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On Partial Sparse Recovery
A. S. Bandeira, K. Scheinberg, L. N. Vicente

Abstract—We consider the problem of recovering a partially
sparse solution of an underdetermined system of linear equations
by minimizing the `1-norm of the part of the solution vector
which is known to be sparse. Such a problem is closely related
to a classical problem in Compressed Sensing where the `1-norm
of the whole solution vector is minimized. We introduce analogues
of restricted isometry and null space properties for the recovery
of partially sparse vectors and show that these new properties
are implied by their original counterparts. We show also how
to extend recovery under noisy measurements to the partially
sparse case.

Index Terms—Partial sparse recovery, compressed sensing, `1-
minimization, Sparse quadratic polynomial interpolation.

I. INTRODUCTION

IN Compressed Sensing one is interested in recovering a
sparse solution x̄ ∈ RN of an underdetermined system of

the form y = Ax̄, given a vector y ∈ Rk and a matrix A ∈
Rk×N with far fewer rows than columns (k � N). A direct
approach is to minimize the number of non-zero components
of x, i.e., the `0-norm of x (which is defined as ‖u‖0 = |{i :
ui 6= 0}| but, strictly speaking, is not a norm),

min ‖x‖0 s. t. Ax = y. (1)

Since (1) is known to be NP-Hard, a tractable approximation
is commonly considered which is obtained by substituting
the non-convex `0-norm by a convex approximation. Recent
results indicate that the `1-norm can serve as such an approx-
imation (see [1] for a survey on some of this material). Hence
(1) is replaced by the following optimization problem

min ‖x‖1 s. t. Ax = y. (2)

Note that (2) is equivalent to a linear program and thus is
much easier to solve than (1).

In this paper we consider the case (see [2], [3], [4]) when it
is known a priori that the solution vector consists of two parts,
one of which is expected to be dense, in other words we have
x = (x1, x2), where x1 ∈ RN−r is sparse and x2 ∈ Rr is
possibly dense. A natural generalization of problem (2) to this
setting of partially sparse recovery is given by

min ‖x1‖1 s. t. A1x1 +A2x2 = y, (3)
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where A = (A1, A2), A1 ∈ Rk×(N−r), and A2 ∈ Rk×r. We
will refer to this setting as partially sparse recovery of size
N−r. One of the key applications of partially sparse recovery
is image reconstruction [2] but they also arise naturally in
sparse Hessian recovery [5].

Vaswani and Lu [2] gave a first sufficient condition for
partially sparse recovery. Later, Friedlander et al. [3] proposed
a weaker sufficient condition and covered the extension to the
noisy case. After obtaining our results we were directed to the
work of Jacques [4] who addressed the noisy case, deriving
another sufficient condition for partially sparse recovery. His
conditions guarantee the same recovery as ours but, as far as
we can tell, are not the simple extensions of the NSP and RIP
properties. The conditions in [2], [3], [4] are somewhat weaker
than the known restricted isometry property for general sparse
recovery, which is natural since the case of partial sparsity can
be considered as a case of general sparsity where part of the
support of the solution is known in advance.

The contribution of our paper is to introduce the analogues
of restricted isometry and null space properties for the case
of partial sparsity. We prove that these new properties are
sufficient for partially sparse recovery (including the noisy
case) and are implied by the original conditions of fully sparse
recovery. We show that it is possible to guarantee recovery of
a partially sparse signal using Gaussian random matrices with
the number of measurements an order smaller than the one
necessary for general recovery.

A. Notation

We will use the following notation in this paper. [N ] denotes
the set of integers {1, . . . , N}, and [N ](s) denotes the set of
all subsets of [N ] of cardinality s ≤ N . If A is a matrix,
then by N (A) and R(A) we denote the null and range spaces
of A, respectively. We say that a vector x is s−sparse if at
most s components of x are non-zero. This is also denoted by
‖x‖0 ≤ s. Given v ∈ RN and S ∈ [N ], vS ∈ RN denotes a
vector defined by (vS)i = vi, i ∈ S and (vS)i = 0, i /∈ S.

II. SPARSE RECOVERY IN COMPRESSED SENSING

One of the main questions addressed by Compressed Sens-
ing is under what conditions on the matrix A can every sparse
vector x̄ be recovered by solving problem (2) given A and the
right hand side y = Ax̄. The next definition is a well known
characterization of such matrices (see, e.g., [6], [7]).

Definition 2.1 (Null Space Property): The matrix A ∈
Rk×N is said to satisfy the Null Space Property (NSP) of order
s if, for every v ∈ N (A) \ {0} and for every S ∈ [N ](s),
one has

‖vS‖1 <
1

2
‖v‖1. (4)
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It is well known that NSP is a necessary and sufficient
condition for the recovery of an s-sparse vector x̄ (see [8]).

Theorem 2.1: The matrix A satisfies the Null Space Prop-
erty of order s if and only if, for every s−sparse vector x̄,
problem (2) with y = Ax̄ has an unique solution and it is
given by x = x̄.

It is difficult to analyze whether NSP is satisfied. On the
other hand, the Restricted Isometry Property (RIP), introduced
in [9], is considerably more useful and insightful, although it
provides only sufficient conditions for recovery with (2). We
present below the definition of the RIP Constant.

Definition 2.2 (Restricted Isometry Property Constant):
One says that δs > 0 is the Restricted Isometry Property
Constant, or RIP constant, of order s of the matrix A ∈ Rk×N
if δs is the smallest positive real number such that:

(1− δs) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs) ‖x‖22 (5)

for every s−sparse vector x.
The following theorem (see, e.g., [10]) provides a useful

sufficient condition for successful recovery by (2).
Theorem 2.2: [10] Let A ∈ Rk×N and 2s < k. If δ2s <√
2− 1, where δ2s is the RIP constant of A of order 2s, then,

for every s−sparse vector x̄, problem (2) with y = Ax̄ has an
unique solution and it is given by x = x̄.

It is known that RIP is satisfied with some probability if the
entries of the matrix are randomly generated (see, e.g., [11])
according to some distribution such as a sub-Gaussian. How-
ever, it is in general computationally hard to check whether it
is satisfied by a certain realization matrix [12], and it is still
an open problem to find such matrices deterministically when
the underlying system is highly underdetermined (see [13]).

III. PARTIAL SPARSE RECOVERY

In this section we consider the following extension of the
NSP to the case of partially sparse recovery.

Definition 3.1 (Partial Null Space Property): We say that
A = (A1, A2) satisfies the Null Space Property (NSP) of
order s − r for partially sparse recovery of size N − r with
r ≤ s if A2 is full column rank (N (A2) = {0}) and for
every v1 ∈ RN−r \ {0} such that A1v1 ∈ R(A2) and every
S ∈ [N − r](s−r), we have

‖(v1)S‖1 <
1

2
‖v1‖1. (6)

Note that when r = 0, the partial NSP naturally reduces to
the NSP in Definition 2.1. Wang and Yin [14] have suggested
a stronger NSP adapted to a setting where it is not known the
location of the partial support.

The new property is a necessary and sufficient condition
for any solution of (3) with y = Ax̄ to satisfy x = x̄ if x̄1 is
appropriately sparse.

Theorem 3.1: The matrix A = (A1, A2) satisfies the Null
Space Property of order s − r for Partially Sparse Recovery
of size N − r if and only if for every x̄ = (x̄1, x̄2) such that
x̄1 ∈ RN−r is (s− r)−sparse and x̄2 ∈ Rr, problem (3) with
y = Ax̄ has an unique solution and it is given by (x1, x2) =
(x̄1, x̄2).

Proof: The proof follows the steps of the proof of [8,
Theorem 2.3] with appropriate modifications. Let us assume
first that for any vector (x̄1, x̄2) ∈ RN , where x̄1 is an
(s − r)−sparse vector and x̄2 ∈ Rr, the minimizer (x1, x2)
of ‖x1‖1 subject to A1x1 + A2x2 = Ax̄ satisfies x1 = x̄1.
Consider any v1 6= 0 such that A1v1 ∈ R(A2). Then consider
minimizing ‖x1‖1 subject to A1x1+A2x2 = A1(v1)S+A2v2
for any v2 ∈ Rr and for any S ∈ [N − r](s−r). By
the assumption, the corresponding minimizer (x1, x2) satis-
fies x1 = (v1)S . Since A1v1 ∈ R(A2), there exists u2
such that A1(−(v1)Sc) + A2u2 = A1(v1)S + A2v2. As
−(v1)Sc 6= (v1)S , (−(v1)Sc , u2) is not the minimizer of
‖x1‖1 subject to A1x1 + A2x2 = A1(v1)S + A2v2, hence,
‖(v1)Sc‖1 > ‖(v1)S‖1 and (6) holds.

Let us now assume that A satisfies the NSP of order s−r for
partially sparse recovery of size N − r (Definition 3.1). Then,
given a vector (x̄1, x̄2) ∈ RN , where x̄1 is (s − r)−sparse
and x̄2 ∈ Rr, and a vector (u1, u2) ∈ RN with u1 6= x̄1
and satisfying A1u1 + A2u2 = A1x̄1 + A2x̄2, consider
(v1, v2) = ((x̄1 − u1), (x̄2 − u2)) ∈ N (A), which implies
A1v1 ∈ R(A2) and v1 6= 0. Thus, setting S to be the support
of x̄, one has that

‖x̄1‖1 ≤ ‖x̄1 − (u1)S‖1 + ‖(u1)S‖1

= ‖(v1)S‖1 + ‖(u1)S‖1 < ‖(v1)Sc‖1 + ‖(u1)S‖1

= ‖ − (u1)Sc‖1 + ‖(u1)S‖1 = ‖u1‖1,

(the strict inequality coming from (6)), guaranteeing that all
solutions (x1, x2) of (3) with y = Ax̄ satisfy x1 = x̄1.

It remains to note that x2 = x̄2 is uniquely determined by
solving A2x2 = y − A1x̄1 if and only if A2 is full column
rank.

We now define an extension of the RIP to the partially
sparse recovery setting. For this purpose, let A = (A1, A2)
be as considered above, under the assumption that A2 has full
column rank. Let

P = I −A2

(
A>2 A2

)−1
A>2 (7)

be the matrix of the orthogonal projection from RN onto
R (A2)

⊥
. Then, the problem of recovering (x̄1, x̄2), where

x̄1 is an (s− r)−sparse vector satisfying A1x̄1 + A2x̄2 = y,
can be stated as the problem of recovering an (s− r)−sparse
vector x1 = x̄1 satisfying (PA1)x1 = Py and then recovering
x2 = x̄2 satisfying A2x2 = y − A1x̄1. The solution of the
resulting linear system in the second step exists and is unique
given that A2 has full column rank and (PA1)x̄1 = Py. Note
that the first step is now reduced to the classical setting of
Compressed Sensing. This motivates the following definition
of RIP for partially sparse recovery.

Definition 3.2 (Partial RIP): We say that δrs−r > 0 is the
Partial Restricted Isometry Property Constant of order s − r
of the matrix A = (A1, A2) ∈ Rk×N , for recovery of size
N − r with r ≤ s, if A2 is full column rank and δrs−r is the
RIP constant of order s− r (see Definition 2.2) of the matrix
PA1, where P is given by (7).

Again, when r = 0 the Partial RIP reduces to the RIP
of Definition 2.2. We also note that, given a matrix A =
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(A1, A2) ∈ Rk×N with Partial RIP constant δr2(s−r) of order
2(s−r) for recovery of size N−r, satisfying δr2(s−r) <

√
2−1,

Theorems 2.1 and 2.2, guarantee that PA1 satisfies the NSP
of order s−r. Thus, given x̄ = (x̄1, x̄2) such that x̄1 ∈ RN−r
is (s − r)−sparse and x̄2 ∈ Rr, x̄1 can be recovered by
minimizing the `1-norm of x1 subject to (PA1)x1 = PAx̄
and, recalling that A2 is full-column rank, x2 = x̄2 is uniquely
determined by A2x2 = y − A1x̄1. (In particular, this implies
that A satisfies the NSP of order s − r for partially sparse
recovery of size N − r.)

IV. PARTIALLY SPARSE RECOVERY IMPLIED BY FULLY
SPARSE RECOVERY CONDITIONS

We are now interested in showing that partially sparse
recovery is achievable under the conditions which guarantee
fully sparse recovery. In particular we will show that the
NSP and RIP imply, respectively, the partial NSP and the
partial RIP. We first establish the relationship between the
corresponding null space properties.

Theorem 4.1: If a given matrix A satisfies the NSP of order
s then it satisfies the NSP for partially sparse recovery of order
s− r for any r ≤ s.

Proof: Let A = (A1, A2) satisfy the NSP of order s.
First we note that since r ≤ s, the NSP implies that A2 is full
column rank. Let v1 ∈ RN−r be a non-zero vector such that
A1v1 ∈ R(A2) and let T ∈ [N − r](s−r).

Since there exists v2 such that A1v1 + A2v2 = 0, we have
that v = (v1, v2) ∈ N (A) \ {0}, and therefore by setting S =
T ∪([N ]\ [N−r]) and by using the NSP, ‖(v1)T ‖1+‖v2‖1 =
‖vS‖1 < 1

2‖v‖1 = 1
2‖v1‖1 + 1

2‖v2‖1. Thus, ‖(v1)T ‖1 ≤
‖(v1)T ‖1 + 1

2‖v2‖1 ≤
1
2‖v1‖1, and A satisfies the NSP of

order s− r for partially sparse recovery of size N − r.
Partial RIP is also implied by RIP without the change in

the RIP constant value.
Theorem 4.2: Let δs > 0 and A = (A1, A2) satisfy the

following property: For every (s−r)-sparse vector x1 ∈ RN−r
and x2 ∈ Rr we have

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22, (8)

where x = (x1, x2). Then A satisfies partial RIP of order s−r
with δrs−r = δ for partially sparse recovery of size N − r, for
any r ≤ s.

Proof: First we note that setting x1 = 0 implies that A2 is
full column rank. Consider now any given (s−r)−sparse vec-
tor x1 ∈ RN−r. Now, by setting x2 = −

(
A>2 A2

)−1
A>2 A1x1,

one obtains (1 − δs)‖x1‖22 ≤ (1− δs)
(
‖x1‖22 + ‖x2‖22

)
≤

‖A1x1 +A2x2‖22 = ‖PA1x1‖2. On the other hand, the choice
x2 = 0 provides ‖PA1x1‖22 ≤ ‖A1x1‖22 ≤ (1 + δs) ‖x1‖22.
We have thus arrived at the conditions of Definition 3.2.

Corollary 4.1: Let A = (A1, A2) satisfy the RIP of order
s with the RIP constant δs. Then A satisfies partial RIP of
order s − r with δrs−r = δs for partially sparse recovery of
size N − r, for any r ≤ s.

V. PARTIAL (AND TOTAL) COMPRESSIBILITY RECOVERY
WITH NOISY MEASUREMENTS

In most realistic applications the observed measurement
vector y often contains noise and the true signal vector x̄ is

not sparse but rather compressible, meaning that most com-
ponents are very small but not necessarily zero. It is known,
however, that Compressed Sensing is robust to noise and can
approximately recover compressible vectors. This statement is
formalized in the following theorem taken from [10].

Theorem 5.1: Assume that the matrix A ∈ Rk×N satisfies
RIP with the RIP constant δ2s such that δ2s <

√
2− 1. For

any x̄ ∈ RN , let noisy measurements y = Ax̄ + ε be given
satisfying ‖ε‖2 ≤ η. Let x# be a solution of

min
x∈RN

‖x‖1 s.t. ‖Ax− y‖2 ≤ η. (9)

Then
‖x# − x̄‖2 ≤ cη + d

σs(x̄)1√
s

, (10)

for constants c, d only depending on the RIP constant, and
where σs(x̄)1 = minx: ‖x‖0≤s ‖x− x̄‖1.

The following theorem provides an analogous result for the
partially sparse recovery setting introduced in Section III.

Theorem 5.2: Assume that the matrix A = (A1, A2) ∈
Rk×N satisfies partial RIP of order 2(s − r) for recovery of
size N − r with the RIP constant δr2(s−r) <

√
2− 1. For any

x̄ = (x̄1, x̄2) ∈ RN , let noisy measurements y = Ax̄ + ε be
given satisfying ‖ε‖2 ≤ η. Let x∗ = (x∗1, x

∗
2) be a solution of

min
x=(x1,x2)∈RN

‖x1‖1 s.t. ‖Ax− y‖2 ≤ η. (11)

Then
‖x∗1 − x̄1‖2 ≤ cη + d

σs−r(x̄1)1√
s− r

, (12)

and

‖x∗2 − x̄2‖2 ≤ C2

(
2η + C1

(
cη + d

σs−r(x̄1)1√
s− r

))
, (13)

for constants c, d only depending on δr2(s−r), and where C1

and C2 are given by C1 = ‖A1‖2, and C2 = ‖A†2‖2, (Since
A2 is full column rank recall that A†2 = (A>2 A2)−1A>2 and
C2 > 0.)

Proof: From Theorem 4.2, the matrix PA1, where P is
given by (7), satisfies the condition of Theorem 5.1. Thus,
since P is a projection matrix, ‖PA1x̄1 − Py‖ = ‖PAx̄ −
Py‖ ≤ ‖Ax̄− y‖ ≤ η, and a solution x#1 of

min
x1∈RN−r

‖x1‖1 s.t. ‖PA1x1 − Py‖2 ≤ η, (14)

satisfies
‖x#1 − x̄1‖2 ≤ cη + d

σs−r(x1)1√
s− r

. (15)

Now, we will prove that the solutions of problems (11)
and (14) coincide in their x1 parts, completing thus the proof
of (12). Let (x∗1, x

∗
2) be a feasible point of (11). Again, since

P is a projection matrix, we obtain that

‖PA1x
∗
1 − Py‖2 = ‖P(A1x

∗
1 +A2x

∗
2 − y)‖2

≤ ‖A1x
∗
1 +A2x

∗
2 − y‖2 ≤ η,

which proves that x∗1 is a feasible point of (14). Now let x#1
be a feasible point of (14). Since I−P projects (orthogonally)
onto the column space of A2 there must exist an x#2 such that
A2x

#
2 = (I−P)(y−A1x

#
1 ), and then ‖A1x

#
1 +A2x

#
2 −y‖2 =
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‖PA1x
#
1 − Py‖2 ≤ η. Therefore (x#1 , x

#
2 ) is a feasible

point of (11). Hence we have proved that, any solution of
problem (11) is also a solution of problem (14), and the
inequality (12) results directly from (15).

We now use this inequality to bound the error on the
reconstruction of x̄2. Since both x̄ and x∗ satisfy the mea-
surements constraints ‖Ax− y‖2 ≤ η we have that ‖A1(x̄∗1 −
x1) + A2(x̄∗2 − x2)‖2 ≤ 2η, and thus ‖A2(x∗2 − x̄2)‖2 ≤
2η + ‖A1(x∗1 − x̄1)‖2. Using the definitions of C1 and C2

we have ‖x∗2 − x̄2‖2 ≤ C2 (2η + C1‖x∗1 − x̄1‖2), and the
result (13) follows from bounding ‖x∗1 − x̄1‖2 by (12) in this
last inequality.

The condition on the matrix A imposed in the previous
theorem involved only its partial RIP constant. In the next
proposition we describe how one can bound the constants C1

and C2 in terms of the RIP constant of A (the proof is simple
and is omitted, see also [15]).

Proposition 5.1: Consider the RIP constant δs of order s
of A = (A1, A2) ∈ Rk×N . The constants C1 and C2 of
Theorem 5.2 satisfy C1 ≤

√
1 + δs and C2 ≤ 1√

1−δs
.

VI. MATRICES WITH PARTIAL RIP
In this section we investigate regimes of N , s, and k for

which random Gaussian matrices satisfy partial RIP. Similar
results can be obtained for other families of random matrices,
like sub-Gaussian or Bernoulli matrices.

Theorem 6.1: Let 0 < δ < 1 and r ≤ s. Let A = (A1, A2)
with A1 ∈ Rk×(N−r) and A2 ∈ Rk×r have independent
Gaussian entries with variance 1/k. Then, as long as

k >
2× 48

3δ2 − δ3

(
(s− r) log

(
N − r
s− r

e

)
+ s log

(
12

δ

))
, (16)

A = (A1, A2) satisfies partial RIP of order s − r with
δrs−r ≤ δ for partially sparse recovery of size N − r, with
high probability.

Proof: Given a particular sparsity pattern, the probability
that (8) does not hold is (see [11, Lemma 5.1])

≤ 2 (12/δ)
s
e
−
(
δ2

16−
δ3

48

)
k
.

There are
(
N−r
s−r

)
≤

(
N−r
s−r e

)s−r
different sparsity patterns

(see, e.g., [11]). Let P denote the probability that A =
(A1, A2) does not satisfy the partial RIP of order s− r with
δrs−r = δ for partially sparse recovery of size N−r. For this to
happen, (8) has to fail for at least one sparsity pattern, setting
β = δ2

16 −
δ3

48 and using a union bound

P ≤ e(s−r) log(
N−r
s−r e)2

(
12

δ

)s
e−βk

≤ 2e((s−r) log(
N−r
s−r e)+s log(

12
δ )−βk)

≤ 2e−β[k− 1
β ((s−r) log(N−r

s−r e)+s log(
12
δ ))]

≤ 2e−[(s−r) log(N−r
s−r e)+s log(

12
δ )],

≤ 2

(
N − r
s− r

e

)−(s−r) (
12

δ

)−s
,

where the second to last inequality was obtained using (16). It
is easy to see that either (e(N − r)/(s− r))−(s−r) or

(
12
δ

)−s
goes to zero polynomially with N , thus P ≤ O

(
N−O(1)

)

Note that the condition (16) can be asymptotically smaller
than the one found in the classical case r = 0. If, e.g., s−r =
O(1) then (16) just requires k = O(s+ log(N − r)) instead
of the classical k = O(s log(N/s)).

VII. CONCLUDING REMARKS

In some applications of Compressed Sensing one may be
interested in a sparse (or compressible) vector whose support
is partially known in advance. In such a setting we show that
one can consider the `1-minimization of the part of the vector
for which the support is not known. We have shown that
such a sparse recovery can be then ensured under conditions
that are potentially weaker than those assumed for the full
approach. We have explored this feature to show that it is
possible to guarantee partial sparse recovery (with Gaussian
random matrices) for an order of measurements below the one
necessary for general recovery.
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