
Optimizing Radial Basis Functions by
D.C. Programming and its use in Direct Search for

Global Derivative-Free Optimization

Le Thi Hoai An∗ A. I. F. Vaz† L. N. Vicente‡

March 8, 2011

Abstract
In this paper we address the global optimization of functions subject to bound and

linear constraints without using derivatives of the objective function. We investigate
the use of derivative-free models based on radial basis functions (RBFs) in the search
step of direct-search methods of directional type. We also study the application of
algorithms based on difference of convex (d.c.) functions programming to solve the
resulting subproblems which consist of the minimization of the RBF models subject
to simple bounds on the variables. Extensive numerical results are reported with a
test set of bound and linearly constrained problems.

Keywords: Global optimization, derivative-free optimization, direct-search meth-
ods, search step, radial basis functions, d.c. programming, DCA.

1 Introduction

We are interested in solving optimization problems of the form

min
x∈Rn

f(x) s.t. x ∈ Ω,

without using derivatives of the function f and when the feasible set Ω is a polyhedron. We
will consider in more detail the case where Ω is solely defined by lower and upper bounds
on the variables

Ω = {x ∈ Rn : ` ≤ x ≤ u} . (1)

∗Laboratory of Theoretical and Applied Computer Science (LITA EA 3097), Paul Verlaine University,
Metz, Ile du Saulcy, 57045 Metz, France (lethi@univ-metz.fr).

†Department of Systems and Production, University of Minho, Campus de Gualtar, 4710-057, Portugal
(aivaz@dps.uminho.pt). Support for this author was provided by Algoritmi Research Center.

‡CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portu-
gal (lnv@mat.uc.pt). Support for this author was provided by FCT under research grants
PTDC/MAT/64838/2006 and PTDC/MAT/098214/2008.

1



In (1) the inequalities ` ≤ x ≤ u are posed componentwise and ` ∈ (−∞, R)n, u ∈
(R, +∞)n, and ` < u.

Our approach to address this type of problems is to incorporate the minimization of a
radial basis functions (RBF) model in the search step of direct-search methods of directional
type. This class of methods has been extensively studied in the literature (see the survey
paper by Kolda, Lewis, and Torczon [18] or Chapter 7 of the book by Conn, Scheinberg,
and Vicente [6]). Under appropriate assumptions they guarantee global convergence to
stationary points. Their ability to find global minima depends on the incorporation of
methods or heuristics for global optimization in their so-called search step. Two illustrative
examples of such hybridizations are the approaches of Vaz and Vicente [33, 34], where
a population-based heuristic was applied or, more recently, the approach of Griffin and
Kolda [10], where DIRECT [15] was the chosen global optimization method.

On the other hand, models based on RBFs have been shown to be of interest for global
optimization. In fact, derivative-free global optimization methods based on radial basis
functions have been proposed by several authors (see the references [5, 11, 16] and the
sequence of papers by Regis and Shoemaker [28, 29, 30, 31] which includes extensions to
the constrained and parallel cases).

The overall direct-search algorithmic structure chosen for this paper is simple, but
relatively efficient and robust as we will show by reporting extensive numerical experiments.
In every iteration of direct search, we attempt to form an RBF model with as many points
as possible and then to minimize it in the intersection of Ω with a trust region whose
radius is proportional to the direct-search step size. We choose an `∞-shape trust region
so that, in the case where Ω is given by (1), this intersection is still a box-constrained
set. When Ω is defined by linear constraints not of the simple bound type, we apply an
approximation procedure so that we still consider subproblems formed by the minimization
of RBFs subject to box constraints. Our main conclusion is that a direct-search method
with an RBF model minimization in the search step offers a good compromise between
global optimization and computational effort (i.e., number of function evaluations) as long
as relatively more than n + 1 points are used in the corresponding sampling process.

RBFs seem to offer a number of natural ways into which can be decomposed as a
difference of two convex functions. In this paper, we will introduce two of such d.c. de-
compositions and adapt the d.c. algorithm (DCA) of [4] to both. The most efficient one is
used to solve the subproblems which arise in the search step of the direct-search methods
under consideration.

The structure of the paper is as follows. In Sections 2 and 3, we present some back-
ground material on radial basis functions and d.c. programming, respectively. The applica-
tion of the DCA to the minimization of RBFs within simple bounds is studied in Section 4.
The use of RBFs in the context of search steps of direct search is formally described in
Section 5.

We then pause in Section 6 to describe our testing environment (test problems and
forms of reporting the results). The numerical results are presented in two different sec-
tions. Numerical results for the different versions of the DCA algorithm when applied
to minimize RBF models are shown in Section 7. We then provide extensive numerical

2



results involving the derivative-free solution of bound and linearly constrained problems
in Section 8, comparing the use of RBF model minimization in direct search to other
direct-search approaches. We conclude the paper in Section 9 with some final remarks.

2 Radial basis functions for optimization

In order to interpolate a function f whose values on a set Y = {y1, . . . , ynp} ⊂ Rn are
known, one can use a radial basis functions (RBF) model of the form

m(x) =

np∑
i=1

λiφ(‖x− yi‖), (2)

where φ(‖ · ‖), with φ : R+ → R, is a radial basis function and λ1, . . . , λnp ∈ R are
parameters to be determined.

For m(x) to be twice continuously differentiable, the function φ(x) must be both twice
continuously differentiable and have a derivative that vanishes at the origin. The cubic
RBF, defined by φ(r) = r3, is among the most popular (twice continuously differentiable)
radial basis functions, and has been frequently used for optimization purposes. Other
popular RBFs, also twice continuously differentiable, are the Gaussian, the multiquadric,
and the inverse multiquadric.

The term radial basis comes from the fact that φ(‖x‖) is constant on any sphere centered
at the origin in Rn. In many applications, it is desirable that the linear space spanned by
the basis functions include constant or linear functions. Thus, it turns out to be useful to
augment the radial basis function model in (2) by a low-order polynomial tail

∑q
j=0 γjpj(x),

where pj, j = 0, . . . , q, are some basis functions for the polynomial and γ0, . . . , γq ∈ R. The
new model is now of the form

m(x) =

np∑
i=1

λiφ(‖x− yi‖) +

q∑
j=0

γjpj(x).

Furthermore, the coefficients λ’s are required to satisfy

np∑
i=1

λipj(y
i) = 0, j = 0, . . . , q.

These, in conjunction with the interpolation conditions m(yi) = f(yi), i = 1, . . . , np, give
the linear system [

Φ P
P> 0

] [
λ
γ

]
=

[
f(Y )

0

]
, (3)

where Φij = φ(‖yi − yj‖) for i, j ∈ {1, . . . , np}, Pij = pj(y
i) for i ∈ {1, . . . , np}, j ∈

{0, . . . , q}, and f(Y ) is the vector formed by the values f(y1), . . . , f(ynp).

3



The polynomial tails most frequently used in the context of RBFs are linear, and we
will write t(x) = c + g>x and

m(x) =

np∑
i=1

λiφ(‖x− yi‖) + t(x). (4)

This model has np +n+1 parameters, np for the radial basis terms and n+1 for the linear
polynomial terms. However, when the number of points is n + 1 (or less), the solution
of the interpolation system gives rise to a linear polynomial, since all the parameters λi,
i = 1, . . . , np, are zero (see the second block equation in (3)). Consequently, the simplest
nonlinear model m(x) of the form (4) is based on n+2 interpolation points (and has 2n+3
parameters).

We follow the approach by Oeuvray and Bierlaire [25, 26] and Wild, Regis, and Shoe-
maker [35, 36] for derivative-free optimization by using cubic radial basis functions and
linear polynomial tails:

m(x) =

np∑
i=1

λi‖x− yi‖3 + t(x). (5)

3 A brief review of d.c. programming

D.C. programming addresses the problem of minimizing a function f which is a difference
of convex functions on the whole space Rn or on a convex set C ⊂ Rn. Generally speaking,
a d.c. program takes the form

β = inf{f(x) = g(x)− h(x) : x ∈ IRn}, (Pdc)

where g and h are in the set Γ0(IR
n) of all lower semicontinuous proper convex functions

in Rn. Such a function f is called a d.c. function and g−h the d.c. decomposition of f , while
g and h are the d.c. components of f. The convex constraint x ∈ C can be incorporated
in the objective function of (Pdc) by using the indicator function on C denoted χC which
is defined by χC(x) = 0 if x ∈ C and by +∞ otherwise.

D.C. programming is one of the most relevant tools in nonsmooth nonconvex program-
ming and global optimization. D.C. algorithms (DCA) were introduced by Pham Dinh Tao
(see [7]) in their preliminary form in 1985 and have been extensively developed since 1994
by Le Thi Hoai An and Pham Dinh Tao, see [2, 3, 4] and the references therein. DCA have
been successfully applied to many large-scale (smooth or nonsmooth) nonconvex programs
in different fields of applied sciences for which they often give global solutions.

Recall that, for θ ∈ Γ0(IR
n) and x̄ ∈ dom θ = {x ∈ Rn : θ(x̄) < +∞}, the subdifferential

∂θ(x̄) of θ at x̄ is defined as

∂θ(x̄) = {y ∈ IRn : θ(x) ≥ θ(x̄) + (x− x̄)>y, ∀x ∈ IRn}.

A point x∗ is critical or stationary for the minimization of g − h when

∂h(x∗) ∩ ∂g(x∗) 6= ∅.

4



Let g∗(y) := sup{x>y − g(x) : x ∈ Rn} be the conjugate function of g. Then, the
following program is called the dual program of (Pdc):

βD = inf{h∗(y)− g∗(y) : y ∈ Rn}. (Ddc)

One can prove that β = βD, (see, e.g., [4]) and there exists a perfect symmetry between
the primal and dual d.c. programs: the dual of (Ddc) is exactly (Pdc).

The transportation of global solutions between (Pdc) and (Ddc) is expressed by:

[∪y∗∈Ddc
∂g∗(y∗)] ⊂ Pdc, [∪x∗∈Pdc

∂h(x∗)] ⊂ Ddc,

where Pdc and Ddc denote the solution sets of (Pdc) and (Ddc) respectively. Under certain
conditions, this property also holds for the local solutions of (Pdc) and (Ddc), in the following
sense. Let x∗ be a local solution to (Pdc) and let y∗ ∈ ∂h(x∗). If g∗ is differentiable at y∗,
then y∗ is a local solution to (Ddc). Similarly, let y∗ be a local solution to (Ddc) and let
x∗ ∈ ∂g∗(y∗). If h is differentiable at x∗, then x∗ is a local solution to (Pdc).

Based on local optimality conditions and duality in DCA, the idea of DCA is quite
simple: each iteration k of DCA approximates the concave part −h by its affine majoriza-
tion (that corresponds to taking yk ∈ ∂h(xk)) and minimizes the resulting convex function
(that is equivalent to determining xk+1 ∈ ∂g∗(yk)).

Generic DCA scheme
Initialization: Let x0 ∈ Rn be a best guess, 0← k.
Repeat

Calculate yk ∈ ∂h(xk)
Calculate xk+1 ∈ arg min{g(x)− h(xk)− (x− xk)>yk : x ∈ Rn} (Pk)
k + 1← k

Until convergence of
{
xk

}
.

Convergence properties of the DCA and its theoretical basis are described in [2, 3, 4].
However, for what comes next it is worthwhile to report the following properties:

• DCA is a descent method without line search, say the sequence {g(xk) − h(xk)} is
decreasing.

• If g(xk+1)−h(xk+1) = g(xk)−h(xk), then xk is a critical point of g−h. In this case,
DCA terminates at the k-th iteration.

• If the optimal value β of problem (Pdc) is finite and the infinite sequence {xk} is
bounded, then every limit point of this sequence is a critical point of g − h.

• DCA has a linear convergence for general d.c. programs.

Note that a d.c. function f has infinitely many d.c. decompositions and that the choice
of a d.c. decomposition influences the speed of convergence, robustness, efficiency, and

5



globality (of computed solutions) of DCA. For a given d.c. program, the choice of the
optimal d.c. decompositions is still open and depends strongly on the structure of the
problem being considered. In practice, one chooses g and h such that the sequences {xk}
and {yk} can be easily calculated.

4 Optimizing RBFs using d.c. algorithms

The optimization problem we are addressing in this section is

min m(x) s.t. x ∈ Ω̄, (6)

where Ω̄ is the model feasible region defined by upper and lower bounds on the variables,
i.e., Ω̄ = {x ∈ Rn : ¯̀≤ x ≤ ū}. Since the feasible set Ω̄ may be different from (1), we are
using here a different notation.

When φ is convex in [0, +∞), one possible d.c. decomposition of the RBF model (4)
in Ω̄ is given by

m(x) = g1(x)− h1(x),

where

g1(x) =
∑
λi≥0

λiφ(‖x− yi‖) + t(x) + χΩ̄(x), h1(x) =
∑
λi<0

(−λi)φ(‖x− yi‖),

and χΩ̄(x) is the indicator function associated with Ω̄. The d.c. algorithm (DCA) corre-
sponding to this decomposition is as follows.

Algorithm 4.1 (d.c. algorithm 1 (DCA1))

Initialization
Choose x0.

For k = 0, 1, 2, . . .

1. yk = ∇h1(xk).

2. Compute xk+1 as the solution of

min g1(x)−
(
h1(xk) + (x− xk)

>yk

)
s.t. x ∈ Ω̄. (7)

Another possible d.c. decomposition for the RBF model (4) in Ω̄ is the following

m(x) = g2(x)− h2(x),

6



where
g2(x) =

ρ

2
‖x‖2 + t(x) + χΩ̄(x), h2(x) =

ρ

2
‖x‖2 − (m(x)− t(x)),

χΩ̄(x) is, again, the indicator function associated with Ω̄, and

ρ = max
x∈Ω̄
‖∇2(m(x)− t(x))‖.

Denoting by PΩ̄(ω) the projection of ω onto the set Ω̄, the DCA becomes then the following.

Algorithm 4.2 (d.c. algorithm 2 (DCA2))

Initialization
Choose x0. Compute ρ.

For k = 0, 1, 2, . . .

1. yk = ∇h2(xk).

2. xk+1 = PΩ̄(yk/ρ).

An upper bound for ρ can be computed as follows when φ(r) = r3 and Ω̄ is defined as
in (6):

ρ = 12np‖λ‖∞ max{‖¯̀‖, ‖ū‖}. (8)

The derivation of this upper bound is based on the fact that when φ is twice continuously
differentiable, one has

∇2m(x) =

np∑
i=1

λiΘ(x− yi),

with

Θ(v) =

{
φ′(‖v‖)
‖v‖ I +

(
φ′′(v)− φ′(‖v‖)

‖v‖

)
v
‖v‖

v>

‖v‖ if v 6= 0,

φ′′(0)I if v = 0.

A numerical study of these two algorithms is reported in Section 7.

5 Using RBF modeling in direct search

Now we investigate the use of radial basis function models in direct-search methods for
global derivative-free optimization. Our approach consists of forming and minimizing an
RBF model in the search step of direct-search methods of the directional type. The itera-
tions of such methods can be divided into two main steps (a search step and a poll step).
For the purposes of global convergence to stationary points, the search step is optional and
free of any rules except that it must terminate finitely and yield a point in the underlying
integer lattice.

7



The algorithmic description below applies to the case where Ω is solely defined by bound
constraints (1). In this situation, the poll step makes use of a constant positive spanning
set that includes the coordinate vectors and their negatives, which conform to the feasible
set. The linearly constrained case is discussed afterwards.

Algorithm 5.1 (Direct-search method (RBFs in search step))

Initialization
Choose x0, α0 > 0, and 0 < σmin ≤ σmax. Let D = {e1, . . . , en,−e1, . . . ,−en, e,−e}
(where ei denotes the i-th column of the identity and e the vector of ones, of dimen-
sions n).

For k = 0, 1, 2, . . .

1. Search step: Form an RBF model m(x) of the type (4) based on a subset of
previously evaluated points and minimize a subproblem of the form (6) where
Ω̄ = Ω∩B(xk; ∆k), Ω is given by (1), B(xk; ∆k) = {x ∈ Rn : ‖x− xk‖∞ ≤ ∆k},
and ∆k = σkαk, with σk ∈ [σmin, σmax].

If the solution x̄k of the subproblem satisfies f(x̄k) < f(xk), then set xk+1 = x̄k,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Optionally order the poll set Pk = {xk + αkd : d ∈ D}. The points
in Pk can be ordered by increasing values of the RBF model. If a poll point
xk +αkdk is found such that f(xk +αkdk) < f(xk) then stop polling, set xk+1 =
xk + αkdk, and declare the iteration and the poll step successful. Otherwise
declare the iteration (and the poll step) unsuccessful and set xk+1 = xk.

3. Step size update: If the iteration was successful then maintain the step size
parameter (αk+1 = αk) or double it (αk+1 = 2αk) after two consecutive poll
successes along the same direction. If the iteration was unsuccessful, halve the
step size parameter (αk+1 = αk/2).

The subproblem considered in the search step consists of the minimization of an RBF
model on the intersection of Ω with an `∞-shape trust region. When Ω is defined by
bounds, as in (1), this amounts to a box-constrained domain and the DCAs of the previous
section can be easily applied.

If Ω contains linear constraints which are not simple bounds, then we simplify the
subproblem by temporarily removing those constraints. The point to be evaluated in the
search step is then defined by xk + min{1, τk}(x̄k − xk), where τk is the largest positive
scalar such that xk + min{1, τk}(x̄k − xk) ∈ Ω. This procedure is the same as the one used
in [34] to address infeasible points in the search step.

To obtain a feasible initial guess and a set of poll directions which conforms to the
feasible set, when Ω contains linear constraints which are not simple bounds, we also use
the same strategies as in [34].

8



A numerical study of Algorithm 5.1 is reported in Section 8 for both bound and linearly
constrained problems.

6 Test problems and profiles

The numerical results reported on Sections 7 and 8 were conducted in MATLAB R14
(7.0.1)1 and were run in a Pentium Centrino (2.0GHz and 3Gb of RAM).

6.1 Test problems

The test set used in the numerical results consists of 107 bound constrained problems and
92 linearly constrained problems coded in the AMPL format. The choice of AMPL [9]
made the process of coding a large number of problems faster. Since the algorithms were
coded in MATLAB, an AMPL-MATLAB interface was used, as described in [33, 34].

The bound constrained problems are the ones reported in [33]. These problems are
global optimization test problems collected from the literature [1, 12, 13, 17, 19, 20, 23,
27] and coded in AMPL. All of these problems have lower and upper bounds on the
variables. The linearly constrained problems correspond to those already used for testing
in [34], and also coded in AMPL. They were gathered from the internet2 and from the
papers [14, 21, 22, 32]. The problems descriptions and their sources are available at http:
//www.norg.uminho.pt/aivaz/pswarm.

The problems used are listed in Table 1 for the bound constrained case and in Table 2
for the linearly constrained case. Tables include the problem names and corresponding
dimensions (n).

6.2 Performance and data profiles

For a better visualization, brevity, and clarity of the numerical results, we are providing
performance profiles obtained by using the procedure described in [33] (a modification of
the performance profiles from [8]). The major advantage of the performance profiles is
that they can be presented in one figure, by plotting, for the different solvers, a cumulative
distribution function υ(τ) representing a performance ratio.

The performance ratio is defined by setting rp,s = tp,s

min{tp,z :z∈S} , p ∈ P , s ∈ S, where

P is the test set, S is the set of solvers, and tp,s is the value obtained by solver s on test
problem p. Then, define υs(τ) = 1

Np
size{p ∈ P : rp,s ≤ τ}, where Np is the number of

test problems. The value of υs(1) is the probability that the solver s will win over the
remaining ones (meaning that it will yield a value lower than the values of the remaining
ones). If we are only interested in determining which solver is the best (in the sense that

1www.mathworks.com.
2www.sor.princeton.edu/~rvdb/ampl/nlmodels/index.html, http://cuter.rl.ac.uk/

cuter-www, http://www.gamsworld.org/global/globallib.htm, www.mat.univie.ac.at/~neum/
glopt/coconut/Benchmark/Benchmark.html.

9



Name n Name n Name n Name n Name n Name n
ack 10 fx 10 10 ir5 2 ml 10 10 rg 10 10 sz 1
ap 2 fx 5 5 kl 4 ml 5 5 rg 2 2 szzs 1
bf1 2 gp 2 ks 1 mr 3 s10 4 wf 4
bf2 2 grp 3 lm1 3 mrp 2 s5 4 xor 9
bhs 2 gw 10 lm2 10 10 ms1 20 s7 4 zkv 10 10
bl 2 h3 3 lm2 5 5 ms2 20 sal 10 10 zkv 2 2
bp 2 h6 6 lms1a 2 nf2 4 sal 5 5 zkv 20 20
cb3 2 hm 2 lms1b 2 nf3 10 10 sbt 2 zkv 5 5
cb6 2 hm1 1 lms2 3 nf3 15 15 sf1 2 zlk1 1
cm2 2 hm2 1 lms3 4 nf3 20 20 sf2 2 zlk2a 1
cm4 4 hm3 1 lms5 6 nf3 25 25 shv1 1 zlk2b 1
da 2 hm4 2 lv8 3 nf3 30 30 shv2 2 zlk3a 1
em 10 10 hm5 3 mc 2 osp 10 10 sin 10 10 zlk3b 1
em 5 5 hsk 2 mcp 4 osp 20 20 sin 20 20 zlk3c 1
ep 2 hv 3 mgp 2 prd 2 stg 1 zlk4 2
exp 10 ir1 3 mgw 10 10 ptm 9 st 17 17 zlk5 3
fls 2 ir2 2 mgw 2 2 pwq 4 st 9 9 zzs 1
fr 2 ir4 30 mgw 20 20 rb 10 swf 10

Table 1: Bound constrained problems used in the numerical results.

10



Name n Name n Name n Name n
antenna2 24 ex2 1 6 10 hs21mod 7 s253 3
avgasa 6 ex2 1 7 20 hs268 5 s268 5
avgasb 6 expfita 5 hs35mod 2 s277 4
biggsc4 4 expfitb 5 hs44new 4 s278 6
bunnag1 3 expfitc 5 hubfit 2 s279 8
bunnag2 4 fir linear 11 Ji1 3 s280 10
bunnag3 5 g01 13 Ji2 3 s331 2
bunnag4 6 genocop07 6 Ji3 2 s340 3
bunnag5 6 genocop09 3 ksip 20 s354 4
bunnag6 10 genocop10 4 lowpass 31 s359 5
bunnag7 10 genocop11 6 lsqfit 2 s392 30
bunnag8 20 goffin 51 makela4 21 simpllpa 2
bunnag9 20 gtm 59 Michalewicz1 2 simpllpb 2
bunnag10 20 hatfldh 4 nuffield continuum 2 sipow1 2
bunnag11 20 hs021 2 oet1 3 sipow1m 2
bunnag12 20 hs024 2 oet3 4 sipow2 2
bunnag13 20 hs035 3 pentagon 6 sipow2m 2
ex2 1 1 5 hs036 3 pt 2 sipow3 4
ex2 1 10 20 hs037 3 s224 2 sipow4 4
ex2 1 2 6 hs044 4 s231 2 stancmin 3
ex2 1 3 13 hs076 4 s232 2 tfi2 3
ex2 1 4 6 hs086 5 s250 3 weapons 65
ex2 1 5 10 hs118 15 s251 3 zecevic2 2

Table 2: Linearly constrained problems used in the numerical results.

11



wins the most), we compare the values of υs(1) for all the solvers. At the other end, solvers
with the largest probabilities υs(τ) for large values of τ are the most robust ones (meaning
that are the ones that solved the largest number of problems).

On the other hand, one possible way to assess solvers performance given a certain
budget of objective function evaluations is given by the so-called data profiles [24]. For
each solver, a data profile consists of a plot of the percentage of problems that are solved
for a given budget of function evaluations. Let ηp,s be the number of function evaluations
required for solver s ∈ S to solve problem p ∈ P (up to a certain accuracy). The data
profile cumulative function is then defined by

ds(σ) =
1

Np

size {p ∈ P : ηp,s ≤ σ} . (9)

This definition for ds(σ) is independent of the number of variables in the problem. As
the number of function evaluations (required to determine some solution within certain
accuracy) is expected to increase with the increase in the number of variables, one can
change the definition of ds(σ) to

ds(σ) =
1

Np

size

{
p ∈ P :

ηp,s

np + 1
≤ σ

}
(10)

where np is the number of variables for problem p ∈ P .
A critical issue related to data profiles is how to consider a problem as being solved.

The authors in [24] suggested that a problem is solved (up to some level ε of accuracy)
when

f(x0)− f(x) ≥ (1− ε)(f(x0)− f̄), (11)

where x0 is the initial guess and f̄ is the best obtained objective function value among all
solvers when a given number of function evaluations is imposed.

7 Testing DCA for the minimization of the RBF mod-

els

Since the implementation of the DCA algorithms described in Section 4 was done in MAT-
LAB, we decided to compare them to the fmincon MATLAB solver. For this purpose,
and given that we are mainly interested in minimizing RBFs within simple bounds (i.e.,
problems of the form (6), in particular when m(x) is given by (5)), we have used the part
of the test set described at Subsection 6.1 formed only by bound constrained problems
(thus setting Ω̄ in (6) as in the original problems (1)).

Four algorithms were used in this comparison. The first, DCA1, is an implementation
of Algorithm 4.1 (using fmincon to solve the subproblems (7)). The fmincon starting
point was the final point obtained in the previous iteration (except in the first iteration
where we have used a random point). The fmincon stopping tolerances were set to 10−1.

12



The stopping criterion of DCA1 was satisfied when the absolute error of two consecutive
iterations did not exceed 10−5 or the number of iterations exceeded 30000.

The two next instances subject to testing are based on Algorithm 4.2. In both cases, the
stopping criterion was satisfied when the absolute error of two consecutive iterations did
not exceed 10−5 or the number of iterations exceeded 30000. In the first version (DCA2a),
the value of ρ is kept constant as in (8). In the second version (DCA2b), we started with
an initial value for ρ given by (8) multiplied by 5 × 10−6, and increased it by a factor of
two each time a new point did not lead to a simple decrease (m(xk+1) < m(xk)) in the
objective function value (i.e., the RBF model in question), until the upper bound in (8)
was reached.

The fourth algorithm used to solve problem (6) was fmincon itself, setting the stopping
tolerances to 10−5. Only first-order derivatives were provided for all the four algorithms.

Numerical results were considered when the RBF model is built by using np = 3n + 1,
5n + 1, 10, 20, 50, and 100 points. These points are randomly generated in the feasible
region Ω̄ of (6) given by (1) until the linear system (3) produces finite values for λ and γ
(and no further control on λ and γ was made).

Since the initial guess for all the algorithms is randomly generated, we have per-
formed 10 and 20 runs of the algorithms for all the bound constrained problems in the
test set. Since no major differences were observed, we are reporting the numerical results
based on 10 runs. Average, maximum, and minimum metrics were calculated, but, for the
sake of brevity, we report only the average ones (the maximum and minimum ones do not
change any of the conclusions below).

Illustrative performance profiles are reported in Figures 1 to 2 based on the average
CPU time used by each algorithm. From these plots, we can observe that DCA2b and
fmincon exhibit a similar performance with respect to the average CPU time, while DCA1
and DCA2a are worse, taking, in average, more time to solve the problems.

In Figures 3 and 4 we report the average obtained objective function values. From
these plots we can conclude that DCA1 and DC2b are the ones obtaining on average the
best objective function values, while DCA2a and fmincon are slightly worse.

To finish this assessment of performance, we report the percentage of problems solved
within increasing budgets of objective function evaluations. Such data profiles are given in
Figures 5-8. We removed DCA1 from this comparison, as it does not use the model m(x)
explicitly and we are measuring complete RBF model evaluations. Since data profiles
rely on the accuracy parameter ε, we present two plots in each figure, for ε = 10−1 and
ε = 10−5. Recall from (11) that we are requiring more accuracy for ε = 10−5 than for
ε = 10−1. From the plots, we can observe that DCA2b is the algorithm that solves
in average more problems for a given budget. These profiles were calculated based on
equation (10), but similar results were obtained with equation (9). Again we are reporting
data profiles based on 10 runs for each solver. Note that the value of f̄ was determined
by first running all the solvers with a maximum number of 2000 function evaluations and
then taking the minimum value obtained among them.

13



100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average CPU time (10 runs, bound constrained, 5n+1 points)

τ

ρ

 

 

DCA1
DCA2a
DCA2b
fmincon

Figure 1: Performance profiles for average CPU time used by DCA1, DCA2a, DCA2b, and
fmincon.

14



100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average CPU time (10 runs, bound constrained, 100 points)

τ

ρ

 

 

DCA1
DCA2a
DCA2b
fmincon

Figure 2: Performance profiles for average CPU time used by DCA1, DCA2a, DCA2b, and
fmincon.

15



50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average objective function value (10 runs, bound constrained, 5n+1 points)

τ

ρ

 

 

DCA1
DCA2a
DCA2b
fmincon

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
Figure 3: Performance profiles for average objective function value obtained by DCA1,
DCA2a, DCA2b, and fmincon.

16



50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average objective function value (10 runs, bound constrained, 100 points)

τ

ρ

 

 

DCA1
DCA2a
DCA2b
fmincon

500 1000 1500 2000 2500
0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ
Figure 4: Performance profiles for average objective function value obtained by DCA1,
DCA2a, DCA2b, and fmincon.

17



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of RBF evaluations
(10 runs, bound constrained, 5n+1 points, ε=10−1)

σ

d s(σ
)

 

 

DCA2a
DCA2b
fmincon

Figure 5: Data profile for average number of RBF evaluations obtained by DCA2a, DCA2b,
and fmincon.

18



0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of RBF evaluations
(10 runs, bound constrained, 5n+1 points, ε=10−5)

σ

d s(σ
)

 

 
DCA2a
DCA2b
fmincon

Figure 6: Data profile for average number of RBF evaluations obtained by DCA2a, DCA2b,
and fmincon.

19



0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of RBF evaluations
(10 runs, bound constrained, 100 points, ε=10−1)

σ

d s(σ
)

 

 

DCA2a
DCA2b
fmincon

Figure 7: Data profile for average number of RBF evaluations obtained by DCA2a, DCA2b,
and fmincon.

20



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of RBF evaluations
(10 runs, bound constrained, 100 points, ε=10−5)

σ

d s(σ
)

 

 
DCA2a
DCA2b
fmincon

Figure 8: Data profile for average number of RBF evaluations obtained by DCA2a, DCA2b,
and fmincon.

21



8 Testing the use of RBF model minimization in di-

rect search

We chose to implement Algorithm 5.1 (using RBF modeling in the search step) within the
PSwarm solver, taking advantage of the availability of an existing direct-search implemen-
tation. For a comparison of the PSwarm solver to other available solvers, we point readers
to [33, 34]. In this paper we are only interested in accessing the advantage of using an
RBF model in the search step of a direct-search method.

Taking advantage of the previous implementations of the algorithm described in [33, 34],
we made use of a cache for the true function evaluations. This cache can be used by both
the search and poll steps when a function evaluation is requested. The cache proved not
to be useful in the particle swarm search step, as the number of hits in the cache was very
low. But, for the direct-search version proposed in this paper, the cache implementation is
extremely important, since the RBF model building relies on previous evaluated objective
function values. The maximum number of points in cache considered for the RBF model
building was 50(n + 1).

8.1 Building the RBF models

The RBF models are built in the search step by setting nmin = n+2 and nmax = 5n+1 as
the minimum and maximum number of points considered in the corresponding sample sets.
The search step is skipped if the number of points previously evaluated is less than nmin.
All previously evaluated points are used to build the model if its number is lower than nmax.
However, if there are more previously evaluated points in the cache than nmax, then 80%
of the points for model building are selected as the ones nearest to the current iterate. The
last 20% are chosen as the ones further away from the current iterate. This strategy is
used in order to improve the quality of the geometry of the sample sets in the spirit of the
implementation of some interpolation-based trust-region methods [6, Chapter 11]. Other
percentages have been tested, but these ones have shown to be most appropriate among
those tried.

In the search step of Algorithm 5.1, we set σk to 1 if the previous search step was
unsuccessful, or to 2 otherwise.

8.2 Numerical results for the use of RBF model minimization in
direct search

We provide aggregated results for all the test problems, results for the class of bound
constrained problems, and results for the class of linearly constrained problems. Showing
the results in this way allows us to suggest different algorithmic options for each class of
problems.

We are reporting numerical results for the following versions of Algorithm 5.1: RBF
search step with DCA as the algorithm used to solve subproblem (6) (RBF-DCA); RBF

22



search step with fmincon as the algorithm used to solve subproblem (6) (RBF-fmincon);
RBF search step with DCA as the algorithm to solve subproblem (6) and the directions
used in the poll step sorted by the RBF model value at the poll points (RBF-DCA Sort);
RBF search step with fmincon as the algorithm used to solve subproblem (6) and the
directions used in the poll step sorted by the RBF model value at the poll points (RBF-
fmincon Sort). We compared these four instances against a version of Algorithm 5.1 with
an empty search step (Pattern) and the PSwarm implementation (particle swarm search
step). In all cases, the stopping criterion consisted of reaching a maximum budget of 1000
function evaluations or driving the step size parameter αk below 10−5.

The algorithm used in the RBF-DCA versions is the DCA2b described in Section 4 for
cubic RBFs. A limit of 3000 iterations for the DCA2 algorithm was set, as an approxima-
tion with high accuracy to the solution of subproblem (6) is not required. Even when the
DCA algorithm is unable to converge within the requested accuracy, the last iterate that
it produces is still used to check for progress in the objective function in the search step.

Figure 9 presents a comparison between the DCA algorithm and fmincon when using a
RBF model in the search step. Additionally we include the case where the search directions
of the poll step are sorted accordingly to the RBF model. For this comparison, we have
set tp,s = b

a
, where a is the number of models leading to an improvement in the objective

function and b is the number of models built, corresponding to the inverse of the percentage
of success in using the RBF model. When none of the model building leads to a success we
have tp,s = +∞. Observing the profiles, we can see that in nearly 30% of the problems all
the versions where able to obtain the best tp,s value (τ around 1). Looking at large values
of τ , we observe that in 90% of the problems the model has a nonzero success rate. In this
comparison among success rates, the specific profiles for bound and linearly constrained
problems are omitted, since they provide similar results.

Figures 10–12 depict profiles for the quality of the final objective function value ob-
tained. We can easily verify that all the tested solvers present no major advantage over the
remaining ones. As expected, PSwarm showed ability to overcome some non-convexity of
the objective function. However, we recall that PSwarm is a population based algorithm
that often uses all the objective function evaluations budget.

The data profiles for function evaluations are reported in Figures 13–18 showing an
advantage of the DCA2b version over the others for solving problems within given budgets
and independently of the accuracy considered. In this case, a maximum number of 500
function evaluations was imposed to compute the f̄ value in (11).

9 Conclusions

In this paper we proposed the use of radial function basis (RBF) models to improve the
efficiency of a direct-search type method for the global optimization of functions subject
to bound and linear constraints. The RBF models are known to model well multimodal
functions and proved here to be useful in the context of black-box optimization of functions
expensive to evaluate.

23



1 1.2 1.4 1.6 1.8 2 2.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average model success percentage (all problems, 10 runs)

τ

ρ

 

 

RBF−DCA
RBF−fmincon
RBF−DCA Sort
RBF−fmincon Sort

4 6 8 10 12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

τ

ρ

Figure 9: Comparison among RBF-DCA, RBF-fmincon, RBF-DCA Sort, and RBF-
fmincon Sort, for all test problems (performance profiles for percentage of built RBF models
leading to successful iterations).

24



5 10 15 20 25 30 35 40
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Average objective function value (all problems, 10 runs)

τ

ρ

 

 

Pattern
PSwarm
RBF−DCA
RBF−fmincon
RBF−DCA Sort
RBF−fmincon Sort

100 200 300 400
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

τ

ρ

Figure 10: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for all problems (performance profiles for average objective
function value).

25



20 40 60 80 100 120 140
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Average objective function value (linear constrained, 10 runs)

τ

ρ

 

 

Pattern
PSwarm
RBF−DCA
RBF−fmincon
RBF−DCA Sort
RBF−fmincon Sort

200 300 400
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

τ

ρ
Figure 11: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for linearly constrained problems (performance profiles for
average objective function value).

26



0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Average objective function value (bound constrained, 10 runs)

τ

ρ

 

 

Pattern
PSwarm
RBF−DCA
RBF−fmincon
RBF−DCA Sort
RBF−fmincon Sort

100 200 300 400
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

τ

ρ

Figure 12: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for bound constrained problems (performance profiles for av-
erage objective function value).

27



0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, all problems, ε=10−1)

σ

d s(σ
)

 

 

Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 13: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for all problems (data profiles for average number of objective
function evaluations).

28



0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, all problems, ε=10−5)

σ

d s(σ
)

 

 
Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 14: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for all problems (data profiles for average number of objective
function evaluations).

29



0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, linear constrained, ε=10−1)

σ

d s(σ
)

 

 

Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 15: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for linearly constrained problems (data profiles for average
number of objective function evaluations).

30



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, linear constrained, ε=10−5)

σ

d s(σ
)

 

 
Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 16: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for linearly constrained problems (data profiles for average
number of objective function evaluations).

31



0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, bound constrained, ε=10−1)

σ

d s(σ
)

 

 

Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 17: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for bound constrained problems (data profiles for average
number of objective function evaluations).

32



0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profile for average number of objective function evalutions
(10 runs, bound constrained, ε=10−5)

σ

d s(σ
)

 

 
Patte rn
PSwarm
RBF-DCA
RBF-fmincon
RBF-DCA Sort
RBF-fmincon Sort

Figure 18: Comparison among RBF-DCA, RBF-DCA Sort, RBF-fmincon, RBF-fmincon
Sort, Pattern, and PSwarm for bound constrained problems (data profiles for average
number of objective function evaluations).

33



A minimizer of the RBF model is used to obtain an incumbent point where the ob-
jective function is evaluated. The RBF model minimization problem consists in a bound
constrained optimization problem where the objective function (the RBF model) is cheap
to evaluate. To solve the minimization problem we proposed to apply an algorithm based
on difference of convex (d.c.) functions. The proposed d.c. algorithm (DCA) was compared
to the MATLAB fmincon solver and proved to be competitive (in the sense that obtains
similar objective function values using less objective function evaluations).

Extensive numerical results were reported for a test set of bound and linearly con-
strained problems in order to access the overall performance of the resulting direct-search
derivative-free algorithms. The reported results confirmed the utility of the RBF in driving
the overall direct-search algorithm for a better objective function value using less objective
function evaluations.

References

[1] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky. A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems. J.
Global Optim., 31:635–672, 2005.

[2] Le Thi Hoai An and Pham Dinh Tao. Convex analysis approach to d.c. programming:
Theory, algorithms and applications. Acta Math. Vietnam., 22:289–355, 1997.

[3] Le Thi Hoai An and Pham Dinh Tao. D.C. optimization algorithms for solving the
trust-region subproblem. SIAM J. Optim., 8:476–505, 1998.

[4] Le Thi Hoai An and Pham Dinh Tao. The DC (difference of convex functions) pro-
gramming and DCA revisited with DC models of real world nonconvex optimization
problems. Ann. Oper. Res., 133:23–46, 2005.

[5] M. Björkman and K. Holmström. Global optimization of costly nonconvex functions
using radial basis functions. Optim. Eng., 1:373–397, 2000.

[6] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Opti-
mization. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[7] T. Pham Dinh and S. Elbernoussi. Duality in d.c. (difference of convex functions)
optimization. In Subgradient Methods, volume 84, pages 276–294. Birkhäuser, Basel,
1988.

[8] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91:201–213, 2002.

[9] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathematical
programming. Management Sci., 36:519–554, 1990.

34



[10] J. D. Griffin and T. G. Kolda. Asynchronous parallel hybrid optimization combining
DIRECT and GSS. Optim. Methods Softw., 2009, to appear.

[11] H.-M. Gutmann. A radial basis function method for global optimization. J. Global
Optim., 19:201–227, 2001.

[12] A.-R. Hedar and M. Fukushima. Heuristic pattern search and its hybridization with
simulated annealing for nonlinear global optimization. Optim. Methods Softw., 19:291–
308, 2004.

[13] L. Ingber and B. Rosen. Genetic algorithms and very fast simulated reannealing: A
comparison. Math. Comput. Modelling, 16:87–100, 1992.

[14] Y. Ji, K.-C. Zhang, and S.-J. Qu. A deterministic global optimization algorithm.
Appl. Math. Comput., 185:382–387, 2006.

[15] D. Jones, C. Perttunen, and B. Stuckman. Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl., 79:157–181, 1993.

[16] J.-E. Käck. Constrained global optimization with radial basis functions. Technical
Report Research Report MdH-IMa-2004, Department of Mathematics and Physics,
Mälardalen University, Väster̊as, Sweden, 2004.

[17] E. Kiseleva and T. Stepanchuk. On the efficiency of a global non-differentiable opti-
mization algorithm based on the method of optimal set partitioning. J. Global Optim.,
25:209–235, 2003.

[18] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[19] M. Locatelli. A note on the Griewank test function. J. Global Optim., 25:169–174,
2003.

[20] M. Locatelli and F. Schoen. Fast global optimization of difficult Lennard-Jones clus-
ters. Comput. Optim. Appl., 21:55–70, 2002.

[21] Z. Michalewicz. Evolutionary computation techniques for nonlinear programming
problems. International Transactions in Operational Research, 1:223–240, 1994.

[22] Z. Michalewicz. Genetic Algorithms+ Data Structures= Evolution Programs. Springer,
third edition, 1996.

[23] M. Mongeau, H. Karsenty, V. Rouzé, and J.-B. Hiriart-Urruty. Comparison of public-
domain software for black box global optimization. Optim. Methods Softw., 13:203–
226, 2000.

[24] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms.
SIAM J. Optim., 20:172–191, http://www.mcs.anl.gov/~more/dfo, 2009.

35



[25] R. Oeuvray. Trust-Region Methods Based on Radial Basis Functions with Application
to Biomedical Imaging. PhD thesis, Institut de Mathématiques, École Polytechnique
Fédérale de Lausanne, Switzerland, 2005.

[26] R. Oeuvray and M. Bierlaire. BOOSTERS: A derivative-free algorithm based on
radial basis functions. International Journal of Modelling and Simulation, 29:4634–
4636, 2009.

[27] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vrahatis. Stretching
technique for obtaining global minimizers through particle swarm optimization. In
Proc. Of the Particle Swarm Optimization Workshop, pages 22–29, Indianapolis, USA,
2001.

[28] R. G. Regis and C. A. Shoemaker. Constrained global optimization of expensive black
box functions using radial basis functions. J. Global Optim., 31:153–171, 2005.

[29] R. G. Regis and C. A. Shoemaker. Improved strategies for radial basis function
methods for global optimization. J. Global Optim., 37:113–135, 2007.

[30] R. G. Regis and C. A. Shoemaker. Parallel radial basis function methods for the global
optimization of expensive functions. European J. Oper. Res., 182:514–535, 2007.

[31] R. G. Regis and C. A. Shoemaker. A stochastic radial basis function method for the
global optimization of expensive functions. INFORMS J. Comput., 19:497–509, 2007.

[32] T.P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation, 4:284–294, 2000.

[33] A. Ismael F. Vaz and L. N. Vicente. A particle swarm pattern search method for
bound constrained global optimization. J. Global Optim., 39:197–219, 2007.

[34] A. Ismael F. Vaz and L. N. Vicente. Pswarm: A hybrid solver for linearly constrained
global derivative-free optimization. Optim. Methods Softw., 24:669–685, 2009.

[35] S. M. Wild, R. G. Regis, and C. A. Shoemaker. ORBIT: Optimization by radial basis
function interpolation in trust-regions. SIAM J. Sci. Comput., 30:3197–3219, 2008.

[36] S. M. Wild and C. A. Shoemaker. Global convergence of radial basis function trust-
region algorithms. Technical Report Preprint ANL/MCS-P1580-0209, Mathematics
and Computer Science Division, February 2009.

36


