; suiU � 1��hc(y; u+ �su); �i� � hc(y; u); �i�� = O(�);��hryf(y; u); syiY � 1��f(y + �sy ; u)� f(y; u)��� = O(�); (26)��hruf(y; u); suiU � 1��f(y; u+ �su)� f(y; u)��� = O(�): (27)For the sensitivity equation approach. Similarly, one can check user providedinformation for the sensitivity equation approach. With the user provided functionsdescribed in Sections 4.2 and 4.4 one can perform the consistency checkhS(y; u)su; syiY � hsu; S(y; u)�syiU = O(tol); 8 sy; suand the �nite di�erence checks (24)-(25) and (26)-(27).5. EXAMPLES5.1 Examples of optimization algorithmsIn this section we provide code or code fragments for some optimization algorithmsto illustrate the use of the interface. To keep our illustration simple, we makeno use of the return ag iflag and simply assume that all requested operationscan be performed. Moreover, we do not address the control of inaccuracy and wesimply carry tol along without ever modifying it. What to do in an optimizationalgorithm if certain application information can not be computed and how to controlthe inexactness are important and interesting questions. The answers to these

18 � M. Heinkenschloss and L. N. Vicentequestions belong in a article on optimization algorithms and are beyond the scopeof this paper. Again, we use Matlab syntax for illustration. In particular weassume that all vectors are arrays so that we can use existing arithmetic operatorsfor the addition of vectors and scalar multiplication (see Section 4.1).The �rst example is the steepest descent method with Armijo line search rulefor the solution of the reduced problem (11). Depending on whether the sensitivityequation approach or the adjoint equation approach is used the gradient is com-puted by (13) or by (15). In this example, u is the unknown variable and y is afunction of u. As a consequence, only u is passed to xnew and the variable y is onlyused as a dummy argument....% Loop k: a current iterate u is given and the corresponding% solution y of the state equation has been computed.%% Compute the gradient W(y(u),u)*gradf(y(u),u) of the reduced% function.if der_cal == 'adjoints'% Solve the adjoint equation.[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol, user_parms);%% Compute the reduced gradient.[rgrad, iflag] = grad(y, u, lambda, zeros(size(u)), 1, tol, user_parms);elseif der_cal == 'sensitivities'% Compute the gradient of f wrt y and u.[grady, gradu, iflag] = fgrad(y, u, 3, tol, user_parms);%% Compute the reduced gradient.[z, iflag] = sensa(y, u, grady, tol, user_parms);rgrad = -z + gradu;end%% Compute step size t.t = 1;[gradnrm2, iflag] = uprod(rgrad, rgrad, tol, user_parms);succ = 0;while(succ == 0)% Compute trial iterate (y is a dummy variable).unew = u - t*rgrad;[iflag] = xnew(iter, y, unew, 'trial_it', user_parms);%% Solve the state equation.[ynew, iflag] = state(y, unew, tol, user_parms);%% Evaluate objective function.[fnew, iflag] = fval(ynew, unew, tol, user_parms);%% Check step size criterion.if(fnew - f <= -1.e-4 * t * gradnrm2)succ = 1;end

An Interface Between Optimization and Application � 19%% Reduce the step size.t = 0.5 * t;end%% Set new iterate.y = ynew;u = unew;f = fnew[iflag] = xnew(iter, y, u, 'new_it', user_parms);%% End of loop k....As our second example, we consider a simple version of a reduced SQP methodwith no strategy for globalization. See, e.g., [Heinkenschloss 1996, Alg. 2.1]. At agiven point (y; u), the SQP method computes a solution ofbH(y; u)su = �W (y; u)�rf(y; u);where bH(y; u) is the reduced Hessian or an approximation thereof (see (20)) andthen a solution of cy(y; u)sy = �c(y; u)� cu(y; u)su:The following code fragment illustrates the use of the user interface to implementthe reduced SQP method....% A new iterate (y,u) has been computed before and xnew has been called.%% Compute the reduced gradient W(y,u)*gradf(y,u).if der_cal == 'adjoints'% Solve the adjoint equation.[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol, user_parms);%% Compute the reduced gradient.[rgrad, iflag] = grad(y, u, lambda, zeros(size(u)), 1, tol, user_parms);elseif der_cal == 'sensitivities'% Compute the gradient of f wrt y and u.[grady, gradu, iflag] = fgrad(y, u, 3, tol, user_parms);%% Compute the reduced gradient.[z, iflag] = sensa(y, u, grady, tol, user_parms);rgrad = -z + gradu;end% Compute the value of c(y,u).[c, iflag] = cval(y, u, tol, user_parms);%% Compute the norms of c and rgrad squared.[rgradnrm2, iflag] = uprod(rgrad, rgrad, tol, user_parms);[cnrm2, iflag] = lprod(c, c, tol, user_parms);

20 � M. Heinkenschloss and L. N. Vicente%% Termination criterion.if(sqrt(rgradnrm2) < gtol & sqrt(cnrm2) < ctol)returnend%% Compute su....%% Compute sy.[sy, iflag] = linstate(y, u, su, c, 1, tol, user_parms);%% Set the new iterate.y = y + sy;u = u + su;[iflag] = xnew(iter, y, u, 'current_it', user_parms);...One possible merit function to globalize the SQP method is the augmented La-grangian: f(y; u) + h�(y; u); c(y; u)i� + �kc(y; u)k2�;where � is a positive penalty parameter. The following code fragment describes theuse of the interface to compute the value of the augmented Lagrangian function.The calculation of the scalar product h�(y; u); c(y; u)i� by the sensitivity equationapproach is shown in (18)....Compute the values of f(y,u) and c(y,u).[f, iflag] = fval(y, u, tol, user_parms);[c, iflag] = cval(y, u, tol, user_parms);% if der_cal == 'adjoints'% Solve the adjoint equation.[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol, user_parms);% [ctlambda, iflag] = lprod(lambda, c, tol, user_parms);elseif der_cal == 'sensitivities'% Solve the linearized state equation.[sy, iflag] = linstate(y, u, zeros(size(u)), c, 2, tol, user_parms);%% Compute the gradient of f wrt y.[grady, gradu, iflag] = fgrad(y, u, 1, tol, user_parms);% [ctlambda, iflag] = yprod(grady, sy, tol, user_parms);end%% Compute the norm of c squared.[cnrm2, iflag] = lprod(c, c, tol, user_parms);%% Compute the value of the augmented Lagrangian function.augLag = f + ctlambda + rho * cnrm2;

An Interface Between Optimization and Application � 21...The next example concerns the implementation of limited memory BFGS updatesfor the approximation of r2xx`(y; u; �). We setsi = � (sy)i(su)i� ; vi = � (vy)i(vu)i� ; hsi; viiX = h(sy)i; (vy)iiY + h(su)i; (vu)iiU ;where (sy)i = yi+1 � yi, (su)i = ui+1 � ui, (vy)i = ry`(yi+1; ui+1; �i+1) �ry`(yi; ui; �i), (vu)i = ru`(yi+1; ui+1; �i+1)�ru`(yi; ui; �i). If hsk�1; vk�1iX 6= 0and if the Hessian approximation Hk�1 is invertible, then the inverse of the BFGSupdate is given asH�1k = (Inx � �k�1sk�1
 vk�1)H�1k�1 (Inx � �k�1vk�1
 sk�1)+�k�1sk�1
 sk�1; (28)where nx = ny + nu and �k�1 = 1=hsk�1; vk�1iX . See, e.g., [Nocedal 1980]. Givenx and w, x
 w is de�ned by (x
 w)z = hw; ziX x. See the appendix.The equation (28) leads to a limited storage BFGS (L-BFGS), by using therecursion L times and replacing H�1k�L byH�1k�L ! 1y Iny 00 1u Inu ! :The computation of H�1k g, where Hk is the L-BFGS matrix can be done in ae�cient way following [Matties and Strang 1979; Nocedal 1980] or [Byrd et al.1994]. We demonstrate the computation of z = H�1k g, where g = (gy; gu) is a givenvector and H�1k is the L-BFGS approximation of r2xx`(y; u; �) using our interfaceand the recursive formula given in [Matties and Strang 1979] and [Nocedal 1980,p. 779]. The integer L denotes the number of vector pairs si; vi stored. The lastcharacter in the variable name indicates whether the quantity corresponds to theY space or to the U space. Otherwise, the naming of variables and the structure ofthe algorithm follows [Nocedal 1980, p. 779]. For simplicity, we assume that k > L....for i = L-1:-1:0j = i + k - L;[vtsy, iflag] = yprod(vy(j), sy(j), tol, user_parms);[vtsu, iflag] = uprod(vu(j), su(j), tol, user_parms);rho(j) = 1 / (vtsy + vtsu);[gtsy, iflag] = yprod(gy, sy(j), tol, user_parms);[gtsu, iflag] = uprod(gu, su(j), tol, user_parms);alpha(i) = (gtsy + gtsu) * rho(j);gy = gy - alpha(i) * vy(j);gu = gu - alpha(i) * vu(j);endgy = gy / gammay;gu = gu / gammau;for i = 0:L-1j = i + k - L;[gtvy, iflag] = yprod(gy, vy(j), tol, user_parms);[gtvu, iflag] = uprod(gu, vu(j), tol, user_parms);

22 � M. Heinkenschloss and L. N. Vicentebeta(i) = (gtvy + gtvu) * rho(j);gy = gy + (alpha(i) - beta(i)) * sy(j);gu = gu + (alpha(i) - beta(i)) * su(j);end...5.2 Example of an optimal control problemExamples that illustrate the use of this interface from an application perspective aregiven in [Cli� et al. 1997], [Heinkenschloss and Vicente 1999] and, with less detail,in [Cli� et al. 1998]. The numerical computations in those papers were performedusing an implementation of this interface in Matlab or Fortran 77.We discuss the optimal control problem from [Cli� et al. 1997] in more detail. Thestate equations in this problem model the steady ow of an inviscid uid in a duct.They are a simpli�ed version of the one-dimensional Euler equations. The goal isto �nd a shape of the duct, represented by u, so that the ow velocity, denotedby y, matches a desired velocity indicated by the superscript d. The boundaryconditions in this example are so that the ow exhibits a shock at ys. Therefore,it is useful to split the state equation into an equation left of the shock and anequation right of the shock. In the notation of this paper the in�nite dimensionalproblem corresponding to (1) is given bymin f(y; u) = 12 Z ys0 (yL(x)� yd(x))2 dx+ 12 Z 1ys (yR(x) � yd(x))2 dxsubject to the equality constraints(h(yL))x + g(yL; uL) = 0; x 2 [0; ys];(h(yR))x + g(yR; uR) = 0; x 2 [ys; 1];h(yL(ys)) = h(yR(ys));yL(0) = yin; yR(1) = yout;and to the inequality constraints0 � ys � 1; u � uL(x); uR(x) � u;where y = (yL; yR; ys) 2 W 1;1(0; 1) � W 1;1(0; 1) � IR and u = (uL; uR) 2L2(0; 1)�L2(0; 1). The conditions h(yL(ys)) = h(yR(ys)) are the Rankine{Hugoniotconditions. Here yL; yR denote the velocity of the uid left and right of the shocklocation ys and uL; uR are related to the cross sectional area of the duct left andright of the shock. The superscript d indicates the desired velocity pro�le. Thefunctions h and g are given by h(y) = y+ �H=y, g(y; u) = u(�y� �H=y) with � = 1=6and �H = 1:2.For the discretization of the optimal control problem we use a cell centered grid.The subinterval [0; ys] left of the shock is subdivided into NL equidistant subinter-vals of length hL = ys=NL, the subinterval [ys; 1] right of the shock is subdividedinto NR equidistant subintervals of length hR = (1�ys)=NR. The point xi denotesthe midpoint of the ith cell: xi = (i� 12)hL, i = 1; : : : ; NL, xi = ys+(i� 12�NL)hR,i = NL + 1; : : : ; NL +NR.The objective function is discretized using the midpoint rule which leads to the

An Interface Between Optimization and Application � 23discretized objectivef(y; u) = 12 NLXi=1 hL (yi � yd(xi))2 + 12 NL+NRXi=NL+1hR (yi � yd(xi))2:The derivatives in the equality constraints of the in�nite dimensional problem arediscretized using forward and backward di�erences. This leads to a set of NL +NR + 1 equality constraints c(y; u) = 0, whereci(y; u) = 8><>:NL (h(yi)� h(yi�1)) + ys g(yi; ui) i = 1; : : : ; NL;NR (�h(yi+1) + h(yi)) + (ys � 1) g(yi; ui) i = NL + 1; : : : ; NL +NR;h(yNL)� h(yNL+1) i = NL +NR + 1and y0 = yin, yNL+NR+1 = yout. The discretized states are y =(y1; : : : ; yNL+NR ; ys)> and the discretized controls are u = (u1; : : : ; uNL+NR)>. Wewill use the notation � = (�1; : : : ; �NL+NR ; �s)> for the adjoint variables.We now discuss a few interface functions in more detail.5.2.1 Linearized state equation. The partial Jacobian cy(y; u) is a bordered ma-trix given by cy(y; u) = 0@ BL(y; u) 0 eL(y; u)0 BR(y; u) eR(y; u)dL(y)> dR(y)> 0 1A ;where BL(y; u) 2 IRNL�NL is a lower bidiagonal matrix, BR(y; u) 2 IRNR�NR is aupper bidiagonal matrix, and eL(y; u); dL(y) 2 IRNL , eR(y; u); dR(y) 2 IRNR . Thepartial Jacobian cu(y; u) = 0@DL(y; u) 00 DR(y; u)0 0 1A ;is a (NL +NR + 1)� (NL +NR) `diagonal' matrix with diagonal entries given by(DL(y; u))ii = ys gu(yi; ui), i = 1; : : : ; NL, and (DR(y; u))ii = (ys � 1) gu(yi; ui),i = NL + 1; : : : ; NL +NR.Given c; y; u and su, linstate requires the solution of cy(y; u)sy = �cu(y; u)su�c. The structure of cy(y; u) can be used to solve this system using a Schur comple-ment approach.5.2.2 Scalar products. Even though this discretized optimal control problem isa rather small dimensional nonlinear programming problem, the computations in[Cli� et al. 1997] have shown that the choice of the scalar product can notice-ably inuence the performance of an optimization algorithm and the quality of thesolution. For this problem suitable scalar products arehy1; y2iY = PNLi=1 1NL (y1)i(y2)i +PNL+NRi=NL+1 1NR (y1)i(y2)i + (y1)s(y2)s;hu1; u2iU = PNLi=1 1NL (u1)i(u2)i +PNL+NRi=NL+1 1NR (u1)i(u2)i;h�1; �2i� = PNLi=1 1NL (�1)i(�2)i +PNL+NRi=NL+1 1NR (�1)i(�2)i + (�1)s(�2)s:Given y1 and y2, yprod requires the evaluation of hy1; y2iY . The interface functionsuprod and lprod are de�ned analogously.

24 � M. Heinkenschloss and L. N. Vicente5.2.3 Adjoint equation. The adjoint c�y of the partial Jacobian cy depends on thescalar products h�; �iY , h�; �i� (see Appendix A). For the scalar products speci�edabove we �nd thatc�y(y; u) = 0@ BL(y; u)> 0 ~dL(y)0 BR(y; u)> ~dR(y)~eL(y; u)> ~eR(y; u)> 0 1A ;where ~dL(y) = NL dL(y), ~dR(y) = NR dR(y), ~eL(y; u) = eL(y; u)=NL, ~eR(y; u) =eR(y; u)=NR.Given y; u, the interface function adjoint requires the solution of c�y(y; u)� =�ryf(y; u), if job = 1. Here ryf(y; u) is the partial gradient of the objectivefunction with respect to y. This partial gradient depends on the scalar producth�; �iY (see Section 2). In our case it is given byryf(y; u) = �ys(y1 � yd(x1)); : : : ; ys(yNL � yd(xNL));(1� ys)(yNL+1 � yd(xNL+1)); : : : ; (1� ys)(yNL+NR � yd(xNL+NR));@ysf(y; u)�>:The partial derivative @ysf(y; u) is a lengthy expression because all grid points xidepend on the shock location ys. We omit it here. If job = 2, then we have alsogiven fy and adjoint requires the solution of c�y(y; u)� = �fy. In both cases wecan use a Schur complement approach to solve the system.6. LIMITATIONS AND EXTENSIONSIn the previous section we have illustrated how some optimization tasks can beimplemented using our interface. We have used our interface to implement a classof a�ne-scaling interior-point optimization algorithms [Dennis et al. 1998] for thesolution of min f(y; u)s.t. c(y; u) = 0;u � u � u (29)in Fortran 77 and Matlab . However, our interface is certainly not su�cient toimplement all optimization algorithms for the solution of (29) or the more compli-cated problem (1). For example, the types of constraints may limit the applicabilityof the interface. In particular the presence of inequality constraints poses interest-ing questions. For example, for in�nite dimensional problems of the type (29) withcontrols u in Lp, p � 1, the inequality constraints are point-wise constraints andare associated with the Banach space L1. The use of the Hilbert space U = L2in this context seems questionable. We have obtained quite good numerical resultswith our algorithms in [Dennis et al. 1998] for solving (29) if in this situation weselect U = L2. These numerical observations are supported by the theory in [Ul-brich et al. 1997]. In general, however, the pure Hilbert space structure underlyingour interface (and others) does not seem su�cient. If one assumes that vectorsare stored as arrays, the vectors must be small enough so that they can be heldin-core. This is problematic for problems with time-dependent partial di�erential

An Interface Between Optimization and Application � 25equations or problems with large data sets such as those arising in seismic inversion.Sometimes such optimization problems can be reformulated by elimination of partof the constraints c(y; u) = 0 so that the resulting problem is signi�cantly smaller.Additionally, functions like those implemented in HCL [Gockenbach et al. 1997]are needed to accomplish tasks like vector additions, if vectors cannot be storedin-core, but have to be stored on, say, hard disk. See also Section 4.1.Besides the above mentioned limitations, we believe the interface presented inthis paper is very useful. It can be used to implement a large number of algorithmsfor a signi�cant class of optimal control problems. For instance, any problem of theform min f(w; u)s.t. d(w; u) = 0; g(w; u) � 0;w � w � w;u � u � ucan be reformulated as problem (1) by setting y = (w; s) with g(w; u) � s = 0. Inthis case the nonsingularity of dw(w; u) would imply the nonsingularity of cy(y; u).We expect that the functions in this interface will be contained in interfaces devel-oped to handle the very large scale problems mentioned above. The interface servesan important theoretical purpose in the use of structure for algorithmic design. Byusing this interface or some of its features, optimization algorithm designers areforced to separate optimization and application tasks within the algorithms.ACKNOWLEDGMENTSThe authors greatfully acknowledge the careful reading and the constructive com-ments of the referees.APPENDIXA. SCALING OF THE PROBLEMWe continue the discussion in Section 2 and describe the inuence of the scalarproducts on the computation of Hessians, adjoints, and quasi-Newton updates.Inuence of the scalar products on derivative computations. The partial Hessiansare de�ned bylimhy!0 kryf(y + hy; u)�ryf(y; u)�r2yyf(y; u)hykY=khykY = 0;limhu!0 kryf(y; u+ hu)�ryf(y; u)�r2yuf(y; u)hukY=khukU = 0;limhy!0 kruf(y + hy; u)�ruf(y; u)�r2uyf(y; u)hykU=khykY = 0;limhu!0 kruf(y; u+ hu)�ruf(y; u)�r2uuf(y; u)hukU=khukU = 0: (30)The partial derivatives of c are de�ned bylimhy!0 kc(y + hy; u)� c(y; u)� cy(y; u)hykY=khykY = 0;limhu!0 kc(y; u+ hu)� c(y; u)� cu(y; u)hukU=khukU = 0: (31)Because of the equivalency of norms in �nite dimensions the Hessians are the �rst-order partial derivatives of the gradients (which depend on the scalar product) and

26 � M. Heinkenschloss and L. N. Vicentethe partial Jacobians of c are the matrices of �rst-order partial derivatives. Thus,the choice of the scalar product does not inuence (30) and (31) directly. They areimportant, however, when inexact derivative information is allowed. Inexactnesshas to be measured in the appropriate norm.If the scalar products are given by (4), (5), then the Hessians are given byr2yyf(y; u) = T�1y er2yyf(y; u); r2yuf(y; u) = T�1y er2yuf(y; u);r2uyf(y; u) = T�1u er2uyf(y; u); r2uuf(y; u) = T�1u er2uuf(y; u);where er2 is used to denote the matrices of second-order partial derivatives. Notethat the partial Hessians r2yyf(y; u) and r2uuf(y; u) are symmetric with respectto the scalar products (4) and (5), respectively, and that hr2yuf(y; u)w; viY =hw;r2uyf(y; u)viU . See also the following discussion on adjoints.Inuence of the scalar products on adjoint computations. The adjoints of cy andcu are de�ned by the relationshcy(y; u)��; viY = h�; cy(y; u)vi� 8�; v;hcu(y; u)��;wiU = h�; cu(y; u)wi� 8�;w: (32)With the scalar products (4), (5), (6), and the adjoint relations (32) we �nd thath�; cy(y; u)vi� = �>T�cy(y; u)v = (T�1y cy(y; u)>T��)>Tyv = hcy(y; u)��; viY 8�; v:Thus cy(y; u)� = T�1y cy(y; u)>T�:Similarly, cu(y; u)� = T�1u cu(y; u)>T�:Inuence of the scalar products on quasi-Newton updates. Given u and v in U ,we de�ne the linear operator u
 v on U by (u
 v)w = (hv; wiU)u. Thus, ifhv; wiU = v>w, then u
 v = uv>. If hv; wiU = v>Tuw with Tu symmetric positivede�nite, then u
 v = uv>Tu.We consider the BFGS update (see [Dennis and Schnabel 1983, Ch. 9] or [Gruverand Sachs 1980]) in the u component to illustrate the inuence of this scaling ontothe quasi-Newton update. We assume that y is �xed. The BFGS update is givenbyH+ = H + (ruf(y; u+)�ruf(y; u))
 (ruf(y; u+)�ruf(y; u))hruf(y; u+)�ruf(y; u); siU � Hs
HshHs; siU :If hv; wiU = v>w, then ruf(y; u) = eruf(y; u) and we obtain the standard BFGSupdate [Dennis and Schnabel 1983, Ch. 9]. If hv; wiU = v>Tuw, then ruf(y; u) =T�1u eruf(y; u) andH+ = H + T�1u (eruf(y; u+)� eruf(y; u))(eruf(y; u+)� eruf(y; u))>(eruf(y; u+)� eruf(y; u))>s�Hs(TuHs)>s>TuHs :

An Interface Between Optimization and Application � 27Inuence of the scalar products on Krylov subspace methods. The use of weightedscalar products in conjugate-gradient methods is equivalent to a preconditioningwith the inverse of the weighting matrix. This is described, e.g., in the work byAxelsson [1994, Sec. 11.2.6] or Gutknecht [1993].REFERENCESAxelsson, O. 1994. Iterative Solution Methods. Cambridge University Press, Cambridge,London, New York.Betts, J. T. 1997. SOCS sparse optimal control software. Technical report, The BoeingCompany, P.O. Box 3707, M/S 7L-21, Seattle, WA 98124-2207.Borggaard, J. and Burns, J. 1997. A PDE sensitivity equation method for optimal aero-dynamic design. Journal of Computational Physics, 366{384.Borggaard, J., Burns, J., Cliff, E., and Schreck, S. Eds. 1998. Computational Meth-ods for Optimal Design. Proceedings of the AFSOR Workshop on Optimal Design andControl, Arlington, VA, 30-September { 3-October 1997, Progress in Systems and ControlTheory (Basel, Boston, Berlin, 1998). Birkh�auser Verlag.Byrd, R. H., Nocedal, J., and Schnabel, R. B. 1994. Representations of quasi-Newtonmatrices and their use in limited memory methods. Math. Programming 63, 129{156.Chen, Z. and Hoffmann, K.-H. 1991. Numerical solutions of the optimal control problemgoverned by a phase �eld model. In W. Desch, F. Kappel, and K. Kunisch Eds., OptimalControl of Partial Di�erential Equations (Basel, Boston, Berlin, 1991). Birkh�auser Verlag.Cliff, E. M., Heinkenschloss, M., and Shenoy, A. 1997. An optimal control problem forows with discontinuities. Journal of Optimization Theory and Applications 94, 273{309.Cliff, E. M., Heinkenschloss, M., and Shenoy, A. 1998. Airfoil design by an all{at{oncemethod. International Journal for Computational Fluid Mechanics 11, 3{25.Conn, A. R., Gould, N. I. M., and Toint, P. L. 1992. LANCELOT: A FORTRANpackage for large scale nonlinear optimization with simple bounds. Springer Series in Com-putational Mathematics, Vol. 17. Springer Verlag, Berlin, Heidelberg, New York.Dennis, J. E., Heinkenschloss, M., and Vicente, L. N. 1998. Trust{region interior{pointalgorithms for a class of nonlinear programming problems. SIAM J. Control Optim. 36,1750{1794.Dennis, J. E. and Schnabel, R. B. 1983. Numerical Methods for Nonlinear Equations andUnconstrained Optimization. Prentice-Hall, Englewood Cli�s, N. J. Republished by SIAM,Philadelphia, 1996.Fletcher, R. 1987. Practical Methods of Optimization (Second ed.). John Wiley & Sons,Chichester.Friedman, A. and Hu, B. 1998. Optimal control of a chemical vapor deposition reactor.J. of Optimization Theory and Applications 97, 623{644.Gill, P. E., Murray, W., and Saunders, M. A. 1997. SNOPT 5.3: A Fortran packagefor large{scale nonlinear programming. Numerical Analysis Report 97{5, Department ofMathematics, University of California, San Diego, La Jolla, CA.Gockenbach, M. S., Petro, M. J., and Symes, W. W. 1997. C++ classes for linkingoptimization with complex simulation. To appear in ACM Transactions on MathematicalSoftware. http://www.trip.caam.rice.edu/ txt/tripinfo/abstracts list.html.Gockenbach, M. S. and Symes, W. W. 1997. The Hilbert class library.http://www.trip.caam.rice.edu/ txt/hcldoc/html/index.html.Gruver, W. A. and Sachs, E. W. 1980. Algorithmic Methods In Optimal Control. Pitman,London.Gunzburger, M. D., Hou, L. S., and Svobotny, T. P. 1993. Optimal control and opti-mization of viscous, incompressible ows. In M. D. Gunzburger and R. A. NicolaidesEds., Incompressible Computational Fluid Dynamics (Cambridge, New York, 1993), pp.109{150. Cambridge University Press.

28 � M. Heinkenschloss and L. N. VicenteGutknecht, M. H. 1993. Changing the norm in conjugate gradient type algorithms. SIAMJ. Numer. Analysis 30, 40{56.Handagama, N. and Lenhart, S. 1998. Optimal control of a PDE/ODE system modelinga gas-phase bioreactor. In M. A. Horn, G. Simonett, and G. Webb Eds., MathematicalModels in Medical and Health Sciences (Nashville, TN, 1998). Vanderbilt University Press.Heinkenschloss, M. 1996. Projected sequential quadratic programming methods. SIAMJ. Optim. 6, 373{417.Heinkenschloss, M. and Vicente, L. N. 1999. Numerical solution of semielliptic optimalcontrol problems using SQP based optimization algorithms. Technical report, Departmentof Computational and Applied Mathematics, Rice University. In preparation.Ito, K. and Kunisch, K. 1996. Augmented Lagrangian-SQP methods for nonlinear optimalcontrol problems of tracking type. SIAM J. Control and Optimization 34, 874{891.Kupfer, F.-S. and Sachs, E. W. 1992. Numerical solution of a nonlinear parabolic controlproblem by a reduced SQP method. Comput. Optim. and Appl. 1, 113{135.Lions, J. L. 1971. Optimal Control of Systems Governed by Partial Di�erential Equations.Springer Verlag, Berlin, Heidelberg, New York.Matties, H. and Strang, G. 1979. The solution of nonlinear �nite element equations.Internat. J. Numer. Methods Engrg. 14, 1613{1626.Mittelmann, H. D. and Maurer, H. 1998. Interior-point methods for solving ellip-tic control problems with control and state constraints: boundary and distributedcontrol. Technical report, Department of Mathematics, Arizona State University.http://plato.la.asu.edu/papers.html.Nash, S. G. and Sofer, A. 1996. Linear and Nonlinear Programming. McGraw-Hill, NewYork.Neittaanm�aki, P. and Tiba, D. 1994. Optimal Control of Nonlinear Parabolic Systems.Theory, Algorithms, and Applications. Marcel Dekker, New York, Basel, Hong Kong.Nocedal, J. 1980. Updating quasi{Newton matrices with limited storage.Math. Comp. 35,773{782.Petzold, L., Rosen, J. B., Gill, P. E., Jay, L. O., and Park, K. 1997. Numerical optimalcontrol of parabolic PDEs using DASOPT. In L. Biegler, T. Coleman, A. Conn, andF. Santosa Eds., Large Scale Optimization with Applications, Part II: Optimal Design andControl , IMA Volumes in Mathematics and its Applications, Vol. 93 (Berlin, Heidelberg,New-York, 1997), pp. 271{300. Springer Verlag.Schulz, V. 1997. Solving discretized optimization problems by partially reduced SQPmeth-ods. Computing and Visualization in Science 1, 2, 83{96.Shanno, D. and Vanderbei, R. J. 1997. An inter-point methods for nonconvex nonlin-ear programming. SOR97{21, Statistics and Operations Research, Princeton University,Princeton, NJ 08544. To appear in Computational Optimization and Applications.Ulbrich, M., Ulbrich, S., and Heinkenschloss, M. 1997. Global convergence of trust-region interior-point algorithms for in�nite-dimensional nonconvex minimization subject topointwise bounds. Technical Report TR-97-04, Department of Computational and AppliedMathematics, Rice University. To appear in SIAM J. Control and Optimization.Vanderbei, R. J. 1998. LOQO user's manual version 3.10. SOR97{8, Statistics and Op-erations Research, Princeton University, Princeton, NJ 08544. To appear in OptimizationMethods and Software, http://www.princeton.edu/�rvdb.Varvarezos, D. K., Biegler, L. T., and Grossmann, I. E. 1994. Multiperiod designoptimization with SQP decomposition. Computers Chem. Engng. 18, 579{595.

