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Abstract. This paper deals with the application of pattern search methods to the numerical
solution of a class of molecular geometry problems with important applications in molecular physics
and chemistry. The goal is to find a configuration of a cluster or a molecule with minimum total
energy.

The minimization problems in this class of geometry molecular problems have no constraints and
the objective function is smooth. The difficulties arise from the existence of several local minima, and
especially, from the expensive function evaluation (total energy) and the possible non-availability of
first-order derivatives.

We introduce a pattern search approach that attempts to exploit the physical nature of the
problem by using energy lowering geometrical transformations and to take advantage of parallelism
without the use of derivatives. Numerical results with a particular instance of this new class of
pattern search methods are presented showing the promise of our approach.

The new pattern search methods can be used in any other context where there is an user-provided
scheme to generate points leading to potential objective function decrease.

Key words. pattern search methods, expensive function evaluations, parallel computing, user-
provided points, molecular geometry, geometrical transformations
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1. Introduction. The motivation behind the study of the geometrical arrange-
ment of atoms in a molecule or cluster is its close relation to their chemical and
physical properties (e.g. optical response). For example, patterns in the structure
of related systems can give a powerful insight to their physical properties. This is
the case, for instance, of atomic clusters of different sizes of a single element, or of
different elements in the same group of the periodic table. In most cases, clear and
unambiguous structural information is difficult to obtain experimentally; theory then
plays a particularly important role.

The stable configurations of atoms in any material can be found by minimization
of the total energy of the system with respect to the atomic positions. The most stable
structure is the one with the lowest total energy. The theoretical procedure can be
seen as two separate problems: obtaining the total energy for a given configuration
and minimizing it with respect to the atomic coordinates. Only the second problem
is to be addressed in this work. There are several geometrically distinct structures
(isomers) (i.e. structures with the same number of atoms but different shapes) for
which the total energy is locally minimized. As some of these can be simultaneously
present in an experiment, it is sometimes desirable not only to find the lowest energy

∗This work was supported by FCT under grant Praxis/P/FIS/14195/1998.
† Departamento de F́ısica da Universidade de Coimbra, 3004-516 Coimbra, Portugal; Centro de

F́ısica Computacional (pedro@teor.fis.uc.pt).
‡ Departamento de F́ısica da Universidade de Coimbra, 3004-516 Coimbra, Portugal; Centro de

F́ısica Computacional (fnog@teor.fis.uc.pt).
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structure but also to find other low-lying local minima. The number of these local
energy minima grows exponentially with the number of atoms, making it hard to find
the lowest energy configuration of a moderately sized cluster or molecule1, even when
using two-body potentials that give rise to smooth energy surfaces. For Lennard-
Jones clusters, it has been found that the number of isomers grows from 2 for a
6-atom cluster to 988 for a 13-atom cluster [14], although realistic potentials yield
less local minima.

With the exception of noble gases, Lennard-Jones potentials provide very unrealis-
tic descriptions of physical systems. We are interested in more realistic approximations
such as the local density plane-wave total energy calculation [18] briefly described in
the Appendix B. The expensive numerical minimization of the total energy calculated
with this method motivated the work reported in this paper.

Methods commonly used to minimize the total energy include simulated anneal-
ing, steepest descent and other gradient based methods, and genetic algorithms. Good
results have been obtained coupling some of these. An example is the so-called
Langevin dynamics method, proposed some years ago by Biswas and Hamann [3].
This minimization method is a combination of simulated annealing and gradient tech-
niques, and has proved to be very efficient for small molecules. The total energy gra-
dient gives the internal forces on the atoms, that can be used to “guide” the annealing
process, i.e., to introduce a bias in the minimization process, turning it into a “smart
simulated annealing”, as the system does not evolve at random. Despite the use of the
gradient, the Langevin dynamics method retains the possibility to move away from
local minima that are not global. But this approach has several drawbacks. On one
hand, it is not by itself parallelizable. On the other hand, it is developed to run for
a given fixed number of iterations, instead of incorporating an autonomous stopping
criterion. Furthermore, the method requires the possibly expensive calculation of the
gradient. Another popular method that combines simulated annealing and gradient
techniques is the method of Car and Parrinello [6] that also shares these numerical
inconvenients.

In many cases, obtaining the gradient of the total energy can be too time con-
suming. Only in the simpler (least accurate) methods of calculating the total energy
of a cluster, the gradient is available at moderate cost. Moreover, there are situa-
tions where the gradient is not available [33]. Therefore, many interesting problems
in physics are being tackled using methods where no calculation of the total energy
gradient is required. Among the methods which do not require the computation of
the gradient are pattern search methods. In this paper, we develop a class of pattern
search methods suited for molecular geometry problems and apply it to sodium clus-
ters to determine the geometry that minimizes the total energy (sodium clusters are
a typical, well known test system in cluster physics). This paper does not address the
local refinement that could be achieved by applying local optimization techniques af-
ter the conformational searching has been applied, in order to identify more precisely
the global optimizer; pattern search methods are used only in the conformational
searching.

Pattern search methods are an instance of direct search methods where the step
directions are not modified at the end of each iteration. Examples of pattern search
methods are the coordinate search with fixed step lengths, evolutionary operation
using factorial designs [5], the original pattern search algorithm of Hookes and Jeeves

1The terms cluster and molecule will be used without any distinction being made between them.
In all cases they should be interpreted as referring simply to a collection of atoms.
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[16], and the multidirectional search algorithm of Dennis and Torczon [10, 28] also
referred to as the parallel direct search (PDS) method. A unified framework for
pattern search methods was proposed by Torczon [29] and improved by Audet and
Dennis [2] (see also the essay [21]). Surveys of other derivative free methods, including
other direct search methods for unconstrained optimization (such as the well-known
Nelder-Mead algorithm [23]) can be found in [8, 27, 30, 32].

The application of pattern search methods to molecular geometry is not new.
Meza and Martinez [22] have compared PDS, genetic algorithms and simulated an-
nealing using Lennard-Jones potentials, concluding that PDS could also be used in
conformational searching, and showing that it performed as well as genetic algorithms
and substantially better than simulated annealing for large molecules. Pattern search
methods have also been combined with evolutionary techniques (see the work by Hart
[12, 13]) and the resulting evolutionary pattern search method compared favourably
against evolutionary algorithms.

This paper is divided as follows. We start in Section 2 by introducing pattern
search methods in a quite general framework. In Section 3 we introduce our new class
of pattern search methods for user-provided points: Section 3.1 presents a family of
positive bases with desirable uniform directionality properties; Section 3.2 combines
the pattern generated by these positive bases with user-provided points and develops
the new class of pattern search methods. The user-provided points computation is
illustrated by introducing geometrical transformations with physical meaning in the
context of molecular geometry (see Appendix A). In Section 4 we show numerical
results with an implementation of our pattern search methods for user-provided points
in molecular geometry problems. Finally, in Section 5 we draw conclusions and present
prospects of future work. In Appendix B we provide a brief description of the total
energy evaluation and comment on its numerical complexity.

This new class of pattern search methods can also be applied to other application
contexts where the user can provide a scheme to compute points that can lead to
an objective function decrease. We have implemented this class of pattern search
methods for general user-provided points as well as for the molecular geometry context
described above. The codes and their documentation can be downloaded from the
web site http://www.mat.uc.pt/∼lnv/psm/. Both versions have been implemented
in Fortran 95. The parallel version uses the parallelization protocol MPI. See [1] for
more details.

2. Pattern search methods and positive bases. We use ‖ · ‖ and 〈·, ·〉 to
represent the Euclidean norm and inner product, respectively. By abuse of notation,
if A is a matrix, a ∈ A means that the vector a is a column of A. It will be also
convenient to assume that [a1 · · · ar] represents, not only the matrix with r columns,
but also, depending on the context, the set of r vectors {a1, . . . , ar}. The identity
matrix is denoted by I and its i-th column by ei. Finally, we write e to represent a
vector of ones with appropriate size.

2.1. Positive bases. We present a few basic properties of positive bases from
the theory of positive linear dependence developed by Davis [9] (see also Lewis and
Torczon [20]). The positive span2 of a set of vectors [v1 · · · vr] is the convex cone

{v ∈ R
n : v = α1v1 + · · · + αrvr, αi ≥ 0, i = 1, . . . , r} .

2Strictly speaking we should have written nonnegative instead of positive, but we decided to
follow the notation in [9], [20]. We also note that by span we mean linear span.
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The set [v1 · · · vr] is said to be positively dependent if one of the vectors is in the
convex cone positively spanned by the remaining vectors, i.e., if one of the vectors is
a positive combination of the others; otherwise the set is positively independent. A
positive basis is a positively independent set whose positive span is R

n. Alternatively,
a positive basis for R

n can be defined as a set of nonzero vectors of R
n whose positive

combinations span R
n, but no proper set does. The following theorem [9] indicates

that a positive spanning set contains at least n + 1 vectors in R
n.

Theorem 2.1. If [v1 · · · vr] positively spans R
n, then it contains a subset with

r − 1 elements that spans R
n.

It can also be shown that a positive basis cannot contain more than 2n elements
[9]. Positive basis with n+1 and 2n elements are referred to as minimal and maximal

positive basis, respectively.
We present now three necessary and sufficient characterizations for a set that

spans R
n to also span R

n positively [9].
Theorem 2.2. Let [v1 · · · vr], with vi 6= 0 for all i ∈ {1, . . . , r}, span R

n. Then

the following are equivalent:

(i) [v1 · · · vr] positively spans for R
n.

(ii) For every i = 1, . . . , r, −vi is in the convex cone positively spanned by the re-

maining r − 1 vectors.

(iii) There exist real scalars α1, . . . , αr with αi > 0, i ∈ {1, . . . , r}, such that
∑r

i=1 αivi = 0.
(iv) For every nonzero vector b ∈ R

n, there exists an index i in {1, . . . , r} for which

b>vi > 0.
The following result provides a simple mechanism for generating different positive

bases. The proof can be found in [20].
Theorem 2.3. Suppose [v1 · · · vr] is a positive basis for R

n and B ∈ R
n×n is a

nonsingular matrix. Then [Bv1 · · ·Bvr] is also a positive basis for R
n.

From Theorems 2.2 and 2.3, we can easily deduce the following corollary:
Corollary 2.1. Let B = [b1 · · · bn] ∈ R

n×n be a nonsingular matrix. Then

[B −
∑n

i=1 bi] is a positive basis for R
n.

A trivial consequence of this corollary is that [I − e] is a positive basis.

2.2. Pattern search methods. We present pattern search methods for uncon-
strained optimization problems of the form

min f(x), x ∈ R
n,

and briefly describe their main convergence properties. Pattern search methods are
iterative methods generating a sequence of iterates {xk}. Given the current iterate xk,
at each iteration k, the next point xk+1 is chosen from a finite number of candidates
on a given mesh Mk. The next iterate, if iteration k is successful, must provide a
decrease on the objective function: f(xk+1) < f(xk).

In order to define the mesh Mk, let us consider a set V of m positive bases. For
convenience, let us abuse notation and also denote by V the matrix whose columns
correspond to the vectors in the m positive bases. The number of columns of V ,
denoted by |V|, is the sum of the number of vectors in all positive bases. The mesh
at iteration k is then defined as

Mk = {xk + ∆kVz : z ∈ W ⊆ Z
|V|}, (2.1)

where ∆k > 0 is the mesh size parameter. Possible choices for W are

W = Z
|V|, W = N

|V|.
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The choice we actually use in our implementation is

W = {nei : n ∈ N, i = 1, . . . , |V|}. (2.2)

The mechanism of pattern search methods is best explained by considering two
phases at every iteration. The first phase, or step, consists of a finite search on the
mesh, with the goal of finding a new iterate that decreases the value of the objective
function at the current iterate. This step, called the search step, is free of any other
rules, as long as it searches only a finite number of points in the mesh. If the search
step is unsuccessful, a second phase or step, called the poll step, is performed around
the current iterate with the goal of decreasing the objective function.

The poll step follows stricter rules and appeals to the concept of a positive basis
described in the previous section. In this step the candidate for a new iterate xk+1 is
chosen in the mesh neighborhood around xk

N (xk) = {xk + ∆kv : for all v ∈ Vk(xk)},

where Vk(xk) is a positive basis chosen from the finite set V of positive bases. This
set V of positive bases is specified a priori, but the choice of each Vk(xk) ∈ V may
depend on k and xk. Note that the poll step also searches points in the mesh since
every column v of any of the positive bases in V is of the form Vz with z = ei for a
given i ∈ {1, . . . , |V|}.

We have now all the ingredients to describe pattern search methods.
Algorithm 2.1 (Pattern search methods).

0. Initialization Choose a rational number τ > 1 and an integer number mmax ≥ 1.
Choose x0 ∈ R

n and ∆0 ∈ R+. Set k = 0.
1. Search step (in current mesh) With the goal of decreasing f(xk), try to ob-

tain xtrial
k+1 by evaluating f at a finite number of points in Mk. If xtrial

k+1 ∈ Mk

is found satisfying f(xtrial
k+1 ) < f(xk), then set xk+1 = xtrial

k+1 , and go to step
3, expanding Mk (search step and iteration are declared successful).

2. Poll step (in mesh neighborhood given by the positive basis) This step
is reached only if the search step is unsuccessful. If f(xk) ≤ f(x) for every x
in the mesh neighborhood N (xk), go to step 4, shrinking Mk (poll step and
iteration are declared unsuccessful). Otherwise, choose a point xk+1 ∈ N (xk)
such that f(xk+1) < f(xk) and go to step 3, expanding Mk (poll step and
iteration are declared successful).

3. Mesh expansion (at successful iterations) Let ∆k+1 = τm
+

k ∆k (with 0 ≤
m+

k ≤ mmax). Increase k by one, and move to step 1 for a new iteration.

4. Mesh reduction (at unsuccessful iterations) Let ∆k+1 = τm
−

k ∆k (with
−mmax ≤ m−

k ≤ −1). Increase k by one, and move to step 1 for a new
iteration.

The search step provides the flexibility for a global search, and influences the
quality of the local minimizer or stationary point found by the method. The poll
step is applied when the search step fails to produce a better point. The poll step
attempts to perform a local search in a mesh neighborhood that, for a sufficient
small mesh parameter ∆k, is guaranteed to provide a function reduction, unless the
current iterate is at a stationary point (a fact that can be inferred by Theorem 2.2.iv
with b = −∇f(xk)). So, if the poll step also fails, the mesh parameter ∆k must be
decreased.

An interesting feature of pattern search methods is the simple way in which
they can be parallelized. The poll step and the search step can be implemented by
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requiring different processors to evaluate the objective function at different points;
their strategies can actually depend on the number of processors available.

Pattern search methods, as described above, share the following convergence re-
sult, provided the following assumption is made on the mesh: each column i of V is
given by Gz̄i, where G ∈ R

n×n is a nonsingular generating matrix and z̄i is an integer
vector in Z

n.
Theorem 2.4. Suppose that the level set L(x0) = {x ∈ R

n : f(x) ≤ f(x0)}
is compact and that f is continuously differentiable in an open set containing L(x0).
Then

lim inf
k−→+∞

‖∇f(xk)‖ = 0,

and there exists at least one limit point x∗ such that ∇f(x∗) = 0.
Furthermore, if limk−→+∞ ∆k = 0, ‖xk+1 −xk‖ ≤ C∆k for some constant C > 0

independent of the iteration counter k, and xk+1 = argminx∈N (xk)f(x) in the poll

step, then

lim
k−→+∞

‖∇f(xk)‖ = 0,

and every limit point x∗ satisfies ∇f(x∗) = 0.
The proof can be found, for instance, in [2, 20, 29].
We note finally that the condition xk+1 = argminx∈N (xk)f(x) can be implemented

in the poll step and that the condition ‖xk+1−xk‖ ≤ C∆k is verified for some positive
constant C if the choice of z in (2.1) is limited to a bounded set.

The results of Theorem 2.4 concern the ability of pattern search methods to con-
verge globally (i.e. from arbitrary points) to local minimizers candidates. We recall,
despite the inexistence of any supporting theory, that there is numerical evidence
about the capability of pattern search methods to compute global minimizers (see the
papers [12, 13, 22] and the numerical experiments reported in this paper).

3. Pattern search methods for user-provided points: Application to
molecular geometry problems. Having described pattern search methods in a
general framework, we turn now to its application to the situation where one would
like to take advantage of an user-provided points calculation, like the one we will
describe in the context of molecular geometry problems. Our goal is to develop a
class of pattern search methods especially tailored to these problems, where each
optimization step is physically meaningful.

We accomplish our intention by identifying a set of geometrical transformations
— the user-provided points — viewed as deformations of the molecular shape with
physical meaning that may provide an energy lowering path. However, as we will see
in Appendix A, these geometrical transformations are dependent on the data of the
current configuration. In other words, they depend on each optimization point xk —
that stores the coordinates of the current configuration — and therefore they cannot
themselves define a pattern and a mesh. (Asymptotically, the dependence would be
on the sequence {xk}, ruining the finiteness property of the pattern matrices.)

As we will see in Section 3.1, we then define a pattern with interesting uniform
directionality properties to fit the geometrical transformation procedure, or any other
user-provided points calculation.

A new trial point for the search step is computed by geometrical transformation
followed by a computation that determines approximately the closest point in the
patterned mesh to the point calculated by geometrical transformation.
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The positive basis needed to define the mesh neighborhood in the poll step is
identified after a point is computed again by a geometrical transformation: among all
the vectors in the set of positive bases, the one that makes the smallest angle with
the vector defined by the current point and the point computed by the geometrical
transformation is identified. This vector in turn identifies the positive basis to be used
in the poll step.

The search and poll steps of this new class of pattern search methods for user-
provided points (e.g. geometrical transformations) are described in Section 3.2.

3.1. Positive bases with uniform angles. We start by introducing the pat-
tern onto which geometrical transformations will be projected. Consider n+1 vectors
v1, . . . , vn+1 in R

n for which all the angles between pairs vi, vj (i 6= j) have the same
amplitude α. Assuming that the n + 1 vectors are normalized, this requirement is
expressed as

a = cos(α) = 〈vi, vj〉, i, j ∈ {1, . . . , n + 1}, i 6= j, (3.1)

where a 6= 1. One can show that a = −1/n: Let us assume, without loss of generality,
that

vn+1 =

n∑

i=1

αivi, (3.2)

for some scalars α1, . . . , αn ∈ R. From (3.1) and (3.2), we obtain:

1 = a

n∑

i=1

αi, (3.3)

a =

n∑

i=1,i6=j

aαi + αj , j = 1, . . . , n. (3.4)

Adding all the rows in (3.4) yields

na = (1 + (n − 1)a)

n∑

i=1

αi. (3.5)

From (3.3) and (3.5) we have that na2 + (1 − n)a − 1 = 0, and thus, since a 6= 1, we
conclude that a = −1/n.

Now we seek a set of n + 1 normalized vectors [v1 · · · vn+1] satisfying property
(3.1) with a = −1/n. Let us first compute v1, . . . , vn, i.e., let us compute a matrix
V = [v1 · · · vn] such that

V >V = A,

where A is the matrix given by

A =











1 −1/n −1/n · · · −1/n
−1/n 1 −1/n · · · −1/n

...
. . .

...
. . .

−1/n −1/n −1/n · · · 1











.
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The matrix A is symmetric and diagonally dominant with positive diagonal entries,
and, therefore, it is positive definite [11]. Thus, we can make use of its eigenvalue
decomposition

A = QΛQ>,

where Q ∈ R
n×n is orthogonal and Λ is a diagonal matrix of order n with positive

diagonal entries. Given this decomposition, one can easily see that a choice for V is
determined by

V = [v1 · · · vn] = QΛ
1
2 Q>. (3.6)

The vector vn+1 is then computed by

vn+1 = −
n∑

i=1

vi. (3.7)

It is obvious that 〈vi, vn+1〉 = −1/n, i = 1, . . . , n, and 〈vn+1, vn+1〉 = 1.
Since V is nonsingular and vn+1 is determined by (3.7), we can apply Corollary

2.1 to establish that [v1 · · · vn+1] is a (minimal) positive basis.
Our goal is now to generate, from the positive basis [v1 · · · vn+1] given by (3.6)-

(3.7), a set of positive bases such that: (i) the overall set of vectors captures the
directionality of R

n as well as possible; (ii) each element of the set is itself a positive
basis satisfying the uniform angle property (3.1) with a = −1/n. First, let us consider
a “rotation” U [e1 · · · en] = [u1 · · ·un] of the coordinate axes [e1 · · · en] given by the a

priori fixed orthogonal matrix U = [u1 · · ·un]. The first positive basis is computed by
U1[v1 · · · vn+1], where U1 is an orthogonal matrix that “rotates” v1 into u1:

U1v1 = u1.

A choice for U1 is the Householder transformation

U1 = I − π−1uu>, u = v1 − u1, π =
1

2
‖u‖2.

The i-th positive basis is then obtained by “rotating” v1 into ui. However, since ui =
Uei and ei = U>ui, there is no need to compute another Householder transformation.
In fact, we easily see that

UP1iU
>U1v1 = ui,

where P1i is the permutation matrix obtained from the identity by interchanging
rows 1 and i. Thus the i-th positive basis is given by Ui[v1 · · · vn+1], where Ui is the
orthogonal matrix

Ui = UP1iU
>U1.

The desired set of positive bases is given by these n positive bases and their corre-
sponding symmetrical counterparts:

V = [ U1[v1 · · · vn+1] · · ·Un[v1 · · · vn+1] −U1[v1 · · · vn+1] · · · −Un[v1 · · · vn+1] ]. (3.8)

The number of positive bases is therefore m = 2n.
The vectors in V are reasonably well distributed by amplitude in R

n. In Fig. 3.1
we depict the mesh (2.1) with the choices of V and W respectively given by (3.8) and
(2.2); the matrix U given above was set to the identity.
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Figure 3.1. Mesh for n = 2. There are 4 uniform positive bases.

3.2. The new pattern search framework. Finally, we combine the procedure
introduced in Section 3.1 with the technique described in Appendix A, and define our
class of pattern search methods for molecular geometry problems. We describe how
the computation of new points (by geometrical transformations) can determine a
pattern search method using, for instance, the pattern described in Section 3.1. The
same ideas can be used in any application where the user has a scheme to provide the
calculation of new points (see also [1]).

The new search and poll steps are described in a parallel environment with Np

processors. We start by showing how the computation of a trial point xtrial
k+1 can be

carried out in the search step.

Search step: computation of xtrial
k+1

For each processor p in {1, . . . , Np}:
1. Compute a trial point ugt

p,k+1 by a geometrical transformation.
2. Solve the integer programming problem

min
z∈W

‖ugt
p,k+1 − (xk + ∆kVz)‖ (3.9)

to determine a point xgt
p,k+1, in Mk, closest to ugt

p,k+1.
3. Set

xtrial
k+1 = argminx

gt

p,k+1

f(xgt
p,k+1) .

Using the mesh (2.1) with the choices of V and W respectively given by (3.8)
and (2.2), as we do in our implementation, the computation of xgt

p,k+1 as the solution
of the integer programming problem (3.9) can be carried out with relatively little
computational effort (see also Fig. 3.2). In fact, it can be easily checked that the
linear algebra cost is of the order of n3, which for small n is relatively low compared
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Figure 3.2. Search step (left) and poll step (right).

to the cost of expensive function evaluations such as the total energy by local density
plane-waves (Appendix B).

In the poll step, the geometrical transformation technique defines the positive
basis Vk(xk), that in turn defines the mesh neighborhood N (xk). The procedure is
described below and depicted in Fig. 3.2.

Poll step: choice of mesh neighborhood N (xk)

1. Compute one trial point xgt
k+1 by a geometrical transformation.

2. Determine vgt
k in V = [ U1[v1 · · · vn+1] · · ·Un[v1 · · · vn+1] − U1[v1 · · · vn+1] · · · −

Un[v1 · · · vn+1] ] such that

〈xgt
k+1 − xk, vgt

k 〉

‖xgt
k+1 − xk‖

= max
v∈V

〈xgt
k+1 − xk, v〉

‖xgt
k+1 − xk‖

3. Set Vk(xk) to the positive basis in V that contains vgt
k , and then set N (xk) =

{xk + ∆kv : for all v ∈ Vk(xk)}.

Poll step: evaluation of f in the mesh neighborhood N (xk)

4. List the points in N (xk) by increasing order of the values of the angles between
xgt

k+1 − xk and the corresponding vectors in Vk(xk).
5. Following the list given above, divided in groups of Np points, start evaluating in

parallel the function f in N (xk).
Stop if a point xk+1 ∈ N (xk) is found such that f(xk+1) < f(xk). In this case
go to step 3, expanding Mk (poll step and iteration are declared successful).
If f(xk) ≤ f(x) for every x in the mesh neighborhood N (xk), go to step 4,
shrinking Mk (poll step and iteration are declared unsuccessful).

Mesh expansions and reductions could also be designed to take advantage of
problem information obtained from geometrical transformations.
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4. Numerical experiments. In order to define a pattern search method for
molecular geometry we need to be more specific about the geometrical transforma-
tions. The simplest geometrical transformations used in our calculations were the
uniform expansions and compressions of the cluster in the plane perpendicular to the
l-axis (Fig. 5.1(b)). These deformations correspond to putting c1 = c2 = 0 in (5.1)
and setting c3 = 1.1 for expansions and c3 = 0.9 for compressions. For the linear
stretches (Fig. 5.1(c)), c3 was set to 1 and c2 = 0.1 or c2 = −0.1 (Fig. 5.1(c), top and
bottom, respectively). The quadratic stretches were done using c3 = 1, c2 = 0, and
c1 = 0.1 (Fig. 5.1(d), top) or c1 = −0.1 (Fig. 5.1(d), bottom). The last deformation
considered was the torsion of the cluster around the l-axis. This torsion was accom-
plished rotating atom α around the l-axis by an angle θ = c2 rα,k

l + c3, with c2 and
c3 chosen so that the topmost atom would be rotated by π/8 clockwise (Fig. 5.1(e),
bottom) or counter-clockwise (Fig. 5.1(e), top).

All the values mentioned above for c1, c2, and c3 were the values used in the poll
step of our pattern search methods. The search step should be much more aggressive
than the poll step as an attempt for global search. To try to accomplish this goal, the
parameters used in the search step were the poll step parameters, scaled by a factor
of 5.

A random rearrangement of the atoms was also considered at every iteration in
an attempt to capture geometries very different from the current one. During the
poll step, these rearrangements consisted in multiplying each coordinate of the atoms
by a random value between 0.9 and 1.1, i.e., whenever a random deformation was
performed, the 3N − 6 coordinates of the cluster were scaled by a set of 3N − 6
random values between 0.9 and 1.1. The random scaling factors used in the search
step were between 0.5 and 1.5.

The mesh used in our implementation is defined by (2.1) with the choices of V
and W respectively given by (3.8) and (2.2). The set of positive bases has m = 2n
uniform positive bases each with n + 1 vectors. To ensure that all deformations are
tried in the search steps, the set of Np deformations used is changed in a consistent
way in consecutive search steps.

The stopping criterion used in our pattern search method followed the one imple-
mented in PDS:

√

2(n − 1)

n

∆k

max{1, ‖xk‖}
≤ 10−2,

where
√

2(n − 1)/n∆k is the length of the longest edge in the simplex defined in the
current poll step by the corresponding uniform positive basis.

We applied our pattern search methods (PSM:MGP) to the minimization of the
total energy of sodium clusters of dimension 4, 8, 16, and 32. The calculation of the
total energy followed the process summarized in Appendix B. Results are given in
Tables 4.1, 4.2, 4.3, and 4.4. We provide results for eight initial points, except for
Na32, for which we present only two initial points. We list in these tables the number
of iterations (iters), the number of total energy function evaluations (fevals), and the
best value of the total energy found (f). The calculations were done in a cluster of 12
2.266 GHz Intel Pentium IV personal computers connected through a switched full-
duplex 100 Mb/s ethernet network, running LINUX, and using the Message Passing
Interface (MPI) as the parallelization protocol. We point out once again that we are
dealing with expensive function evaluations: one evaluation of the total energy for
the Na4 (resp. Na8, Na16, and Na32) cluster took on average 16 (resp. 59, 114, and
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186) seconds of CPU time.

x0 iters fevals f

Na4a 24 397 -1.689
Na4b 38 589 -1.697
Na4c 42 711 -1.685
Na4d 12 193 -1.698
Na4e 16 262 -1.696
Na4f 20 312 -1.697
Na4g 28 444 -1.682
Na4h 52 875 -1.694

Table 4.1
Numerical results obtained by PSM:MGP for Na4. The numbers of processors used was Np = 12.

x0 iters fevals f

Na8a 125 3385 -3.524
Na8b 105 2913 -3.522
Na8c 101 2748 -3.528
Na8d 73 1783 -3.467
Na8e 11 293 -3.504
Na8f 169 4558 -3.521
Na8g 108 2502 -3.489
Na8h 133 3305 -3.515

Table 4.2
Numerical results obtained by PSM:MGP for Na8. The numbers of processors used was Np = 12.

x0 iters fevals f

Na16a 260 11195 -7.119
Na16b 285 11740 -7.147
Na16c 283 12091 -7.135
Na16d 371 15783 -7.159
Na16e 239 10373 -7.136
Na16f 245 10268 -7.143
Na16g 255 10846 -7.122
Na16h 304 13134 -7.138

Table 4.3
Numerical results obtained by PSM:MGP for Na16. The numbers of processors used was Np =

12.

These preliminary results show that the method PSM:MGP is able to find a
configuration nearly optimal for a significant number of initial points. The optimal
value is approximately −1.698 for the Na4 cluster and −3.534 for the Na8 cluster,
but these values are only attained after applying a local optimization code. The Na16
and Na32 cluster geometries are not well-established.
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x0 iters fevals f

Na32a 462 33417 -14.558
Na32b 477 34509 -14.580

Table 4.4
Numerical results obtained by PSM:MGP for Na32. The numbers of processors used was Np =

12.

8 16 32 64
n

10
2

10
3

10
4

10
5

fe
va

ls

Figure 4.1. Scaling of the average number of function evaluations (fevals) with the number
of variables (n). Dashed line is a fit of a power law, fevals = AnB , to the data (A = 27.336 and
B = 1.5977).

Due to limited access to our cluster we are unable to provide the full results for
Na32. We were only able to finish two of the runs, for two given initial configurations,
which terminated with 33417 and 33509 function evaluations, respectively. We used
this information, however, in a derivation of an estimate for the rate of growth in
the number of (average) function evaluations in terms of the number of variables
n = 3N − 6. The number of function evaluations (fevals) seems to grow with n under
a rate slower than quadratic (fevals ≈ n1.6). A fit of log(fevals) to A + B log n has
given A = 27.336 and B = 1.5977 and the least squares regression error was 0.008322
(see Fig. 4.1).

For the sake of comparison with other methods, we ran PSM:MGP and PDS
for another set of initial configurations for Na4 and Na8. These calculations were
done in a different computer system (a cluster of 24 DIGITAL/Compaq Alpha 500au
Personal Workstations connected through a switched full-duplex 100 Mb/s ethernet
network, running DIGITAL UNIX, and using the Message Passing Interface (MPI)
as the parallelization protocol) and with different parameters for the plane-wave code
(corresponding to a different version of the application code, slower due to the use
of a more accurate model for the electron-ion interactions). As a result, the total
energy values presented now are not comparable to the ones reported above. A
simple comparison of the total energy values obtained with both methods shows that
the comparison between PDS and PSM:MGP is mildly favorable to the latter, as we
indicated in the last column of Tables 4.5 and 4.6 (in one instance the values of the
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objective function coincided and we used as a second criterion the number of function
evaluations). Both PDS and PSM:MGP were able to find, for the Na8 cluster, the
two best known local minimizers for different starting configurations.

We point out that the implementation of PSM:MGP used in these computations
is far from being exhaustively tuned. We did not play with the code to try to come up
with the best strategies (geometrical transformations, etc.) and with the best values
for the different parameters. We expect that a method like PSM:MGP has plenty of
room for improvement.

PDS PSM:MGP
x0 iters fevals f iters fevals f best

Na4i 26 324 -2.58191 28 533 -2.58251 PSM:MGP
Na4j 9 120 -2.58751 18 343 -2.58772 PSM:MGP
Na4k 6 84 -2.58920 4 77 -2.58868 PDS
Na4l 7 96 -2.58860 4 77 -2.58862 PSM:MGP
Na4m 25 312 -2.58098 32 609 -2.57487 PDS

Table 4.5
Numerical results obtained by PDS (with 12 pattern points) and PSM:MGP for Na4. The

computation of the total energy was carried out differently than the one reported in Tables 1-4. The
numbers of processors used was Np = 12.

PDS PSM:MGP
x0 iters fevals f iters fevals f best

Na8i 31 1135 -5.25543 35 868 -5.23153 PDS
Na8j 5 199 -5.31805 3 88 -5.31805 PSM:MGP
Na8k 24 883 -5.30026 58 1546 -5.31268 PSM:MGP
Na8l 3 118 -1.27962 3 88 -5.31022 PSM:MGP

Table 4.6
Numerical results obtained by PDS (with 36 pattern points) and PSM:MGP for Na8. The

computation of the total energy was carried out differently than the one reported in Tables 1-4. The
numbers of processors used was Np = 10.

5. Conclusions and future work. We designed a class of pattern search meth-
ods for molecular geometry by taking advantage of physically meaningful energy low-
ering geometrical transformations, and by combining them with appropriate patterns
for minimization purposes. The preliminary numerical results obtained with a par-
ticular pattern search method in the class have indicated that this approach could
lead to very promising algorithms for molecular geometry. We hope to obtain better
numerical results by considering more elaborate search steps. In fact, our approach
has the flexibility to incorporate several types of global optimization algorithms in
the search step to enhance the selection of the geometrical transformations and their
defining values. We have in mind, for instance, the use of evolutionary algorithms like
evolutionary programming or evolutionary strategies.

The new pattern search methods can be used in any other context where there
is a user-provided scheme to generate points leading to potential objective function
decrease.
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We plan to apply our pattern search methods to the total energy minimization
of other clusters and to develop analogues of this approach in other molecular geom-
etry contexts. We also plan to investigate patterns with similar interesting uniform
directionality properties.

Appendix A. The current point xk in the optimization process stores the atomic
positions rα,k

i of a set of N atoms, where k denotes the iteration counter and rα
i is the

i-th coordinate of atom α (i = 1, 2, 3). The set of atomic positions specifies not only
the shape of the system of atoms but also its location and orientation in space. Since
shapes that result from translations or rotations about a fixed point have the same
energy, there are six redundant coordinates in a molecular geometry optimization
process. Three of these refer to the location of the set of atoms with a certain shape
in space and the other three are the angles that define the orientation of this set with
respect to some fixed three-dimensional reference frame. The easiest way to get rid of
these additional degrees of freedom is to fix one of the atoms at the origin of a three-
dimensional reference frame, to keep another atom on one of the axis of this frame (the
x-axis, for example), and to force a third atom to move only on a plane containing the
above mentioned axis (the xy-plane, for example). These restrictions do not introduce
constraints in shape space, they merely exclude atomic configurations representing the
same system translated and/or rotated in space. Without loss of generality, the three
constrained atoms are chosen to be atoms N , N − 1, and N − 2. The vector xk can
then be related to the atomic positions, rα,k

i , in the following way:

xk =



















r1,k
1

r1,k
2

r1,k
3

r2,k
1
...

rN−3,k
3

rN−2,k
1

rN−2,k
2

rN−1,k
1



















.

The corresponding “constraints” are:

rN−2,k
3 = rN−1,k

2 = rN−1,k
3 = rN,k

i = 0, i = 1, 2, 3.

An optimization step, xk → xk+1, can be viewed as a deformation of the molec-
ular shape described by xk . This deformation may not have any physical meaning,
corresponding simply to a random rearrangement of the atoms. The space spanned
by an algorithm where only this type of moves is present is unrelated to shape space,
i.e., a given path in this space is not related in a simple way to a shape space path, a
path where the molecule undergoes a recognizable shape transformation. Physically
meaningful deformations (as, for example, a simple uniform compression or expansion
of the molecule), i.e., paths in shape space, are expected to be closer to (total energy)
downhill directions than simple paths in xk-space. In fact, a path in shape space will
in general correspond to a non-trivial path in xk-space that can even connect very
distant xk-space points.

A simple way to introduce physically meaningful and energy lowering deforma-
tions of a given molecule or cluster is to consider just stretches and twists along
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some direction. An obvious choice for the directions along which the cluster is to be
stretched or twisted is its principal axes system3. In order to deform the molecule in
this way it is necessary to refer the atomic positions to the principal axes system:

r̄α,k
i =

3∑

j=1

R
(k)
ij rα,k

j ,

where R(k) is the rotation to the principal axes system. The deformations of the
molecule can then be written as

r̄α,k+1
i =

3∑

j=1

εα,k
ij r̄α,k

j

or, returning to the non-principal axes system, as

rα,k+1
i =

3∑

j,l,m=1

R
(k)−1
ij εα,k

jl R
(k)
lm rα,k

m .

Alternatively, using matrix notation, we can write

rα,k+1 = R(k)−1εα,kR(k) rα,k.

The form for the deformations assumed above is very broad. Some simple and
physically meaningful particular forms can be written simply as:

εα,k
ij =

[(

c1

(

r̄α,k
l

)2

+ c2 r̄α,k
l + c3 − 1

)

(1 − δjl) + 1

]

δij (5.1)

where l ∈ {1, 2, 3} is the label of the principal axes about which the transformations
are made. The effect of these transformations is simply to put the atoms closer or
farther from the principal axis l (see Figs. 5.1(a)–5.1(d)).

Another physically meaningful deformation that can be considered is a torsion of
the molecule around some axis (Fig. 5.1(e)), in a way that forces different parts of the
molecule to be rotated around that axis with different angles:

εα,k = Rêl
(θ(r̄α,k

l )). (5.2)

The axis l ∈ {1, 2, 3} is the torsion axis and Rêl
(θ) is a rotation by an angle θ around

that axis. For example:

Rê3
(θ) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

3The principal or inertial axes system of a given molecule is the set of eigenvectors of the matrix

Iij =

N
X

α=1

mα

`

‖rα‖2δij − rα
i rα

j

´

,

where δij is the Kronecker tensor and mα is the mass of atom α. For convenience, we choose a
reference frame whose origin is the center of mass of the molecule, i.e., where the atomic coordinates
satisfy the relation

PN
α=1

mαrα = 0.
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The angle θ must be a function of the l-coordinate of each atom (a quadratic function

of rα,k
l , for example). Contrary to the previous forms, this type of deformation can

break any axial symmetry that the molecule at iteration k might possess.

As we said before, the geometrical transformations (5.1) are performed with the
center of mass of the cluster at the origin of the r̄α,k coordinates. Thus, an atom
sitting on the plane containing the center of mass and perpendicular to the l-axis of
this system of coordinates — in turn of which these geometrical transformations are
performed — would remain unaffected by most deformations (see Figs. 5.1(c)–5.1(e)).
The exceptions are the uniform expansions and compressions (see Fig. 5.1(b)).

(a)
(b) (c) (d)

(e)

Figure 5.1. Simple example of the deformations (5.1) and (5.2). In Fig. 5.1(b), the reference
molecule (Fig. 5.1(a)) is expanded sideways, which corresponds to setting c1 = c2 = 0, c3 6= 0
in (5.1). The parameter c3 can be greater (top) or lower (bottom) than 1. Putting c2 6= 0 results
in deformations similar to Fig. 5.1(c) (with c2 positive — top — or negative — bottom), while the
use of a full quadratic form gives rise to deformations like Fig. 5.1(d) (with c1 positive — top —

or negative — bottom). (In this example, θ = c2 r
α,k

l
+ c3, with c2 positive — top — or negative —

bottom.) Fig. 5.1(e) is an example of the deformations that can be achieved with (5.2). In all these
examples, the l-axis is the vertical axis.

A set of new coordinates rα,k+1
i computed by geometrical transformation from
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the previous coordinates rα,k
i (stored in xk) can then be used as a trial point xgt

k+1 for
the search and poll steps of the k + 1 pattern search iteration.

Appendix B. We will provide a brief description of the main issues in local
density plane-wave total energy calculation [18]. The Hamiltonian H of an N -electron
system with M nuclei of charge ZI and mass mI can be written as

H(r1, . . . , rN , R1, . . . , RM ) =
N∑

i=1

p2
i

2
+

M∑

I=1

P2
I

2mI

−

N,M
∑

i,I=1

ZI

|ri − RI |
+

+

N∑

i,j=1
i<j

1

|ri − rj |
+

M∑

I,J=1
I<J

ZIZJ

|RI − RJ |
,

where ri and RI are the coordinates of the electrons and of the atomic nuclei, and
pi and PI are their linear momenta. (Spin was not considered for simplicity; atomic
units are used throughout the calculations.)

By solving the time-independent Schrödinger equation

HΨ = EΨ,

one obtains the set of eigenvalues (energies, E) and eigenvectors (wavefunctions, Ψ) of
the system. This equation gives a good description of non-relativistic many-electron
systems subject to electric fields produced by atomic nuclei, like atoms, molecules,
and solids. However, this equation is in general unsolvable. If the mass difference be-
tween electrons and nuclei is taken into account [4], the time-independent Schrödinger
equation can be separated in two equations: one for the electrons







N∑

i=1

p2
i

2
−

N,M
∑

i,I=1

ZI

|ri − RI |
+

N∑

i,j=1
i<j

1

|ri − rj |
+ Enn







Ψ(r1, . . . , rN ; R1, . . . , RM ) =

= E(R1, . . . , RM ) Ψ(r1, . . . , rN ; R1, . . . , RM ), (5.3)

where

Enn =

M∑

I,J=1
I<J

ZIZJ

|RI − RJ |
,

and another for the nuclei, of no interest in this context.
In (5.3), the nuclear coordinates Ri are just parameters, and the electronic wave-

functions and eigenvalues are different for each arrangement of nuclei. In order to
find the lowest energy state of the system (the ground state), one can solve (5.3) for
a given set of nuclear coordinates, and assume that E(R1, . . . , RM ) is a function of
the nuclear coordinates to be subsequently minimized.

Hohenberg and Kohn [15] proved a theorem that legitimizes the use of the elec-
tronic density

ρ(r) = N

∫

|Ψ(r, r2, . . . , rN )|2 dr2 . . . drN ,
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as fundamental variable, instead of the wavefunction Ψ(r1, . . . , rN ). The theorem
states that any observable (e.g., the energy) is a functional of the ground state den-
sity. In particular, the ground state energy functional of an N -electron system in an
external potential vext(r) (representing the interaction of the nuclei with the electrons,
for example) can be written as

Evext
[ρ] = FHK[ρ] +

∫

ρ(r)vext(r)dr + Enn,

where FHK[ρ] is an universal functional, i.e., a functional that does not depend on the
external potential. Therefore, FHK[ρ] is the same for atoms, molecules, and solids.
The ground state is obtained through the variational principle:

E∗ = min
{ρ}

Evext
[ρ], (5.4)

and the variational search is performed over all the admissible electronic densities.
A good approximation to the functional FHK[ρ] was suggested by Kohn and

Sham [19]. Their main hypothesis is that, for each interacting ground state den-
sity ρ(r), there exists a non-interacting electron system with the same ground state
density. The Kohn-Sham FHK[ρ(r)] functional is

FHK[ρ(r)] = −
1

2

N∑

i=1

∫

φ∗
i (r)∇

2φi(r)dr +
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Exc[ρ(r)],

with

N∑

i=1

|φi(r)|
2

= ρ(r). (5.5)

Exc[ρ(r)] is the so-called exchange and correlation functional, for which many approx-
imations exist [7, 24, 25].

The ground state is obtained solving the Euler-Lagrange equation that results
from the minimization (5.4):

[

−
1

2
∇2 + vext(r) +

∫
ρ(r)

|r − r′|
dr′ +

δExc [ρ(r)]

δρ(r)

]

φi(r) = εiφi(r), (5.6)

and the total energy of the system is therefore:

EKS[ρ(r)] = −
1

2

N∑

i=1

∫

φ∗
i (r)∇

2φi(r)dr +
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2+

+ Exc[ρ(r)] +

∫

ρ(r)vext(r)dr + Enn.

The coupled nonlinear equations (5.5)-(5.6) are the so-called Kohn-Sham equations.
To calculate the total energy of solids, a plane-wave expansion of the Kohn-Sham

wavefunctions is very useful, as it takes advantage of the translation symmetry of
the crystal [17, 18, 26]. For finite systems, such as atoms, molecules, and clusters,
plane waves can also be used in a supercell approach. In the supercell method, the
finite system is placed in a unit cell of a fictitious crystal, and this cell is made large
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enough to avoid interactions between neighboring cells. However, for finite systems
a very large number of plane waves is needed as the electronic density spans only
a small fraction of the total volume of the supercell. The plane-wave expansion of
the wavefunctions amounts simply to Fourier transforming them and all the other
quantities involved in the Kohn-Sham equations, thereby converting the differential
equation (5.6) into a matrix diagonalization problem. For finite systems, as many
plane waves are needed, this matrix is very large, of the order of hundreds for small
clusters.

But even for extended systems, many plane waves may be needed. The valence
wavefunctions of the large ZI atoms oscillate strongly in the vicinity of the atomic
core, due to the orthogonalization to the inner electronic wavefunctions. To describe
these oscillations a large number of plane waves is required, making even more difficult
the calculation of the total energy. But the inner electrons are almost inert and are
not significantly involved in bonding. This makes possible the description of an atom
based solely on its valence electrons, which feel an effective potential that includes
both the nuclear attraction and the repulsion of the inner electrons. This technique
is the so-called pseudopotential approximation. In this work, we used the Troullier-
Martins pseudopotential [31].

Although the pseudopotential approximation reduces its computational burden,
the calculation of the total energy of a given system in the manner outlined above is
still a very demanding task. One can deal with systems with at most a few hundred
atoms. There are other methods that are significantly faster, allowing the calculation
of the total energy of systems consisting of thousands of atoms. But these methods
are much less accurate than the density functional method presented above. There
are also some methods more accurate than this one, but they are significantly harder,
prohibiting the simulation of systems with more than a few atoms.
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