
RICE UNIVERSITYTrust{Region Interior{Point Algorithms for aClass of Nonlinear Programming ProblemsbyLu��s Nunes VicenteA Thesis Submittedin Partial Fulfillment of theRequirements for the DegreeDoctor of PhilosophyApproved, Thesis Committee:John E. Dennis, ChairmanNoah Harding Professor of Computationaland Applied MathematicsThomas A. BadgwellProfessor of Chemical EngineeringMahmoud El{AlemProfessor of Mathematics, AlexandriaUniversity, EgyptDanny C. SorensenProfessor of Computational and AppliedMathematicsRichard A. TapiaNoah Harding Professor of Computationaland Applied MathematicsHouston, TexasMarch, 1996





AbstractTrust{Region Interior{Point Algorithms for aClass of Nonlinear Programming ProblemsbyLu��s Nunes VicenteThis thesis introduces and analyzes a family of trust{region interior{point (TRIP)reduced sequential quadratic programming (SQP) algorithms for the solution of min-imization problems with nonlinear equality constraints and simple bounds on someof the variables. These nonlinear programming problems appear in applications incontrol, design, parameter identi�cation, and inversion. In particular they often arisein the discretization of optimal control problems.The TRIP reduced SQP algorithms treat states and controls as independent vari-ables. They are designed to take advantage of the structure of the problem. Inparticular they do not rely on matrix factorizations of the linearized constraints, butuse solutions of the linearized state and adjoint equations. These algorithms resultfrom a successful combination of a reduced SQP algorithm, a trust{region global-ization, and a primal{dual a�ne scaling interior{point method. The TRIP reducedSQP algorithms have very strong theoretical properties. It is shown in this thesisthat they converge globally to points satisfying �rst and second order necessary opti-mality conditions, and in a neighborhood of a local minimizer the rate of convergenceis quadratic. Our algorithms and convergence results reduce to those of Colemanand Li for box{constrained optimization. An inexact analysis is presented to providea practical way of controlling residuals of linear systems and directional derivatives.Complementing this theory, numerical experiments for two nonlinear optimal controlproblems are included showing the robustness and e�ectiveness of these algorithms.Another topic of this dissertation is a specialized analysis of these algorithmsfor equality{constrained optimization problems. The important feature of the way



this family of algorithms specializes for these problems is that they do not requirethe computation of normal components for the step and an orthogonal basis forthe null space of the Jacobian of the equality constraints. An extension of Mor�eand Sorensen's result for unconstrained optimization is presented, showing globalconvergence for these algorithms to a point satisfying the second{order necessaryoptimality conditions.
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1Chapter 1IntroductionOptimization, or mathematical programming, has developed enormously in the last�fty years and has reached a point where researchers often concentrate on a speci�cclass of problems. Existing algorithmic ideas can be tailored to the characteristics ofthe class. These problem classes usually come from an application in industry or sci-ence. This is the case of the class of problems addressed in this thesis. Moreover, thestructure of the problems in the class considered here is fundamental in taking advan-tage of recent advances in computer technology. The resulting algorithms are morerobust and e�cient, and their implementations �t more conveniently the purposes ofthe application.1.1 The Class of Nonlinear Programming ProblemsIn this dissertation, we focus on a particular class of nonlinear programming problemsthat have many applications in engineering and science. The formulation of theseproblems is the following: minimize f(y; u)subject to C(y; u) = 0; (1.1)a � u � b;where f : IRn �! IR and C : IRn �! IRm are smooth functions, y 2 IRm, u 2 IRn�m,and m and n are positive integers satisfying m < n. In this class of problems thevariables x are split into two groups: state variables y, and control variables u. Theseare coupled through a set of nonlinear equality constraints C(y; u) = 0, the so{called(discretized) state equation. We also consider lower and upper bounds on the controlvariables u. However, bounds on the state variables y are not considered in thisdissertation. The presence of such bounds would add another layer of di�culty toproblem (1.1) and would require possibly a di�erent algorithmic approach.These optimization problems often arise in the discretization of optimal controlproblems that are governed by partial di�erential equations. We address the optimal



2control problems in �nite dimensions after the discretization has taken place, but wedo not neglect the physics and the structure that such problems have when posednaturally in in�nite dimensions. These nonlinear programming problems also appearin parameter identi�cation, inversion, and optimal design. This class of problems isrich, and we continue to �nd new applications on a regular basis.The linearization of the nonlinear state equation yields the (discretized) linearizedstate equation and the corresponding adjoint equation. E�cient solutions of the linearsystem corresponding to these equations exist for many applications [22], [72], [149],and the optimization algorithm ought to take advantage of it. This linearization alsoo�ers a tremendous amount of structure. In particular, we use it to obtain a matrixwhose columns form a nonorthogonal basis for the null space of the Jacobian matrix ofthe nonlinear equality constraints. Matrix{vector products with this matrix involvesolutions of the linearized state and adjoint equations. Furthermore, a solution ofthe linearized state equation is naturally decomposed into two components, a quasi{normal component and a tangential component.The algorithms that we propose and analyze in this thesis are based on an all{at{once approach (see [31]), where states y and controls u are treated as independentvariables.1.2 Algorithms and Convergence TheoryAlthough there are algorithms available for the solution of nonlinear programmingproblems that are more general than (1.1), the family of algorithms presented in thisthesis is unique in the consequent use of structure inherent in many optimal controlproblems, the use of optimization techniques successfully applied in other contexts ofnonlinear programming, and the rigorous theoretical justi�cation.We call our algorithms trust{region interior{point (TRIP) reduced sequentialquadratic programming (SQP) algorithms since they combine:1. SQP techniques to approximate the nonlinear programming problem by a se-quence of quadratic programming subproblems. (We chose a reduced SQP algo-rithm because the reduction given by the null{space representation mentionedabove appears naturally from the linearization of the nonlinear equality con-straints. Both the quasi{normal and the tangential components are associatedwith solutions of unconstrained quadratic programming subproblems.)



32. Trust regions to guarantee global convergence, i.e. that convergence is attainedfrom any starting point. (A trust region is imposed appropriately on the quasi{normal and tangential components constraining the respective quadratic pro-gramming subproblems. The trust{region technique we use is similar to thosethat Byrd and Omojokon [115], Dennis, El{Alem, and Maciel [35], and Dennisand Vicente [42] proposed for equality{constrained optimization. Besides as-suring global convergence, trust regions regularize ill{conditioned second{orderderivatives of the quadratic subproblems. This is very important since manyproblems in this class are ill{conditioned.)3. An interior{point strategy to handle the bounds on the control variables u. (Weadapt to our contex a primal{dual a�ne scaling algorithm proposed by Colemanand Li [24] for optimization problems with simple bounds. We accomplish thisby taking advantage of the structure of our class of problems. The interior{point scheme requires no more information than is needed for the solution ofthese problems with no bounds on the control variables u.)The TRIP reduced SQP algorithms have very powerful convergence properties aswe show in this thesis. We prove:1. Global convergence to a point satisfying the �rst{order necessary optimalityconditions if �rst{order derivatives are used.2. Global convergence to a point satisfying the second{order necessary optimalityconditions if second{order derivatives are used.3. Boundedness of the sequence of penalty parameters and the boundedness awayfrom zero of the sequence of trust radii if second{order derivatives are used.The q{quadratic rate of local convergence for these algorithms is a consequenceof the combination of this nice global{to{local behavior with a Newton{typeiteration.The assumptions we use to prove these results reduce to the weakest assump-tions used to establish similar results in the special cases of unconstrained, equality{constrained, and box{constrained optimization. Our theoretical results, also reportedin Dennis, Heinkenschloss, and Vicente [36], generalize similar ones obtained for thesesimpler problem classes. This is schematized in Figures 1.1 and 1.2.
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Dennis, Heinkenschloss,and Vicente 95(state equality constraintswith bounds on controls) Dennis, El{Alem,and Maciel 92(equality constraints)Powell 75(no constraints)

Coleman and Li 93(simple bounds)
Figure 1.1 Global convergence to a point that satis�es the �rst{ordernecessary optimality conditions: our result for problem (1.1) generalizesthose obtained by the indicated authors for simpler problem classes.1.3 Inexact Analysis and ImplementationNeither the analysis of the TRIP reduced SQP algorithms nor their implementationwould be complete without studying their behavior under the presence of inexactness.In practice, a very large linear system is solved inexactly yielding a certain residual.Depending on the iterative method chosen for its solution, there is the possibility ofmeasuring and controlling the size of the residual vector. If the solution of the linearsystem is required at a given iteration of an optimization algorithm, the size of thisresidual should tighten with a measure of how feasible and optimal the current pointis. An inexact analysis should provide a practical algorithmic way of accomplishingthis tightening.We present an inexact analysis for the TRIP reduced SQP algorithms that relatesthe size of the residual vectors of the linearized state and adjoint equations with the









....................................................
Dennis, Heinkenschloss,and Vicente 95(state equality constraintswith bounds on controls) Dennis and Vicente 95(equality constraints)

Mor�e and Sorensen 82, 83(no constraints)
Coleman and Li 93(simple bounds)

Figure 1.2 Global convergence to a point that satis�es the second{ordernecessary optimality conditions: our result for problem (1.1) generalizesthose obtained by the indicated authors for simpler problem classes.trust radius and the size of the constraint residual, the latter being quantities at handat the beginning of each iteration. We provide practical rules of implementing thisrelationship that assure global convergence. To our knowledge, inexactness for SQPalgorithms with trust{region globalizations has not been studied in the literature.In practice the TRIP reduced SQP algorithms are robust and e�cient techniquesfor a variety of problems. The implementation of these algorithms is currently beingbeta{tested with the intent of electronic distribution [76]. The current implemen-tation provides the user with a number of alternatives to compute the steps and toapproximate second{order derivatives. There are two versions, one in Fortran 77 andone in Matlab. The implementation addresses the problem scaling, the computationof mass and sti�ness matrices, and the setting of tolerances for inexact solvers. These



6issues arise frequently in optimal control problems governed by partial di�erentialequations.In this thesis, we present numerical results for two medium to large discretizedoptimal control problems: a boundary nonlinear parabolic control problem and adistributed nonlinear elliptic control problem. These numerical results are very sat-isfactory and indicate the e�ectiveness of our algorithms. Our implementation hasbeen used successfully to solve control problems in uid ow [22], [72].1.4 Other ContributionsWe present a brief survey of trust regions for unconstrained optimization that coversonly the most important trust{region ideas used in our algorithms. In this framework,we compare line searches and trust regions from the point of view of regularizationof ill{conditioned second{order approximations.The ability to converge globally to points satisfying the second{order necessaryoptimality conditions is natural for trust{regions, and it has been shown in the lit-erature for di�erent classes of problems and di�erent trust{region algorithms. Weprove this property also for a family of general trust{region algorithms [35], [42] forequality{constrained optimization that use nonorthogonal null{space basis and quasi{normal components. This analysis, of value by itself, motivates all the convergencetheory for the TRIP reduced SQP algorithms.1.5 Organization of the ThesisChapters 2 and 3 review basic material on unconstrained and equality{constrainedoptimization that is used in the other chapters. The reader familiar with these basicconcepts might want to skip many of the sections in these two chapters. In Chapter 2,we discuss and compare the regularization of ill{conditioned second{order approxima-tions for line searches and trust regions. In Chapter 3, we derive global convergence toa point satisfying second{order necessary optimality conditions for a family of trust{region reduced SQP algorithms for equality{constrained optimization, and present ananalysis of the trust{region subproblem for the linearized constraints.The class of problems (1.1) is described in great detail in Chapter 4, where weestablish optimality conditions and comment on the use of structure.



7Chapters 5 and 6 are the two main chapters of this thesis. They describe theTRIP reduced SQP algorithms for our class of problems and prove their convergenceproperties. Chapter 5 focuses on the exact version of these algorithms and includesboth global and local convergence results. In Chapter 6, we study the global behaviorof the TRIP reduced SQP algorithms under the presence of inexactness. Sections 5.8and 6.5 contain numerical experiments.The most important conclusions and open questions are summarized in Chapter 7.A short introduction and a summary of contents are given at the beginning ofevery chapter. There we cite related work and justify our algorithmic choices.1.6 NotationWe list below some of the notation and abbreviations used in this thesis.� `(x; �) = f(x)+�TC(x) is the Lagrangian function associated with the problemminimize f(x) subject to C(x) = 0, where � is the Lagrange multiplier vector.� rf(x) is the gradient of the real{valued function f(x) and J(x) is the Jacobianof the vector{valued function C(x) = �c1(x); : : : ; cm(x)�T .� r2f(x), r2ci(x), and r2xx`(x; �) = r2f(x) +Pmi=1 �ir2ci(x) are the Hessiansmatrices with respect to x of f(x), ci(x), and `(x; �) respectively.� N (A) represents the null space of the matrix A.� W (x) (resp. Z(x)) is a matrix whose columns form a basis (resp. an orthogonalbasis) for the null space of J(x).� Subscripted indices are used to represent the evaluation of a function at a par-ticular point of the sequences fxkg and f�kg. For instance, fk represents f(xk)and `k is the same as `(xk; �k).� The vector and matrix norms k � k are the `2 norms.� The sequence fxkg is bounded if there exists � > 0 independent of k such thatkxkk � � for all k. In this case we say that the element xk of the sequence fxkgis uniformly bounded.� Ip represents the identity matrix of order p with columns e1; : : : ; ep.



8� �1(A) denotes the smallest eigenvalue of the symmetric matrix A.� �(A) represents the `2 condition number of the matrix A with respect to inver-sion. For nonsingular square matrices �(A) = kAk kA�1k. In general, we have�(A) = �1(A)�r(A) , where r is the rank of A, and �1(A) and �r(A) are the largestand smallest singular values of A, respectively.� The element xk of the sequence fxkg is O(yk) if there exists a positive constant� > 0 independent of k such that kxkk � �kykk for all k.� SQP algorithms: sequential quadratic programming algorithms.� TRIP reduced SQP algorithms: trust{region interior{point reduced SQP algo-rithms.



9Chapter 2Globalization Schemes for NonlinearOptimizationConsider the unconstrained optimization problemminimize f(x) ; (2.1)where x 2 IRn and f : IRn �! IR is at least twice continuously di�erentiable. Onepurpose of this chapter is to use this problem to provide necessary background for thisthesis of fundamental concepts of nonlinear optimization like line{search and trust{region globalization schemes. We support the claim that the trust{region techniquehas built{in a regularization of ill{conditioned second{order approximations. Theorganization of this chapter is the following. The optimality conditions and otherbasic concepts of unconstrained optimization are reviewed in Section 2.1. In Section2.2, we give a very brief introduction to line searches. Trust regions are presentedwith more detail in Section 2.3. In Section 2.4, we compare these two globalizationstrategies focusing on their regularization properties.2.1 Basics of Unconstrained OptimizationThe optimality conditions for the unconstrained optimization problem (2.1) are givenin the following proposition.Proposition 2.1.1 Let f be continuously di�erentiable. If the point x�is a local minimizer for problem (2.1) thenrf(x�) = 0:In this case x� is called a stationary point or a point that satis�es the�rst{order necessary optimality conditions.Now let us assume that f is twice continuously di�erentiable. The second{order necessary (resp. su�cient) optimality conditions for x� to be a local



10minimizer for (2.1) arerf(x�) = 0 andr2f(x�) is positive semi{de�nite (resp. de�nite).The proofs of these basic results can be found in many textbooks like [39], [116].A quasi{Newton method for the solution of (2.1) generates a sequence of iteratesfxkg and steps fskg such that xk+1 = xk+ sk. At xk, a quadratic model of f(xk+ s),qk(s) = f(xk) + gTk s+ 12sTHks;is formed, where gk = rf(xk) and Hk is a symmetric matrix of order n that approx-imates the Hessian r2f(xk) and introduces curvature into the model. The quasi{Newton step sk is computed using the quadratic model qk(s).Algorithm 2.1.1 (Basic Quasi{Newton Algorithm)1. Choose x0.2. For k = 0; 1; 2; : : : do2.1 Stop if xk satis�es the stopping criterion.2.2 Compute sk as an approximate solution ofminimize f(xk) + gTk s+ 12sTHks2.3 Set xk+1 = xk + sk and compute Hk+1 possibly by updating Hk.A possible stopping criterion is kgkk � �tol for some �tol > 0.If Hk is nonsingular, a typical quasi{Newton step sk is given by sk = �H�1k gk.If in addition Hk is positive de�nite, then this quasi{Newton step sk = �H�1k gk isthe unconstrained minimizer of qk(s). In Newton's method, we have Hk = r2f(xk).Newton's method is credited to Newton (see [143]) in the 1660's for �nding a root ofa nonlinear equation with one variable using a technique similar to Newton's method,but where the calculations are organized di�erently. Raphson [124] plays an importantrole in this discovery by rederiving Newton's technique in a way that is very close towhat is used nowadays. The multidimensional version of Newton's method is due toSimpson [131] in 1740. See the survey paper by Ypma [150].



11It is well{known that the basic quasi{Newton algorithm is not globally convergentto a stationary point [39][Figure 6.3.2]. If we want to start with any choice of x0 andstill guarantee convergence, then we need a globalization strategy. The most oftenused globalization strategies for quasi{Newton algorithms are line searches and trustregions.A line{search strategy requires a direction dk from which a step is obtained. Thestep sk is of the form �kdk, where the step length �k is chosen in an appropriate wayand dk is a descent direction, i.e. dTk gk < 0. If Hk is nonsingular, dk = �H�1k gk mightbe a reasonable choice.The trust{region technique does not necessarily choose a speci�c pattern of direc-tions. Here a step sk is a su�ciently good approximate solution of the trust{regionsubproblem minimize qk(s)subject to ksk � �k; (2.2)where �k is the trust radius. We will be more precise later. More general forms of thissimple trust{region subproblem are considered in the papers [74], [100], [103], [105],[136], [140], [153].2.2 Line SearchesIf a line search is used, one might ask the step sk = �kdk to satisfy the Armijo{Goldstein{Wolfe conditions: f(xk + sk) � f(xk) + �1gTk sk; (2.3)rf(xk + sk)Tsk � �2gTk sk; (2.4)where �1 and �2 are constants �xed for all k and satisfying 0 < �1 < �2 < 1. Let �kdenote the angle between dk and �gk de�ned throughcos(�k) = � dTk gkkdkkkgkk; �k 2 �0; �2 � :We present now the basic line{search algorithm and its classical convergence result.Algorithm 2.2.1 (Basic Line{Search Algorithm)1. Choose x0, �1, and �2 such that 0 < �1 < �2 < 1.



122. For k = 0; 1; 2; : : : do2.1 Stop if xk satis�es the stopping criterion.2.2 Compute a direction dk based on qk(s).2.3 Compute sk = �kdk to satisfy (2.3) and (2.4), and set xk+1 =xk + sk.A possible stopping criterion is kgkk � �tol for some �tol > 0.Theorem 2.2.1 Let f be bounded below and rf be uniformly contin-uous. If for all k, sk = �kdk satis�es (2.3){(2.4) and the direction dk isdescent, then limk!+1 cos(�k)kgkk = 0:Some of the ground work that led to this result was provided by Armijo [2] andGoldstein [65]. It was established byWolfe [144], [145] and Zoutendijk [158], under theassumption that the gradient is Lipschitz continuous. However this condition can berelaxed and one can see that uniform continuity is enough (see Fletcher [53][Theorem2.5.1]). Some practical line{search algorithms are described by Mor�e and Thuente[107]. For more references see also the books [39], [112], [116] and the review papers[40], [113].From Theorem 2.2.1, a key ingredient to obtain global convergence to a stationarypoint is to keep the angle �k between �gk and dk uniformly bounded away from �2 .Now let us consider the case where Hk is nonsingular and dk = �H�1k gk. If thecondition number �(Hk) of the matrix Hk is uniformly bounded, i.e. if there exists a� > 0 such that �(Hk) � �for every k, then we have cos(�k) = gTkH�1k gkkgkkkH�1k gkk � 1� : (2.5)One way of assuring that the direction �H�1k gk is descent is to force Hk to be positivede�nite. The following corollary of Theorem 2.2.1 is a result of these considerations.Corollary 2.2.1 Let f be bounded below and rf be uniformly con-tinuous. If for all k, Hk is positive de�nite, sk = ��kH�1k gk satis�es



13(2.3){(2.4), and the condition number �(Hk) of Hk is uniformly bounded,then fxkg satis�es limk!+1 kgkk = 0:2.3 The Trust{Region TechniqueThe development of trust regions started with the work of Levenberg [93] (1944),Marquardt [97] (1963), and Goldfeld, Quandt, and Trotter [64] (1966). A few yearslater Powell [120], [121] (1970, 1975), Hebden [71] (1973), and Mor�e [102] (1978)opened the �eld of research in this area. Trust{region algorithms are e�cient androbust techniques to solve unconstrained optimization problems. An excellent surveyin this area was written by Mor�e [103] in 1983.Let us describe how the trust{region technique works. A step sk has to decreasethe quadratic model qk(s) from s = 0 to s = sk. The way sk is computed determinesthe magnitude of the predicted decrease qk(0) � qk(sk) and inuences the type ofglobal convergence of the trust{region algorithm. One can ask sk to satisfy twoclassical conditions, either fraction of Cauchy decrease (simple decrease) or fractionof optimal decrease.The �rst condition forces the predicted decrease to be at least as large as a fractionof the decrease given for qk(s) by the Cauchy step ck. This step is de�ned as thesolution of the one{dimensional problemminimize qk(c)subject to kck � �k; c 2 spanf�gkg;and it is given by ck = 8><>: � kgkk2gTk Hkgk gk if kgkk3gTk Hkgk � �k;� �kkgkkgk otherwise. (2.6)The primitive form of a steepest{descent algorithm was discovered by Cauchy[20] in 1847. The step ck is called the Cauchy step because the direction �gk is thesteepest{descent direction for qk(s) at s = 0 in the `2 norm, i.e. � gkkgkk is the solutionof minimize gTk dsubject to kdk = 1:



14The step sk is said to satisfy a fraction of Cauchy decrease for the trust{regionsubproblem (2.2) if qk(0) � qk(sk) � �1�qk(0)� qk(ck)�;kskk � �k; (2.7)where �1 is positive and �xed across all iterations. The following lemma expressesthis decrease condition in a way that is very convenient to prove global convergenceto a stationary point.Lemma 2.3.1 (Powell [121]) If sk satis�es the fraction of Cauchy de-crease (2.7), thenqk(0)� qk(sk) � �12 kgkkmin( kgkkkHkk ; �k) :Proof De�ne  : IR+ �! IR as  (t) = qk ��t gkkgkk�� qk(0). Then  (t) = �kgkkt+rk2 t2, where rk = gTk Hkgkkgkk2 . Let t�k be the minimizer of  in [0; �k]. If t�k 2 (0; �k) then (t�k) =   kgkkrk ! = �12 kgkk2rk � �12 kgkk2kHkk : (2.8)If t�k = �k then either rk > 0 in which case kgkkrk � �k or rk � 0 in which caserk�k � kgkk. In either event, (t�k) =  (�k) = ��kkgkk+ rk2 �2k � ��k2 kgkk: (2.9)We can combine (2.8) and (2.9) withqk(0)� qk(sk) � �1�qk(0)� qk(ck)� = ��1 (t�k)to get the desired result.The second condition is more stringent and relates the predicted decrease to thedecrease given on qk(s) by the optimal solution ok of the trust{region subproblem(2.2). The step sk is said to satisfy a fraction of optimal decrease for the trust{regionsubproblem (2.2) if qk(0)� qk(sk) � �2�qk(0)� qk(ok)�;kskk � �3�k; (2.10)



15where �2 and �3 are positive and �xed across all iterations. The condition kskk � �3�kreplaces the condition kskk � �k in (2.7). There is no need to have a parameter like �3in (2.7) since the algorithms that compute steps satisfying only a fraction of Cauchydecrease do not cross the boundary of the trust region. An important point here isthat if one sets out in practice to exactly solve (2.2), one will satisfy (2.10).2.3.1 How to Compute a StepSeveral algorithms were proposed to compute a step sk that satis�es the fraction ofCauchy decrease (2.7). The �rst is due to Powell [120], and it is called the doglegalgorithm. The idea behind this algorithm is very simple and is described below.Algorithm 2.3.1 (Dogleg Algorithm (Hk Positive De�nite))Compute the Cauchy step ck. If kckk = �k then set sk = ck.Otherwise compute the quasi{Newton step �H�1k gk, and if it is in-side the trust region, set sk = �H�1k gk. If not, consider the convexcombination s(�) = (1��)ck ��H�1k gk, � 2 [0; 1], and pick �� suchthat ks(��)k = �k. Set sk = s(��).A dogleg step is depicted in Figure 2.1 for a value of �� strictly between one andzero.The dogleg algorithm is well de�ned for Hk positive de�nite (see for instance [39])and can be extended to the case where Hk is inde�nite. A possible way to accomplishthis is to generalize the use of the classical conjugate{gradient algorithm of Hestenesand Stiefel [78] for the solution of the linear system Hks = �gk with Hk positivede�nite. Steihaug [134] and Toint [139] adapted this algorithm for the solution ofthe trust{region subproblem (2.2). Here two new situations have to be considered.First Hk might not be positive de�nite. This can be �xed by stopping the conjugate{gradient loop when the �rst direction of nonpositive curvature is found and using thisdirection to move to the boundary of the trust{region. The other situation happenswhen an iterate of the conjugate{gradient algorithm passes the boundary of the trustregion. Here the dogleg idea can be used to stop at the boundary of the trust region.This latter situation is illustrated in Figure 2.1. The conjugate{gradient algorithm isgiven below.
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�k �H�1k gkck�gk sk �k s3�gk sks2s2 s1 s1s2ck = s1Figure 2.1 A dogleg (at the left) and a conjugate{gradient (at the right)steps inside a trust region. To illustrate better the conjugate{gradientalgorithm, the number of iterations is set to three, which of course exceedsthe number of iterations for �nite termination.Algorithm 2.3.2 (Conjugate{Gradient Algorithm for Trust Regions)1. Set s0 = 0, r0 = �gk, and d0 = r0; pick � > 0.2. For i = 0; 1; 2; : : : do2.1 Compute i = (ri)T (ri)(di)THk(di).2.2 Compute � i such that ksi + �dik = �k:2.3 If i � 0, or if i > � i, then set sk = si+� idi and stop; otherwiseset si+1 = si + idi.2.4 Update the residual: ri+1 = ri � iHkdi.2.5 Check truncation criterion: if kri+1kkr0k � �, set sk = si+1 and stop.2.6 Compute �i = (ri+1)T (ri+1)(ri)T (ri) and the new direction di+1 = ri+1 +�idi.The following proposition characterizes the type of step computed by these twoalgorithms.Proposition 2.3.1 The Dogleg Algorithm 2.3.1 and the Conjugate{Gradient Algorithm 2.3.2 compute steps sk that satisfy the Cauchy de-crease condition (2.7) with �1 = 1.



17For both algorithms the proof relies on the fact that they start by minimizingthe quadratic model qk(s) along the steepest{descent direction �gk. The proof forthe dogleg algorithm depends strongly on the positive de�niteness of Hk and can befound in [39]. The proof for conjugate gradients is given in [134] and uses the factthat si+1 is the optimal solution of the quadratic qk(s) in the Krylov subspaceKi(Hk;�gk) = span n�gk;�Hkgk; : : : ;�(Hk)i�1gko :Other generalizations of the dogleg idea were suggested in the literature. Dennisand Mei [37] proposed the so{called double dogleg algorithm. Byrd, Schnabel, andShultz [18], [130] introduced inde�nite dogleg algorithms using two dimensional sub-spaces.Now we turn our attention to algorithms for computing steps sk that satisfy thefraction of optimal decrease (2.10). Typically these algorithms are based on Newtontype iterations and rely on the following propositions.Proposition 2.3.2 The trust{region subproblem (2.2) has no solutionsat the boundary fs : ksk = �kg if and only if Hk is positive de�nite andkH�1k gkk � �k.A proof of this simple fact can be found in [106].Proposition 2.3.3 (Gay [56] and Sorensen [132]) The step ok is anoptimal solution of the trust{region subproblem (2.2) if and only if kokk ��k and there exists k � 0 such thatHk + kIn is positive semi{de�nite; (2.11)(Hk + kIn) ok = �gk; and (2.12)k (�k � kokk) = 0: (2.13)The optimal solution ok is unique if Hk + kIn is positive de�nite.The necessary part of these conditions can be seen as an application of a powerfultool of Lagrange multiplier theory, the so{called Karush{Kuhn{Tucker optimalityconditions, to the trust{region subproblem (2.2). These conditions are stated in



18Propositions 4.4.1 and 4.4.2. The parameter k is the Lagrange multiplier associatedwith the trust{region constraint ksk2 � �2k. The gradient with respect to s of theLagrangian function `(s; ) = qk(s)� (�2k � ksk2) is zero if and only if (2.12) holds.Condition (2.13) is the complementarity condition. Conditions (2.12), (2.13), k � 0,and kokk � �k are the �rst{order necessary optimality conditions. If we add (2.11)we get the second{order necessary optimality conditions. Of course Lemma 2.3.3says that these conditions are also su�cient but this part does not follow from theKarush{Kuhn{Tucker theory.As a consequence of Proposition 2.3.3 we can writeqk(0)� qk(ok) = 12 �kRkokk2 + k�2k� ;where Hk + kIn = RTkRk. From this we have the following lemma.Lemma 2.3.2 If sk satis�es the fraction of optimal decrease (2.10), thenqk(0)� qk(sk) � �22 k�2k:One can compare Lemmas 2.3.1 and 2.3.2 and see how the two decrease conditions(2.7) and (2.10) inuence the accuracy of the predicted decrease qk(0)� qk(sk). Bothlemmas are critical for proving global convergence results.It follows from Propositions 2.3.2 and 2.3.3 that �nding the optimal solution ofthe trust{region subproblem (2.2) is equivalent in all cases but one to �nding  suchthat  � 0, Hk + In is positive semi{de�nite and�1() � �k � ks()k = 0; (2.14)where s() satis�es (Hk + In) s() = �gk:The root �nding problem (2.14) is usually solved by applying Newton's method tothe equation: �2() � 1�k � 1ks()k = 0: (2.15)It can be shown that both functions �1 and �2 are convex and strictly decreasing in(��1(Hk);+1), where �1(Hk) denotes the smallest eigenvalue of Hk. Reinsch [125]and Hebden [71] were the �rst to observe that Newton's method performs better when



19applied to (2.15). The reason is that �1 has a pole at ��1(Hk) whereas �2 is nearlylinear in (��1(Hk);+1).A Newton's iteration for these root �nding equations faces numerical problems ifk is very close to ��1(Hk) or if the so called hard case occurs. The hard case ischaracterized by the following two conditions:(a) gk is orthogonal to the eigenspace of ��1(Hk) and(b) (Hk + In)�1 gk < �k, for all  > 0.If the hard case occurs, the rightmost root  of (2.15) is such thatHk+In is inde�nite.Hence Newton's iteration has to be modi�ed if one wants to compute a k such thatconditions (2.11){(2.13) hold. In the hard case, a solution ok for the trust{regionsubproblem (2.2) is given by ok = p+ �q (2.16)where p solves (Hk � �1(Hk)In)p = �gk, the vector q is a eigenvector correspondingto �1(Hk), and � is such that kp+ �qk = �k:Mor�e and Sorensen [106] proposed an algorithm that combines the application ofNewton's method to (2.15) for the easy case with (2.16) for the hard case. Theyshowed that the algorithm computes a step sk satisfying the optimal decrease condi-tions (2.10). Their algorithm and corresponding Fortran implementation GQTPAR arebased on previous work done by Gay [56] and Sorensen [132].To compute �2() and �02(), algorithms of the Mor�e and Sorensen type requirea Cholesky factorization RTR of Hk + In whenever this matrix is positive de�nite.In fact if we solve RTRs = �gk and RT q = s we have�2() = 1�k � 1ksk and �02() = � kqk2ksk3 :In large problems the computation of the Cholesky factorization might not be prac-tical.Recent new algorithms to compute a step that satis�es a fraction of optimaldecrease that are very promising for large problems have been proposed by Rendland Wolkowicz [126], Sorensen [133], and Santos and Sorensen [129]. They rely ondi�erent parametrizations of the trust{region subproblem (2.2). Instead of a Cholesky



20factorization, these algorithms require only matrix{vector products. The material inthe following paragraph follows the exposition in [129], [133].The motivation for the new parametrization is that12�+ qk(s) = 12 0@ 1s 1AT 0@ � gTkgk Hk 1A0@ 1s 1A : (2.17)The new one{dimensional function depends on the parameter � and is de�ned as�3(;�) � �� (�):Let (�) be the smallest eigenvalue of the bordered matrix given in (2.17). The hardcase occurs when the eigenvectors of the bordered matrix associated with (�) havezero in its �rst component. If this is not the case, i.e. if there exists an s such that0@ � gTkgk Hk 1A0@ 1s 1A = 0@ 1s 1A (�) ;then we have Hk + (�)In is positive semi{de�nite;(Hk + (�)In)s = �gk;�3(;�) = �gTk s; anddd�3(;�) = ksk2: (2.18)From (2.18) we can see that solving the trust{region subproblem (2.2) is equivalentto �nding � such that dd �3(;�) = ksk2 = �k:If such a (�) is nonnegative, then the corresponding s is the optimal solution of thetrust{region subproblem (2.2). The parameter � can be found by using interpolatingschemes. If the trust{region subproblem (2.2) has an unconstrained minimizer, thenduring the process of choosing � a negative (�) is found such that ksk < �k. In thiscase Hk is positive de�nite, �H�1k gk is inside the trust region, and the conjugate{gradient algorithm can be used to solve Hks = �gk.



212.3.2 The Trust{Region AlgorithmThe predicted decrease pred(sk) given by sk is de�ned as qk(0) � qk(sk). The actualdecrease ared(sk) is given by f(xk) � f(xk + sk). The trust{region strategy relatesthe acceptance of sk with the ratioratio(sk) = ared(sk)pred(sk) :We have the following basic trust{region algorithm.Algorithm 2.3.3 (Basic Trust{Region Algorithm)1. Choose x0, �, and � such that 0 < �; � < 1.2. For k = 0; 1; 2; : : : do2.1 Stop if xk satis�es the stopping criterion.2.2 Compute a step sk based on the subproblem (2.2).2.3 If ratio(sk) < � reject sk, set �k+1 = �kskk and xk+1 = xk.If ratio(sk) � � accept sk, choose �k+1 � �k and set xk+1 =xk + sk.Of course the rules to update the trust radius can be much more involved to en-hance e�ciency but the above su�ces to prove convergence results and to understandthe trust{region mechanism.Two reasonable stopping criteria are kgkk � �tol and kgkk + k � �tol for a given�tol > 0, where k is the Lagrange multiplier associated with the trust{region con-straint kskk � �k as described in Proposition 2.3.3. The former criterion forces globalconvergence to a stationary point (see Theorem 2.3.1), and the latter forces globalconvergence to a point satisfying the second{order necessary optimality conditions(see Theorem 2.3.3).2.3.3 Global Convergence ResultsGlobal convergence of trust{region algorithms to stationary points for unconstrainedoptimization is summarized in Theorems 2.3.1 and 2.3.2.



22Theorem 2.3.1 (Powell [121]) Let fxkg be a sequence generated by theTrust{Region Algorithm 2.3.3, where sk satis�es the fraction of Cauchydecrease (2.7). Let f be continuously di�erentiable and bounded below inL(x0) = fx 2 IRn : f(x) � f(x0)g. If fHkg is bounded, thenlim infk!+1 kgkk = 0: (2.19)Theorem 2.3.2 (Thomas [137]) If in addition to the assumptions ofTheorem 2.1, f is uniformly continuous in L(x0) thenlimk!+1 kgkk = 0:The proofs of these theorems can be found in [103]. We remark that Powell in[121] proved (2.19) for a slightly di�erent update of the trust radius.The assumption on the Hessian approximation Hk can be weakened. Powell [122]proved a convergence result in the case where there is a bound on the second{orderapproximation Hk that depends linearly on the iteration counter k. Carter [19] es-tablished analogous results for the case where the gradients gk = rf(xk) are approx-imated rather than computed exactly.If Hk = r2f(xk) and sk satis�es the fraction of optimal decrease (2.10) for ev-ery k, then it is also possible to analyze the global convergence of the Trust{RegionAlgorithm 2.3.3 to a point satisfying the second{order necessary optimality condi-tions.Theorem 2.3.3 (Mor�e and Sorensen [106], [132]) Let fxkg be a se-quence generated by the Trust{Region Algorithm 2.3.3 with Hk =r2f(xk) where sk satis�es the fraction of optimal decrease (2.10). Letf be twice continuously di�erentiable and bounded below in the level setL(x0). If the sequences fxkg and fHkg are bounded, thenlim infk!+1 �kgkk+ k� = 0and fxkg has a limit point x� such that r2f(x�) is positive semi{de�nite.Mor�e [103] showed how to generalize these theorems for trust{region constraintsof the form kSksk � �k, where fSkg is a sequence of nonsingular scaling matrices.Related results can be found in references [56], [106], [130], [132].



232.3.4 Tikhonov RegularizationIn this section we show how the Tikhonov regularization [138] for ill{conditionedlinear least{squares is related to a particular trust{region subproblem. This is one ofmany arguments that justify the use of trust regions as a regularization technique. Adi�erent argument is given in the next section.In many applications like reconstruction and parameter identi�cation problemsthe objective function in (2.1) comes from the discretization of in�nite dimensionalproblems of the form minimize kAx� bk2Y ; (2.20)where x 2 X, b 2 Y , and A 2 L(X;Y ) is a linear bounded operator mapping thereal Hilbert space X into the real Hilbert space Y . There are situations where, dueto the lack of an inverse or a continuous inverse for A, the solution to (2.20) does notdepend continuously on b (see for instance [69]). When a discretization is introducedthis type of problem leads to �nite dimensional problems of the form (2.1) wheref(x) = k �Ax � �bk2 and �A is ill{conditioned. (Here �A 2 IRm�n and �b 2 IRm, withm > n.)A common technique to overcome this ill{posedness is the Tikhonov regulariza-tion. This regularization consists of solving a perturbed problem of the formminimize kAx� bk2Y + kLxk2X ; (2.21)where  is a positive regularization parameter and L is in L(X;X). To ensure theexistence and uniqueness of the solution for (2.21), it is assumed that L is such thatfor every  > 0 there exists a c > 0 that satis�es kAxk2Y + kLxk2X � ckxk2X for allx in X. See [73].One can see by looking at the gradient of kAx� bk2Y +kLxk2X that the Tikhonovregularization is strongly related to the trust{region subproblem in in�nite dimen-sions: minimize kAx� bk2Ysubject to kLxkX � �; (2.22)where � > 0. In fact, if x� is the solution for (2.22) with kLx�kX = �, then x� is thesolution for (2.21) with  = �, where � is the positive Lagrange multiplier for (2.22)associated with x�. On the other hand, if x� is the solution for (2.21) with  = � > 0,then x� is the solution for (2.22) with � = kLx�kX and Lagrange multiplier �.



242.4 More about Line Searches and Trust RegionsWe now point out interesting relationships between line searches and trust regions.A major di�erence between the global convergence results given in Corollary 2.2.1and Theorem 2.3.2 is that a uniform bound on H�1k is required for line searches butnot for trust regions. The study by Vicente [142] shows that this is related with theexibility that trust{region algorithms have to choose the type of direction.The criteria to accept a step in line searches and in trust regions are very similar.Suppose that a line search only requires the Armijo{Goldstein{Wolfe condition (2.3)to accept a step sk. This condition can be rewritten asf(xk)� f(xk + sk)�gTk sk � �1; (2.23)and it becomes evident how similar this is to the conditionf(xk) � f(xk + sk)�gTk sk � sTkHksk � �;used in the trust{region technique. One can see that trust regions use curvature toaccept or reject a step but line searches do not. However many practical implemen-tations of line searches include second{order information in the su�cient decreasecondition (2.23), i.e. the Armijo{Goldstein{Wolfe condition (2.3).One �nal comment about the regularization issue is in order. It is also possibleto regularize in a line search by adding to Hk a positive multiple In of the identitymatrix. Of course one must choose , and this becomes a performance issue that doesnot arise in trust{region algorithms. The solution ok of the trust{region subproblem(2.2) satis�es the conditions given in Property 2.3.3 and the parameter  is implicitlyde�ned by the size of the trust{region radius �k.



25Chapter 3Trust{Region SQP Algorithms forEquality{Constrained OptimizationIn this chapter, we address trust{region sequential quadratic programming (SQP)algorithms for the equality{constrained optimization problemminimize f(x)subject to C(x) = 0; (3.1)where f : IRn �! IR, ci : IRn �! IR, i = 1; : : : ;m, C(x) = �c1(x) � � � cm(x)�T , andm < n. The functions f(x) and ci(x), i = 1; : : : ;m, are assumed to be at least twicecontinuously di�erentiable in the domain of interest.The material given in this chapter is useful to introduce the new trust{regioninterior{point reduced SQP algorithms in Chapters 5 and 6 and to understand theanalysis given in Chapter 4 for a speci�c class of nonlinear programming problems.The organization of this chapter is the following. We start in Sections 3.1 and 3.2by reviewing basic material for equality{constrained optimization, like the optimalityconditions, the application of Newton's method, and SQP algorithms. The varioustrust{region globalizations suggested in the literature for these algorithms are sur-veyed in Section 3.3.The algorithm that we focus on this chapter is very similar to the trust{regionglobalizations of the reduced SQP algorithm suggested and analyzed by Byrd andOmojokon [115] and Dennis, El{Alem, and Maciel [35]. It is described in great detailin Section 3.4. Then Sections 3.5 and 3.6 present the global convergence for thisalgorithm. The global convergence to a point satisfying the �rst{order necessaryoptimality conditions has been proved in [35]. Our contribution is to prove globalconvergence to a point satisfying the second{order necessary optimality conditions.See also Dennis and Vicente [42].The conditions imposed to obtain this result are shown to be satis�ed in Section3.7 for the normal component and the least{squares multipliers. We point out that El{Alem [48] has proved the same global convergence result for a trust{region algorithm



26that uses the normal component, the least{squares multipliers, and a nonmonotonescheme to update the penalty parameter.We �nish this chapter in Section 3.8 with an analysis of the trust{region subprob-lem for the linearized constraints.3.1 Basics of Equality{Constrained OptimizationTo state optimality conditions for problem (3.1) a constraint quali�cation typically isrequired. We use a strong form of constraint quali�cation called regularity.De�nition 3.1.1 A point x� is regular for problem (3.1) if the rows ofthe Jacobian matrix J(x�) are linearly independent.In this chapter, we assume regularity. The Lagrangian function associated withproblem (3.1) is given by `(x; �) = f(x) + �TC(x):The matrix W (x) 2 IRn�(n�m) denotes a matrix whose columns form a basis for thenull space N (J(x)) of the Jacobian J(x) of C(x). The next two propositions reviewthe optimality conditions for problem (3.1). For proofs and related material see thebooks [53], [60], [96], [112].Proposition 3.1.1 (First{Order Necessary Optimality Conditions) Ifthe regular point x� is a local minimizer of (3.1), then there exists a�� 2 IRm such thatC(x�) = 0 andrx`(x�; ��) = rf(x�) + J(x�)T�� = 0:The vector �� is the vector of Lagrange multipliers. Although it is the nameof Lagrange [90] that is associated with the optimality conditions for optimizationproblems with equality constraints, credit should be given also to Euler (see thediscussion in [112][Chapter 14, Section 9]). In the eighteen century the two math-ematicians solved problems in calculus of variations using optimality conditions forequality constraints.A point x� that satis�es the �rst{order necessary optimality conditions is calleda stationary point.



27Proposition 3.1.2 (Second{Order Optimality Conditions) If x� is a reg-ular point for (3.1), then second{order necessary (resp. su�cient) opti-mality conditions for x� to be a local minimizer are the existence of a�� 2 IRm such thatC(x�) = 0;rx`(x�; ��) = rf(x�) + J(x�)T�� = 0; andr2xx`(x�; ��) is positive semi{de�nite (resp. de�nite) on N (J(x�)):From a basic result of linear algebra we can restate these conditions as follows.Proposition 3.1.3 (First{Order Necessary Optimality Conditions) Ifthe regular point x� is a local minimizer of (3.1), thenC(x�) = 0 andW (x�)Trf(x�) = 0:Proposition 3.1.4 (Second{Order Optimality Conditions) If x� is a reg-ular point for (3.1), then second{order necessary (resp. su�cient) opti-mality conditions for x� to be a local minimizer are the existence of a�� 2 IRm such thatC(x�) = 0;W (x�)Trf(x�) = 0; andW (x�)Tr2xx`(x�; ��)W (x�) is positive semi{de�nite (resp. de�nite),where �� satis�es rx`(x�; ��) = rf(x�) + J(x�)T�� = 0.The optimality conditions given in Propositions 3.1.3 and 3.1.4 use the matrixW (x�) to reduce the gradient of f and the Hessian of the Lagrangian to the nullspace of J(x�).



283.2 SQP AlgorithmsWe describe now SQP and reduced� SQP algorithms for problem (3.1). SQP algo-rithms are very successful for the solution of constrained optimization problems. Seee.g. [5], [59], [91], [108]. They are often quasi{Newton type algorithms in the sensethat they rely on a Newton iteration and approximate second{order derivatives.The primary goal of these algorithms is to �nd a point that satis�es the �rst{ordernecessary optimality conditions. So we proceed as in Chapter 2 and de�ne at (xk; �k)a quadratic model of `(xk + s; �k),qk(s) = `k +rx`Tk s+ 12sTHks;where Hk is a symmetric approximation to r2xx`k, and from our notation `k =`(xk; �k). This quadratic model is then minimized subject to the linearized con-straints: Jks+ Ck = 0; (3.2)with Jk = J(xk) and Ck = C(xk). The basic SQP algorithm is described next.Algorithm 3.2.1 (Basic SQP Algorithm)1. Choose x0 and �0.2. For k = 0; 1; 2; : : : do2.1 Stop if (xk; �k) satis�es the stopping criterion.2.2 Compute the step sk as an approximate solution ofminimize `k +rx`Tk s+ 12sTHkssubject to Jks+ Ck = 0: (3.3)2.3 Set xk+1 = xk+sk and �k+1 = �k+��k, where ��k are the mul-tipliers associated with the quadratic programming subproblem(3.3).�We prefer to call these algorithms reduced SQP instead of reduced Hessian SQP. For us, reducedSQP means that the step is decomposed into two components, and one of them is reduced to thenull space of the Jacobian matrix of the equality constraints.



29The stopping criterion might be krx`kk+ kCkk � �tol for a given �tol > 0.Suppose that the point xk is regular, Hk = r2xx`k, and r2xx`k is positive de�nite onN (Jk). Then the solution sk and the corresponding multipliers ��k of the quadraticprogramming subproblem (3.3) are equal to the Newton step on the system of �rst{order necessary optimality conditionsrf(x) + J(x)T� = 0;C(x) = 0;given by the solution of the linear system0@ r2xx`k JTkJk 0 1A0@ s�� 1A = 0@ �rx`k�Ck 1A : (3.4)See Boggs [5] for an extensive survey on SQP algorithms.In order to present the basic reduced SQP algorithm used here, we consider aquasi{normal decomposition of the step sk of the formsk = sqk + stk: (3.5)The component sqk is called the quasi{normal (or quasi{vertical) component, and itis a solution for the linearized constraints (3.2). The component stk is the tangential(or horizontal) component, and it must satisfy Jkstk = 0, i.e. it must lie in the nullspace of Jk. Hence this component is of the form stk = Wk�stk for some �stk 2 IRn�m.Here Wk = W (xk) represents a basis for the null space N (Jk). Given the componentsqk , the quadratic qk(s) depends uniquely on �st in the following way:�qk(�st) � qk(sqk +Wk�st) = qk(sqk) + �gTk �st + 12(�st)T �Hk(�st)with �Hk = W Tk HkWk;�gk = W Tk rqk(sqk)= W Tk �Hksqk +rfk� ; andqk(sqk) = `k +rx`kT sqk + 12(sqk)THk(sqk ):The basic reduced SQP algorithm follows.



30Algorithm 3.2.2 (Basic Reduced SQP Algorithm)1. Choose x0 and �0.2. For k = 0; 1; 2; : : : do2.1 Stop if (xk; �k) satis�es the stopping criterion.2.2 Compute sqk as an approximate solution of Jksq + Ck = 0.2.3 Compute �stk as an approximate solution ofminimize qk(sqk ) + �gTk �st + 12(�st)T �Hk(�st) :2.4 Set xk+1 = xk + sk = xk + sqk +Wk�stk and compute �k+1.The algorithm is stopped if for instance k�gkk+ kCkk � �tol for some �tol > 0.An advantage of reduced SQP algorithms over SQP algorithms is that they al-low a secant update ~Hk of the reduced Hessian W Tk r2xx`kWk. The dimension ofW Tk r2xx`kWk is usually much smaller than the dimension of r2xx`k. Furthermore,W (x�)Tr2xx`(x�; ��)W (x�) is positive de�nite at a point (x�; ��) satisfying the second{order su�cient optimality conditions. This suggests that we can update ~Hk+1 from ~Hkby using positive de�nite secant updates like the very e�ective BFGS secant updatey.However, if an approximation Hk of the full Hessian r2xx`k is not computed then theevaluation of the cross term W Tk r2xx`ksqk becomes a serious issue. This cross term canbe approximated by �nite di�erences, by secant updates, or by zero [4]. There hasbeen signi�cant activity in studying the local rate of convergence of secant updates forreduced SQP algorithms. See the papers [4], [114], [147] and the references therein.yBFGS is an abbreviation for the names Broyden, Fletcher, Goldfarb, and Shanno who in 1970independently discovered this secant update. In unconstrained optimization, for instance, BFGSupdates Hk+1 by a rank two modi�cation of Hk of the formHk+1 = Hk + ykyTkyTk sk � HksksTkHksTkHksk ;where sk = xk+1 � xk and yk = rf(xk+1) �rf(xk). If Hk is positive de�nite and yTk sk > 0, thenHk+1 is also positive de�nite. The fundamental material about secant updates can be found in theclassical references [38], [39].



31The Normal DecompositionA popular step decomposition, which amounts to special choices for sqk and Wk, isthe normal decomposition:sk = snk + stk = snk + Zk�stk; (3.6)snk is the minimum norm solution of the linearized constraints, andthe columns of Zk form an orthogonal basis for N (Jk):The matrix Zk can be computed from the QR factorization of JTk . This factorizationis of the form: JTk = � Yk Zk � 0@ Rk0 1A ; (3.7)where � Yk Zk � is orthogonal and Rk upper triangular and nonsingular. The normalcomponent snk is then given bysnk = �JTk (JkJTk )�1Ck = �YkR�Tk Ck: (3.8)Associated with the normal decomposition is the least{squares multiplier update.These multipliers are the solution of the linear least{squares problemminimize rfk + JTk �and are given by �k = �(JkJTk )�1Jkrfk = �R�1k Y Tk rfk: (3.9)It is easy to show (see e.g. [114]) that the Newton step (sk;��k) obtained bysolving (3.4) can be expressed as follows:sk = snk + Zk�stk; (3.10)snk = �JTk (JkJTk )�1Ck; (3.11)�stk = � �ZTk r2xx`kZk��1 ZTk �r2xx`ksnk +rfk� ; (3.12)�k+1 = ��k + �k = �(JkJTk )�1Jk �r2xx`ksk +rfk� :



32The q{quadratic rate of convergencez here is for the pair (xk; �k). However a q{quadratic rate convergence in xk can be obtained also by using (3.10){(3.12) with theleast{squares multipliers (3.9). An elegant proof of this latter result was provided byGoodman [68]. He showed that the iterates generated by (3.10){(3.12), (3.9) can beseen as the result of applying Newton's method toZ(x)Trf(x) = 0;C(x) = 0;where Z(x) is a smooth extension of the orthogonal matrix provided by the QRfactorization of J(x)T .3.3 Trust{Region GlobalizationsSince the mid eighties a signi�cant e�ort has been made to globalize SQP algorithmswith trust regions.Globalizations of SQP algorithms were given by Celis, Dennis, and Tapia [21] (seealso Yuan [152] and Zhang [157]), Conn, Gould, and Toint [30], El{Alem [47], Fletcher[52], Vardi [141] (see also El{Hallabi [51]), and Powell and Yuan [123].The reduced SQP algorithm has been globalized with trust regions by Byrd andOmojokon [115], Byrd, Schnabel, and Shultz [17], Coleman and Yuan [27], Dennis,El{Alem, and Maciel [35], Dennis and Vicente [42], El{Alem [48], [49], Lalee, Nocedal,and Plantenga [91], Plantenga [118], and Zhang and Zhu [156]. See also Alexandrov[1].We recommend the surveys given in [35] and [118] for an overview of these dif-ferent trust{region globalizations. Trust{region algorithms have been applied alsoto optimization problems with equality and inequality constraints. See the work byBurke [13], Burke, Mor�e, and Toraldo [14], Conn, Gould, and Toint [29], [30], andYuan [154].In this thesis we deal with a trust{region globalization of reduced SQP algorithms.The fundamental questions associated with the application of trust regions to reducedzWe say that the sequence of vectors fzkg converges q{quadratically to z� if there exists a positiveconstant c, independent of k, such that kzk+1 � z�k � c kzk � z�k2 for all k. The letter q standsfor quotient and distinguishes the q{quadratic rate from the r{rate, where r stands for root. See[116][Chapter 9].



33SQP algorithms are the form of trust{region subproblems, the type of decompositionof the step, the choice of Lagrange multipliers, and the choice of the merit function.We address these issues in the following points.1. The choice of trust{region subproblems now seems a settled question. Most ofthe references cited for trust{region reduced SQP algorithms [35], [42], [48], [49],[91], [115], [118] consider essentially the same choice of trust{region subproblemsthat was introduced �rst by Byrd and Omojokon [115]x. We focus on this issuein Section 3.4.2. The decomposition of the step considered in references [17], [27], [48], [49], [91],[115], [118], [156] is the normal decomposition (3.6).In many application problems there are other reasonable decompositions of thestep. This is clearly the case for the class of problems introduced in Chapter4. One important feature of these decompositions is that sq is not orthogonalto N (J(x)) and that W (x) does not have orthogonal columns. We called suchdecompositions quasi{normal. In the context of trust regions this was addressed�rst in Dennis, El{Alem, and Maciel [35] and later in Dennis and Vicente [42].The algorithms we introduce in this thesis use a quasi{normal decomposition.3. The choice of Lagrange multipliers is associated intimately with the type of stepdecomposition. Most of the researchers [17], [27], [48], [49], [91], [115], [118],[156] considered the least{squares multipliers (3.9) or variations thereof.The work given in [35], [42] departs from the former references by assuming amore general form for the multipliers. For example, in the class of problemsdescribed in Chapter 4, the most reasonable choice of multipliers is not theleast{squares update but the so{called adjoint update.xThe Thesis [115] was directed by Professor R. H. Byrd. The trust{region algorithm proposed hereis usually referred as the Byrd and Omojokon algorithm.



344. The choice of merit function has been always an open question. The followingmerit functions have been used in this context:`(x; �) + �kC(x)k2 (Augmented Lagrangian);f(x) +Pmi=1 �ijci(x)j (`1 Penalty function),f(x) + �kC(x)k2 (`2 Penalty function), andf(x) + �kC(x)k (`2 Penalty function without constraint term squared),where the �'s denote weights or penalty parameters. The augmented Lagrangianhas been used in [35], [42], [48], [49], [156], the `1 penalty function in [17], the`2 penalty function in [27], and the `2 penalty function without constraint termsquared in [91], [115], [118].Let us describe briey the trust{region globalization analyzed by Dennis, El{Alem,and Maciel [35]. The components of the step sqk and �stk are only required to satisfya fraction of Cauchy decrease (or simple decrease) on the corresponding trust{regionsubproblem. A key assumption that is imposed on the quasi{normal component sqkis that it has to be O(kCkk). In this globalization the augmented Lagrangian is usedas a merit function combined with the El{Alem's scheme [47] to update the penaltyparameter. The main result proved in [35] is global convergence to a stationary point(see Theorem 3.6.1). It is important to remark that this result is obtained undervery mild conditions on the components of the step, on the multipliers estimates,and on the Hessian approximations. Thus, the Dennis, El{Alem, and Maciel [35]result is similar to the result given by Powell [121] for unconstrained optimizationand described in Theorem 2.3.1 (see Figure 1.1).One of the purposes of this chapter is to analyze under what modi�cations andconditions this trust{region reduced SQP algorithm possesses global convergence toa point that satis�es the second{order necessary optimality conditions. Our goal isto generalize the result given by Mor�e and Sorensen [106], [132] for unconstrainedoptimization and described in Theorem 2.3.3 (see Figure 1.2). We accomplish thisby imposing a fraction of optimal decrease on the tangential component �stk of thestep, by using exact second{order derivatives, and by imposing conditions on thequasi{normal component sqk and on the Lagrange multipliers. These conditions arethe following:rx`Tk sqk is O(�kkCkk) and k��kk = k�k+1 � �kk is O(�k) : (3.13)



35In the case where kCkk is small compared with �k, the �rst condition implies that anyincrease of the quadratic model qk(s) of the Lagrangian from xk to xk + sqk is O(�2k).To see why this is relevant recall that a fraction of optimal decrease is being imposedon the tangential component �stk and from Lemma 2.3.2 this yields a decrease of atleast O(�2k) on the quadratic model. The second condition is needed for the samereasons because ��k also appears in the de�nition of the predicted decrease used inthe trust{region reduced SQP algorithm. See also [42].Gill, Murray, and Wright [61] and El{Alem [46] considered in their analyses thatrx`k isO(kskk). In the latter work this assumption is used to prove local convergenceresults, and in the former to establish properties of an augmented Lagrangian meritfunction. We point out that this assumption implies that rx`Tk sqk is O(�kkCkk) sincesk is O(�k) and we assume that sqk is O(kCkk).We show that both conditions in (3.13) are satis�ed when the normal componentand the least{squares multipliers are used. This is in agreement with the resultobtained by El{Alem [48]. We show in Chapter 5 that these conditions are satis�edalso for all reasonable choices of quasi{normal components and multipliers for the classof nonlinear programming problems introduced in Chapter 4 (see Remark 5.2.1). Thisclass of problems arises in many applications, in particular from the discretization ofoptimal control problems.3.4 A General Trust{Region Globalization of the ReducedSQP AlgorithmThe trust{region globalization of the Reduced SQP Algorithm 3.2.2 that we considerconsists of computing the components sqk and �stk as approximate solutions of particulartrust{region subproblems.3.4.1 The Quasi{Normal ComponentThe component sqk is computed as an approximate solution of the trust{region sub-problem for the linearized constraints de�ned byminimize 12kJksq + Ckk2subject to ksqk � �k; (3.14)where �k is the trust radius.



36To guarantee global convergence we require sqk to satisfyksqkk � �1kCkk; (3.15)where �1 is a positive constant independent of the iterate k of the algorithm. Thiscondition is saying that close to feasibility the quasi{normal component has to besmall.As we described in Section 2.3, sqk satis�es a fraction of Cauchy decrease (or simpledecrease) for the trust{region subproblem (3.14) ifkCkk2 � kJksqk + Ckk2 � �q1 �kCkk2 � kJk cqk + Ckk2� ;ksqkk � �k; (3.16)where �q1 > 0 does not depend on k and cqk is the so{called Cauchy step for thistrust{region subproblem, i.e. cqk is the optimal solution ofminimize 12kJkcq + Ckk2subject to kcqk � �k; cq 2 spanf�JTk Ckg;and therefore cqk = 8><>: � kJTk Ckk2kJkJTk Ckk2JTk Ck if kJTk Ckk3kJkJTk Ckk2 � �k;� �kkJTk CkkJTk Ck otherwise.If sqk satis�es the Cauchy decrease condition (3.16), then we can apply Lemma 2.3.1and conclude that the decrease given by sqk is such thatkCkk2 � kJksqk + Ckk2 � �q12 kJTk Ckkmin(kJTk CkkkJTk Jkk ; �k) : (3.17)To prove global convergence of the general trust{region reduced SQP algorithmto a stationary point we require sqk to satisfy a simpler decrease condition. Thiscondition relates the decrease given by sqk on kJksq+Ckk2 with the vector Ck and notwith the gradient JTk Ck of this least{squares functional. It can be stated as followskCkk2 � kJksqk + Ckk2 � �2kCkkminf�3kCkk; �kg ;ksqkk � �k; (3.18)where �2 and �3 are positive constants independent of k. It is not di�cult to showthat if Jk, JTk Jk, and (JkJTk )�1 are uniformly bounded then the Cauchy decreasecondition (3.17) implies the decrease condition (3.18).



37If global convergence to a point that satis�es second{order necessary optimalityconditions is the goal of the trust{region reduced SQP algorithm, then we need toimpose also on the component sqk the conditionrx`Tk sqk � �4kCkk�k; (3.19)where �4 is a positive constant independent of the iterates. The important conse-quence of this condition is that if kCkk is small compared with �k, then any increaseof the quadratic model qk(s) of the Lagrangian along the quasi{normal componentsqk is of O(�2k). See inequality (3.36).3.4.2 The Tangential ComponentWe suggest two approaches to compute the tangential component. They are calleddecoupled and coupled and di�er in the type of trust{region constraint.The Decoupled Trust{Region ApproachIn this case the tangential component is computed from the trust{region subproblemminimize �qk(�st)subject to k�stk � �k: (3.20)To assure global convergence to a stationary point the component �stk is requiredto satisfy a fraction of Cauchy decrease (or simple decrease) for the trust{regionsubproblem (3.20). The Cauchy step cdk for this trust{region subproblem is de�nedas the solution of minimize �qk(cd)subject to kcdk � �k; cd 2 spanf��gkg:The fraction of Cauchy decrease condition that �stk has to satisfy is�qk(0)� �qk(�stk) � �d1 ��qk(0) � �qk(cdk )� ;k�stkk � �k; (3.21)where �d1 is some positive constant independent of k.



38To guarantee global convergence to a point that satis�es the second{order nec-essary optimality conditions, the component �stk has to satisfy a fraction of optimaldecrease for the trust{region subproblem (3.20). This condition is as follows:�qk(0) � �qk(�stk) � �d2 ��qk(0)� �qk(odk )� ;k�stkk � �d3 �k; (3.22)where odk is the optimal solution of (3.20) and �d2 ; �d3 > 0 are positive constantsindependent of k.The Coupled Trust{Region ApproachIn this approach the tangential component is computed from the trust{region sub-problem minimize �qk(�st)subject to kWk�stk � �k: (3.23)This subproblem di�ers from (3.20) in the form of the trust{region constraint. Inthe trust{region subproblem (3.20) the constraint is k�stk � �k and does not forcethe whole tangential component Wk�stk to lie inside the trust{region. The coupledapproach o�ers a better regularization of the tangential component in the cases whereWk is ill{conditioned. This point is better explained in Section 5.2.2 by using aparticular form of Wk. The components sqk and stk for this approach are depicted inFigure 3.1. It is quite clear from the picture that sk might not lie inside the trustregion fs : ksk � �kg. Of course the same thing happens in the decoupled approachbut here there is even no guarantee that the tangential component stk is itself insidethe trust region.If global convergence to a stationary point is the goal of the trust{region reducedSQP algorithm, then �stk is required to satisfy a fraction of Cauchy decrease (or simpledecrease) for the trust{region subproblem (3.23). We discuss this point now.The steepest{descent direction at �st = 0 associated with �qk(�st) in the `2 normis ��gk. See Section 2.3. If we take into account the matrix Wk, then the steepest{descent direction in the kWk � k norm is given by �(W Tk Wk)�1�gk. We consider thesteepest{descent direction ��gk and require �stk to satisfy the Cauchy condition�qk(0) � �qk(�stk) � �c1��qk(0)� �qk(cck)�;k�stkk � �k; (3.24)
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s2 s1Figure 3.1 The quasi{normal and tangentialcomponents of the step for the coupled approach.where �c1 is a positive constant independent of k and cck is the Cauchy step that solvesminimize �qk(cc)subject to kWkcck � �k; cc 2 spanf��gkg:The results given in this chapter hold also if cck is de�ned along �(W Tk Wk)�1�gkprovided the sequence fk(W Tk Wk)�1kg is bounded.In order to establish global convergence to a point that satis�es the second{ordernecessary optimality conditions, we need �stk to satisfy a fraction of optimal decreasefor the trust{region subproblem (3.23). This condition is as follows:�qk(0) � �qk(�stk) � �c2��qk(0)� �qk(ock)�;kWk�stkk � �c3�k; (3.25)where ock is the optimal solution of (3.23) and �c2 ; �c3 > 0 are positive constantsindependent of k.



403.4.3 Outline of the AlgorithmWe introduce now the merit function and the corresponding actual and predicteddecreases. The merit function used is the augmented LagrangianL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x);where � is the penalty parameter. The actual decrease ared(sk; �k) at the iteration kis given by ared(sk; �k) = L(xk; �k; �k)� L(xk+1; �k+1; �k):The predicted decrease (see [35]) is the following:pred(sk; �k) = L(xk; �k; �k)� �qk(sk) + ��Tk (Jksk + Ck) + �kkJksk + Ckk2� :Other forms of predicted decrease were proposed in the literature that use the aug-mented Lagrangian as a merit function. See El{Alem [49] and the references therein.To update the penalty parameter �k we use the scheme proposed by El{Alem[47]. This scheme is Step 2.4 of Algorithm 3.4.1 below. Other schemes to updatethe penalty parameter were suggested in the literature. El{Alem [48], [49] proposeda nonmonotone scheme to update the penalty parameter for which he proved manyconvergence results, including global convergence to points satisfying the second{order necessary optimality conditions. Lalee, Nocedal, and Plantenga [91] proposedand tested another nonmonotone scheme for the penalty parameter, but they did notprovide any convergence analysis.The general reduced trust{region SQP algorithm is given below.Algorithm 3.4.1 (Trust{Region Reduced SQP Algorithm)1 Choose x0, �0, and �0. Set ��1 � 1. Choose �1, �1, �min, �max, and�� such that 0 < �1; �1 < 1, 0 < �min � �max, and �� > 0.2 For k = 0; 1; 2; : : : do2.1 Stop if (xk; �k) satis�es the stopping criterion.2.2 Compute sqk based on the subproblem (3.14).Compute �stk based on the subproblem (3.20) (or subproblem(3.23) in the coupled case).Set sk = sqk +Wk�stk.



412.3 Compute �k+1 and set ��k = �k+1 � �k.2.4 Compute pred(sk; �k�1):qk(0)� qk(sk)���Tk (Jksk +Ck) + �k�1�kCkk2�kJksk +Ckk2�:If pred(sk; �k�1) � �k�12 �kCkk2 � kJksk + Ckk2� then set �k =�k�1. Otherwise set�k = 2 qk(sk)� qk(0) + ��Tk (Jksk + Ck)kCkk2 � kJksk + Ckk2 !+ ��:2.5 If ared(sk;�k)pred(sk ;�k) < �1, set�k+1 = �1maxnksqkk; k(sk)uko in the decoupled case or�k+1 = �1maxnksqkk; kWk(sk)uko in the coupled case,and reject sk.Otherwise accept sk and choose �k+1 such thatmaxf�min; �kg � �k+1 � �max:2.6 If sk was rejected set xk+1 = xk and �k+1 = �k. Otherwise setxk+1 = xk + sk and �k+1 = �k +��k.A reasonable stopping criterion for global convergence to a stationary point isk�gkk + kCkk � �tol for a given �tol > 0. If global convergence to a point satisfyingthe second{order necessary optimality conditions is the goal of the algorithm, thenthe stopping criterion should look like k�gkk + kCkk + k � �tol, where k is theLagrange multiplier associated with the trust{region constraint in (3.20) and (3.23)(see equations (3.29) and (3.31)).It is important to understand that the role of �min is just to reset �k after a stepsk has been accepted. During the course of �nding such a step the trust radius canbe decreased below �min. To our knowledge Zhang, Kim, and Lasdon [155] were the�rst to suggest this modi�cation. We remark that the rules to update the trust radiusin the previous algorithm can be much more complicated but these su�ce to proveconvergence results and to understand the trust{region mechanism.



423.4.4 General AssumptionsIn order to establish global convergence results, we use the general assumptions givenin [35]. Let 
 be an open subset of IRn such that for all iterations k, xk and xk + skare in 
.Assumptions 3.1{3.53.1 The functions f , ci, i = 1; : : : ;m are twice continuously di�erentiable functionsin 
.3.2 The Jacobian matrix J(x) has full row rank in 
.3.3 The functions f , rf , r2f , C, J , and r2ci, i = 1; : : : ;m, are bounded in 
.3.4 The sequences fWkg, fHkg, and f�kg are bounded.3.5 The matrix (J(x)J(x)T)�1 is uniformly bounded in 
.Assumptions 3.3 and 3.4 are equivalent to the existence of positive constants�0; : : : ; �8 such thatjf(x)j � �0; krf(x)k � �1; kr2f(x)k � �2; kC(x)k � �3;kJ(x)k � �4; and kr2ci(x)k � �5; i = 1; : : : ;m;for all x 2 
, and kWkk � �6; kHkk � �7; and k�kk � �8;for all k.If Algorithm 3.4.1 is particularized to satisfy the following conditions on the steps,on the quadratic model, and on the Lagrange multipliers, then we can prove globalconvergence to a point satisfying the second{order necessary optimality conditions.Conditions 3.1{3.23.1 The quasi{normal component sqk satis�es the feasibility condition (3.15) andthe decrease condition (3.18).The tangential component �stk satis�es the fraction of Cauchy decrease condition(3.21) (or (3.24) in the coupled case).



433.2 The quasi{normal component sqk satis�es condition (3.19).The tangential component satis�es the fraction of optimal decrease condition(3.22) (or (3.25) in the coupled case).The Lagrange multipliers �k satisfyk��kk = k�k+1 � �kk � �5�k; (3.26)The Hessian approximation Hk is exact, i.e. Hk = r2xx`k for all k.The Hessians r2f and r2ci, i = 1; : : : ;m are Lipschitz continuous.Condition 3.1 is required for global convergence to a stationary point. Conditions3.1{3.2 are imposed to achieve global convergence to a point that satis�es the second{order necessary optimality conditions.3.5 Intermediate ResultsIn this section we list some technical results that are needed for the global convergencetheory.We start by pointing out that the decrease condition (3.18) and the fact that stkis in N (Jk) implykCkk2 � kJksk + Ckk2 � �2kCkkminf�3kCkk; �kg : (3.27)As a direct consequence of the way the penalty parameter is updated, we havethe following result.Lemma 3.5.1 The sequence f�kg satis�es�k � �k�1 � 1 andpred(sk; �k) � �k2 �kCkk2 � kJksk + Ckk2�: (3.28)We now analyze the fraction of Cauchy and optimal decrease conditions for thetangential component. For the optimal decrease it is important to write down whatnecessary conditions the optimal solutions odk and ock of the trust{region subproblems(3.20) and (3.23) satisfy.



44In the case of the decoupled approach these conditions are:�Hk + kIn�m is positive semi{de�nite; (3.29)� �Hk + kIn�m� odk = ��gk; and (3.30)k ��k � kodkk� = 0;where k � 0 is the Lagrange multiplier associated with the trust{region constraintk�stk � �k. (See Proposition 2.3.3.)For the coupled approach such necessary conditions are as follows:�Hk + kW Tk Wk is positive semi{de�nite; (3.31)� �Hk + kW Tk Wk� ock = ��gk; and (3.32)k��k � kockk� = 0;where k � 0 is the Lagrange multiplier associated with the trust{region constraintkWk�stk � �k. (This result also is derived from Proposition 2.3.3. In fact, the changeof variables ~st = (W Tk Wk) 12 �st, reduces the trust{region subproblem (3.23) to a trust{region subproblem of the form (2.2).)Lemma 3.5.2 Let Assumptions 3.1{3.4 hold. If �stk satis�es Condition3.1, then qk(sqk)� qk(sk) � �6k�gkkminn�7k�gkk; �8�ko (3.33)and, moreover, if �stk satis�es Condition 3.2, thenqk(sqk )� qk(sk) � �9k�2k; (3.34)where �6; : : : ; �9 are positive constants independent of the iterate k.Proof The condition (3.33) is an application of Powell's Lemma 2.3.1. The condi-tion (3.34) is a direct application of Lemma 2.3.2 for the necessary conditions givenafter Lemma 3.5.1.The following inequality is needed in many forthcoming lemmas.Lemma 3.5.3 Under Assumptions 3.1{3.4 and Conditions 3.1{3.2,qk(0) � qk(sqk )���Tk (Jksk + Ck) � ��10kCkk�k; (3.35)where �10 is a positive constant independent of k.



45Proof The proof follows the arguments in [35][Lemma 7.3]. The term qk(0)�qk(sqk)can be bounded using (3.15), (3.19), and Assumption 3.4, in the following way:qk(0)� qk(sqk) = �rx`Tk sqk � 12(sqk )THk(sqk)� ��4kCkk�k � 12kHkk ksqkk2� ��4kCkk�k � 12�7�1kCkk�k: (3.36)On the other hand, it follows from (3.26) and kJksk + Ckk � kCkk that���Tk (Jksk + Ck) � ��5kCkk�k:If we combine these two bounds we get (3.35) with �10 = �4 + 12�7�1 + �5.The convergence theory is based on the following actual versus predicted estimates.These are minor modi�cations of the estimates given in [47].Lemma 3.5.4 Let Assumptions 3.1{3.4 hold. There exists a positiveconstant �11 independent of k, such thatjared(sk; �k)� pred(sk; �k)j � �11�kskk2 + k��kk kskk2+ �k (kskk3 + kCkk kskk2) �: (3.37)If Hk satis�es Condition 3.2, thenjared(sk; �k)� pred(sk; �k)j � �12�k��kk kskk2+ �k (kskk3 + kCkk kskk2) �; (3.38)where �12 is a positive constant independent of k.Proof If we add and subtract `(xk+1; �k) to ared(sk; �k)� pred(sk; �k) and expand`(�; �k) around xk we getared(sk; �k)� pred(sk; �k) = 12sTk �Hk �r2xx`(xk + t1ksk; �k)�sk+��Tk (�Ck+1 + Ck + Jksk)��k�kCk+1k2 � kJksk + Ckk2�



46for some t1k 2 (0; 1). Again using the Taylor expansion we can writeared(sk; �k)� pred(sk; �k) = 12sTk �Hk �r2xx`(xk + t1ksk; �k)�sk�12Pmi=1(��k)isTkr2ci(xk + t2ksk)sk��k �Pmi=1 ci(xk + t3ksk)(sk)Tr2ci(xk + t3ksk)(sk)+(sk)TJ(xk + t3ksk)TJ(xk + t3ksk)(sk)�(sk)TJ(xk)TJ(xk)(sk)� ;where t2k; t3k 2 (0; 1). Now we expand ci(xk + t3ksk) around ci(xk). This andAssumptions 3.1{3.4 give us the estimate (3.37) for some positive constant �11.Inequality (3.38) is derived as inequality (3.37), using the Lipschitz continuity ofthe second derivatives and the fact that �k � 1.We terminate this section with the following lemma.Lemma 3.5.5 Let Assumptions 3.1{3.4 hold. Every step sk satis�eskskk � �13�k: (3.39)If sk is rejected in Step 2.6 of Algorithm 3.4.1, then�k+1 � �14kskk: (3.40)The constants �13 and �14 are positive and do not depend on k.Proof In the coupled trust{region approach we have kskk � 2�k and �k+1 � �12 kskk.See Step 2.5 of Algorithm 3.4.1. In the decoupled approach, kskk = ksqk +Wk�stkk �(1 + �6)�k and similarly �k+1 � �12 minn1; 1�6o kskk, where �6 is a uniform bound forkWkk, see Assumption 3.4. We can combine these bounds to obtainkskk � maxf2; 1 + �6g �k;�k+1 � �12 minn1; 1�6o kskk:In the case where fraction of optimal decrease conditions (3.22) or (3.25) are imposedon �stk, the constants �13 and �14 depend also on �d3 and �c3 .



473.6 Global Convergence ResultsThe global convergence of the Trust{Region Reduced SQP Algorithm 3.4.1 to a sta-tionary point is given in the following theorem.Theorem 3.6.1 (Dennis, El{Alem, and Maciel [35]) If Assumptions3.1{3.4 hold and the components of the step satisfy Condition 3.1, thenlim infk!+1 �kW Tk rfkk+ kCkk� = 0: (3.41)In this section we assume that the components of the step, the quadratic model,and the multiplier estimates are computed to satisfy Conditions 3.1{3.2, and we provethe following result from which we can establish the existence of a limit point of thesequence of iterates that satis�es the second{order necessary optimality conditions.Theorem 3.6.2 If Assumptions 3.1{3.4 hold and the components of thestep, the quadratic model, and the multiplier estimates satisfy Conditions3.1{3.2, then lim infk!+1 �kW Tk rfkk+ kCkk+ k� = 0: (3.42)We defer the proof of this theorem to establish its major consequence.Theorem 3.6.3 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 hold.Assume that W (x) and �(x) are continuous functions and �k = �(xk) forall k.If fxkg is a bounded sequence generated by Algorithm 3.4.1, then thereexists a limit point x� such that� C(x�) = 0,� W (x�)Trf(x�) = 0, and� W (x�)Tr2xx`(x�; �(x�))W (x�) is positive semi{de�nite.Moreover, if �(x�) is such that rx`(x�; �(x�)) = 0 then x� satis�es thesecond{order necessary optimality conditions.



48Proof Let fkig be the index subsequence considered in (3.42). Since fxkig isbounded, it has a subsequence fxkjg that converges to a point x� and for whichlimj!+1 �kW Tkjrfkjk+ kCkjk+ kj� = 0: (3.43)Now from this and the continuity of C(x), we get C(x�) = 0. Then we use thecontinuity of W (x) and rf(x) to obtainW (x�)Trf(x�) = 0:Since �1(�) is a continuous function, we can use (3.29), (or (3.31) for the cou-pled approach), limj!+1 kj = 0, the continuity of W (x), �(x), and of the secondderivatives of f(x) and ci(x), i = 1; : : : ;m, to obtain�1 �W (x�)Tr2xx`(x�; �(x�))W (x�)� � 0:This shows that W (x�)Tr2xx`(x�; �(x�))W (x�) is positive semi{de�nite.The continuity of an orthogonal null{space basis Z(x) for N (J(x)) has been dis-cussed in [16], [26], [58]. A straightforward implementation of the QR factorizationof J(x)T might produce a discontinuous null{space orthogonal basis Z(x). However,Coleman and Sorensen [26] showed how to modify the QR factorization in such a waythat Z(x) inherits the smoothness of J(x)T . A class of nonorthogonal continuousnull{space basis W (x) is described in Chapter 4.The equation rx`(x�; �(x�)) = 0 is satis�ed for consistent updates of the Lagrangemultipliers like the least{squares update (3.9) or the adjoint update (4.14).Now we prove Theorem 3.6.2. The proof of (3.42), although simpler, has the samestructure as the proof of (3.41) given in [35].Proof of Theorem 3.6.2We prove by contradiction thatlim infk!+1 �k�gkk+ kCkk+ k� = 0:We show that the supposed existence of a �tol > 0 such thatk�gkk+ kCkk+ k > �tol; (3.44)for all k, leads to a contradiction.The proof requires the lower bounds for the predicted decrease given by the fol-lowing three lemmas.



49Lemma 3.6.1 Under Assumptions 3.1{3.4 and Conditions 3.1{3.2, thepredicted decrease in the merit function satis�espred(sk; �) � �6k�gkkminn�7k�gkk; �8�ko� �10kCkk�k+��kCkk2 � kJksk + Ckk�2; (3.45)and alsopred(sk; �) � �9k�2k � �10kCkk�k + ��kCkk2 � kJksk + Ckk�2;(3.46)for any � > 0.Proof The two conditions (3.45) and (3.46) follow from a direct application of(3.35) and from the two di�erent lower bounds (3.33) and (3.34) on qk(sqk) � qk(sk).Lemma 3.6.2 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 holdand assume that k�gkk + kCkk + k > �tol. If kCkk � ��k, where � is aconstant satisfying� � min� �tol3�max ; �6�tol6�10�max minn �7�tol3�max ; �8o; �9�tol6�10 � ; (3.47)then the predicted decrease in the merit function satis�es eitherpred(sk; �) � �62 k�gkkminn�7k�gkk; �8�ko+��kCkk2 � kJksk + Ckk2� (3.48)or pred(sk; �) � �92 k�2k + ��kCkk2 � kJksk + Ckk2�; (3.49)for any � > 0.Proof From k�gkk + kCkk+ k > �tol and the �rst bound on � given by (3.47), weget k�gkk+ k > 23�tol:



50Thus either k�gkk > 13�tol or k > 13�tol. Let us �rst assume that k�gkk > 13�tol. Usingthis, (3.45), �k � �max, and the second bound on � given by (3.47), we obtainpred(sk; �) � �62 k�gkkminn�7k�gkk; �8�ko+�6�tol6 minn�7�tol3 ; �8�ko� �10�maxkCkk+��kCkk2 � kJksk + Ckk2�� �62 k�gkkminn�7k�gkk; �8�ko+��kCkk2 � kJksk + Ckk2�:Now suppose that k > 13�tol. To establish (3.49), we combine (3.46) and the lastbound on � given by (3.47) and getpred(sk; �) � �92 k�2k + ��96 �tol�k � �10kCkk� �k+��kCkk2 � kJksk + Ckk2�� �92 k�2k + ��kCkk2 � kJksk + Ckk2�:We can set � to �k�1 in Lemma 3.6.2 and conclude that, if k�gkk+ kCkk+ k > �toland kCkk � ��k, then the penalty parameter at the current iterate does not need tobe increased. See Step 2.4 of Algorithm 3.4.1.The proof of the next lemma follows the argument given in the proof of Lemma3.6.2 to show that either k�gkk > 13�tol or k > 13�tol holds.Lemma 3.6.3 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 holdand assume that k�gkk+ kCkk+ k > �tol. If kCkk � ��k, where � satis�es(3.47), then there exists a constant �15 > 0 such thatpred(sk; �k) � �15�2k: (3.50)Proof By Lemma 3.6.2 we know that either (3.48) or (3.49) holds. Now we set� = �k. In the �rst case we use k�gkk > 13�tol and getpred(sk; �k) � �6�tol6 minf�7�tol3 ; �8�kg� �6�tol6 minf �7�tol3�max ; �8g�k� �6�tol6�max minf �7�tol3�max ; �8g�2k:



51In the second case we use k > 13�tol, to obtainpred(sk; �k) � �9�tol6 �2k :Hence (3.50) holds with�15 = min� �6�tol6�max min� �7�tol3�max ; �8� ; �9�tol6 � :Next we prove that under the supposition k�gkk + kCkk + k > �tol, the penaltyparameter �k is uniformly bounded.Lemma 3.6.4 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 holdand assume that k�gkk+ kCkk+ k > �tol for all k. Then�k � ��;where �� does not depend on k, and thus f�kg and fLkg are boundedsequences.Proof If �k is increased at iteration k, then it is updated according to the rule�k = 2 qk(sk)� qk(0) + ��Tk (Jksk + Ck)kCkk2 � kJksk + Ckk2 !+ ��:We can write�k2 �kCkk2 � kJksk + Ckk2� = rx`Tk sqk + 12(sqk )THk(sqk)� �qk(sqk )� qk(sk)�+��Tk (Jksk + Ck)+ ��2�kCkk2 � kJksk + Ckk2�:By applying (3.27) to the left hand side and (3.33) and (3.35) to the right hand side,we obtain�k2 �2kCkkminf�3kCkk; �kg � �10�kkCkk+ ��2�� 2(JTk Ck)Tsk � kJkskk2�� (�10 + ���13�4)�kkCkk:If �k is increased at iteration k, then from Lemma 3.6.2 we certainly know thatkCkk > ��k. Now we use this fact to establish that��22 minf�3�; 1g� �k � �10 + ���13�4:



52We proved that f�kg is bounded. From this and Assumptions 3.1{3.4 we concludethat fLkg is also bounded.We can prove also under the supposition (3.44) that the trust radius is boundedaway from zero.Lemma 3.6.5 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 hold. Ifk�gkk+ kCkk+ k > �tol for all k, then�k � �� > 0;where �� does not depend on k.Proof If sk�1 was an acceptable step, then �k � �min. If not then �k � �14ksk�1k,and we consider the cases kCkk � ��k and kCkk > ��k, where � satis�es (3.47). Inboth cases we use the fact1 � �1 � �����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1����� :Case I. kCk�1k � ��k�1. From Lemma 3.6.3, inequality (3.50) holds for k = k� 1.Thus we can use ksk�1k � �13�k�1, (3.26) and (3.38) with k = k � 1, to obtain�����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1����� � �12(�5�13�2k�1 + ���213�2k�1 + ����13�2k�1)ksk�1k�15�2k�1 :Thus �k � �14ksk�1k � (1��1)�14�15�12(�5�13+���213+����13) � �16.Case II. kCk�1k > ��k�1. In this case from (3.27) and (3.28) with k = k � 1 weget pred(sk�1; �k�1) � �k�12 �2kCk�1kminf�3kCk�1k; �k�1g� �k�1�17�k�1kCk�1k� �k�1��17�2k�1;where �17 = �22 minf�3�; 1g. Again we use �k�1 � 1, (3.26) and (3.38) with k = k�1,and this time the last two lower bounds on pred(sk�1; �k�1), and write���ared(sk�1;�k�1)pred(sk�1 ;�k�1) � 1��� � �12 ��k�1(�5�13+�213)�2k�1ksk�1k�k�1��17�2k�1 + �k�1�13�k�1kCk�1kksk�1k�k�1�17�k�1kCk�1k �� �12 ��5�13+�213+��13��17 � ksk�1k:Hence �k � �14ksk�1k � (1��1)��14�17�12(�5�13+�213+��13) � �18.The result follows by setting �� = minf�min; �16; �18g.



53The next result is needed also for the proof of Theorem 3.6.2.Lemma 3.6.6 Let Assumptions 3.1{3.4 and Conditions 3.1{3.2 hold. Ifk�gkk+ kCkk+ k > �tol for all k, then an acceptable step always is foundin �nitely many trial steps.Proof Let us prove the assertion by contradiction. Assume that for a given �k,xk = x�k for all k � �k. This means that limk!+1 �k = 0 and all steps are rejectedafter iteration �k. See Steps 2.5 and 2.6 of Algorithm 3.4.1. We can consider the caseskCkk � ��k and kCkk > ��k, where � satis�es (3.47), and appeal to arguments similarto those used in Lemma 3.6.5 to conclude that in any case�����ared(sk; �k)pred(sk; �k) � 1����� � �19�k; k � �k ;where �19 is a positive constant independent of the iterates. Since we are assumingthat limk!+1 �k = 0, we have limk!+1 ared(sk ;�k)pred(sk ;�k) = 1 and this contradicts the rulesthat update the trust radius in Step 2.5 of Algorithm 3.4.1.Now we can �nally prove Theorem 3.6.2.Theorem 3.6.2 If Assumptions 3.1{3.4 hold and the components of thestep, the quadratic model, and the multiplier estimates satisfy Conditions3.1{3.2, then lim infk!+1 �kW Tk rfkk+ kCkk+ k� = 0: (3.51)Proof Suppose that there exists an �tol > 0 such that k�gkk + kCkk+ k > �tol forall k.At each iteration k either kCkk � ��k or kCkk > ��k, where � satis�es (3.47). Inthe �rst case we appeal to Lemmas 3.6.3 and 3.6.5 and obtainpred(sk; �k) � �15�2�:If kCkk > ��k, we have from �k � 1, (3.27), (3.28), and Lemma 3.6.5, thatpred(sk; �k) � �22 �minf�3�; 1g�2�:Hence there exists a positive constant �20 not depending on k such that pred(sk; �k) ��20. From Lemma 3.6.6, we can ignore the rejected steps and work only with successfuliterates. So, without loss of generality, we haveLk � Lk+1 = ared(sk; �k) � �1pred(sk; �k) � �1�20:



54Now, if we let k go to in�nity, this contradicts the boundedness of fLkg. Thus weproved that there exists an index subsequence say fkig such thatlimi!+1 �k�gkik+ kCkik+ ki� = 0:The proof is completed by showing that the limit above implies the limit (3.51).From limi!+1 kCkik = 0 and ksqkik � �1kCkik for all i, we obtain limi!+1 ksqkik = 0.But �gki = W Tki �Hkisqki +rfki� and fHkg and fWkg are bounded sequences; so we�nally get (3.51).The local convergence of these trust{region reduced SQP algorithms is studiedin [42] under tighter conditions on the multiplier estimates and the quasi{normalcomponents.3.7 The Use of the Normal Decomposition with the Least{Squares MultipliersThe normal component has been de�ned in (3.8). We now rede�ne snk assnk = 8><>: �JTk (JkJTk )�1Ck if kJTk (JkJTk )�1Ckk � �k;��kJTk (JkJTk )�1Ck otherwise, (3.52)where �k = �kkJTk (JkJTk )�1Ckk . This rede�nition forces the normal component to stayinside the trust region (see condition (3.18)).The results in the rest of this chapter use Assumption 3.5. This assumption impliesthe existence of a constant �9 > 0 satisfying k(J(x)J(x)T)�1k � �9 for all x in 
 andk(JkJTk )�1k � �9 for all nonnegative integers k.We prove in Lemma 3.7.1 that the normal component (3.52) always gives a fractionof optimal decrease for the trust{region subproblem for the linearized constraints(3.14). This condition is as follows:kCkk2 � kJksqk + Ckk2 � �q2 �kCkk2 � kJkok̀ + Ckk2� ;ksqkk � �q3 �k; (3.53)where �q2 , �q3 are positive constants independent of k, and ok̀ is the optimal solutionof the trust{region subproblem for the linearized constraints (3.14). As a resultthe normal component (3.52) satis�es the fraction of Cauchy decrease (3.16) for the



55trust{region subproblem for the linearized constraints (3.14). Since f(JkJTk )�1g is abounded sequence this implies the decrease condition (3.18) used in our convergencetheory.Lemma 3.7.1 Let Assumptions 3.1{3.5 hold. The normal component(3.52) satis�es a fraction of optimal decrease (3.53) for the trust{regionsubproblem for the linearized constraints.Proof From the de�nition in (3.52) it is obvious that ksnkk � �q3 �k holds with�q3 = 1.If kJTk (JkJTk )�1Ckk � �k, then snk solves (3.14), and the result holds for any valueof �q2 in (0; 1]. If this is not the case, thenkCkk2 � kJksnk + Ckk2 = �k(2 � �k)kCkk2 � �kkCkk2 � �k�4�9kCkk; (3.54)since kJTk (JkJTk )�1Ckk � �4�9kCkk and �k � 1.We also havekCkk2 � kJkok̀ + Ckk2 = �2(JTk Ck)T ok̀ � (ok̀)T (JTk Jk)(ok̀)� 2�4kCkk kok̀k+ �24kok̀k2� 2�4�kkCkk+ �24�kkok̀k� (2�4 + �34�9)�kkCkk;since kJTk (JkJTk )�1kkCkk > �k � kok̀k. Combining this last inequality with (3.54) weget kCkk2 � kJksnk + Ckk2 � 1�24�9(2 + �24�9) �kCkk2 � kJkok̀ + Ckk2� ;and this completes the proof.In the next lemma we show that the normal component (3.52) and the least{squares multipliers (3.9) satisfy the requirements in Condition 3.2 needed to proveglobal convergence to a point satisfying the second{order necessary optimality con-ditions.Lemma 3.7.2 Let Assumptions 3.1{3.5 hold. The normal component(3.52) and the least{squares multipliers (3.9) satisfy conditions (3.19) and(3.26).



56Proof It can be easily con�rmed thatrx`Tk snk = 0. Thus, rx`Tk snk � �4kCkk�k. Thecondition (3.26) holds since from Assumptions 3.1{3.3 and 3.5, the function �(x) =�(J(x)J(x)T)�1J(x)rf(x) has bounded derivatives in 
 and hence is Lipschitz con-tinuous in the domain 
.3.8 Analysis of the Trust{Region Subproblem for the Li{nearized ConstraintsIn this section we investigate the trust{region subproblem for the linearized con-straints (3.14). We saw in Section 3.7 that the normal component gives a fraction ofoptimal decrease for the trust{region subproblem for the linearized constraints. Tocompute a step sqk that satis�es this property, we can also use the techniques proposedin [106], [126], [133] and described in Section 2.3.1.In the next theorem we show that the trust{region subproblem (3.14), due to itsparticular structure, tends to fall in the hard case in the latest stages of Algorithm3.4.1. This result is relevant in our opinion since the algorithms proposed in [106],[126], [133] for the solution of trust{region subproblems deal with the hard case.The trust{region subproblem (3.14) can be rewritten asminimize 12CTk Ck + (JTk Ck)T sq + 12(sq)T (JTk Jk)(sq)subject to ksqk � �k: (3.55)The matrix JTk Jk is always positive semi{de�nite and, under Assumption 3.2, has rankm. Let Ek(0) denote the eigenspace associated with the eigenvalue 0, i.e. Ek(0) =fvk 2 IRn : JTk Jkvk = 0g. The hard case, as we saw in Section 2.3.1, is de�ned bythe two following conditions:(a) (vk)T (JTk Ck) = 0 for all vk in Ek(0) and(b) k(JTk Jk + In)�1JTk Ckk < �k for all  > 0.Theorem 3.8.1 Under Assumptions 3.1{3.5, if limk!+1 kCkk�k = 0 thenthere exists a kh such that, for all k � kh, the trust{region subproblem(3.55) falls in the hard case as de�ned above by (a) and (b).



57Proof First we show that (a) holds at every iteration of the algorithm. If vk 2Ek(0), JTk Jkvk = 0:Multiplying both sides by (JkJTk )�1Jk gives usJkvk = 0:Thus (vk)T (JTk Ck) = 0 for all vk in Ek(0).Now we prove that there exists a kh such that (b) holds for every k � kh. Sincehk() = k(JTk Jk + In)�1JTk Ckk is a monotone strictly decreasing function of  for > 0, lim!0+ hk() < �kis equivalent to hk() < �k, for all  > 0. But from the singular value decompositionof JTk [66][Page 71] we obtainlim!0+ hk() = k lim!0+(JTk Jk + In)�1JTk Ckk = kJTk (JkJTk )�1Ckk:Hence hk() < �k holds for all  > 0 if and only if kJTk (JkJTk )�1Ckk < �k.Now since limk!+1 kCkk�k = 0, there exists a kh such that kCkk < 1�4�9 �k for allk � kh. Thus kJTk (JkJTk )�1Ckk � �4�9kCkk < �k, for all k � kh, and this completesthe proof of the theorem.We complete this section with the following corollary.Corollary 3.8.1 Under Assumptions 3.1{3.5, if limk!+1 kCkk = 0 andthe trust radius is uniformly bounded away from zero, then there existsa kh such that, for all k � kh, the trust{region subproblem (3.55) falls inthe hard case as de�ned above by (a) and (b).Proof If limk!+1 kCkk = 0 and the trust radius is uniformly bounded away fromzero then limk!+1 kCkk�k = 0 and Theorem 3.8.1 can be applied.



58Chapter 4A Class of Nonlinear Programming ProblemsIn this chapter, we introduce and analyze the following important class of nonlinearprogramming problems:minimize f(y; u)subject to C(y; u) = 0; (4.1)u 2 B = fu : a � u � bg;with x � 0@ yu 1A ;y 2 IRm, u 2 IRn�m, a 2 (IR [ f�1g)n�m, and b 2 (IR [ f+1g)n�m. The functionsf : IRn �! IR and C : IRn �! IRm, m < n, are assumed to be at least twicecontinuously di�erentiable. The Jacobian matrix of C(x) is denoted by J(x). Thenotation used for this class of problems is such that vectors (s)y and (s)u representthe subvectors of s 2 IRn corresponding to the y and u components, respectively.Minimization problems of the form (4.1) often arise from the discretization ofoptimal control problems. In this case y is the vector of state variables, u is thevector of control variables, and C(y; u) = 0 is the (discretized) state equation. Thestate equation can be nonlinear in the state variables y, in the control variables u,or in both. In Section 4.5, we provide two examples of optimal control problems forwhich the discretization is of the form (4.1): a boundary nonlinear parabolic controlproblem and a distributed nonlinear elliptic control problem. There are optimalcontrol problems arising in uid ow for which a discretization also is of the form(4.1) (see e.g. Cli�, Heinkenschloss, and Shenoy [22] and Heinkenschloss [72]). Otherapplications include optimal design and parameter identi�cation problems.In Chapters 5 and 6, we propose, analyze, and test a family of trust{regioninterior{point reduced SQP algorithms for the solution of problem (4.1).One of the goals of this chapter is to present some properties of problem (4.1). InSection 4.1, we introduce the basic structure of the problem. The �rst and second



59order optimality conditions for (4.1) are stated in Section 4.4. We state them in anonstandard form that leads in Chapter 5 to the diagonal matrix used in the a�nescaling interior{point approach. In Section 4.2, we study the relationship betweenthe all{at{once approach followed in this thesis and the black box approach based ona equivalent reduced formulation. These connections are known for problems withno bound constraints but they motivate the all{at{once approach based on (4.1) andreveal useful information for problems with bound constraints on u. In Section 4.3,we present properties of the projection associated with problem (4.1). Two nonlinearoptimal control example problems for which the discretization is of the form (4.1) aredescribed in Section 4.5. In the last section we comment on the important issue ofthe problem scaling inherent in optimal control problems.4.1 Structure of the Minimization ProblemThe Lagrange function ` : IRn+m �! IRn associated with minimizing f(x) subject tothe equality constraint C(x) = �c1(x); : : : ; cm(x)�T = 0 is given by`(x; �) = f(x) + �TC(x);where � 2 IRm are the Lagrange multipliers.The linearized constraints are given by J(x)s = �C(x). If we takes = 0@ sysu 1A ; sy 2 IRm; su 2 IRn�m;and J(x) = � Cy(x) Cu(x) �, we can write this linearization as� Cy(x) Cu(x) �0@ sysu 1A = �C(x): (4.2)We say that s satis�es the (discretized) linearized state equation if it is a solution to(4.2). If Cy(x) is invertible, the solutions of the linearized state equation are of theform s = sq +W (x)su; (4.3)where sq = 0@ �Cy(x)�1C(x)0 1A (4.4)



60is a particular solution andW (x) = 0@ �Cy(x)�1Cu(x)In�m 1A (4.5)is a matrix whose columns form a basis for the null space N (J(x)) of J(x). Thisquasi{normal decomposition of s is of the type (3.5) de�ned in Section 3.2 since ingeneral the columns of W (x) are not orthogonal and sq is not the minimum normsolution of the linearized constraints (see Figure 4.1). The role of the quasi{normalcomponent sq is to move towards feasibility. Furthermore, the y component of thequasi{normal component sq is just the step that one would compute if one wouldapply Newton's method for the solution of the nonlinear equation C(y; u) = 0 for�xed u. The tangential component W (x)su is in the null space of J(x) and its roleas we can see in Chapter 5 is to move towards optimality.We assume that Cy(x) is nonsingular. In many applications this is a reasonableassumption that can be shown for appropriate choices of the discretization parameters.However ill{conditioning can occur and we take this into account in the developmentof our algorithms in Chapters 5 and 6.One can see that matrix{vector multiplications of the form W (x)Ts and W (x)suinvolve only the solution of linear systems with the matrices Cy(x) and Cy(x)T . Infact we have W (x)su = 0@ �Cy(x)�1Cu(x)susu 1Afor which we need to solve the form of the (discretized) linearized state equation:Cy(x)vy = Cu(x)su:Moreover, W (x)Ts = �Cu(x)TCy(x)�Tsy + suand this requires the solution of the adjoint equation of the (discretized) linearizedstate equation given above, i.e. it requires the solution of:Cy(x)Tvy = sy: (4.6)4.2 All{At{Once rather than Black BoxThe point we want to convey in this section has nothing to do with the presence orabsence of the bound constraints a � u � b. Therefore we consider the simpler case



61where there are no bounds, i.e. where B = IRn�m. The purpose of this section is todiscuss some of the basic relationships between the problemminimize f(y; u)subject to C(y; u) = 0; (4.7)and a reduced formulation of this problem that can be obtained by applying theimplicit function theorem. In fact, suppose there exists an open set U such that forall u 2 U there exists a solution y of C(y; u) = 0 and such that the matrix Cy(x)is invertible for all x = (yT ; uT )T with u 2 U and C(y; u) = 0. Then the implicitfunction theorem guarantees the existence of a di�erentiable functiony(�) : U ! IRmde�ned by C(y(u); u) = 0and problem (4.7) is equivalent tominimize f̂ (u) � f(y(u); u) : (4.8)This leads to the so{called black box approach in which the nonlinear constraintC(y; u) = 0 is not visible to the optimizer. Its solution is part of the evaluation ofthe objective function f̂(u). The reduced problem can be solved by a Newton{likemethod. For optimal control problems, many algorithms follow this approach anduse projection techniques [70], [119] to handle the bounds on the variables u.The reduced problem (4.8) is important since it leads us to the use of reducedSQP algorithms. The relation between problem (4.7) and the reduced problem (4.8)gives important insight into the structure of (4.7) and allows us to extend techniquessuccessfully applied to problems of the form (4.8). To see why this is true we need tostudy the derivatives of the function f̂ .Since y(�) is di�erentiable, the function f̂ is di�erentiable and its gradient is givenby rf̂(u) = ruyryf(y(u); u) +ruf(y(u); u); (4.9)where ruy = dyduT . The derivative of y(u) with respect to u can be obtained fromtaking derivatives on both sides of C(y(u); u) = 0:Cy(y(u); u)dydu + Cu(y(u); u) = 0: (4.10)



62Thus, from (4.9) and (4.10) we see thatrf̂(u) = W (y(u); u)Trf(y(u); u): (4.11)Moreover, it can be shown that the Hessian of f̂ is equal to the reduced Hessianr2f̂(u) =W (y(u); u)Tr2xx`(y(u); u; �)W (y(u); u);provided that the Lagrange multipliers are computed by (4.14) given below.The so{called all{at{once approach treats both y and u as independent variables.All{at{once approaches were proposed to solve optimal control problems among manyothers in [75], [79], [82], [83], [85], [86], [87], [89]. For the optimal control problemsthat we consider in this thesis, the all{at{once approach is based on the formulation(4.7) (actually (4.1) if we include the bound constraints on the controls). The goal is tomove towards optimality and feasibility at the same time, and this o�ers signi�cantadvantages. SQP algorithms are of particular interest since they allow use of thestructure of optimal control problems, see e.g. [87], [88]. As we saw in Chapter 3 forequality{constrained optimization they do not require the (possibly very expensive)solution of the nonlinear state equation C(y; u) = 0 at every iteration.If we solve (4.7) by the SQP Algorithm 3.2.1, then the quadratic programmingsubproblem we have to solve at every iteration is of the formminimize rf(x)Ts+ 12sTr2xx`(x; �) ssubject to Cy(x)sy + Cu(x)su + C(x) = 0: (4.12)If the reduced Hessian W (x)Tr2xx`(x; �)W (x) is nonsingular, the solution s of (4.12)is given by (4.3) and (4.4) withsu = ��W (x)Tr2xx`(x; �)W (x)��1W (x)T�r2xx`(x; �)sq +rf(x)�: (4.13)Such su is also the solution of the quadratic programming subproblem of the ReducedSQP Algorithm 3.2.2.In practice the Hessian r2xx`(x; �) or the reduced Hessian W (x)Tr2xx`(x; �)W (x)are often approximated using secant updates. In the latter case, when an approxima-tion to r2xx`(x; �) is not available, then the cross{term W (x)Tr2xx`(x; �)sq has alsoto be approximated. This term can be approximated by zero, by �nite di�erences,or by secant updates. In the case where this cross term is approximated by zero, theright hand side of the linear system (4.13) de�ning su can be written asW (x)Trf(x) = �Cu(x)TCy(x)�Tryf(x) +ruf(x):



63Thus, if the Lagrange multipliers are computed by the adjoint formula� = �Cy(x)�Tryf(x); (4.14)then W (x)Trf(x) = Cu(x)T�+ruf(x) = ru`(x; �): (4.15)One can see that the gradient and the Hessian information in the SQP algorithmfor (4.7) and in the Newton method for (4.8) are the same if y and u solve C(y; u) = 0.Thus, if Newton{like methods are applied to the solution of (4.8), then one has allthe ingredients available necessary to implement an SQP algorithm for the solutionof (4.7). The important di�erence, of course, is that in the SQP algorithm we donot have to solve the nonlinear constraints C(y; u) = 0 at every iteration. Thus wecombine the possible implementational advantages of a black{box approach with thegenerally more e�cient all{at{once approach.Speci�cally, our consequent use of the structure of the optimal control prob-lems leads to our family of trust{region interior{point reduced SQP algorithms (seeChapter 5). These algorithms only require information that the user has to provideanyway if a black{box approach is used with a Newton{like method for the solutionof the nonlinear state equation C(y; u) = 0 and adjoint equations of the form (4.6)for the computation of the reduced gradient (4.11). Furthermore, the inexact analysisfor these algorithms presented in Chapter 6 provides practical rules to solve inexactlythe linearized state and adjoint equations that guarantee global convergence.In these considerations we neglected the bound constraints a � u � b. We havealready pointed out that these relationships between (4.7) and (4.8) are basicallythe same with or without the bound constraints on the control variables. (See alsoSection 5.1.)4.3 The Oblique ProjectionIn this section we show how the quasi{normal decomposition (4.3) di�ers from thenormal decomposition (3.6) for problem (4.1). The normal decomposition applied toproblem (4.1) has the form s = sn + Z(x)�st;where Z(x) is a matrix whose columns form an orthogonal basis for N (J(x)). Weshowed in Section 3.2 how to compute this decomposition from the QR factorizationof J(x)T .



64A major di�erence between the decompositions (3.6) and (4.3) lies in the formof the basis of the null space N (J(x)). It is reasonable in this class of problems toaccess to the basis W (x) given in (4.5) since it exploits the structure of the problemand allows the use of linear solvers available from the application. The use of theQR factorization for this class of problems is problematic: it depends strongly onthe sparsity pattern of J(x), it might cause unnecessary �ll{in, and it requires theuser to do an involved computation of no value except in the optimization algorithm.Furthermore, the normal component sn has a nonzero u component (see Figure 4.1)and this means that the bounds on the variables u would have to interfere somehow inthe computation of sn. These problems do not arise if the quasi{normal component(4.4) is used.One other major di�erence is the type of projection associated with both decom-positions. The quasi{normal decomposition (4.3) o�ers an oblique projector ontoN (J(x)): Pobl(x) = W (x)W (x)T ; (4.16)where W (x) is given by (4.5). The normal decomposition (3.6) when applied to theequality constraints of our problem (4.1) provides an orthogonal projectorPort(x) = Z(x)Z(x)T : (4.17)It can be easily proved thatPort(x) = Z(x)Z(x)T = W (x) �W (x)TW (x)��1W (x)T : (4.18)In Figure 4.1 we depict the action of the projectors Pobl(x) and Port(x) on a givenvector v. The following proposition provides an explanation for the form of Pobl(x)vgiven in Figure 4.1.Proposition 4.3.1 Given a vector v in IRn,Port(x)v = Port(x)0@ 0W (x)Tv 1A : (4.19)In addition, 0@ 0W (x)Tv 1A is the unique vector in the vector space fx =(yT ; uT )T 2 IRn : y = 0g for which (4.19) holds.
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Figure 4.1 The normal and the quasi{normal components andthe action of the orthogonal and oblique projectors.Proof The proof of the �rst part is the following:Port(x)0@ 0W (x)Tv 1A= W (x) �W (x)TW (x)��1 0@ �Cy(x)�1Cu(x)In�m 1AT 0@ 0W (x)Tv 1A= W (x) �W (x)TW (x)��1W (x)Tv= Port(x)v;where we used (4.5) and the form of Port(x) given in (4.18). To prove the unique-ness suppose that x1 = 0@ 0u1 1A and x2 = 0@ 0u2 1A satisfy Port(x)x1 = Port(x)x2.From Port(x)(x1 � x2) = 0 we conclude that x1 � x2 is orthogonal to N (J(x)), i.e.W (x)T (x1 � x2) = 0. But this is just0@ �Cy(x)�1Cu(x)In�m 1AT 0@ 0u1 � u2 1A = 0



66and u1 = u2.From this proposition we know how to depictW (x)Tv along the u axis. Note thatPobl(x)v = W (x)W (x)Tv = 0@ �Cy(x)�1Cu(x)W (x)TvW (x)Tv 1Alies in the null space N (J(x)).4.4 Optimality ConditionsIn this section we apply the �rst{order necessary and the second{order necessary andsu�cient optimality conditions to problem (4.1). These conditions provide a powerfulcharacterization of local minimizers in nonlinear programming and are used in manydi�erent �elds of mathematics and science. They were discovered independently byKarush [80] in 1939 and by Kuhn and Tucker [84] in 1951. One can see these con-ditions as an extension of the Lagrange multiplier theory for problems with equalityconstraints (see Propositions 3.1.1 and 3.1.2) to problems with both equality andinequality constraints. By a general nonlinear programming problem we mean theproblem minimize f(x)subject to hi(x) = 0; i = 1; : : : ; p ;gi(x) � 0; i = 1; : : : ; l ; (4.20)where it is assumed that f , hi, and gi are twice continuously di�erentiable functionsde�ned from IRn to IR. In order to describe the form of the optimality conditionsthat we use, we need to introduce the notion of regularity for both equalities andinequalities.De�nition 4.4.1 A point x� is regular for problem (4.20) if the the setof vectorsnrhi(x�); i = 1; : : : ; po [nrgi(x�); for all i 2 f1; : : : ; lg such that gi(x�) = 0o (4.21)is linearly independent.The inequality constraints gi(x) � 0, for all i 2 f1; : : : ; lg such thatgi(x�) = 0, are said to be active or binding at x�.



67The optimality conditions for nonlinear programming are stated in the two fol-lowing propositions using regularity as a constraint quali�cation.Proposition 4.4.1 (Karush{Kuhn{Tucker) If the regular point x� is alocal minimizer of problem (4.20), then there exist �� 2 IRp and �� 2 IRlsuch that hi(x�) = 0; i = 1; : : : ; p ;gi(x�) � 0; i = 1; : : : ; l ;rf(x�) + pXi=1(��)irhi(x�) + lXi=1(��)irgi(x�) = 0 ;gi(x�) (��)i = 0; i = 1; : : : ; l ; and�� � 0:These conditions are called the �rst{order necessary optimality conditions.The vectors �� and �� are the Lagrange multipliers. The Lagrangian functionassociated with problem (4.20) is f(x) +Ppi=1 �ihi(x) +Pli=1 �igi(x).Proposition 4.4.2 (Karush{Kuhn{Tucker) If x� is a regular point forproblem (4.20), then the second{order necessary optimality conditions forx� to be a local minimizer are the existence of �� 2 IRp and �� 2 IRl suchthat the �rst{order necessary optimality conditions hold andr2f(x�) + pXi=1(��)ir2hi(x�) + lXi=1(��)ir2gi(x�) (4.22)is positive semi{de�nite on the null space of the set of vectors in (4.21).The second{order su�cient optimality conditions include the �rst{ordernecessary optimality conditions and require the matrix (4.22) to be posi-tive de�nite for every nonzero vector z 2 IRn that satis�eszTrhi(x�) = 0; i = 1; : : : ; p ;zTrgi(x�) = 0; for i 2 f1; : : : ; lg such that (��)i > 0 ;zTrgi(x�) � 0; for i 2 f1; : : : ; lg such that (��)i = 0 :



68We can apply Propositions 4.4.1 and 4.4.2 to problem (4.1) and simplify the resultby using the structure of (4.1). This is what we actually do in the rest of this section.The resulting optimality conditions for problem (4.1) are stated in Propositions 4.4.3and 4.4.4.A point x� satis�es the �rst{order necessary optimality conditions for problem(4.1) if there exist �� 2 IRm and �a�; �b� 2 IRn�m such thatC(x�) = 0; a � u� � b;0@ ryf(x�)ruf(x�) 1A+ 0@ Cy(x�)T��Cu(x�)T�� 1A� 0@ 0�a� 1A+ 0@ 0�b� 1A = 0; (4.23)((u�)i � ai) (�a�)i = (bi � (u�)i) (�b�)i = 0; i = 1; : : : ; n�m; and�a� � 0; �b� � 0:These conditions are necessary for x� to be a local solution of (4.1) since the invert-ibility of Cy(x�) and the form of the bound constraints on the controls u imply thelinear independence of the equality and active inequality constraints (see De�nition4.4.1). We can use the structure of the problem to rewrite the �rst{order necessaryoptimality conditions:C(x�) = 0; a � u� � b;�� = �Cy(x�)�Tryf(x�);ai < (u�)i < bi =) (ru`(x�; ��))i = 0;(u�)i = ai =) (ru`(x�; ��))i � 0; and(u�)i = bi =) (ru`(x�; ��))i � 0:One can obtain a useful form of these conditions by noting thatru`(x�; ��) = W (x�)Trf(x�):(See equations (4.14) and (4.15).) In other words, ru`(x�; ��) is just the reducedgradient corresponding to the u variables. Hence x� satis�es the �rst{order necessaryoptimality conditions ifC(x�) = 0; a � u� � b;



69ai < (u�)i < bi =) �W (x�)Trf(x�)�i = 0;(u�)i = ai =) �W (x�)Trf(x�)�i � 0; and(u�)i = bi =) �W (x�)Trf(x�)�i � 0:Furthermore, x� satis�es the second{order necessary optimality conditions forproblem (4.1) if it satis�es the �rst{order necessary optimality conditions, and ifthe principal submatrix of the reduced Hessian W (x�)Tr2xx`(x�; ��)W (x�) corre-sponding to indices i such that ai < (u�)i < bi is positive semi{de�nite, where�� = �Cy(x�)�Tryf(x�).Now we adapt the idea of Coleman and Li [23] to this context and de�ne D(x) 2IR(n�m)�(n�m) to be the diagonal matrix with diagonal elements given by(D(x))ii = 8>>>>>>>>><>>>>>>>>>: (b� u) 12i if �W (x)Trf(x)�i < 0 and bi < +1;1 if �W (x)Trf(x)�i < 0 and bi = +1;(u� a) 12i if �W (x)Trf(x)�i � 0 and ai > �1;1 if �W (x)Trf(x)�i � 0 and ai = �1; (4.24)for i = 1; : : : ; n �m. In the following proposition we give the form of the �rst{orderand the second{order necessary optimality conditions that we use in Chapters 5 and6. To us, they indicate the suitability of (4.24) as an a�ne scaling for (4.1).Proposition 4.4.3 A point x� satis�es the �rst{order necessary opti-mality conditions for problem (4.1) if and only ifC(x�) = 0 ; a � u� � b ; andD(x�)W (x�)Trf(x�) = 0:A point x� satis�es the second{order necessary optimality conditions forproblem (4.1) if and only if it satis�es the �rst{order necessary optimalityconditions and D(x�)W (x�)Tr2xx`(x�; ��)W (x�)D(x�)is positive semi{de�nite. The corresponding Lagrange multipliers aregiven by �� = �Cy(x�)�Tryf(x�).



70Proposition 4.4.3 remains valid for a larger class of diagonal matrices D(x). Thescalar 1 in the de�nition (4.24) of D(x) can be replaced by any other positive scalarand Proposition 4.4.3 also remains valid with D(x) replaced by D(x)p, p > 0. Mostof our convergence results in Chapters 5 and 6 still hold if D(x) is replaced by D(x)p,p � 1. See also Remark 5.5.1. However, the square roots in the de�nition of D(x) arenecessary for the proof of local q{quadratic convergence of our trust{region interior{point reduced SQP algorithms.The form of the su�cient optimality conditions that we use requires the de�nitionof nondegeneracy or strict complementarity.De�nition 4.4.2 A point x in B is said to be nondegenerate if�W (x)Trf(x)�i = 0 =) ai < ui < bi for all i 2 f1; : : : ; n�mg:We now de�ne a diagonal (n�m)� (n�m) matrix E(x) with diagonal elementsgiven by(E(x))ii = 8>>>><>>>>: ����W (x)Trf(x)�i��� if �W (x)Trf(x)�i < 0 and bi < +1; orif �W (x)Trf(x)�i > 0 and ai > �1;0 in all other cases, (4.25)for i = 1; : : : ; n � m. The signi�cance of this matrix becomes clear in Section 5.1when we apply Newton's method to the system of nonlinear equations arising fromthe �rst{order necessary optimality conditions. From the de�nitions of D(x) andE(x) we have the following property. The proof is simple and we omit it.Proposition 4.4.4 A nondegenerate point x� satis�es the second{ordersu�cient optimality conditions for problem (4.1) if and only if it satis�esthe �rst{order necessary optimality conditions andD(x�)W (x�)Tr2xx`(x�; ��)W (x�)D(x�) + E(x�)is positive de�nite, where �� = �Cy(x�)�Tryf(x�).4.5 Optimal Control ExamplesThe two examples that we describe in this section are used in Chapters 5 and 6 totest our trust{region interior{point reduced SQP algorithms.



714.5.1 Boundary Control of a Nonlinear Heat EquationAn application that has the structure described in this chapter is the control of aheating process. In this section we introduce a simpli�ed model for the heating of aprobe in a kiln discussed by Burger and Pogu [12]. The temperature y(x; t) inside theprobe is governed by a nonlinear parabolic partial di�erential equation. The spatialdomain is given by (0; 1). The boundary x = 1 is the inside of the probe and x = 0is the boundary of the probe{.The goal is to control the heating process in such a way that the temperatureinside the probe follows a certain desired temperature pro�le yd(t). The control u(t)acts on the boundary x = 0. The problem can be formulated as follows [12]:minimize 12 Z T0 �(y(1; t)� yd(t))2 + u2(t)�dt (4.26)subject to� (y(x; t))@y@t(x; t)� @x(�(y(x; t))@xy(x; t)) = q(x; t); (x; t) 2 (0; 1)� (0; T );�(y(0; t))@xy(0; t) = g�y(0; t)� u(t)�; t 2 (0; T );�(y(1; t))@xy(1; t) = 0; t 2 (0; T );y(x; 0) = y0(x); x 2 (0; 1);ulow � u � uupp;where y 2 L2(0; T ;H1(0; 1)), and u 2 L2(0; T ). The functions �; � 2 C1(IR) denotethe speci�c heat capacity and the heat conduction, respectively. y0 2 H1(0; 1) is theinitial temperature distribution, q 2 L2(0; T ;H1(0; 1)) is the source term, g is a givenscalar, and  is a positive regularization parameter. Here ulow; uupp 2 L1(0; T ) aregiven functions. It is shown in [12] that if the functions � and � satisfy0 < �1 � � (t) � �2 ; j� 0(t)j � �3 ;0 < �1 � �(t) � �2 ; j�0(t)j � �3 ; for all t > 0 ;then the state equation has a unique solution in the state spaceny : y 2 L1(0; T ;H1(0; 1)); y0 2 L2(0; T ;H1(0; 1)0)o{The notation x used here for the spatial variables should not be confused with the n dimensionalvector x formed by the y and u components.



72and there exists a solution for the control problem with no bound constraints.If the partial di�erential equation and the integral are discretized, we obtain anoptimization problem of the form (4.1). The discretization uses �nite elements andwas introduced in [12] (see also [75], [89]). The spatial domain (0; 1) is divided intoNx subintervals of equidistant length, and the spatial discretization is done usingpiecewise linear �nite elements. The time discretization is performed by partitioningthe interval [0; T ] into Nt equidistant subintervals. Then the backward Euler methodis used to approximate the state space in time, and piecewise constant functions areused to approximate the control space. With this discretization scheme, Cy(x) isa block bidiagonal matrix with tridiagonal blocks resulting from sti�ness and massmatrices. Hence linear systems with Cy(x) and Cy(x)T can be solved e�ciently. It isshown in [89][Lemma 3.1] that if�th2 < 16 � �2�1 � �1�2��1 ;where �t = TNt and h = 1Nx , then these tridiagonal blocks are nonsingular. ThusCy(x) is also nonsingular.4.5.2 Distributed Control of a Semi{Linear Elliptic EquationThe second example is the distributed control of a semi{linear elliptic equation dis-cussed by Heinkenschloss and Vicente [77]. The control problem is given byminimize 12 Z
 �(y � yd)2 + u2�dx (4.27)over all y and u satisfying the state equation��y + g(y) = u; in 
;y = d; on @
 ; (4.28)and the control constraints ulow � u � uupp; (4.29)where y 2 H1(
), u 2 L2(
), ulow; uupp 2 L1(
) are given functions, and 
 is abounded domain of IRN , N = 1; 2; 3, with boundary @
.The state equation (4.27) is related to the time dependent problem @y@t = �y +ey; t > 0, that arises in thermal self{ignition of a chemically active mixture of gasesin a vessel as described in Gel'fand [57].



73For g(y) = ��ey, u = 0, and d = 0, the state equation (4.27) reduces to the Bratuproblem: ��y = �ey; in 
;y = 0; on @
: (4.30)This problem models di�usion phenomena in combustion and semiconductors andhas become a standard test problem for solvers of systems of nonlinear equations (seethe description by Glowinski and Keller in the collection of nonlinear model problemsassembled by Mor�e [104].) The numerical treatment by �nite element methods andthe solvability of the Bratu problem is discussed in [62, Section IV.2], [63].For the discretization of this optimal control problem one can use piecewise linear�nite elements for both the states and the controls. This leads to a discretized optimalcontrol problem of the form (4.1).4.6 Problem ScalingAn important numerical issue, that is addressed in our implementation of the al-gorithms presented in Chapter 5 is the problem scaling inherent in optimal controlproblems. As we pointed out, the problems we are primarily interested in are dis-cretizations of optimal control problems governed by partial di�erential equations.The in�nite dimensional problem structure greatly inuences the �nite dimensionalproblem. In our implementation, we take this into account by allowing the scalarproducts for the states y, the controls u, and the duality pairing needed to represent�TC(y; u) to be chosen so that they are discretizations of proper in�nite dimensionalones. It is beyond the scope of this thesis to give a comprehensive theoretical studyof these issues, but it is important to notice that the formulation of the algorithms inChapters 5 and 6 fully support the use of such scalar products without any changes.This is a great advantage. In some of the numerical experiments reported in [22],[72], this improved the performance of our algorithms signi�cantly, it avoided arti�-cial ill{conditioning, and it enhanced the quality of the solution computed for a givenstopping tolerance.



74Chapter 5Trust{Region Interior{Point Reduced SQPAlgorithms for a Class of NonlinearProgramming ProblemsNonlinear programming problems of the form (4.1) originating from optimal controlproblems governed by large systems of di�erential equations are the targets of thealgorithms introduced in this chapter.Our algorithms are reduced SQP algorithms that use trust{region interior{point(TRIP) techniques to guarantee global convergence and to handle the bound con-straints on the controls (see also Dennis, Heinkenschloss, and Vicente [36]). As wedescribed in Chapter 4, the structure of optimal control problems given in Section 4.1can be used to implement and analyze SQP algorithms. In particular, to implementreduced SQP algorithms, it is su�cient to compute quantities of the form Cy(x)vy,Cy(x)Tvy, Cu(x)vu, Cu(x)Tvy, and to compute solutions of the linearized state equa-tion Cy(x)vy = r, and of the adjoint equation Cy(x)Tvy = r. This is an importantobservation, because these are tasks that arise naturally in the context of optimalcontrol problems. In fact, all of the early SQP algorithms, and many of the recentones rely on matrix factorizations, like the QR, of the Jacobian J(x) of C(x). Forthe applications we have in mind this is not feasible. As we discussed in Section4.3, the involved matrices are too large to perform such computations and very oftenthese matrices are not even available in explicit form. On the other hand, matrix{vector multiplications Cy(x)vy, Cy(x)Tvy, Cu(x)vu, Cu(x)Tvy can be performed ande�cient solvers for the linearized state equation Cy(x)vy = r, and the adjoint equationCy(x)Tvy = r often are available.A purely local analysis for the case with no bounds constraints has being givenin [83], [86], [87], [89]. However, we consider here the much more di�cult issue ofincorporating all this structure into an algorithm that converges globally and handlesbound constraints on the control variables u.The global convergence of our algorithms is guaranteed by a trust{region strategy.In our framework the trust region serves a dual purpose. Besides ensuring globalconvergence, trust regions also introduce a regularization of the subproblems which



75is related to the Tikhonov regularization [138] as we saw in Section 2.3.4. For thesolution of optimal control problems, the partitioning of the variables into statesy and controls u motivates a partial decoupling of step components that leads tointeresting alternatives for the choice of the trust regions. In Section 5.2.2, we usethe structure of problem (4.1) and adapt to this case the decoupled and coupled trust{region approaches introduced in Section 3.4.2 for equality{constrained optimization.As indicated by the names, in the decoupled approach the trust region acts on stepcomponents separately. This allows a more e�cient implementation of algorithmsfor the computation of these steps. However, for problems with ill{conditioned stateequations, this decoupling does not give an accurate estimate of the size of the stepsand might lead to poor performance. In this situation the coupled approach is better,and so we include both.For the treatment of the bound constraints on u we use a primal{dual a�nescaling interior{point algorithm introduced by Coleman and Li [24] for problemswith simple bounds. Interior{point approaches are attractive for problems with alarge number of bounds. In our context, the a�ne scaling interior{point algorithmis also of interest, because it does not interfere with the structure of the problem.To apply this algorithm, no additional information is required from the user. Thisor similar interior{point approaches have recently also been used e.g. in [7], [25],[94], [95], [118]. The advantage of the approach in [24] is that the scaling matrix isdetermined by the distance of the iterates to the bounds and by the direction of thegradient. This dependence on the direction of the gradient is important for globalconvergence and its good e�ect can be seen in numerical examples, see e.g. Figures5.5 and 5.6.We believe that the features and strong theoretical properties of these algorithmsmake them very attractive and powerful tools for the solution of optimal controlproblems. We applied them to a boundary nonlinear parabolic control problem, seeSection 5.8, and a distributed nonlinear elliptic control problem, see Section 6.5.The numerical results are quite satisfactory. Our algorithms have also been appliedsuccessfully to optimal control problems arising in uid ow [22], [72].This chapter is organized as follows. In Section 5.1, we discuss the application ofNewton's method to the system of nonlinear equations arising from the �rst{ordernecessary optimality conditions. This is important for the derivation of our TRIPreduced SQP algorithms. We describe these algorithms in Section 5.2. Sections 5.2.1



76and 5.2.2 contain a description of the quasi{normal component and of the tangentialcomponent. As noticed previously, the partial decoupling of the step componentsmotivated by the partitioning of the variables into states y and controls u and theroles of the decoupled and coupled trust{region approaches are exposed in Section5.2.2. A complete statement of the TRIP reduced SQP algorithms is given in Section5.2.4.The convergence theory for these algorithms is given in Sections 5.3, 5.4, 5.5, and5.6. Section 5.3 contains some technical results. In Section 5.4, Theorem 5.4.1, weestablish global convergence of the iterates to solutions of the �rst{order necessaryoptimality conditions. This result is established under very mild assumptions on thesteps, the quadratic models, and the Lagrange multipliers. It simultaneously extendsthe results presented recently by Coleman and Li [24] for simple bounds and thoseof Dennis, El{Alem, and Maciel [35] (see Theorem 3.6.1 in this thesis) for equalityconstraints. Under additional conditions, we show convergence of the iterates to non-degenerate solutions of the second{order necessary optimality conditions in Theorem5.5.2, Section 5.5. This latter result simultaneously extends those by Coleman andLi [24] for simple bounds and those by Dennis and Vicente [42] (see Theorem 3.6.3in this thesis) for equality constraints. See Figures 1.1 and 1.2. A q{quadratic rateof convergence is proven in Section 5.6. Our analysis allows the application of a va-riety of methods for the computation of the step components sq and st = W (x)su.In Section 5.7, we discuss practical algorithms for the computation of steps and theLagrange multipliers that are currently used in our implementation. Numerical resultsare reported in Section 5.8.5.1 Application of Newton's MethodOne way to motivate the algorithms described in this chapter is to apply Newton'smethod to the system of nonlinear equationsC(x) = 0;D(x)2W (x)Trf(x) = 0; (5.1)where x = (yT ; uT )T is strictly feasible with respect to the bounds on the variablesu, i.e. a < u < b. This is related to Goodman's approach [68] for an orthogonalnull{space basis and equality constraints (see the discussion at the end of Section3.2). Although D(x)2 is usually discontinuous at points where �W (x)Trf(x)�i = 0,



77the function D(x)2W (x)Trf(x) is continuous (but not di�erentiable) at such points.This can be observed in Figures 5.1 and 5.2. The application of Newton's methodto this type of systems of nondi�erentiable equations has �rst been suggested byColeman and Li [23] in the context of nonlinear optimization problems with simplebounds. They showed that this type of nondi�erentiability still allows the Newtonprocess to achieve local q{quadratic convergence. In order to apply Newton's methodwe �rst need to compute some derivatives.To calculate the Jacobian of the reduced gradient W (x)Trf(x), we writeW (x)Trf(x) = ruf(x) + Cu(x)T�;where � is given by Cy(x)T� = �ryf(x) and has derivatives@�@y = �Cy(x)�T �Pmi=1r2yyci(x)�i +r2yyf(x)�= �Cy(x)�Tr2yy`(x; �);@�@u = �Cy(x)�T �Pmi=1r2yuci(x)�i +r2yuf(x)�= �Cy(x)�Tr2yu`(x; �):This implies the equalities@@y �W (x)Trf(x)� = Cu(x)T @�@y +r2uyf(x) +Pmi=1r2uyci(x)�i= W (x)T 0@ r2yy`(x; �)r2uy`(x; �) 1A ;@@u �W (x)Trf(x)� = Cu(x)T @�@u +r2uuf(x) +Pmi=1r2uuci(x)�i= W (x)T 0@ r2yu`(x; �)r2uu`(x; �) 1A ;and we can conclude thatddx �W (x)Trf(x)� = W (x)Tr2xx`(x; �);where � = �Cy(x)�Tryf(x).A linearization of (5.1) gives Cy(x)sy + Cu(x)su = �C(x); (5.2)�D(x)2W (x)Tr2xx`(x; �) + � 0 E(x) ��0@ sysu 1A = �D(x)2W (x)Trf(x);(5.3)
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Figure 5.1 Plots of D(x)2and W (x)Trf(x) forW (x)Trf(x) = �x+ 1 andx 2 [0; 4]. 0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 5.2 Plot ofD(x)2W (x)Trf(x) forW (x)Trf(x) = �x+ 1 andx 2 [0; 4].where 0 denotes the (n � m) � m matrix with zero entries. Equation (5.2) is thelinearized state equation. The matrix E(x) was de�ned in (4.25), Section 4.4. Thediagonal elements of E(x) are the product of the derivative of the diagonal elementsof D(x)2 and the components of the reduced gradientW (x)Trf(x). The derivative of(D(x)2)ii does not exist if �W (x)Trf(x)�i = 0. In this case we set the correspondingquantities in the Jacobian to zero (see references [24], [23]). This gives the equation(5.3).By using (4.3) we can rewrite the linear system (5.2){(5.3) ass = sq +W (x)su;�D(x)2W (x)Tr2xx`(x; �)W (x) + E(x)� su= �D(x)2W (x)T (r2xx`(x; �)sq +rf(x)) : (5.4)We de�ne our Newton{like step as the solution ofs = sq +W (x)su; (5.5)� �D(x)2W (x)Tr2xx`(x; �)W (x) + E(x)� su= � �D(x)2W (x)T (r2xx`(x; �)sq +rf(x)) ; (5.6)



79where �D(x) 2 IR(n�m)�(n�m) is the diagonal matrix de�ned by( �D(x))ii = 8>>>>>>>>><>>>>>>>>>: (b� u) 12i if �W (x)T (r2xx`(x; �)sq +rf(x))�i < 0 and bi < +1;1 if �W (x)T (r2xx`(x; �)sq +rf(x))�i < 0 and bi = +1;(u� a) 12i if �W (x)T (r2xx`(x; �)sq +rf(x))�i � 0 and ai > �1;1 if �W (x)T (r2xx`(x; �)sq +rf(x))�i � 0 and ai = �1;(5.7)for i = 1; : : : ; n�m. This change of the diagonal scaling matrix is based on the formof the right hand side of (5.4).If x is close to a nondegenerate point x� satisfying the second{order su�cientoptimality conditions and if W (x)Tr2xx`(x; �)sq is su�ciently small, a step s de�nedin this way is a Newton step on the following system of nonlinear equationsC(x) = 0;D(x)2uW (x)Trf(x) = 0; (5.8)where D(x)u depends on x� as follows:(D(x)u)ii = 8>>>>><>>>>>: 1 or (b� u) 12i or (u� a) 12i if �W (x�)Trf(x�)�i = 0;(b� u) 12i if �W (x�)Trf(x�)�i < 0;(u� a) 12i if �W (x�)Trf(x�)�i > 0;for i = 1; : : : ; n �m. If �W (x�)Trf(x�)�i = 0, the i{th principal diagonal elementof D(x)u has to be chosen so that D(x)u and �D(x) are the same matrices. Of course,this depends on the sign of �W (x)T (r2xx`(x; �)sq+rf(x))�i. As Coleman and Li [23]pointed out, D(x)u is just of theoretical use since x� is unknown. One can see thatD(x)2uW (x)Trf(x) is continuously di�erentiable with Lipschitz continuous deriva-tives in an open neighborhood of x�, that D(x�)2uW (x�)Trf(x�) = 0, and that theJacobian of D(x)2uW (x)Trf(x) at x� is nonsingular, for all choices of D(x)u. Theseconditions are those typically required to get q{quadratic convergence for the Newtoniteration (see [39][Theorem 5.2.1]). The interior{point process damps the Newton stepso that it stays strictly feasible but this does a�ect the rate of convergence. The detailsare provided in Corollary 5.6.1.



805.2 Trust{Region Interior{Point Reduced SQP AlgorithmsThe algorithms that we propose generate a sequence of iterates fxkg wherexk = 0@ ykuk 1A ;and uk is strictly feasible with respect to the bounds, i.e. a < uk < b. At iterationk we are given xk, and we need to compute a step sk. If sk is accepted, we setxk+1 = xk + sk. Otherwise, we set xk+1 to xk, reduce the trust{region radius, andcompute a new step.Following the application of Newton's method (5.5), each step sk is decomposedas sk = sqk + stk = sqk +Wk(sk)u;where sqk is called the quasi{normal component and stk is the tangential component.The role of sqk is to move towards feasibility whereas the role of stk is to move towardsoptimality. The de�nition of the quasi{normal component, the tangential component,as well as the complete formulation of our algorithms is the content of this section.5.2.1 The Quasi{Normal ComponentLet �k be the trust radius at iteration k. The quasi{normal component sqk is relatedto the trust{region subproblem for the linearized constraintsminimize 12kJksq + Ckk2subject to ksqk � �k;and it is required to have the formsqk = 0@ (sqk)y0 1A : (5.9)Thus the displacement along sqk is made only in the y variables, and as a consequence,xk and xk + sqk have the same u components. The calculation of the quasi{normalcomponent is illustrated in Figures 5.3 and 5.4. Since (sqk )u = 0, the trust{regionsubproblem introduced above can be rewritten asminimize 12kCy(xk)(sq)y + Ckk2 (5.10)subject to k(sq)yk � �k: (5.11)



81Thus, the quasi{normal component sqk is a trust{region globalization of the compo-nent sq given in (4.4) of the Newton step (5.5). We do not have to solve (5.10){(5.11)exactly, we only have to assume that the quasi{normal component satis�es the con-ditions ksqkk � �1kCkk (5.12)and kCkk2 � kCy(xk)(sqk)y + Ckk2 � �2kCkkminf�3kCkk; �kg ;k(sqk)yk � �k ; (5.13)where �1, �2, and �3 are positive constants independent of k. In Section 6.3, wedescribe several ways of computing a quasi{normal component that satis�es the re-quirements (5.9), (5.12), and (5.13). Condition (5.12) tells us that the quasi{normalcomponent is small close to feasible points. The decrease condition (5.13) is a formof Cauchy decrease or simple decrease for the trust{region subproblem (5.10){(5.11).See Section 3.4.1 for more details.5.2.2 The Tangential ComponentThe computation of the tangential component (sk)u follows a trust{region globaliza-tion of the Newton step (5.6). Following Coleman and Li [24] we symmetrize (5.6)and get � �DkW Tk HkWk �Dk + Ek� �D�1k su = � �DkW Tk �Hksqk +rfk� ;where �Dk = �D(xk), Ek = E(xk), and Hk denotes a symmetric approximation to theHessian matrix r2xx`k. This suggests the change of variables ŝu = �D�1k su and theconsideration in the scaled space ŝu of the trust{region subproblem:minimize � �DkW Tk �Hksqk +rfk��T ŝu + 12 ŝTu � �DkW Tk HkWk �Dk + Ek� ŝusubject to kŝuk � �k:Now we can rewrite the previous subproblem in the unscaled space su asminimize �W Tk �Hksqk +rfk��T su + 12sTu �W Tk HkWk + Ek �D�2k � susubject to k �D�1k suk � �k: (5.14)Of course, we also have to require that the new iterate is in the interior of thebox constraints. To ensure that uk + sk is strictly feasible with respect to the box



82constraints we choose �k 2 [�; 1), � 2 (0; 1), and compute su with �k(a� uk) � su ��k(b � uk). However, one of the strength of this trust{region approach is that wecan allow for approximate solutions of this subproblem with or without the boundconstraints. In particular, it is not necessary to solve the full trust{region subproblemincluding the box constraints. For example, one can compute the solution of the trust{region subproblem without the box constraints and then scale the computed solutionback so that the resulting damped su obeys �k(a�uk) � su � �k(b�uk). We show thatunder suitable assumptions this strategy guarantees global convergence and local q{quadratic convergence. Another way to compute an approximate u component of thestep is to use a modi�cation of the Conjugate{Gradient Algorithm 2.3.2 for the trust{region subproblem that is truncated if one of the bounds �k(a�uk) � su � �k(b�uk)is violated. See Section 5.7.1. More ways to compute the tangential component arepossible. The conditions on the tangential component necessary to guarantee globalconvergence are stated later in this section.We now introduce a quadratic model	k(su) = qk(sqk +Wksu) + 12sTu �Ek �D�2k � su; (5.15)where, as in Section 3.2,qk(sqk +Wksu) = qk(sqk) + �gTk su + 12suTW Tk HkWksu (5.16)is a quadratic model of `(xk + s; �k) about (xk; �k), and�gk = W Tk rqk(sqk) = W Tk �Hksqk +rfk� :The Decoupled Trust{Region ApproachWe can restate the trust{region subproblem (5.14) asminimize 	k(su) (5.17)subject to k �D�1k suk � �k: (5.18)We refer to the approach based on this subproblem as the decoupled approach. Inthis decoupled approach the trust{region constraint is of the form k �D�1k suk � �kcorresponding to the constraint kŝuk � �k in the scaled space. One can see from(5.11) and (5.18) that we are imposing the trust region separately on the y part of the



83quasi{normal component and on the u part of the tangential component. (In Figure5.3, the tangential component is depicted for the decoupled approach.) Moreover,if the cross{term W Tk Hksqk is set to zero, then the trust{region subproblems for thequasi{normal component and for the tangential component are completely separated.The Coupled Trust{Region ApproachThe approach we now present forces both the y and the u components of the tangentialcomponent stk = Wk(sk)u to lie inside a trust region of radius �k. See Figure 5.4. Thereference trust{region subproblem is given byminimize 	k(su) (5.19)subject to 0@ �Cy(xk)�1Cu(xk)su�D�1k su 1A � �k: (5.20)Recall from Section 3.4.2 that in the case where there are no bounds on u this trust{region constraint is of the form0@ �Cy(xk)�1Cu(xk)susu 1A = kWksuk � �k:As opposed to the decoupled case, one can see that the term Cy(xk)�1Cu(xk)suis present in the trust{region constraint (5.20). If W+k denotes the Moore{Penrosepseudo inverse of Wk (see [66][Section 5.5.4]), then1kW+k kksuk � kWksuk � kWkkksuk:Thus, if the condition number �(Wk) = kW+k k kWkk is small, then the decoupled andthe coupled approach generate similar iterates. In this case, the decoupled approachis more e�cient since it uses fewer linear system solves with the systemmatrix Cy(xk).See Section 5.7.1. However, if �(Wk) is large, e.g. if Cy(xk) is ill{conditioned, then thecoupled approach uses the size of the tangential component st, whereas the decoupledapproach may underestimate vastly the size of this step component. This can leadto poor performance of the decoupled approach when steps are rejected and thetrust{region radius is reduced based on the incorrect estimate ksuk of the norm ofst = Wksu. This indicates that when Cy(x) is ill{conditioned the coupled approacho�ers a better regularization of the step.
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su

syJks = �Ck sqk(sk)uWk(sk)u �k(a � uk) � su � �k(b� uk)�kxk
Figure 5.3 The quasi{normal and tangential components of the step forthe decoupled approach. We assume for simplicity that �Dk = ( 1 ).Cauchy Decrease for the Tangential ComponentTo assure global convergence to a point satisfying the �rst{order necessary optimalityconditions, we consider analogs for the subproblems (5.17){(5.18) and (5.19){(5.20)of the fraction of Cauchy decrease condition (2.7) for the unconstrained optimizationproblem.First we consider the decoupled trust{region subproblem (5.17){(5.18). The Cau{chy step cdk for this case is de�ned as the solution ofminimize 	k(cd)subject to k �D�1k cdk � �k; cd 2 spanf� �D2k�gkg;�k(a� uk) � cd � �k(b� uk);where � �D2k�gk is the steepest{descent direction for 	k(su) at su = 0 in the normk �D�1k �k. (See Section 2.3 for general de�nitions of Cauchy steps and steepest{descentdirections.) Here �k 2 [�; 1) ensures that the Cauchy step cdk remains strictly feasiblewith respect to the box constraints. The parameter � 2 (0; 1) is �xed for all k. We
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su syJks = �Ck sqk �k(a � uk) � su � �k(b� uk)�kxk (sk)uWk(sk)u
Figure 5.4 The quasi{normal and tangential components of the step forthe coupled approach. We assume for simplicity that �Dk = ( 1 ).require the tangential component (sk)u with �k(a� uk) � (sk)u � �k(b� uk) to givea decrease on 	k(su) smaller than a uniform fraction of the decrease given by cdk forthe same function 	k(su). This fraction of Cauchy decrease condition can be statedas 	k(0)�	k((sk)u) � �d1 �	k(0)�	k(cdk )� ;k(sk)uk � �k ; (5.21)where �d1 is positive and �xed across all iterations. It is not di�cult to see that doglegor conjugate{gradient algorithms of the type 2.3.1 and 2.3.2 can compute components(sk)u conveniently that satisfy condition (5.21) with �d1 = 1. We leave these issues toSection 5.7.1.In a similar way, the component (sk)u with �k(a�uk) � (sk)u � �k(b�uk) satis�esa fraction of Cauchy decrease for the coupled trust{region subproblem (5.19){(5.20)if 	k(0)�	k((sk)u) � �c1�	k(0) �	k(cck)� ;0@ �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u 1A � �k ; (5.22)



86for some �c1 independent of k, where the Cauchy step cck is the solution ofminimize 	k(cc)subject to 0@ �Cy(xk)�1Cu(xk)cc�D�1k cc 1A � �k; cc 2 spanf� �D2k�gkg;�k(a� uk) � cc � �k(b� uk):In Section 5.7.1, we show how to use conjugate{gradient type algorithms to computecomponents (sk)u satisfying the condition (5.22).One �nal comment is in order. In the coupled approach, the Cauchy step cckwas de�ned along the direction � �D2k�gk. To simplify this discussion, suppose thatthere are no bounds on u. In this case the trust{region constraint is of the formkWksuk � �k. The presence of Wk gives the trust region an ellipsoidal shape. Thesteepest{descent direction for the quadratic (5.15) in the norm kWk � k at su = 0 isgiven by �(W Tk Wk)�1�gk. Our analysis still holds for this case since fk(W Tk Wk)�1kgis a bounded sequence. See the discussion in Section 3.4.2 for the coupled approach.The reason why we avoid the term (W Tk Wk)�1 is that in many applications there isno reasonable way to solve systems with W Tk Wk. We show in Section 5.7.1 how thisa�ects the use of conjugate gradients (see Remark 5.7.1). Finally, we point out thatthis problem does not arise if the decoupled approach is used.Optimal Decrease for the Tangential ComponentThe conditions in the previous subsection are su�cient to guarantee global conver-gence to a point satisfying �rst{order necessary optimality conditions, but they aretoo weak to guarantee global convergence to a point satisfying second{order necessaryoptimality conditions. To accomplish this, just as in the unconstrained case [106],[132], in the box{constrained case [24], and in the equality{constrained case [42], [48],we need to make sure that su satis�es an appropriate fraction of optimal decreasecondition.First we consider the decoupled approach and let odk be an optimal solution of thetrust{region subproblem (5.17){(5.18). It follows from the application of Proposition2.3.3 that there exists k � 0 such thatW Tk HkWk + Ek �D�2k + k �D�2k is positive semi{de�nite, (5.23)



87�W Tk HkWk + Ek �D�2k + k �D�2k �odk = ��gk; and (5.24)k��k � k �D�1k odkk� = 0:Since uk + odk might not be strictly feasible, we consider �kodk , where �k is given by�k = �k min(1; max(bi � (uk)i(odk )i ; (uk)i � ai(odk )i ) ; i = 1; : : : ; n�m) : (5.25)With this choice of �k, uk + �kodk is strictly inside the box constraints B.The tangential component (sk)u then is required to satisfy the following fractionof optimal decrease condition	k(0) �	k((sk)u) � �d2 �	k(0)�	k(�kodk )� ;k �D�1k (sk)uk � �d3 �k ; (5.26)where �d2 ; �d3 are positive constants independent of k.From conditions (5.23), (5.24), (5.26), and �k < 1, we can write	k(0) �	k((sk)u) � �d2 ���k�gTk odk � 12� 2k (odk)T �W Tk HkWk + Ek �D�2k � (odk )�� �d2 �k�� �gTk odk � 12(odk )T (W Tk HkWk + Ek �D�2k+k �D�2k )(odk )�+ 12�d2 � 2kk(odk )T �D�2k (odk )� 12�d2 �kkRkodkk2 + 12�d2 � 2k k�2k� 12�d2 � 2k k�2k ; (5.27)where W Tk HkWk + Ek �D�2k + k �D�2k = RTkRk.Now let us focus on the coupled approach and let ock be the optimal solution ofthe trust{region subproblem (5.19){(5.20). In this case ock satis�esW Tk HkWk + Ek �D�2k + k � �D�2k +W Tk Wk � In�m�is positive semi{de�nite, (5.28)�W Tk HkWk + Ek �D�2k + k � �D�2k +W Tk Wk � In�m� �ock = ��gk; and (5.29)k 0@�k � 0@ �Cy(xk)�1Cu(xk)ock�D�1k ock 1A1A = 0:



88Now we damp ock with �k given as in (5.25) but with odk replaced by ock. Thus, theresulting step uk+�kock is strictly feasible. We impose the following fraction of optimaldecrease condition on the tangential component (sk)u:	k(0) �	k((sk)u) � �c2�	k(0)�	k(�kock)� ;0@ �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u 1A � �c3�k ; (5.30)where �c2 ; �c3 are positive and independent of k. In this case it can be shown in a waysimilar to (5.27) that 	k(0)�	((sk)u) � 12�c2� 2k k�2k: (5.31)5.2.3 Reduced and Full HessiansIn the previous section we considered an approximationHk to the full Hessian r2xx`k.The algorithms and theory presented in this and in the following chapters are alsovalid if we use an approximation ~Hk to the reduced Hessian W Tk r2xx`kWk. In thiscase we set Hk = 0@ 0 00 ~Hk 1A : (5.32)Due to the form of Wk, we have W Tk HkWk = ~Hk:This allows us to obtain the expansion (5.16) in the context of a reduced Hessianapproximation.For the algorithms with reduced Hessian approximation the following observationsare useful: Hkd = 0@ 0~Hkdu 1A ;dTHkd = dTu ~Hkdu; (5.33)W Tk Hkd = ~Hkdu;where d = 0@ dydu 1A 2 IRn.



895.2.4 Outline of the AlgorithmsWe need to introduce the merit function and the corresponding actual and predicteddecreases. The merit function used is the augmented LagrangianL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x):The actual decrease at iteration k is de�ned asared(sk; �k) = L(xk; �k; �k)� L(xk + sk; �k+1; �k);and the predicted decrease aspred(sk; �k) = L(xk; �k; �k)� �qk(sk) + ��Tk (Jksk + Ck) + �kkJksk + Ckk2� ;with ��k = �k+1 � �k.These choices of actual and predicted decreases are the same as in Section 3.4.3for equality{constrained optimization. A possible rede�nition of the actual and pre-dicted decreases is obtained by subtracting the term 12(sk)Tu �Ek �D�2k � (sk)u from bothared(sk; �k) and pred(sk; �k). This type of modi�cation was suggested in [24] foroptimization with simple bounds, and it does not a�ect the global and local resultsgiven in this and in the following chapters.To decide whether to accept or reject a step sk, we evaluate the ratioared(sk; �k)pred(sk; �k) :To update the penalty parameter �k we use the scheme proposed in [47] and alreadyused in Algorithm 3.4.1 for equality constraints.We now can outline the main steps of the trust{region interior{point (TRIP)reduced sequential quadratic programming (SQP) algorithms. We leave the practicalcomputation of sqk , (sk)u, and �k to Section 5.7.Algorithm 5.2.1 (TRIP Reduced SQP Algorithms)1 Choose x0 such that a < u0 < b, pick �0 > 0, and calculate �0.Choose �1, �1, �, �min, �max, ��, and ��1 such that 0 < �1; �1; � < 1,0 < �min � �max, �� > 0, and ��1 � 1.2 For k = 0; 1; 2; : : : do



902.1 Stop if (xk; �k) satis�es the stopping criterion.2.2 Compute sqk based on the subproblem (5.10){(5.11).Compute (sk)u based on the subproblem (5.17){(5.18) (or (5.19){(5.20) for the coupled approach) satisfying�k(a� uk) � (sk)u � �k(b� uk);with �k 2 [�; 1). Set sk = sqk + stk = sqk +Wk(sk)u.2.3 Compute �k+1 and set ��k = �k+1 � �k.2.4 Compute pred(sk; �k�1):qk(0)� qk(sk)���Tk (Jksk +Ck) + �k�1�kCkk2�kJksk +Ckk2�:If pred(sk; �k�1) � �k�12 �kCkk2 � kJksk + Ckk2� then set �k =�k�1. Otherwise set�k = 2 �qk(sk)� qk(0) + ��Tk (Jksk + Ck)�kCkk2 � kJksk + Ckk2 + ��:2.5 If ared(sk;�k)pred(sk ;�k) < �1, set�k+1 = �1maxnksqkk; k �D�1k (sk)uko in the decoupled case or�k+1 = �1max8<:ksqkk; 0@ �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u 1A9=; in thecoupled case, and reject sk.Otherwise accept sk and choose �k+1 such thatmaxf�min; �kg � �k+1 � �max:2.6 If sk was rejected set xk+1 = xk and �k+1 = �k. Otherwise setxk+1 = xk + sk and �k+1 = �k +��k.A reasonable stopping criterion for global convergence to a stationary point isk �Dk�gkk + kCkk � �tol for a given �tol > 0. If global convergence to a point satisfyingthe second{order necessary optimality conditions is the goal of the algorithms, thenthe stopping criterion should look like k �Dk�gkk + kCkk + k � �tol, where k is the



91Lagrange multiplier associated with the trust{region constraint in (5.18) (or (5.20))that satis�es equation (5.23) (or (5.28)).Once again we point out that the rules to update the trust radius in the previousalgorithm can be much more involved to enhance e�ciency, but the above su�ces forour presentation.5.2.5 General AssumptionsIn order to establish local and global convergence results we need some general as-sumptions. We list these assumptions below. They extend for our problem (4.1) theassumptions in Chapter 3 for equality{constrained optimization. Let 
 be an opensubset of IRn such that for all iterations k, xk and xk + sk are in 
.Assumptions 5.1{5.65.1 The same as Assumption 3.1.(The functions f , ci, i = 1; : : : ;m are twice continuously di�erentiable functionsin 
.)5.2 The partial Jacobian Cy(x) is nonsingular for all x 2 
.(This implies Assumption 3.2.)5.3 The same as Assumption 3.3.(The functions f , rf , r2f , C, J , and r2ci, i = 1; : : : ;m, are bounded in 
.)5.4 The same as Assumption 3.4.(The sequences fWkg, fHkg, and f�kg are bounded.)5.5 The matrix C�1y (x) is uniformly bounded in 
.(This implies Assumption 3.5.)5.6 The sequence fukg is bounded.It is not di�cult to see that when the equality constraints of problem (3.1) reduceto the equality constraints of problem (4.1), Assumptions 5.1{5.5 given above implyAssumptions 3.1{3.5 given in Chapter 3. Assumption 5.6 is used by Coleman and Li[24] for optimization problems with simple bounds.



92It is equivalent to Assumptions 5.3{5.6, that there exist positive constants�0; : : : ; �9 independent of k such thatjf(x)j � �0; krf(x)k � �1; kr2f(x)k � �2; kC(x)k � �3; kJ(x)k � �4;kr2ci(x)k � �5; i = 1; : : : ;m; and kCy(x)�1k � �6for all x 2 
, andkWkk � �6; kHkk � �7; k�kk � �8; and k �Dkk � �9;for all k.For the rest of this chapter we suppose that Assumptions 5.1{5.6 are always sat-is�ed.As we pointed out earlier, our approach is related to the Newton method presentedin Section 5.1. The u component (sNk )u of the Newton step sNk = sqk + Wk(sNk )u,whenever it is de�ned, is given by(sNk )u = � � �D2kW Tk HkWk + Ek��1 �D2k�gk= � �Dk � �DkW Tk HkWk �Dk + Ek��1 �Dk�gk; (5.34)where sqk = 0@ �Cy(xk)�1Ck0 1A (5.35)and �gk = W Tk �Hksqk + rfk�. From (5.34) we see that that the Newton step iswell de�ned in a neighborhood of a nondegenerate point that satis�es the second{order su�cient optimality conditions and for which W Tk Hksqk is su�ciently small. Toguarantee strict feasibility of this step we consider a damped Newton step given bysqk +Wk�Nk (sNk )u; (5.36)where (sNk )u and sqk are given by (5.34) and (5.35) respectively, and�Nk = �k min(1; max(bi � (uk)i((sNk )u)i ; ai � (uk)i((sNk )u)i ) ; i = 1; : : : ; n�m) : (5.37)If Algorithms 5.2.1 are particularized to satisfy the following conditions on thesteps, on the quadratic model, and on the Lagrange multipliers, then we can proveglobal and local convergence.Conditions 5.1{5.4



935.1 The quasi{normal component sqk satis�es conditions (5.9), (5.12), and (5.13).The tangential component (sk)u satis�es the fraction of Cauchy decrease con-dition (5.21) ((5.22) for the coupled approach).The parameter �k is chosen in [�; 1), where � 2 (0; 1) is �xed for all k.5.2 The tangential component (sk)u satis�es the fraction of optimal decrease con-dition (5.26) ((5.30) for the coupled approach).5.3 The second derivatives of f and ci, i = 1; : : : ;m are Lipschitz continuous in 
.The approximation to the Hessian matrix is exact, i.e. Hk = r2xx`(xk; �k) withLagrange multiplier �k = �Cy(xk)�Tryfk.5.4 The step sk is given by (5.36) provided (sNk )u exists, (sqk)y lies inside the trustregion (5.11), and �Nk (sNk )u lies inside the trust region (5.18) ((5.20) for thecoupled approach).The parameter �k is chosen such that �k � � and j�k � 1j is O � �Dk�gk�.Condition 5.1 assures global convergence to a point satisfying the �rst{order neces-sary optimality conditions. Global convergence to a nondegenerate point that satis�essecond{order necessary optimality conditions requires Conditions 5.1{5.3. To provelocal q{quadratic convergence, we need Conditions 5.1, 5.3, and 5.4.Remark 5.2.1 A very important point here is that there is no need toadd to Conditions 5.1{5.3 the condition (3.19) on the quasi{normal com-ponent sqk . We recall that this latter condition was required in Chapter3 to prove global convergence to a point satisfying the second{order nec-essary optimality conditions. In fact, given the form (5.9) of sqk imposedin Condition 5.1 and the adjoint update of �k described in Condition 5.3,we have rx`Tk sqk = 0 (see expression (5.53)).5.3 Intermediate ResultsWe start by pointing out that, as in Section 3.5, (5.13) with the fact that the tangentialcomponent lies in the null space of Jk together imply thatkCkk2 � kJksk + Ckk2 � �2kCkkminf�3kCkk; �kg: (5.38)



94We calculated the �rst derivatives of �(x) = �Cy(x)�Tryf(x) in Section 5.1. It isclear that under Assumptions 5.3 and 5.5 these derivatives are bounded in 
. Thus,if �k is computed as stated in Condition 5.3, then there exists a positive constant �10independent of k such that k��kk � �10kskk: (5.39)From ksqkk � �max and Assumptions 5.3{5.4 we also havek�gkk = kW Tk �Hksqk +rfk� k � �11; (5.40)where �11 = �6(�7�max + �1).The following result is a direct consequence of the scheme that updates �k in Step2.4 of Algorithms 5.2.1. This result is exactly the same as in Lemma 3.5.1 and wejust state it for completeness.Lemma 5.3.1 The sequence f�kg satis�es�k � �k�1 � 1 andpred(sk; �k) � �k2 �kCkk2 � kJksk + Ckk2�: (5.41)The following lemma relating the sizes of kskk and �k is required also for theconvergence theory.Lemma 5.3.2 Let Assumptions 5.1{5.6 hold. Every step satis�eskskk � �4�k (5.42)and, if sk is rejected in Step 2.5 of Algorithms 5.2.1, then�k+1 � �5kskk; (5.43)where �4 and �5 are positive constants independent of k.Proof In the coupled trust{region approach we bound stk as follows:0@ �Cy(xk)�1Cu(xk)susu 1A � 0@ Im 00 �Dk 1A 0@ �Cy(xk)�1Cu(xk)su�D�1k su 1A� (1 + �9) �k ;



95where �9 is a uniform bound for k �Dkk, see Assumption 5.6. Since ksqkk � �k, weobtain kskk � (2 + �9) �k. It is not di�cult to see now that in Step 2.5 we have�k+1 � �12 minn1; 11+�9o kskk.In the decoupled approach, kskk = ksqk +Wk(sk)uk � (1 + �6�9)�k and similarly�k+1 � �12 minn1; 1�6�9o kskk, where �6 is a uniform bound for kWkk, see Assumption5.4.We can combine these bounds to obtainkskk � maxf2 + �9; 1 + �6�9g �k;�k+1 � �12 minn1; 11+�9 ; 1�6�9o kskk:In the case where fraction of optimal decrease (5.26) or (5.30) is imposed on (sk)u,the constants �4 and �5 depend also on �d3 and �c3 .In the following lemma we rewrite the fraction of Cauchy decrease conditions(5.21) and (5.22) in a more useful form for the analysis.Lemma 5.3.3 Let Assumptions 5.1{5.6 hold. If (sk)u satis�es Condition5.1 thenqk(sqk )� qk(sqk +Wk(sk)u) � �6k �Dk�gkkminn�7k �Dk�gkk; �8�ko ; (5.44)where �6, �7, and �8 are positive constants independent of the iterationk.Proof From the de�nition (5.15) of 	k we �ndqk(sqk) � qk(sqk +Wk(sk)u) � qk(sqk)� qk(sqk +Wk(sk)u)� 12(sk)Tu �Ek �D�2k � (sk)u= 	k(0)�	k((sk)u): (5.45)Let ~�k be the maximum k �D�1k � k norm of a step, say (~sk)u, along � �Dk ĝkkĝkk allowedinside the trust region. Here ĝk = �Dk�gk.If the trust region is given by (5.18), then�k = ~�k: (5.46)



96If the trust region is given by (5.20), then we can use Assumptions 5.4{5.6 todeduce the inequality�2k = 0@ �Cy(xk)�1Cu(xk)(~sk)u�D�1k (~sk)u 1A2 = k � Cy(xk)�1Cu(xk) �Dk �D�1k (~sk)uk2+ k �D�1k (~sk)uk2� (�26�29 + 1)k �D�1k (~sk)uk2= (�26�29 + 1) ~�2k ;or, equivalently, ~�k � 1q�26�29 + 1 �k: (5.47)De�ne  : IR+ �! IR as  (t) = 	k ��t �Dk ĝkkĝkk�� 	k(0). Then  (t) = �kĝkkt+rk2 t2, where rk = ĝTk bHk ĝkkĝkk2 and cHk = �Dk �W Tk HkWk + Ek �D�2k � �Dk. Now we need tominimize  in [0; Tk] where Tk is given byTk = min(~�k; �kmin(k �Dk�gkk(�gk)i : (�gk)i > 0) ; �kmin(�k �Dk�gkk(�gk)i : (�gk)i < 0)) :Let t�k be the minimizer of  in [0; Tk]. As in the proof of Lemma 2.3.1 (see equations(2.8) and (2.9)), it easily can be proved that (t�k) � �12kĝkkmin( kĝkkkcHkk ; Tk) : (5.48)We can combine (5.45) and (5.48) with	k(0)�	k((sk)u) � �d1 �	k(0) �	k(cdk)� = ��d1 (t�k)to get qk(sqk)� qk(sqk +Wk(sk)u) � 12�d1 kĝkkmin( kĝkkkcHkk ; Tk) :The facts that �k � � and k�gkk � �11 (see (5.40)) imply that	k(0)�	k((sk)u)� 12�d1k �Dk�gkkmin8<: k �Dk�gkkk �DTk �W Tk HkWk + Ek �D�2k � �Dkk ;min�~�k; ��11k �Dk�gkk�9=; :



97To complete the proof, we use (5.46), (5.47), Assumptions 5.1{5.6, and �k � �maxto establish (5.44) with �6 = 12 minf�d1 ; �c1g, �7 = minn 1�26�7�29+�1�6 ; ��11o, and �8 =min�1; 1p�26�29+1�.Now we state the convenient form of the fraction of optimal decrease conditions(5.26) and (5.30).Lemma 5.3.4 Let Assumptions 5.1{5.6 hold. If (sk)u satis�es Condition5.2 then qk(sqk)� qk(sqk +Wk(sk)u) � �9� 2kk�2k; (5.49)where �9 is a positive constant independent of the iteration k.Proof The proof follows immediately from observation (5.45) and conditions (5.27)and (5.31).We also need the following two inequalities. (See Lemma 3.5.3 for a similar result.)Lemma 5.3.5 Let Assumptions 5.1{5.6 hold. Under Condition 5.1 thereexists a positive constant �10 such thatqk(0)� qk(sqk )���Tk (Jksk + Ck) � ��10kCkk: (5.50)Moreover, if we assume Condition 5.3, thenqk(0) � qk(sqk )���Tk (Jksk + Ck) � ��11kCkk �ksqkk+ kskk� : (5.51)Proof The term qk(0) � qk(sqk) can be bounded using (5.12) and ksqkk � �k in thefollowing way: qk(0)� qk(sqk) = �rx`Tk sqk � 12(sqk )THk(sqk)� ��1 �krx`kk+ 12�kkHkk� kCkk:On the other hand, it follows from kJksk + Ckk � kCkk that���Tk (Jksk + Ck) � �k��kk kCkk: (5.52)Combining these two bounds with Assumptions 5.3{5.4 we get (5.50).



98To prove (5.51) we �rst observe that, due to the de�nition of �k in Condition 5.3and to the form (5.9) of the quasi{normal component sqk ,rx`Tk sqk = 0@ 0rufk + Cu(xk)T�k 1AT 0@ (sqk)y0 1A = 0: (5.53)Thus qk(0) � qk(sqk) � �12�1kHkk kCkk ksqkk � �12�1�7 kCkk ksqkk: (5.54)Also, by appealing to (5.39) and (5.52),���Tk (Jksk + Ck) � ��10kskk kCkk: (5.55)The proof of (5.51) is complete by combining (5.54) and (5.55).The convergence theory for trust{region algorithms traditionally requires consis-tency of actual and predicted decreases. This is given in the following lemma.Lemma 5.3.6 Let Assumptions 5.1{5.6 hold. Under Condition 5.1 thereexists a positive constant �12 such thatjared(sk; �k)� pred(sk; �k)j � �12 �kskk2 + �k �kskk3 + kCkk kskk2�� :(5.56)Moreover, assume also Condition 5.3, and thenjared(sk; �k)� pred(sk; �k)j � �13�k �kskk3 + kCkk kskk2� : (5.57)Proof The bulk of the proof is the same as the proof of Lemma 3.5.4. The estimate(5.56) is a direct consequence of (3.37) and of the boundedness of fk��kkg (seeAssumption 5.4) whereas estimate (5.57) comes from (3.38) and inequality (5.39).5.4 Global Convergence to a First{Order PointThe proof of global convergence to a point satisfying the �rst{order necessary op-timality conditions (Theorem 5.4.1) established in this section follows the structureof the convergence theory presented in [35] for the equality{constrained optimization



99problem. This proof is by contradiction and is based on Condition 5.1. We show thatthe supposition k �Dk�gkk+ kCkk > �tol;for all k, leads to a contradiction.The following three lemmas are necessary to bound the predicted decrease.Lemma 5.4.1 Let Assumptions 5.1{5.6 hold. Under Condition 5.1 thepredicted decrease in the merit function satis�espred(sk; �) � �6k �Dk�gkkminn�7k �Dk�gkk; �8�ko��10kCkk+ �(kCkk2 � kJksk + Ckk2); (5.58)for every � > 0.Proof The inequality (5.58) follows from a direct application of (5.50) and fromthe lower bound (5.44).Lemma 5.4.2 Let Assumptions 5.1{5.6 hold. Assume that Condition5.1 and k �Dk�gkk + kCkk > �tol are satis�ed. If kCkk � ��k, where � is apositive constant satisfying� � min� �tol3�max ; �6�tol3�10 min�2�7�tol3�max ; �8�� ; (5.59)then pred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ � �kCkk2 � kJksk + Ckk2� ; (5.60)for every � > 0.Proof From k �Dk�gkk+ kCkk > �tol and the �rst bound on � given by (5.59), we getk �Dk�gkk > 23�tol: (5.61)If we use this, (5.58), and the second bound on � given by (5.59), we obtainpred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ �6�tol3 minf2�7�tol3 ; �8�kg��10kCkk+ ��kCkk2 � kJksk + Ckk2�� �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ ��kCkk2 � kJksk + Ckk2�:



100We can use Lemma 5.4.2 with � = �k�1 and conclude that if k �Dk�gkk+kCkk > �toland kCkk � ��k, then the penalty parameter at the current iteration does not needto be increased. See Step 2.4 of Algorithms 5.2.1.Lemma 5.4.3 Let Assumptions 5.1{5.6 hold. Assume that Condition5.1 and k �Dk�gkk+kCkk > �tol are satis�ed. If kCkk � ��k, where � satis�es(5.59), then there exists a positive constant �14 > 0 such thatpred(sk; �k) � �14�k: (5.62)Proof From (5.60) with � = �k and k �Dk�gkk � 23�tol, cf. (5.61), we obtainpred(sk; �k) � �6�tol3 minf2�7�tol3 ; �8�kg� �6�tol3 minf2�7�tol3�max ; �8g�k:Hence (5.62) holds with �14 = �6�tol3 min�2�7�tol3�max ; �8� :The following lemma is also required.Lemma 5.4.4 Let Assumptions 5.1{5.6 hold. Under Condition 5.1, ifk �Dk�gkk + kCkk > �tol for all k then the sequences f�kg and fLkg arebounded and �k is uniformly bounded away from zero.Proof See Lemmas 7.9{7.13, 8.2 in [35].Our �rst global convergence result follows.Theorem 5.4.1 Under Assumptions 5.1{5.6 and Condition 5.1 the se-quences of iterates generated by the TRIP Reduced SQP Algorithms 5.2.1satisfy lim infk!+1 �kDkW Tk rfkk+ kCkk� = 0: (5.63)



101Proof The proof is by contradiction. Suppose that for all kk �Dk�gkk+ kCkk > �tol: (5.64)At each iteration k either kCkk � ��k or kCkk > ��k, where � satis�es (5.59). In the�rst case, we appeal to Lemmas 5.4.3 and 5.4.4 and obtainpred(sk ; �k) � �14��;where �� is the lower bound on �k given by Lemma 5.4.4. If kCkk > ��k, we havefrom �k � 1, (5.38), (5.41), and Lemma 5.4.4, thatpred(sk; �k) � �22 �minf�3�; 1g��:Hence pred(sk; �k) � �15 for all k, where the positive constant �15 does not dependon k. From this and (5.56) we establish�����ared(sk; �k)� pred(sk; �k)pred(sk; �k) ����� � �12�15 �kskk2 + �� �kskk3 + kCkk kskk2�� � �16�2k;where �� is the upper bound on �k guaranteed by Lemma 5.4.4. From the rules thatupdate �k in Step 2.5 of Algorithms 5.2.1 this inequality tells us that an acceptablestep always is found after a �nite number of unsuccessful iterations. Using this fact,we can ignore the rejected steps and work only with successful iterates. So, withoutloss of generality, we haveLk � Lk+1 = ared(sk; �k) � �1pred(sk; �k) � �1�15:Now, if we let k go to in�nity, this contradicts the boundedness of fLkg guaranteedby Lemma 5.4.4. Hence the supposition (5.64) is false, and we must have thatlim infk!+1 �k �Dk�gkk+ kCkk� = 0: (5.65)To establish the desired result, we note that D(x)W (x)Trf(x) is a continuousfunction of x. For a given bounded H(x; �), let us consider �D(x)W (x)T�H(x; �)sq +rf(x)�, where �D(x) is de�ned with the reduced gradientW (x)T�H(x; �)sq+rf(x)�.It is then clear that �D(x)W (x)T�H(x; �)sq + rf(x)� is a continuous function onthe pair (x; sq) at (x; 0). From this observation, and since ksqkk � �1kCkk andlim infk!+1 kCkk = 0, we see that the limit (5.65) implies the limit (5.63).If fxkg is a bounded sequence we conclude from Theorem 5.4.1 and the continuityof C(x) and D(x)W (x)Trf(x), that fxkg has a limit point satisfying the �rst{ordernecessary optimality conditions.



1025.5 Global Convergence to a Second{Order PointIn this section we establish global convergence to a point that satis�es the second{order necessary optimality conditions.Theorem 5.5.1 Under Assumptions 5.1{5.6 and Conditions 5.1{5.3, thesequences of iterates generated by the TRIP Reduced SQP Algorithms5.2.1 satisfy lim infk!+1 �k �Dk�gkk+ kCkk+ � 2kk� = 0; (5.66)where k is the Lagrange multiplier corresponding to the trust{regionconstraint, see (5.23) and (5.28), and �k is the damping parameter de�nedin (5.25).Proof The proof is again by contradiction. Suppose that for all k,k �Dk�gkk+ kCkk+ � 2kk > 53�tol: (5.67)(i) Suppose that kCkk � �0�k, where�0 = min(�; �9�tol3�11(1 + �4)) (5.68)and � satis�es (5.59). From the �rst bound on � in (5.59) we getk �Dk�gkk+ � 2kk > 43�tol:Thus, either k �Dk�gkk > 23�tol or � 2kk > 23�tol. In the �rst case, we proceed exactly asin Lemmas 5.4.2 and 5.4.3 and obtainpred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ � �kCkk2 � kJksk + Ckk2� (5.69)� �14�max �2kfor any � > 0. If � 2k k > 23�tol then from (5.42), (5.49), (5.51), ksqkk � �k, and thesecond bound on �0 given in (5.68), we can writepred(sk; �) = qk(sqk )� qk(sqk +Wk(sk)u) + qk(0) � qk(sqk)���Tk (Jksk + Ck)



103+ � �kCkk2 � kJksk + Ckk2�� 12�9� 2kk�2k + �13�9�tol�k � �11kCkk(1 + �4)� �k+ � �kCkk2 � kJksk + Ckk2�� 12�9� 2kk�2k + � �kCkk2 � kJksk + Ckk2� (5.70)� �9�tol3 �2kfor any � > 0. From the two bounds (5.69) and (5.70) we conclude that if kCkk � �0�k,then the penalty parameter does not increase. See Step 2.4 of Algorithms 5.2.1.Moreover, these two bounds on pred(sk; �k) show the existence of a positive constant�17 independent of k such that pred(sk; �k) � �17�2k; (5.71)provided kCkk � �0�k.(ii) Now we prove that f�kg is bounded. If �k is increased at iteration k, then itis updated according to the rule�k = 2 qk(sk)� qk(0) + ��Tk (Jksk + Ck)kCkk2 � kJksk + Ckk2 !+ ��:We can write�k2 �kCkk2 � kJksk + Ckk2� = qk(sk)� qk(sqk)��qk(0) � qk(sqk )�+��Tk (Jksk + Ck)+ ��2�kCkk2 � kJksk + Ckk2�:By applying (5.38) to the left hand side and (5.42), (5.49), (5.51), and ksqkk � �k tothe right hand side, we obtain�k2 �2kCkkminf�3kCkk; �kg � �11(1 + �4)�kkCkk+ ��2�� 2(JTk Ck)Tsk � kJkskk2�� (�11(1 + �4) + ���4�4)�kkCkk: (5.72)If �k is increased at iteration k, then, because of part (i), kCkk > �0�k. Now we usethis fact to establish that��22 minf�3�0; 1g� �k � �11(1 + �4) + ���4�4:



104This and Assumptions 5.1{5.6 prove that f�kg and fLkg are bounded sequences.(iii) The next step is to prove that �k is bounded away from zero.If sk�1 was an acceptable step, then �k � �min, see Step 2.5 in Algorithm 5.2.1.If sk�1 was rejected, then �k � �5ksk�1k, see (5.43). We consider two cases. Inboth cases we use the fact that1 � �1 � �����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1����� :In the �rst case, we assume that kCk�1k � �0�k�1. From (5.71) we havepred(sk�1; �k�1) � �17�2k�1:Thus we can use ksk�1k � �4�k�1, see (5.42), and (5.57) with k = k � 1 to obtain�����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1����� � �13�� ��24�2k�1 + �0�4�2k�1��17�2k�1 ksk�1k:This gives �k � �5ksk�1k � �5(1��1)�17�13��(�24+�0�4) � �18.The other case is kCk�1k > �0�k�1. In this case we get from (5.38) and (5.41) withk = k � 1 thatpred(sk�1; �k�1) � �k�12 �2kCk�1kminf�3kCk�1k; �k�1g� �k�1�19�k�1kCk�1k� �k�1�0�19�2k�1;where �19 = �22 minf�3�0; 1g. Again we use �k�1 � 1 and (5.42) and (5.57) withk = k� 1, this time with the last two lower bounds on pred(sk�1; �k�1), and we write�����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1����� � �13�k�1ksk�1k3jpred(sk�1; �k�1)j + �13�k�1kCk�1k ksk�1k2jpred(sk�1; �k�1)j�  �13�k�1�24�2k�1�k�1�0�19�2k�1 + �13�k�1�4�k�1kCk�1k�k�1�19�k�1kCk�1k ! ksk�1k:Hence �k � �5ksk�1k � �5(1��1)�0�19�13(�24+�4�0) � �20.Combining the two cases yields�k � �� = minf�min; �18; �20gfor all k.



105(iv) The rest of the proof consists of proving that an acceptable step always isfound after a �nite number of iterations and then from this concluding that thesupposition (5.67) is false. The proof of these facts is exactly the proof of Theorem5.4.1 where � is now �0 and �14�� is replaced by �17�2�.It is worthwhile to compare the limit (5.66) given by this theorem with the limit(3.42) given in Theorem 3.6.2 for equality{constrained optimization. In the former,we have lim infk!+1 � 2k k = 0 whereas in the latter we just have lim infk!+1 k = 0.The presence of �k in (5.66) is due to the presence of the bound constraints on thevariables u. One other di�erence is that in (5.66) the reduced gradient is scaled bythe matrix Dk reecting the �rst{order necessary optimality conditions.The following result �nally establishes global convergence to a nondegenerate pointsatisfying the second{order necessary optimality conditions. If no equality constraintsare considered, the proof reduces to the proof of Lemma 3.8 of Coleman and Li [24].Theorem 5.5.2 Let fxkg be a bounded sequence of iterates generatedby the TRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1{5.6and Conditions 5.1{5.3. Then fxkg has a limit point x� satisfying the�rst{order necessary optimality conditions. Furthermore, if x� is nonde-generate, then x� satis�es the second{order necessary optimality condi-tions.Proof Consider the subsequence of fxkg for which the limit in (5.66) is zero.Since this subsequence is bounded we can use the same arguments as in the proof ofTheorem 5.4.1 to show that it has a convergent subsequence indexed by fkjg suchthat limj!+1 k �Dkj�gkjk+ kCkjk = limj!+1 kDkjW Tkjrfkjk+ kCkjk = 0: (5.73)Moreover, limj!+1 � 2kjkj = 0; (5.74)where �kj is given by (5.25). Let x� denote the limit of fxkjg. It follows from (5.73)and the continuity of C(x) and D(x)W (x)Trf(x) that x� satis�es the �rst{ordernecessary optimality conditions.Now we assume that x� is nondegenerate, and we prove that limj!+1 kj = 0.First we consider the decoupled trust{region approach.



106From (5.12), Assumptions 5.3{5.4, and the limit limj!+1 kCkjk = 0, we get thelimit limj!+1 kW TkjHkj sqkjk = 0:Since x� is nondegenerate and limj!+1 kW TkjHkjsqkjk = 0, there exists �0 2 (0; 1) suchthat minn(ukj )i � ai; bi � (ukj )io+ �����gkj�i��� > 2�0; i = 1; : : : ; n�m (5.75)for large enough j, and 2�0 < minfbi � ai; i = 1; : : : ; n�mg:Without loss of generality, we only consider the cases where �kj � �kj < 1. Inthe following the index i is the index de�ning �kj in (5.25). (The index i is really ijbut we drop the j from ij to simplify the notation.) We also assume that j is largeenough such that ���� �D2kj �gkj�i��� < �20: (5.76)Multiplying both sides of (5.24) by �D2kj gives�Ekj + kjIn�m� odkj = �D2kj ���gkj �W TkjHkjWkjodkj� ;which in turn yieldskj j(odkj )ij � ( �D2kj )ii ������gkj �W TkjHkjWkjodkj�i��� : (5.77)Also, Assumption 5.6 implies kodkjk � �9�kj � �9�max. From this, (5.40), andAssumptions 5.3{5.4, we can write 1(odkj )i � kj�21( �Dkj )2ii (5.78)for some �21 independent of k. Now we distinguish between two cases.In the �rst case, we consider �����gkj�i��� � �0 and appeal to (5.75) to get minf(ukj)i�ai; bi � (ukj)ig > �0. Thus from (5.78) and the de�nition (5.25) of �kj we obtain�kj � �kjkj �0�21( �Dkj )2ii : (5.79)Now we analyze the case �����gkj�i��� > �0. Two possibilities can occur.



107(i) The �rst possibility is that the value of the numerator de�ning �kj in (5.25) isequal to ( �Dkj )2ii. In this situation (5.78) immediately implies�kj � �kjkj�21 : (5.80)(ii) The other possibility is that the value of the numerator de�ning �kj is not equalto ( �Dkj )2ii. In this case we have from (5.76) that ( �Dkj )2ii < �0 and since bi � ai > 2�0,the numerator in the de�nition (5.25) of �kj is bigger than �0. Thus�kj � �kjkj �0�21( �Dkj )2ii : (5.81)Using (5.74), (5.79), (5.80), (5.81), �kj � �, and the boundedness of �Dkj thisproves that limj!+1 kj = 0:By (5.23) we know that �DkjW TkjHkjWkj �Dkj + Ekj + kjIn�mis positive semi{de�nite. Hence condition (5.73) and the limits limj!+1 kW TkjHkjsqkjk= 0 and limj!+1 kj = 0 imply that the principal submatrix of W TkjHkjWkj corre-sponding to indices l such that al < (u�)l < bl is positive semi{de�nite for j largeenough. Since W (x)Tr2xx`(x; �)W (x) is continuous, the second{order necessary op-timality conditions are satis�ed at x�. This completes the proof for the decoupledapproach.The proof for the coupled trust{region approach di�ers only from the proof forthe decoupled approach in the use of equations (5.28) and (5.29) and in the use ofkWkjockjk � (1 + �9)�max to bound the right hand side of inequality (5.77).Remark 5.5.1 The global convergence results of Sections 5.4 and 5.5hold if the quadratic 	k(su) is rede�ned as 	k(su) = qk(sqk +Wksu) (seethe de�nitions (5.15) and (5.16)) without the Newton augmentation term12sTu �Ek �D�2k � su. They are valid also if the matrices Dk and �Dk are rede-�ned respectively as Dpk and �Dpk with p � 1. In [41], di�erent forms forthis a�ne scaling matrices are discussed.



1085.6 Local Rate of ConvergenceWe now analyze the local behavior of Algorithms 5.2.1 under Conditions 5.1, 5.3, and5.4. We start by looking at the behavior of the trust radius close to a nondegeneratepoint that satis�es the second{order su�cient optimality conditions. For this purposewe require the following lemma.Lemma 5.6.1 Let Assumptions 5.1{5.6 hold. Under Condition 5.1 thequasi{normal component satis�esksqkk � �22kskk; (5.82)where �22 is positive and independent of the iteration counter k.Proof From sk = sqk +Wk(sk)u, we obtainksqkk � kskk+ kWkk k(sk)uk:But since kskk2 = k(sk)yk2 + k(sk)uk2, we use Assumption 5.4 to obtainksqkk � (1 + �6) kskk ;and (5.82) holds with �22 = 1 + �6.Theorem 5.6.1 Let fxkg be a sequence of iterates generated by theTRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1{5.6 andConditions 5.1 and 5.3. If xk converges to a nondegenerate point x� sat-isfying the second{order su�cient optimality conditions, then f�kg is abounded sequence, �k is uniformly bounded away from zero, and eventu-ally all the iterations are successful.Proof It follows from limk!+1 xk = x� and C(x�) = 0 that limk!+1 kCkk =0. This fact, condition (5.12), and Assumptions 5.3{5.4, together imply the limitlimk!+1 kW Tk Hksqkk = 0. Since xk converges to a nondegenerate point that satis�esthe second{order su�cient optimality conditions and limk!+1 kW Tk Hksqkk = 0, thereexists a � > 0 such that the smallest eigenvalue of �DkW Tk HkWk �Dk + Ek is greaterthan � for k su�ciently large.



109First we prove that f�kg is a bounded sequence. Since 	k(0)�	k((sk)u) � 0, weobtain12( �D�1k (sk)u)T � �DkW Tk HkWk �Dk + Ek� ( �D�1k (sk)u) � �( �D�1k (sk)u)T ( �Dk�gk)� k �D�1k (sk)uk k �Dk�gkk;which, by using the upper bounds on Wk and �Dk given by Assumptions 5.4{5.6,implies kstkk = kWk(sk)uk � 2�6�9� k �Dk�gkk: (5.83)Using (5.44) and (5.83), we �nd thatqk(sqk)� qk(sqk +Wk(sk)u) � �6k �Dk�gkkminn�7k �Dk�gkk; �8�ko� �23kstkk2; (5.84)where �23 = �6�2�6�9 minf �7�2�6�9 ; �8�6�9 ; �81+�9g accounts for the decoupled and coupled cases.Next, we prove that if kCkk � �00kskk, where �00 satis�es (5.86) below, then thepenalty parameter does not need to be increased. From (5.12) and kCkk � �00kskk,we get kskk2 � �ksqkk+ kstkk�2 � 2ksqkk2 + 2kstkk2� 2�00�21kCkk kskk+ 2kstkk2:This estimate, (5.12), (5.42), (5.51), (5.84), and kCkk � �00kskk yieldpred(sk; �) = qk(sqk)� qk(sqk +Wk(sk)u) + qk(0)� qk(sqk)���Tk (Jksk + Ck)+ � �kCkk2 � kJksk + Ckk2�� 14�23kskk2 + �14�23kskk � (�00�21�23 + �11(�00�1 + 1))kCkk� kskk+ � �kCkk2 � kJksk + Ckk2� ; (5.85)for all � > 0. If kCkk � �00kskk, where �00 satis�es(4�11) �00 + �4�21�23 + 4�1�11� (�00)2 � �23 ; (5.86)then we set � = �k�1 in (5.85) and deduce that the penalty parameter does not needto be increased. See Step 2.4 of Algorithms 5.2.1. Hence if �k is increased then



110the inequality kCkk > �00kskk must hold, and we can proceed as in Theorem 5.5.1,equation (5.72), and write�k2 �2kCkkmin��3kCkk; 1�4kskk� � (�11(�22 + 1) + ���4)kskk kCkk;(here we used inequality (5.82)) which in turn implies��22 min��3�00; 1�4�� �k � �11(�22 + 1) + ���4:This gives the uniform boundedness of the penalty parameter:�k � ��for all k.Given the boundedness of f�kg we can complete the proof of the theorem. IfkCkk > �00kskk, where �00 satis�es (5.86), then from (5.38), (5.41), and (5.42) we �ndthat pred(sk; �k) � �k �22 kCkkminf�3kCkk; �kg � �k�24kskk2; (5.87)where �24 = �2�002 minf�3�00; 1�4g. In this case it follows from (5.57) and (5.87) that�����ared(sk; �k)pred(sk; �k) � 1����� � �13�24 (kskk+ kCkk) : (5.88)Now, suppose that kCkk � �00kskk. From (5.85) with � = �k we obtain pred(sk; �k) ��234 kskk2. Now we use (5.57) and �k � �� to get�����ared(sk; �k)pred(sk; �k) � 1����� � 4�13���23 (kskk+ kCkk) : (5.89)Finally from (5.88), (5.89), limk!+1 xk = x�, and limk!+1 kCkk = 0, we getlimk!+1 ared(sk; �k)pred(sk; �k) = 1;which by the rules for updating the trust radius given in Step 2.5 of Algorithms 5.2.1,shows that �k is uniformly bounded away from zero.



111We use the following straightforward globalization of the quasi{normal componentsqk of the Newton step given in (5.35). The new quasi{normal component is given by:sqk = 0@ ��kCy(xk)�1Ck0 1A ; (5.90)where �k = 8><>: 1 if kCy(xk)�1Ckk � �k;�kkCy(xk)�1Ckk otherwise. (5.91)Before we state the q{quadratic rate of convergence we prove the following im-portant result.Lemma 5.6.2 Let Assumptions 5.1{5.6 hold. The quasi{normal com-ponent (5.90) satis�es conditions (5.9), (5.12), and (5.13) for some positive�1, �2, and �3 independent of k.Proof It is obvious that (5.9) holds. Condition (5.12) is a direct consequence ofthe condition (5.13). In fact, using kCy(xk)(sqk)y +Ckk � kCkk and the boundednessof fCy(xk)�1g we �nd thatksqkk = ksqk + Cy(xk)�1Ck �Cy(xk)�1Ckk� kCy(xk)�1k�kCy(xk)(sqk)y + Ckk+ kCkk� � 2�6 kCkk : (5.92)So, let us prove (5.13). A simple manipulation shows thatkCkk2 � kCy(xk)(sqk)y + Ckk2� kCkk2 � k � �kCy(xk)Cy(xk)�1Ck + Ckk2= kCkk2 � �(1� �k)kCkk�2= �k(2 � �k)kCkk2 � �k kCkk2:We need to consider two cases. If �k = 1, thenkCkk2 � kCy(xk)(sqk)y + Ckk2 � kCkkminfkCkk; �kg:Otherwise, �k = �kkCy(xk)�1Ckk. In this case we getkCkk2 � kCy(xk)(sqk )y + Ckk2 � 1�6kCkk �k � 1�6kCkkminfkCkk; �kg:Thus the result holds with �2 = minf1; 1�6g and �3 = 1.



112Corollary 5.6.1 Let fxkg be a sequence of iterates generated by theTRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1{5.6 andConditions 5.1, 5.3, and 5.4. If xk converges to a nondegenerate pointx� satisfying the second{order su�cient optimality conditions, then xkconverges q{quadratically.Proof We start by showing that j�Nk � 1j is O (kxk � x�k), where �Nk is given by(5.37). Since limk!+1 kW Tk Hksqkk = 0, we have that ���� �Nk�k � 1���� is O(k(sNk )uk) (see [23,Equation (6.4) and Lemma 12]). Also since by Condition 5.4 j�k � 1j is O � �Dk�gk�,and �Dk�gk is O �k(sNk )uk� (see (5.34)), we can see that j�k � 1j is also O �k(sNk )uk�.Furthermore, j�Nk � 1j � �k ������Nk�k � 1�����+ j�k � 1j :Hence j�Nk � 1j is O �k(sNk )uk�. But (sNk )u is O �kxk + sqk � x�k� and sqk isO (kxk � x�k) and this shows that j�Nk � 1j is O (kxk � x�k).We need to prove that Condition 5.4 does not conict with Condition 5.1 so thatTheorem 5.6.1 can be applied. In other words, we need to show that the decreaseconditions given in Condition 5.1 hold for the Newton damped step (5.36) wheneverit is taken. In Lemma 5.6.2 we showed that the quasi{normal component sqk givenin (5.90) satis�es (5.9), (5.12), and (5.13). From Condition 5.4, sqk given by (5.35) isused when it coincides with the sqk given by (5.90). Thus sqk given by (5.35) satis�esalso (5.9), (5.12), and (5.13). It remains to prove that �Nk (sNk )u satis�es the Cauchydecrease condition (5.21) ((5.22) for the coupled approach). This is indeed the casesince 	k(0)�	k(�Nk (sNk )u)� ��Nk �gTk (sNk )u � 12(�Nk )2((sNk )u)T �W Tk HkWk + Ek �D�2k � ((sNk )u)� �Nk ���gTk (sNk )u � 12((sNk )u)T �W Tk HkWk + Ek �D�2k � ((sNk )u)�� �Nk �	k(0)�	k(cdk )� ;and j�Nk � 1j is O (kxk � x�k).Now we need to show that eventually sk is given by (5.36). Since fxkg convergesto a nondegenerate point satisfying the second{order su�cient optimality conditions,



113(sNk )u exists for k su�ciently large. Furthermore (sqk)y = �Cy(xk)�1Ck for k largeenough because limk!+1 kCy(xk)�1Ckk = 0, and from Theorem 5.6.1, �k is eventuallybounded away from zero. Using a similar argument we see that �Nk (sNk )u is inside thetrust region (5.18) for the decoupled approach or (5.20) for the coupled approach. So,from Condition 5.4 we conclude that there exists a positive integer �k such that sk isgiven by (5.36) for k � �k.Using the fact that (sNk )u is O (kxk � x�k), we conclude that �Nk (sNk )u � (sNk )u isO (kxk � x�k2). Thussk � sNk = 0@ sqk � Cy(xk)�1Cu(xk)�Nk (sNk )u�Nk (sNk )u 1A� 0@ sqk � Cy(xk)�1Cu(xk)(sNk )u(sNk )u 1Ais O (kxk � x�k2). This completes the proof since sNk can be seen as a Newton stepon a given vector function of the type (5.8). This function vanishes at x� and iscontinuously di�erentiable with Lipschitz continuous derivatives and a nonsingularJacobian matrix in an open neighborhood of x�. See the discussion at the end ofSection 5.1. Thus the q{quadratic rate of convergence follows from [39][Theorem5.2.1] and from the fact that sk � sNk is O (kxk � x�k2).5.7 Computation of Steps and Multiplier EstimatesWhen we described the TRIP reduced SQP algorithms in Section 5.2, we deferredthe practical computation of the quasi{normal and tangential components and of theLagrange multipliers. In this section we address these issues.The quasi{normal component sqk is an approximate solution of the trust{regionsubproblem (5.10){(5.11). To guarantee global convergence to a point that satis�esthe necessary optimality conditions, the component sqk is required to satisfy (5.9),(5.12), and (5.13). As we saw in equation (5.92) of the proof of Lemma 5.6.2, property(5.12) is a consequence of (5.13). Whether property (5.13) holds depends on the wayin which the quasi{normal component is computed. We showed in Lemma 5.6.2 thatthe quasi{normal component given by (5.90) satis�es conditions (5.9), (5.12), and(5.13). We show in Section 6.3 that these conditions are satis�ed for many otherreasonable ways to compute sqk .



1145.7.1 Computation of the Tangential ComponentIn this section we show how to derive conjugate{gradient algorithms to compute(sk)u. In [8], Branch, Coleman, and Li propose other practical algorithms to com-pute steps for trust{region subproblems that come from optimization problems withsimple bounds. They use three dimensional subspace approximations and conjugategradients.Let us consider �rst the decoupled trust{region approach given in Section 5.2.2.If we ignore the bound constraints for the moment, we can apply the Conjugate{Gradient Algorithm 2.3.2 proposed by Steihaug [134] and Toint [139] to solve theproblem minimize 	k(su)subject to k �D�1k suk � �k:However we also need to incorporate the constraints�k(a� uk) � su � �k(b� uk):This leads to the following algorithm:Algorithm 5.7.1 (Computation of sk = sqk +Wk(sk)u (Decoupled Case))1 Set s0u = 0, r0 = ��gk = �W Tk rqk(sqk), q0 = �D2kr0, d0 = q0, and� > 0.2 For i = 0; 1; 2; : : : do2.1 Compute i = (ri)T (qi)(di)T (WTk HkWk+Ek �D�2k )(di).2.2 Compute� i = maxf� > 0 : k �D�1k (siu + �di)k � �k;�k(a� uk) � siu + �di � �k(b� uk)g:2.3 If i � 0, or if i > � i, then set (sk)u = siu + � idi, where � i isgiven as in 2.2 and go to 3; otherwise set si+1u = siu + idi.2.4 Update the residuals: ri+1 = ri � i(W Tk HkWk + Ek �D�2k )di andqi+1 = �D2kri+1.2.5 Check truncation criteria: if r (ri+1)T (qi+1)(r0)T (q0) � �, set (sk)u = si+1uand go to 3.



1152.6 Compute �i = (ri+1)T (qi+1)(ri)T (qi) and set di+1 = qi+1 + �idi.3 Compute sk = sqk +Wk(sk)u and stop.Step 2 of Algorithm 5.7.1 iterates entirely in the vector space of the u variables.After the u component of the step sk has been computed, Step 3 �nds its y component.The decoupled approach allows an e�cient use of an approximation ~Hk to the reducedHessian W Tk r2xx`kWk. In this case, only two linear system solves are required, onewith Cy(xk)T to compute �gk in Step 1, and the other with Cy(xk) to computeWk(sk)uin Step 3. If it is the Hessian Hk that is being approximated, then the total number oflinear systems is 2I(k)+2, where I(k) is the number of conjugate{gradient iterations.See Table 5.1.One can transform this algorithm to work in the whole space rather then in thereduced space by considering the coupled trust{region approach given in Section 5.2.2.This alternative is presented below.Algorithm 5.7.2 (Computation of sk = sqk +Wk(sk)u (Coupled Case))1 Set s0 = 0, r0 = ��gk = �W Tk rqk(sqk ), q0 = �D2kr0, d0 = Wkq0, and� > 0.2 For i = 0; 1; 2; : : : do2.1 Compute i = (ri)T (qi)(di)THk(di)+(di)TuEk �D�2k (di)u .2.2 Compute� i = maxn� > 0 : 0@ �Cy(xk)�1Cu(xk)� (di)u�D�1k � (di)u 1A � �k ;�k(a� uk) � siu + � (di)u � �k(b� uk)o:2.3 If i � 0, or if i > � i, then stk = si + � idi, where � i is given asin 2.2 and go to 3; otherwise set si+1 = si + idi.2.4 Update the residuals: ri+1 = ri � i �W Tk Hkdi + Ek �D�2k (di)u�and qi+1 = �D2kri+1.2.5 Check truncation criteria: if r(ri+1)T (qi+1)(r0)T (q0) � �, set stk = si+1 andgo to 3.2.6 Compute �i = (ri+1)T (qi+1)(ri)T (qi) and set di+1 = Wk(qi+1 + �idi).3 Compute sk = sqk + stk and stop.



116Note that in Step 2 of Algorithm 5.7.2 both the y and the u components of the tan-gential component are being computed. The coupled approach is suitable particularlywhen an approximation to the full Hessian Hk is used. The coupled approach canbe used also with an approximation ~Hk to the reduced Hessian W Tk r2xx`kWk. In thiscase, we consider Hk that is given by (5.32) and use equalities (5.33) to compute theterms involving Hk in Algorithm 5.7.2. If the Hessian Hk is approximated, the totalnumber of linear system solves is 2I(k)+2. If the reduced HessianW Tk r2xx`kWk is ap-proximated, this number is I(k)+ 2, where I(k) is the number of conjugate{gradientiterations. See Table 5.1.Linear Decoupled Coupledsolver Reduced ~Hk Full Hk Reduced ~Hk Full HkCy(xk) 1 I(k) + 1 I(k) + 1 I(k) + 1Cy(xk)T 1 I(k) + 1 1 I(k) + 1Table 5.1 Number of linearized state and adjoint solvers to compute thetangential component. (I(k) denotes the number of conjugate{gradientiterations.)Since Conjugate{Gradient Algorithms 5.7.1 and 5.7.2 start by minimizing thequadratic function 	k(su) along the direction� �D2k�gk, it is quite clear from Proposition2.3.1 that they produce reduced tangential components (sk)u that satisfy (5.21) and(5.22), respectively, with �d1 = �c1 = 1.We end this section with the following remark.Remark 5.7.1 For simplicity let us consider the case B = IRn�m. IfW Tk Wk was included as a preconditioner in the Algorithm 5.7.2 derivedfor the coupled approach, then the conjugate{gradient iterates wouldmonotonically increase in the norm kWk � k. Dropping this precondi-tioner means that the conjugate{gradient iterates do not necessarily in-crease in this norm (see [134]). As a result, if the quasi{Newton step� �W Tk HkWk��1 �gk exists and is inside the trust region, Algorithm 5.7.2can terminate prematurely by stopping at the boundary of the trust re-



117gion. This problem does not arise using Algorithm 5.7.1 for the decoupledapproach.5.7.2 Computation of Multiplier EstimatesA convenient estimate for the Lagrange multipliers is the adjoint update�k = �Cy(xk)�Tryfk; (5.93)which we use after each successful step. However we also consider the followingupdate: �k+1 = �Cy(xk)�Tryqk(sqk) = �Cy(xk)�T�(Hksqk)y +ryfk�: (5.94)Here the use of (5.94) instead of�k+1 = �Cy(xk + sk)�Tryf(xk + sk); (5.95)might be justi�ed since we obtain (5.94) without any further cost from the �rstiteration of any of the conjugate{gradient algorithms described above. The updates(5.93), (5.94), and (5.95) satisfy the requirement given by Assumption 5.4 neededto prove global convergence to a point satisfying the �rst{order necessary optimalityconditions.5.8 Numerical ExampleWe implemented the TRIP Reduced SQP Algorithms 5.2.1 in Fortran 77. Thisimplementation is described in [76]. In this section we report numerical results forthe boundary control problem introduced in Section 4.5.1. These results demon-strate the e�ectiveness of the algorithms. We use the formula (5.90) to compute thequasi{normal component, and Algorithms 5.7.1 and 5.7.2 to calculate the tangentialcomponent. The numerical test computations were done on a Sun Sparcstation 10 indouble precision.With the discretization scheme discussed in Section 4.5.1, Cy(x) is a block bidi-agonal matrix with tridiagonal blocks. Hence linear systems with Cy(x) and Cy(x)Tcan be solved e�ciently. In the implementation, the LINPACK subroutine DGTSL wasused to solve the tridiagonal systems. As we pointed out in Section 4.6, the innerproducts and norms used in the TRIP reduced SQP algorithms are not necessarily



118the Euclidean ones. In our implementation [76], we call subroutines to calculate theinner products hy1; y2i and hu1; u2i with y1; y2 2 IRm and u1; u2 2 IRn�m. The usermay supply these subroutines to incorporate a speci�c scaling. If the inner producthx1; x2i is required, then it is calculated as hy1; y2i + hu1; u2i. In this example, weused discretizations of the L2(0; T ) and L2(0; T ;H1(0; 1)) norms for the control andthe state spaces respectively. This is important for the correct computation of theadjoint and the appropriate scaling of the problem.In our numerical example we use the functions� (y) = q1 + q2y; y 2 IR; �(y) = r1 + r2y; y 2 IR;with parameters r1 = q1 = 4, r2 = �1, and q2 = 1. The desired and initial tempera-tures, and the right hand side are given byyd(t) = 2� e�t;y0(x) = 2 + cos �x; andq(x; t) = [�(q1+ 2q2) + �2(r1 + 2r2)]e�t cos �x�r2�2e2�t + (2r2�2 + �q2)e2�t cos2 �x;with � = �1. The �nal temperature is chosen to be T = 0:5 and the scalar g = 1 isused in the boundary condition. The functions in this example are those used in [89,Example 4.1]. The size of the problem tested is n = 2200, m = 2100 correspondingto the values Nt = 100, Nx = 20.The scheme used to update the trust radius is the following fairly standard one:� If ratio(sk; �k) < 10�4, reject sk and set �k+1 = 0:5norm(sk);� If 10�4 � ratio(sk; �k) < 0:1, accept sk and set �k+1 = 0:5norm(sk);� If 0:1 � ratio(sk; �k) < 0:75, accept sk and set �k+1 = �k;� If ratio(sk; �k) � 0:75, accept sk and set �k+1 = minf2�k; 1010g;where ratio(sk; �k) = ared(sk;�k)pred(sk ;�k) ,norm(sk) = maxnksqkk; k �D�1k (sk)uko



119in the decoupled approach, andnorm(sk) = max8<:ksqkk; 0@ �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u 1A9=;in the coupled approach. The algorithms are stopped if the trust radius gets below10�8.We used �k = � = 0:99995 for all k; �0 = 1 as initial trust radius; ��1 = 1and �� = 10�2 in the penalty scheme. The tolerance used in the conjugate{gradientiteration was � = 10�4. The upper and lower bounds were bi = 10�2, ai = �1000,i = 1; : : : ; n�m. The starting vector was x0 = 0.For both the decoupled and the coupled approaches, we did tests using approx-imations to reduced and to full Hessians. We approximate these matrices with thelimited memory BFGS representations given in [15] with a memory size of 5 pairs ofvectors. For the reduced Hessian we use a null{space secant update (see [114], [147]).The initial approximation chosen was In�m for the reduced Hessian and In for thefull Hessian, where  is the user speci�ed regularization parameter in the objectivefunction (4.26).In our implementation we use the following form of the diagonal matrix �Dk( �Dk)ii = 8><>: minf1; (b� uk)ig if (�gk)i < 0;minf1; (uk � a)ig if (�gk)i � 0; (5.96)for i = 1; : : : ; n �m. This form of �Dk gives a better transition between the in�niteand �nite bound and is less sensitive to the introduction of meaningless bounds. Seealso Remark 5.5.1.The algorithms were stopped whenkDkW Tk rfkk+ kCkk < 10�8: (5.97)The results are shown in Tables 5.2 and 5.3 corresponding to the values  = 10�2and  = 10�3, respectively. There were no rejected steps. The di�erent alterna-tives tested performed quite similarly. The decoupled approach with reduced Hessianapproximation seems to be the best for this example. Note that in this case the com-putation of each step costs only three linear system solves with Cy(xk) and Cy(xk)T ,one to compute the quasi{normal component and two for the computation of thetangential component.



120Decoupled CoupledReduced ~Hk Full Hk Reduced ~Hk Full Hknumber of iterations k� 14 20 17 18kCk�k :5082E � 11 :1370E � 10 :7122E � 12 :8804E � 11kDk�W Tk�rfk�k :4033E � 08 :1389E � 08 :6365E � 10 :2641E � 08ksk��1k :1230E � 04 :1461E � 04 :3546E � 05 :1445E � 04�k��1 :1638E + 05 :1049E + 07 :1311E + 06 :2621E + 06�k��1 :1000E + 01 :1000E + 01 :1000E + 01 :1000E + 01Table 5.2 Numerical results for theboundary control problem. Case  = 10�2.We made an experiment to compare the use of the Coleman{Li a�ne scalingwith the Dikin{Karmarkar a�ne scaling. When applied to our class of problems,the Coleman{Li a�ne scaling is given by the matrices Dk and �Dk. A study of theDikin{Karmarkar a�ne scaling for steepest descent is given in [128]. For our class ofproblems, this scaling is given by(Kk)ii = minf1; (uk � a)i; (b� uk)ig; i = 1; : : : ; n�m; (5.98)and has no dual information built in. We ran the TRIP reduced SQP algorithm withthe decoupled and reduced Hessian approximation and (5.96) replaced by (5.98). Thealgorithm took only 11 iterations to reduce kKkW Tk rfkk + kCkk to 10�8. However,as we can see from the plots of the controls in Figures 5.5 and 5.6, the algorithm didnot �nd the correct solution when it used the Dikin{Karmarkar a�ne scaling (5.98).Some of the variables are at the wrong bound corresponding to negative multipliers.



121Decoupled CoupledReduced ~Hk Full Hk Reduced ~Hk Full Hknumber of iterations k� 16 18 17 19kCk�k :6233E � 11 :1115E � 10 :6487E � 11 :1246E � 09kDk�W Tk�rfk�k :5161E � 08 :2539E � 08 :7282E � 09 :4696E � 08ksk��1k :1626E � 04 :1703E � 04 :1530E � 04 :4659E � 04�k��1 :6554E + 05 :2621E + 06 :1311E + 06 :5243E + 06�k��1 :1000E + 01 :1000E + 01 :1000E + 01 :1000E + 01Table 5.3 Numerical results for theboundary control problem. Case  = 10�3.
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122Chapter 6Analysis of Inexact Trust{Region Interior{PointReduced SQP AlgorithmsIn Chapter 5, we assumed that exact derivative information for f and C is available,and that linear systems like the linearized state and adjoint equationsCy(xk)s = �bk and Cy(xk)Ts = b̂k (6.1)can be solved exactly for di�erent right hand sides �bk and b̂k. In many applicationsthese assumptions are unrealistic. Derivative information may be approximated, forexample, by �nite di�erences. Moreover, the linearized state and adjoint equationsare often discretizations of partial di�erential equations and iterative methods areused for their solution. The purpose of this chapter is to extend the TRIP reducedSQP algorithms proposed and analyzed in Chapter 5 to allow inexact calculationsin tasks involving �rst derivatives of C. See also the paper by Heinkenschloss andVicente [77]. Inexactness in derivatives of the objective function f also can be allowed,but it is not done here to keep the presentation simpler. Since we treat states andcontrols as independent variables (see Section 4.2), and since the objective functionsare often rather simple, e.g. least squares functionals, this does not present a severerestriction. One goal for our analysis is to derive measures of inexactness and formsof controlling the inexactness that are simple to implement.In the TRIP reduced SQP algorithms, we have to compute quantities of the formCu(xk)du and CTu (xk)dy, and we have to solve linear systems of the form (6.1). Sincethese systems are solved inexactly, what is computed are �sk and ŝk such thatCy(xk)�sk = �bk + �rk and Cy(xk)T ŝk = b̂k + r̂k;where �rk and r̂k are residual vectors. In many iterative methods, like for instanceKrylov subspace methods (see the books [73], [81]), the norms k�rkk and kr̂kk can becomputed e�ciently with few extra operations. These are some of the quantities thatare used to measure inexactness.We give conditions on the amount of inexactness allowed in the TRIP reducedSQP algorithms that guarantee global convergence to a point satisfying the �rst{



123order necessary optimality conditions. In the case of the linear systems (6.1), theseconditions are the following:k�rkk = O�minf�k; kCkkg� and kr̂kk = O(kCkk); (6.2)where �k is the trust radius and kCkk is the norm of the residual of the constraints.Thus as the iterates approach feasibility the accuracy with which the linear systemsare solved has to increase. Moreover, the accuracy of the linear systems solves hasto increase if the region where the quadratic model is trusted becomes small. Thisalso is reasonable since the trust radius should not be reduced unnecessarily. Similarresults can be derived for the inexactness that arises in the computation of directionalderivatives of C.We applied the TRIP reduced SQP algorithms with inexact solutions of linearizedstate and adjoint equations to the solution of the two optimal control problems de-scribed in Section 4.5. The numerical results reported in Section 6.5 con�rm ouranalysis.It should be pointed out that by inexactness we mean inexact derivative informa-tion and inexact solution of linear systems. Trust{region algorithms allow anotherlevel of inexactness that is also treated here and in most other papers on trust{regionalgorithms: the trust{region subproblems do not have to be solved exactly. As wesaw for instance in Section 2.3 for unconstrained optimization, it is su�cient to com-pute steps that predict either a fraction of Cauchy decrease or a fraction of optimaldecrease for the trust{region subproblem.In the context of systems of nonlinear equations, inexact or truncated Newtonmethods have been proposed and analyzed by many authors. Some of the pioneeringwork in this area can be found in [32], [135]. More recent references are [9], [10],[43], [44], [45]. Most of the recent papers investigate the use of Krylov subspacemethods for the solution of linear systems, like GMRES [127], in inexact Newtonmethods. These Krylov subspace methods are attractive because they monitor theresidual norm of the linear system in an e�cient way and only require Jacobian timesa vector, not the Jacobian in explicit form. The results for the solution of systemsof nonlinear equations have been extended to analyze inexact Newton methods forthe solution of unconstrained optimization problems, e.g. [33], [109], [111], inexactGauss{Newton methods [99], and complementarity problems [117]. In a recent paper[149], the impact of inexactness in reduced{gradient methods for design optimizationhas been analyzed.



124In nonlinear programming, inexactness has been studied by [6], [28], [34], [54],[92], [110], [146] among others. The papers [34], [54], [92], [110] investigating SQPalgorithms mostly study the inuence of inexactness on the local convergence rate.In [110] conditions on the inexactness are given that guarantee descent in the meritfunction. In the papers mentioned previously, the inexactness is often measured usingthe residual of the linearization of the system of nonlinear equations arising from the�rst{order necessary optimality conditions, or some variation thereof. If globaliza-tions are included in the investigations, then line{search strategies are used. To ourknowledge, inexactness for SQP algorithms with trust{region globalizations has notbeen studied in the literature. Due to the computation of the step in two stages, thecomputation of the quasi{normal component and of the tangential component, theanalysis of inexactness in reduced SQP algorithms with trust{region globalizationsrequires techniques di�erent from those that can be used for line{search globaliza-tions.This chapter is organized as follows. In Section 6.1, we identify the sources ofinexactness in the TRIP reduced SQP algorithms and derive a useful representationalform. In Section 6.2, we present our inexact analysis showing under what assumptionson the amount of inexactness do the TRIP reduced SQP algorithms remain globallyconvergent to a point satisfying the �rst{order necessary optimality conditions. Theremainder of the chapter deals with practical issues concerning the step componentsand multipliers calculations. As we saw in Section 5.2, each step is decomposed in twocomponents: a quasi{normal component and a tangential component. In Section 6.3,we present several techniques to compute quasi{normal components and show howthey �t into the theoretical framework given in Section 6.2. In Section 6.4, we discussconjugate{gradient algorithms to compute the tangential component and analyze theinuence of the inexactness. The inexact calculation of the reduced gradient, null{space vectors, and multipliers is covered also in detail in Section 6.4. We present ournumerical experiments in Section 6.5.6.1 Sources and Representation of InexactnessIn this chapter we assume that the linear systems with Cy(xk) and Cy(xk)T are solvedinexactly.The inexact analysis for the quasi{normal component is presented in Section 6.3and does not interfere with the analysis developed in this section. In fact, we assume



125that the quasi{normal component sqk , no matter how is computed, satis�es conditions(5.9), (5.12), and (5.13) given in Section 5.2.1. We see in Section 6.3 that this can beaccomplished by a variety of techniques to compute quasi{normal components.The computation of the tangential component requires the calculation of matrix{vector products of the form Wkdu and W Tk d. Thus we need to compute quantitieslike �Cy(xk)�1Cu(xk)du and � Cu(xk)TCy(xk)�Tdy:As we pointed out earlier, often these computations cannot be done exactly. Thereforewe have to incorporate errors originating perhaps from �nite di�erence approxima-tions of Cu(xk)du or from the iterative solution of the linear systems Cy(xk)dy =�Cu(xk)du.In practice, the computation of the y component zy of z =Wkdu is done as follows:Compute vy = �Cu(xk)du + eu:Solve Cy(xk)zy = vy + ey: (6.3)The u component of Wkdu is equal to du. In (6.3) eu and ey are the error termsaccounting for the inexactness in the computation of �Cu(xk)du and the inexactnessin the solution of the linear system Cy(xk)zy = vy. Since the u component of Wkis the identity, we only have an error in the y component zy of Wkdu computed via(6.3). It holds thatzy = �Cy(xk)�1Cu(xk)du + Cy(xk)�1 (eu + ey) : (6.4)Of course, the errors eu and ey depend in general on du.Similarly, for a given d the matrix{vector product z = W Tk d is computed succes-sively by the following procedure:Solve Cy(xk)Tvy = �dy + ey:Compute vu = Cu(xk)Tvy + eu:Compute z = vu + du: (6.5)Again, eu and ey are error terms accounting for the inexactness in the computation ofCu(xk)Tvy and the inexactness in the solution of the linear system Cy(xk)Tvy = �dy.For simplicity we use the same notation, but the error terms in (6.5) are di�erent



126from those in (6.3). The errors eu and ey depend in general on dy. The computedresult can be related to the exact result via the equationz = �Cu(xk)TCy(xk)�Tdy + du + Cu(xk)TCy(xk)�T ey + eu: (6.6)These two sources of inexactness inuence the computation of the following im-portant quantities:�gk = W Tk rqk(sqk) = �Cu(xk)TCy(xk)�Tryqk(sqk ) +ruqk(sqk); (6.7)and sk = sqk +Wk(sk)u = sqk + 0@ �Cy(xk)�1Cu(xk)(sk)u(sk)u 1A : (6.8)As we saw in Section 5.2.2, these two calculations are the only ones that appear inthe decoupled approach for the computation of the tangential component involvingderivatives of C if an approximation ~Hk to the reduced Hessian W Tk r2xx`kWk is used.This is not the case in all the other situations (see for instance Table 5.1). If anapproximation Hk to the full Hessian r2xx`k is used, then we have to account for theinexactness in the calculation ofW Tk HkWk. Thus, there is no guarantee of monotonic-ity in the quadratic 	k(su) in the conjugate{gradient algorithm, and therefore thereis no guarantee that the result expressed in (5.44) for a fraction of Cauchy decreasecondition would be satis�ed. This raises some interesting problems related to thecomputation of the tangential component that are addressed in Section 6.4. Therewe show that, instead of (6.7) and (6.8), the inexact operations with derivatives of Clead to quantities in the formP Tk rqk(sqk ) = �Akryqk(sqk ) +ruqk(sqk); (6.9)and sk = sqk +Qk(sk)u = sqk + 0@ �Bk(sk)u(sk)u 1A ; (6.10)where Ak ' Cu(xk)TCy(xk)�T , Bk ' Cy(xk)�1Cu(xk),Pk = 0@ �ATkIn�m 1A ; and Qk = 0@ �BkIn�m 1A : (6.11)In these expressions, Ak and Bk represent the inexactness. A detailed derivation andanalysis of the linear operators Ak and Bk are given in Section 6.4 together with



127an extension of Algorithms 5.7.1 and 5.7.2 for the computation of the tangentialcomponent.As a consequence of assuming this inexactness, we no longer have condition (5.44).Instead, we have the following condition:qk(sqk ) � qk(sqk +Qk(sk)u)� &1k �DPk P Tk rqk(sqk )kminn&2k �DPk P Tk rqk(sqk )k; &3�ko� &4kCkk; (6.12)where &1; : : : ; &4 are positive constants independent from k, and �DPk is a diagonalmatrix of order n �m with diagonal elements given by( �DPk )ii = 8>>>>>>>>><>>>>>>>>>: (b� uk) 12i if �P Tk rqk(sqk )�i < 0 and bi < +1;1 if �P Tk rqk(sqk )�i < 0 and bi = +1;(uk � a) 12i if �P Tk rqk(sqk )�i � 0 and ai > �1;1 if �P Tk rqk(sqk )�i � 0 and ai = �1; (6.13)for i = 1; : : : ; n�m. The matrix �DPk is the inexact version of �Dk. We show in Section6.4 how this can be satis�ed. Of course we still require the tangential component tobe feasible with respect to the trust region and bound constraints. See (5.21), (5.22),and Step 2.2 of Algorithms 5.2.1.6.2 Inexact AnalysisThe assumptions on the inexact calculations required for global convergence to apoint satisfying the �rst{order necessary optimality conditions are the following.Assumptions 6.1{6.36.1 The sequences fAkg and fBkg are bounded.6.2 k (�Cy(xk)Bk + Cu(xk)) (sk)uk � minn 1�3 ; �22 o minf�3kCkk; �kg:6.3 limj!+1 k(�ATkj +Cu(xkj )TCy(xkj)�T )ryqkj (sqkj)k = 0 for all index subsequen{ces fkjg such that limj!+1 kCkjk = 0.The constants �2 and �3 are used in (5.13) to de�ne the decrease condition forthe quasi{normal component. Assumption 6.2 imposes a bound on the distance of



128Qk(sk)u to the null space of the Jacobian Jk. It is obvious that Assumption 6.2is satis�ed when Bk = Cy(xk)�1Cu(xk). Assumption 6.3 is only needed to deriveTheorem 6.2.1 and restricts the accuracy of the reduced{gradient calculation. Wewill be more precise later. This assumption is satis�ed if Ak = Cu(xk)TCy(xk)�T .For the rest of this Chapter we suppose that Assumptions 5.1{5.6 given in Section5.2.5 and Assumptions 6.1{6.3 presented above are always satis�ed.For the global convergence of the inexact TRIP reduced SQP algorithms we stillneed the step components to satisfy the requirements given in Condition 5.1, Section5.2.5, but with (5.21) or (5.22) replaced by (6.12). The new condition is given below.Condition 6.16.1 The quasi{normal component sqk satis�es conditions (5.9), (5.12), and (5.13).The tangential component (sk)u satis�es the decrease condition (6.12).The parameter �k is chosen in [�; 1), where � 2 (0; 1) is �xed for all k.6.2.1 Global Convergence to a First{Order PointIn this section we prove global convergence to a point satisfying the �rst{order neces-sary optimality conditions for the TRIP reduced SQP algorithms with inexact solu-tions of linearized state and adjoint equations of the form (6.1). The proof is virtuallythe same as the one given in Sections 5.3 and 5.4 for exact solutions of these linearsystems. Our job consists of pointing out the few places in the proof where inexact-ness a�ects the estimates and how are these situations �xed by using Assumptions6.1{6.3.The following lemma states a lower bound on the decrease given by sk on thelinearized residual of the equality constraints. The need for this lemma is that, dueto the inexactness assumption, the tangential component stk = Wk(sk)u might not liein the null space of Jk.Lemma 6.2.1 The step sk satis�eskCkk2 � kJksk + Ckk2 � �22 kCkkminf�3kCkk; �kg: (6.14)



129Proof From Assumption 6.2 we getk (�Cy(xk)Bk + Cu(xk)) (sk)uk2 � 1�3�3kCkk�22 minf�3kCkk; �kg:Using this inequality, (5.9), (5.13), sk = sqk +Qk(sk)u, and the form (6.11) of Qk, wehave kCkk2 � kJksk + Ckk2 � kCkk2 � kCy(xk)(sqk)y + Ckk2�k (�Cy(xk)Bk + Cu(xk)) (sk)uk2� �22 kCkkminf�3kCkk; �kg:The inequality (6.14) is of the form (5.38). The other estimates given in Section5.3 and required for global convergence to a point satisfying the �rst{order necessaryoptimality conditions remain valid. They consist of inequalities (5.40), (5.41), (5.42),(5.43), (5.50), and (5.56).The following lemma bounds the predicted decrease in a way similar to Lemma5.4.1.Lemma 6.2.2 If (sk)u satis�es (6.12), then the predicted decrease inthe merit function satis�espred(sk; �) � &1k �DPk P Tk rqk(sqk )kminn&2k �DPk P Tk rqk(sqk )k; &3�ko�(�10 + &4)kCkk+ ��kCkk2 � kJksk + Ckk2�; (6.15)for any � > 0.Proof The inequality (6.15) follows from a direct application of (5.50) and (6.12).Given this result, Lemmas 5.4.2, 5.4.3, and 5.4.4 follow as if the calculations wereexact. Thus we are able to state the global convergence result that the TRIP reducedSQP algorithms satisfy when the linear systems (6.1) are solved inexactly. This resultis the same as in Theorem 5.4.1 and shows that for a subsequence of the iterates, the�rst{order necessary optimality conditions given in Proposition 4.4.3 for problem (4.1)are satis�ed in the limit.



130Theorem 6.2.1 Let fxkg be a sequence of iterates generated by theTRIP Reduced SQP Algorithms 5.2.1 for which the steps satisfy Condition6.1, and assume Assumptions 5.1{5.6 and 6.1{6.3 hold. Thenlim infk!+1 �kDkW Tk rfkk+ kCkk� = 0: (6.16)Proof From (5.65) we obtainlim infk!+1 �k �DPk P Tk rqk(sqk )k+ kCkk� = 0:Thus there exists an index subsequence fkig such thatlimi!+1 �k �DPkiP Tkirqki(sqki)k+ kCkik� = 0:Now we apply Assumption 6.3 and the forms (4.5) and (6.11) of Wk = W (xk) andPk, to obtain limi!+1 �Pki �Wki�Trqki(sqki) = 0:Using this and the continuity of D(x)W (x)Trf(x) we getlimi!+1 �k �DkiW Tkirqki(sqki)k+ kCkik� = limi!+1 �k �Dki�gkik+ kCkik� = 0:The rest of the proof is given in the last paragraph of the proof of Theorem 5.4.1.The condition in Assumption 6.3, thatlimj!+1 k(�Akj + Cu(xkj)TCy(xkj)�T )ryqkj(sqkj)k = 0for all index subsequences fkjg such that limj!+1 kCkjk = 0, is related to the com-putation of the reduced gradient. If the adjoint update �k = �Cy(xk)�Tryfk, or aninexact version, is used for the multipliers, then this condition can be interpreted asa restriction on how accurate these multipliers have to be computed. We commenton this again in Section 6.4.6.2.2 Inexact Directional DerivativesThe result proved in Theorem 6.2.1 covers also the inexact calculation of directionalderivatives necessary to compute quantities of the form Wkdu and W Tk d. However



131these are not the only places in the TRIP Reduced SQP Algorithms 5.2.1 wheredirectional derivatives of C need to be evaluated. In fact, in the computation ofthe actual and predicted decreases, we need to evaluate Jksk after the step sk iscomputed. Since we allow the derivatives of C to be approximated, we do not haveJksk but rather Jksk + ek; (6.17)where ek is an error term. The predicted decrease pred(sk; �k) is a�ected by this errorand has to be rede�ned as:pred(sk; �k; ek) = L(xk; �k; �k)� �qk(sk; ek) + ��Tk (Jksk + ek + Ck) + �kkJksk + ek + Ckk2� ;where now the quadratic term qk(sk; ek) is given byqk(sk; ek) = `k +rfTk sk + �Tk (Jksk + ek) + 12sTkHksk= qk(sk) + �Tk ek: (6.18)It can be proved that the global convergence result (6.16) given in Theorem 6.2.1holds if ek is O�minfkCkk; kskk2g �. This extension of Theorem 6.2.1 is not di�cultto show. In fact, by imposing this condition on kekk the actual versus predictedestimate (5.56) is valid for pred(sk; �k; ek). Inequalities (5.38) and (5.50) hold also ifwe replace Jksk by Jksk + ek.6.3 Inexact Calculation of the Quasi{Normal ComponentThe quasi{normal component sqk is an approximate solution of the trust{region sub-problem minimize 12kCy(xk)(sq)y + Ckk2subject to k(sq)yk � �k; (6.19)and it is required to satisfy the conditions (5.9), (5.12), and (5.13). The property(5.12) is a consequence of (5.13) (see Lemma 5.6.2, equation (5.92)). Whether theproperty (5.13) holds depends on the way in which the quasi{normal componentis computed. We show below that (5.13) is satis�ed for a variety of techniques tocompute sqk .We concentrate on methods that are suitable for the large{scale case and do notrequire the matrix Cy(xk) in explicit form. The �rst two groups of methods tackle



132the trust{region subproblem (6.19) directly. The �rst group of methods are Krylovsubspace methods that require the computation of matrix{vector products Cy(xk)dyand Cy(xk)Tdy, while the second group of methods only require Cy(xk)dy. The thirdgroup of methods compute steps by solving the linear system Cy(xk)(sq)y = �Ckapproximately. The trust{region constraint is enforced by scaling the solution.6.3.1 Methods that Use the TransposeThere are various ways to compute the quasi{normal component sqk for large{scaleproblems. For example, one can use the Conjugate{Gradient Algorithm 2.3.2, or onecan use the Lanczos bidiagonalization as described in [67]. Both methods computean approximate solution of (6.19) from a subspace that contains the negative gra-dient �Cy(xk)TCk of the least squares functional 12kCy(xk)(sq)y + Ckk2. Thus, thecomponents sqk generated by these algorithms satisfy ksqkk � �k and12kCy(xk)(sqk )y + Ckk2� min�12kCy(xk)s+ Ckk2 : ksk � �k ; s 2 spanf�Cy(xk)TCkg� : (6.20)We can appeal to Lemma 2.3.1 to show thatkCkk2 � kCy(xk)(sqk)y + Ckk2 � 12kCy(xk)TCkkmin( kCy(xk)TCkkkCy(xk)TCy(xk)k; �k) :Now one can use the fact that fCy(xk)TCy(xk)g and fCy(xk)�Tg are bounded se-quences (see Assumptions 5.3{5.5 in Section 5.2.5) to prove the following lemma.Lemma 6.3.1 If (sqk )y satis�es (6.20), then there exist positive constants�2 and �3, independent of k, such thatkCkk2 � kCy(xk)(sqk )y + Ckk2 � �2kCkkminf�3kCkk; �kg:Another family of methods to solve large{scale trust{region subproblems is pro-posed and analyzed in [129], [133]. We described briey these algorithms in Section2.3.1 and mentioned that they compute steps satisfying a fraction of optimal decreasecondition of the type (2.10). Hence, when applied to the trust{region subproblem(6.19), they produce quasi{normal components that verify (6.20) and Lemma 6.3.1can be applied to obtain (5.13). In Theorem 3.8.1, Section 3.8, we pointed out the



133numerical di�culties that these trust{region subproblems are likely to o�er to algo-rithms that compute steps satisfying a fraction of optimal decrease condition. TheLanczos bidiagonalization algorithm in [67] is another algorithm that computes stepssatisfying this property when applied to the trust{region subproblem (6.19).6.3.2 Methods that Are Transpose FreeThe Conjugate{Gradient Algorithm 2.3.2, the Lanczos bidiagonalization algorithm[67], and the algorithms in [129], [133] require the computation of matrix{vector prod-ucts of the form Cy(xk)dy and Cy(xk)Tdy for a given dy in IRm. For some applications,the evaluation of Cy(xk)Tdy is more expensive than the application of Cy(xk)dy, andtherefore it may be more e�cient to use methods that avoid the use of Cy(xk)Tdy. Inthis case one can apply nonsymmetric transpose{free Krylov subspace methods basedon minimum residual approximations, such as GMRES [127] or TFQMR [55]. In thecontext of nonlinear system solving the use of such methods is described by Brownand Saad [10], [11]. GMRES and TFQMR generate matriceskVl 2 IRm�l; Wl+1 2 IRm�(l+1); and Hl 2 IR(l+1)�l;such that Cy(xk)Vl =Wl+1Hl and Ck = kCkkWl+1e1 = kCkkVle1: (6.21)The columns of the matrices Vl and Wl+1 have norm one, and it holds thatrange(Vl) = Kl(Cy(xk); Ck) = span nCk; Cy(xk)Ck; : : : ; (Cy(xk))l�1Cko ; (6.22)i.e. the columns of the matrix Vl form a basis of the Krylov subspace Kl(Cy(xk); Ck).If GMRES is used then Vl is orthogonal and Wl+1 = Vl+1. Using the identities (6.21),the trust{region subproblem (6.19) can be approximated byminimize 12Wl+1(Hlz + kCkke1)2subject to kVlzk � �k: (6.23)kFor the presentation of this approach, we follow the notation used for Krylov subspace methods.Here the matrices Wl and Hl are generated by GMRES or TFQMR and are not the matricesrepresenting the null space of Jk or the approximation to the Hessian of the Lagrangian r2xx`k,respectively.



134The quasi{normal component is given by(sqk)y = Vlz; (6.24)where z 2 IRl is the solution of (6.23).If Vl and Wl+1 are orthogonal, i.e. if GMRES is used, then (6.23) is equivalent tominimize 12Hlz + kCkke12subject to kzk � �k: (6.25)Thus, if Vl and Wl+1 are orthogonal, then (6.22), (6.24), and (6.25) imply that thequasi{normal component satis�es12kCy(xk)(sqk )y + Ckk2 � minn12kCy(xk)s+ Ckk2 : ksk � �k ; s 2 spanf�Ckgo :(6.26)In this case we can use slight modi�cations of Lemma 2.3.1 to establish the fol-lowing result:Lemma 6.3.2 Suppose that Wl+1 2 IRm�(l+1), Wl = Vl 2 IRm�l are theorthogonal matrices generated by GMRES satisfying (6.21) and (6.22). If(sqk)y is given by (6.24) and (6.25) and if12CTk �Cy(xk)T + Cy(xk)�Ck � �12kCkk2 (6.27)holds with �12 > 0, thenkCkk2 � kCy(xk)(sqk )y + Ckk2 � �2kCkkminf�3kCkk; �kg;where �2 and �3 are positive constants that do not depend on k.Proof We consider the function (t) = ��12t kCkk+ t2kCkk2CTk Cy(xk)TCy(xk)Ckon the interval [0; �k]. Using the arguments given in the proof of Lemma 2.3.1, wecan show that  (t) � ��122 kCkkmin(�122 kCkkkCy(xk)TCy(xk)k2 ; �k) :



135With the estimate (6.26) and assumption (6.27) this inequality implieskCy(xk)(sq)y + Ckk2 � kCkk2� �t Cy(xk) CkkCkk + Ck2 � kCkk2= � tkCkkCTk Cy(xk)TCk + t2kCkk2CTk Cy(xk)TCy(xk)Ck= � t2kCkkCTk �Cy(xk)T + Cy(xk)�Ck + t2kCkk2CTk Cy(xk)TCy(xk)Ck�  (t):Using the boundedness of fCy(xk)TCy(xk)g, from Assumption 5.3 in Section 5.2.5,this gives the desired result.The condition (6.27) is implied by the positive de�niteness of the symmetric partof Cy(xk), a condition also important for the convergence of nonsymmetric Krylovsubspace methods [73].If Vl and Wl+1 are not orthogonal, e.g. if TFQMR [55] is used, then (6.25) is notequivalent to (6.23). However, as in the context of linear system solving, one can solve(6.25) for z and use (6.24) as a quasi{normal component. Due to the nonorthogonalityof Vl and Wl+1, one cannot guarantee that (6.26) holds anymore.6.3.3 Scaled Approximate SolutionsAn alternative to the previous procedures is to compute a solution of the linear systemCy(xk)s = �Ck and to scale this component back into the trust region. The resultingquasi{normal component is given in (5.90).In this section, we assume that the computed solution (sqk )y of the linear systemCy(xk)s = �Ck satis�es Cy(xk)(sqk)y = �Ck + ek;where the error ek can be bounded askekk � �kCkk: (6.28)This gives k(sqk)yk � (1 + �)kCy(xk)�1k kCkk: (6.29)



136Lemma 6.3.3 If the approximate solution (sqk )y of the linear systemCy(xk)s = �Ck satis�es kCy(xk)(sqk)y+Ckk � �kCkk with � < 1, then thequasi{normal component (5.90) using this inexact solution is such that:kCkk2 � kCy(xk)(sqk )y + Ckk2 � �2kCkkminf�3kCkk; �kg;where �2 and �3 are positive constants independent of k.Proof A simple manipulation shows thatkCkk2 � kCy(xk)(sqk )y + Ckk2� kCkk2 � k�kCy(xk)(sqk )y + Ckk2� kCkk2 � �(1 � �k)kCkk+ �kkCy(xk)(sqk )y + Ckk�2 :Now we use kCy(xk)(sqk)y + Ckk � �kCkk and �k � 1, to obtainkCkk2 � kCy(xk)(sqk)y + Ckk2 � kCkk2 � �(1 � �k)kCkk+ ��kkCkk�2= �k�2(1 � �)� (1 � �)2�k�kCkk2� �k�2(1 � �) + (1� �)2�kCkk2� (1� �2)�kkCkk2:We need to consider two cases. If �k = 1 thenkCkk2 � kCy(xk)(sqk)y + Ckk2 � (1 � �2)kCkkminfkCkk; �kg:Otherwise, it follows from (6.29) that�k = �kk(sqk )yk � �k(1 + �)kCy(xk)�1k kCkk � �k(1 + �)�6 kCkk :In this case we getkCkk2 � kCy(xk)(sqk )y + Ckk2 � 1� �2(1 + �)�6kCkk�k� 1� �2(1 + �)�6kCkkminfkCkk; �kg:Thus the result holds with �2 = (1 � �2)minf1; 1(1+�)�6g and �3 = 1.



1376.4 Inexact Calculation of the Tangential ComponentIdeally, the tangential component minimizes the quadratic model 	k(su) in the nullspace N (Jk) subject to the trust region and the bound constraints. Since the nullspace of Jk is characterized by Wk, the exact tangential component has the formstk = Wk(sk)u. If the u component of the tangential component is computed by aconjugate{gradient algorithm, its computation requires the calculation of matrix{vector products Wkdu and W Tk d. We assume that these calculations are inexact.6.4.1 Reduced GradientFor the computation of the tangential component, we �rst have to compute the re-duced gradientW Tk rqk(sqk ) of the quadratic model 	k(su). If this is done using (6.5),then we have an approximation to W Tk rqk(sqk) of the formW Tk rqk(sqk) + eA; (6.30)where the error term eA depends on W Tk rqk(sqk). By bounding the error term in(6.6), we �nd that keAk � kCu(xk)TCy(xk)�Tk k(eA)yk+ k(eA)uk: (6.31)We can interpret the inexact computation of W Tk rqk(sqk ) as the exact solution ofa perturbed equation. If we setEA = 1kryqk(sqk)k2 eA (ryqk(sqk ))T ;then ��Cu(xk)TCy(xk)�T + EA�ryqk(sqk) = �Cu(xk)TCy(xk)�Tryqk(sqk) + eA:Thus we can de�ne Ak = Cy(xk)�1Cu(xk)� ETA andPk = 0@ �ATkIn�m 1A = 0@ �Cy(xk)�1Cu(xk) + ETAIn�m 1A : (6.32)With this de�nition we can writeW Tk rqk(sqk) + eA = P Tk rqk(sqk ):



138The linear operator Ak satis�esk �Ak + Cu(xk)TCy(xk)�Tk = kETAk � keAk=kryqk(sqk)k� �kCu(xk)TCy(xk)�Tk k(eA)yk+ k(eA)uk�=kryqk(sqk )k (6.33)and (�Ak + Cu(xk)TCy(xk)�T )ryqk(sqk) = kETAryqk(sqk)k = keAk� �kCu(xk)TCy(xk)�Tk k(eA)yk+ k(eA)uk�: (6.34)If for a given ryqk(sqk) the error terms in the computation of the reduced gradientvia (6.5) obey maxnk(eA)yk; k(eA)uko � � kCkk; (6.35)with � > 0, then (6.34) and Assumptions 5.3{5.5 in Section 5.2.5 imply Assumption6.3. Moreover, if maxnk(eA)yk; k(eA)uko � �kryqk(sqk )k; (6.36)then (6.33) and Assumptions 5.3{5.5 in Section 5.2.5 imply the boundedness of fAkg.This gives the �rst part of Assumption 6.1.6.4.2 Use of Conjugate Gradients to Compute the Tangential ComponentIn the following, we formulate extensions of the Conjugate{Gradient Algorithms 5.7.1and 5.7.2 for the computation of the tangential component. To keep the presentationsimple, we continue to use the notation Wk and W Tk . However, whenever matrix{vector products with Wk or W Tk are computed, we assume that this is done using(6.3), or (6.5). The degree of inexactness, i.e. the size of the error terms ey and eu,is speci�ed later. The reduced gradient W Tk rqk(sqk) of the quadratic model 	k(su) isassumed to be computed by (6.30) with errors (eA)y and (eA)u satisfying (6.35) and(6.36).In the case where an approximation ~Hk to the reduced Hessian W Tk r2xx`kWk isused, the quadratic� �P Tk rqk(sqk )�T su � 12sTu ~Hksu � 12sTuEk( �DPk )�2suis reduced at every iteration of the conjugate{gradient algorithm. If we use an ap-proximation Hk to the full Hessian r2xx`k we have to compute matrix{vector mul-tiplications with W Tk HkWk. One of the consequences of the inexactness is that the



139quadratic evaluated at the iterates of the conjugate{gradient algorithms is not guar-anteed to decrease. For instance, the inexact application of Wk and W Tk may causeW Tk HkWk to be nonsymmetric. Hence we need to measure the Cauchy decrease afterthe �nal iteration of the conjugate{gradient algorithm.The extension of the Conjugate{Gradient Algorithm 5.7.1 is given below.Algorithm 6.4.1 (Inexact Computation of sk = sqk+Wk(sk)u (DecoupledCase))1 Set s0u = 0, r0 = �P Tk rqk(sqk ), q0 = ( �DPk )2r0, d0 = q0, and � > 0.2 For i = 0; 1; 2; : : : do2.1 Computei = 8>><>>: (ri)T (qi)(di)T ( ~Hk+Ek( �DPk )�2)(di) (reduced Hessian);(ri)T (qi)(di)T (WTk HkWk+Ek( �DPk )�2)(di) (full Hessian):2.2 Compute� i = maxn� > 0 : k( �DPk )�1(siu + �di)k � �k;�k(a� uk) � siu + �di � �k(b� uk)o:2.3 If i � 0, or if i > � i, then set s�u = siu + � idi, where � i is givenas in 2.2 and go to 3; otherwise set si+1u = siu + idi.2.4 Update the residuals: ri+1 =8><>: ri � i( ~Hk + Ek( �DPk )�2)di (reduced Hessian);ri � i(W Tk HkWk + Ek( �DPk )�2)di (full Hessian);and qi+1 = ( �DPk )2ri+1.2.5 Check truncation criteria: if r (ri+1)T (qi+1)(r0)T (q0) � �, set s�u = si+1u andgo to 3.2.6 Compute �i = (ri+1)T (qi+1)(ri)T (qi) and set di+1 = qi+1 + �idi.3 Compute Wks�u.If a reduced Hessian approximation is used, set (sk)u = s�u and sk =sqk +Wks�u.



140If a full Hessian approximation is used and if� �P Tk rqk(sqk)�T s�u � 12(Wks�u)THk(Wks�u)< � �W Tk rqk(sqk)�T s1u � 12s1uTW Tk HkWks1u;then set (sk)u = s1u and sk = sqk +Wks1u. Otherwise (sk)u = s�u andsk = sqk +Wks�u.The extension for the coupled approach is analogous and is omitted.6.4.3 Distance to the Null Space of the Linearized ConstraintsLet (stk)y and (stk)u = (sk)u be the quantities computed by Algorithm 6.4.1. SinceWk(sk)u is not computed exactly in Step 3, it holds that(stk)y = �Cy(xk)�1Cu(xk)(sk)u + Cy(xk)�1 ((eB)u + (eB)y)= �Cy(xk)�1Cu(xk)(sk)u + eB;where the error term eB depends on (sk)u and satis�eskeBk � kCy(xk)�1k�k(eB)uk+ k(eB)yk�; (6.37)cf. (6.4). As before, we can interpret the inexact computation (stk)y of stk = Wk(sk)uas the exact solution of a perturbed equation. IfEB = 1k(sk)uk2 eB (sk)Tu ;then �� Cy(xk)�1Cu(xk) + EB�(sk)u = �Cy(xk)�1Cu(xk)(sk)u + eB = (stk)y:We de�ne Bk = Cy(xk)�1Cu(xk)� EB andQk = 0@ �BkIn�m 1A = 0@ �Cy(xk)�1Cu(xk) + EBIn�m 1A : (6.38)With this de�nition, we can write stk = Qk(sk)u:



141The linear operator Bk satis�esk �Bk + Cy(xk)�1Cu(xk)k = kEBk � keBk=k(sk)uk� �kCy(xk)�1k (k(eB)uk+ k(eB)yk) �=k(sk)uk(6.39)and (�Cy(xk)Bk + Cu(xk))(sk)u = kCy(xk)EB(sk)uk = kCy(xk)eBk� k(eB)uk+ k(eB)yk: (6.40)If the error terms in the computation of (stk)y using (6.3) obeymaxnk(eB)yk; k(eB)uko � 12 min� 1�3 ; �22 � minf�3kCkk; �kg ; (6.41)where �2 and �3 are de�ned in (5.13), then one can see from (6.40) that Bk satis�esAssumption 6.2. Moreover, ifmaxnkeyk; keuko � �k(sk)uk; (6.42)then (6.39) and the boundedness of fCy(xk)�1g assured by Assumption 5.5 in Section5.2.5, imply the boundedness of fBkg required in Assumption 6.1.6.4.4 Fraction of Cauchy Decrease ConditionNow we establish the decrease condition (6.12). We analyze reduced and full Hessiansapproximations separately.Reduced Hessian ApproximationIn this case an approximation ~Hk for W Tk r2xx`kWk is used and all the calculations ofStep 2 of Algorithm 6.4.1 are performed exactly. Hence (sk)u satis�es the followingcondition� �P Tk rqk(sqk)�T (sk)u � 12(sk)Tu ~Hk(sk)u� �6k �DPk P Tk rqk(sqk)kminn�7k �DPk P Tk rqk(sqk )k; �8�ko;(6.43)



142for some positive constants �6, �7, and �8 independent of k. This is just an applicationof Lemma 5.3.3.Now recall that we need to establish (6.12), where the left hand side is given by� �QTkrqk(sqk)�T (sk)u � 12(sk)TuQTkHkQk(sk)u:However, in (6.43) the left hand side is� �P Tk rqk(sqk)�T (sk)u � 12(sk)Tu ~Hk(sk)u:First we use the expression (5.32) for Hk and the form (6.38) of Qk to write12(sk)Tu ~Hk(sk)u = 12(sk)TuQTkHkQk(sk)u:Then we relate the inexactness represented by Pk and Qk with the constraint residualkCkk. First,� �P Tk rqk(sqk )�T (sk)u = �rqk(sqk )TQk(sk)u �rqk(sqk )T 0@ ETA0 1A (sk)u+ rqk(sqk )T 0@ EB0 1A (sk)u= � �QTkrqk(sqk )�T (sk)u � eTA(sk)u + eTBryqk(sqk):The error bounds (6.31), (6.35), (6.37), (6.41), and Assumptions 5.3{5.5 in Section5.2.5 giveeTA(sk)u � eTBryqk(sqk ) � keAk k(sk)uk+ keBk kryqk(sqk)k � & 04kCkk; (6.44)where & 04 is a positive constant independent of k. Hence we proved (6.12) with &4 = & 04.Full Hessian ApproximationThe Cauchy step s1u computed in the �rst iteration of Algorithm 6.4.1 satis�es� �P Tk rqk(sqk)�T s1u � 12s1uTfW Tk HkcWks1u� �6k �DPk P Tk rqk(sqk )kminn�7k �DPk P Tk rqk(sqk )k; �8�ko;(6.45)where the operators cWk and fWk represent the inexact calculation fW Tk HkcWkd0 ofW Tk HkWkd0. Again, this is just an application of Lemma 5.3.3.



143Let us assume �rst that (sk)u = s1u. We deal with �(sk)Tu fW Tk HkcWk(sk)u usingarguments similar to those used to obtain (6.44). We can show that12(sk)TuQTkHkQk(sk)u � 12(sk)Tu fW Tk HkcWk(sk)u= 12(sk)Tu 0@Wk + 0@ ETB0 1A1AT Hk 0@Wk + 0@ EB0 1A1A (sk)u� 12(sk)Tu 0@Wk + 0@ ETeA0 1A1AT Hk 0@Wk + 0@ EbB0 1A1A (sk)u� �& 004 kCkk: (6.46)An explanation is in order. E eA and EbB are constructed as EA and EB, respectively.The operator EbB is the error matrix that is involved in computingWkd0. The operatorE eA accounts for the error in computing W Tk �HkcWkd0�. We can force the residualsof these computations to depend on kCkk as in (6.35) and (6.41). From this andAssumptions 5.3{5.5 in Section 5.2.5, we get (6.46) with & 004 positive and independentof k. So, in the case (sk)u = s1u, we combine (6.44) and (6.46) to obtain (6.12) with&4 = & 04 + & 004 .If (sk)u 6= s1u, then from Step 3 of Algorithm 6.4.1 we see that (sk)u satis�es� �P Tk rqk(sqk)�T (sk)u � 12(W k(sk)u)THk(W k(sk)u)� � �P Tk rqk(sqk)�T s1u � 12s1uTfW Tk HkcWks1u� �6k �DPk P Tk rqk(sqk)kminn�7k �DPk P Tk rqk(sqk )k; �8�ko:Now we follow the same arguments used to establish (6.44) and (6.46). If theresidual in W k(sk)u is bounded by kCkk, we obtain12(sk)TuQTkHkQk(sk)u � 12(W k(sk)u)THk(W k(sk)u) � �& 0004 kCkk;with & 0004 a positive constant independent of k. Finally, if we use this and (6.44), weobtain (6.12) with &4 = & 04 + & 0004 .6.4.5 Inexact Calculation of Lagrange MultipliersNote that the only assumption on �k required to prove the global convergence result(6.2.1) is the boundedness of the sequence f�kg (see Assumption 5.4 in Section 5.2.5).



144A choice of �k that is available from the reduced{gradient calculation of qk(s) is�k = �Cy(xk)�Tryqk(sqk ): (6.47)Due to inexactness �k actually satis�es�Cy(xk)T�k = ryqk(sqk) + ek;where ek is the corresponding residual vector. From Assumptions 5.3{5.5 in Section5.2.5, if fekg is bounded then f�kg is also bounded.Another choice for �k is �k = �Cy(xk)�Tryfk: (6.48)See Section 5.7.2 for a discussion on the choices (6.47) and (6.48) of �k.6.5 Numerical ExperimentsWe tested the TRIP Reduced SQP Algorithms 5.2.1 with inexact solutions of lin-earized state and adjoint equations. The implementation is described in [76]. Thenumerical test computations were done on a Sun Sparcstation 10 in double precisionFortran 77. We solved the two examples described in Section 4.5 with a regular-ization parameter  = 10�3. The numerical results are satisfactory and revealedinteresting properties of these algorithms.We used the formula (5.90) to compute the quasi{normal component, and conju-gate gradients with a tolerance � = 10�4 to calculate the tangential component. Inboth cases all the linear systems of the form (6.1) are solved inexactly with the tol-erances given below. The Hessian and reduced Hessian approximations, the schemeused to update the trust radius and the penalty parameter, and the inexact form DPkand �DPk of the a�ne scaling matrices Dk and �Dk are the same as in Section 5.8. Weused also �k = � = 0:99995 for all k. The stopping criterion we used is (5.97), whereW Tk rfk is calculated inexactly with the tolerance (6.50) given below.The tolerance for inexact solvers with Cy(xk) was set tominn10�2; 10�2minfkCkk; �kgo ; (6.49)and for inexact solvers with Cy(xk)T tominn10�2; 10�2kCkko: (6.50)This scheme for setting the tolerances satis�es our theoretical requirement (6.2).



1456.5.1 Boundary Control ProblemThe matrix Cy(x) for the boundary nonlinear parabolic control problem with thediscretization scheme mentioned in Section 4.5.1 is a block bidiagonal matrix withnonsymmetric tridiagonal blocks. In the exact (except for round o� errors) implemen-tation, we used the LINPACK subroutine DGTSL to solve the tridiagonal systems. Thesecalculations are reported in Section 5.8 and summarized in the �rst line of Table 6.1containing number of iterations. We introduce inexactness into this problem by solv-ing these tridiagonal systems inexactly. For this purpose we tested several iterativemethods like GMRES, QMR, and BiCGSTAB from the library [3]. The results arequite similar and we report here those obtained with GMRES(10)��. Since we haveto solve a nonsymmetric tridiagonal system at each time step, we require the residualnorms for these systems to be smaller than the tolerances given in (6.49) and (6.50)divided by the number of time steps Nt. The size, the functions, the starting vector,and the lower and upper bounds for this example are described in Section 5.8.We ran the exact and inexact TRIP reduced SQP algorithms using decoupled andcoupled approaches and reduced and full Hessians. The total number of iterationsfor each case is given in Table 6.1. There were no rejected steps. The objectivefunction f(x), the norm of the constraint residual kC(x)k, and the norm of the scaledreduced gradient kD(x)W (x)Trf(x)k are plotted in Figure 6.1. In all the cases thealgorithms took less then �fty iterations to attain the stopping criterion. The coupledapproach did not perform as well as the decoupled approach. This is explained by theaccumulation of errors due to inexactness. In fact, if the decoupled approach is used,Optimal control Decoupled Coupledproblem governed by Reduced ~Hk Full Hk Reduced ~Hk Full Hkheat equation (exact solvers) 16 18 17 19heat equation (inexact solvers) 16 18 29 48semi-linear elliptic equation 18 20 27 36(39)Table 6.1 Number of iterations to solve the optimal control problems.��In GMRES(p), the number p denotes the dimension of the Krylov basis Kp. See Section 6.3.2.



146the y part of the tangential component stk = Wk(sk)u is computed only in Step 3 ofAlgorithm 6.4.1, and although this computation is inexact, there is no accumulation oferrors. In the coupled approach, the y part of the tangential component stk of the stepis updated at every conjugate{gradient iteration through an inexact linearized statesolver. This destroys the symmetry of the subproblem and the conjugate{gradientalgorithm requires more iterations. As the number of conjugate{gradient iterationsincreases, this error propagates, and the steps that are computed are farther awayfrom the null space of the Jacobian Jk.We illustrate this situation in Figure 6.2, where we show how far kJksqkk andkJk(sqk + stk)k are from each other. The dotted line shows the size of the residual ofthe linearized state equation after the computation of the quasi{normal component.If the tangential component is in the null space of the Jacobian, then this would bethe size of the residual of the linearized state equation for the whole step. In otherwords, we would have kJksqkk = kJk(sqk + stk)k:However, due to the inexactness in the application of Wk and W Tk , the size of theresidual of the linearized state equation for the whole step is larger and is given by thesolid line. It can be seen that the di�erence grows as Wk and W Tk are applied moreoften in the computation of the tangential component. In particular, the di�erenceis larger if the coupled approach is used.6.5.2 Distributed Control ProblemFor the distributed semi{linear control problem given in Section 4.5.2, we used 
 =(0; 1)2, d = 0, g(y) = ey, and yd = sin(2�x1) sin(2�x2). In this case the stateequation (4.28) for u = 0 is the Bratu problem (4.30) with � = �1. We used thediscretization of this problem implemented by M. Heinkenschloss (ICAM, VirginiaPolytechnic Institute and State University) with piecewise linear �nite elements ona uniform triangulation obtained by �rst subdividing the x and the y subintervalinto a sample of subintervals and then cutting each resulting subsquare into twotriangles (see for instance [63]). The same discretization was used for the states andthe controls.The norms used for the states and controls are the discretizations of theH1(
) andL2(
) norms. The linearized state and adjoint equations are solved using GMRES(20)preconditioned from the left with the inverse Laplacian. To apply this preconditioner,



147
0 5 10 15 20

−15

−10

−5

0

5
Decoupled with reduced Hessian

0 5 10 15 20
−15

−10

−5

0

5
Decoupled with full Hessian

0 10 20 30
−15

−10

−5

0

5
Coupled with reduced Hessian

0 20 40 60
−15

−10

−5

0

5
Coupled with full Hessian

Figure 6.1 Performance of the inexact TRIP reduced SQP algorithmsapplied to the boundary control problem. Here ln10 fk (dotted line), ln10 kCkk(dashed line), and ln10 kDkW Tk rfkk (solid line) are plotted as a function of k.one has to compute the solution of the discrete Laplace equation with di�erent righthand sides. This was done using multilevel preconditioned conjugate gradients [151].Note that for g(y) = ey, the problem is self{adjoint. Therefore a conjugate{gradientalgorithm could have been used instead of GMRES. However, the implementationwas done for the more general problem with state equation ��y + g(y;ry) = u,which in general is not self{adjoint.In this example, the number of control variables that comprises the componentsof u is equal to the number of state variables represented by components of y. Inthe computations reported below we use m = n �m = 289 which corresponds to a
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Figure 6.2 Illustration of the performance of the inexact TRIP reducedSQP algorithms applied to the boundary control problem. These plots showthe residuals ln10 kJksqkk in dashed line and ln10 kJk(sqk + stk)k in solid line.uniform triangulation with 512 triangles. The upper and lower bounds were bi = 5,ai = �1000, i = 1; : : : ; n�m. The starting vector was x0 = 0.The total numbers of iterations needed by the inexact TRIP reduced SQP algo-rithms to solve this problem are presented in Table 6.1. In all situations but one, allthe steps were accepted. (The situation we refer to is the coupled approach with fullHessian approximation where there were 36 accepted steps among the 39 computed.)The objective function f(x), the norm of the constraint residual kC(x)k, and thenorm of the scaled reduced gradient kD(x)W (x)Trf(x)k are plotted in Figure 6.3.The convergence behavior of the inexact TRIP reduced SQP algorithms is similar



149to the convergence behavior for the other example. Again the decoupled approachperforms better than the coupled one due to the fact that less errors are accumulated.See Figure 6.4.The last experiment that we report consisted of applying the inexact version ofthe TRIP Reduced SQP Algorithms 5.2.1 to solve large instances of the distributedsemi{linear control problem. In this experiment we used the decoupled approachwith a limited memory BFGS update to approximate the reduced Hessian matrix asdescribed in Section 5.8. The number of iterations corresponding to four instancesof this control problem are given in Table 6.2. These instances were generated bydecreasing the mesh size, i.e. by increasing the number of triangles in the discretiza-tion. In this table we include the number of linearized state and adjoint equations ofthe form (6.1) solved by the algorithms.We point out that in this example the control is distributed in 
 and the numberof components in u is n2 . For the values bi = 5, ai = �1000, i = 1; : : : ; n �m of theupper and lower bounds that we chose, the number of control variables u active at thesolution is roughly equal to n10. These observations are important for the conclusionswe draw in the next paragraph.It is well known that in many interior{point algorithms for linear and convexprogramming problems the number of iterations is a polynomial function of the sizeof the problem. On the other hand, most active set methods have a exponentialworst{case complexity. In interior{point algorithms, as we increase the dimensionof the problem we should observe at most a polynomial increase in the number ofthe iterations. We can see from Table 6.2 that this is clearly the case for the TRIPreduced SQP algorithms. These results once more show the e�ectiveness of thesealgorithms for optimal control problems with bound constraints on the controls. (Ifthere are rejected steps, then the number of iterations in brackets corresponds to allthe accepted and rejected iterations.)
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Figure 6.3 Performance of the inexact TRIP reduced SQP algorithmsapplied to the distributed control problem. Here ln10 fk (dotted line),ln10 kCkk (dashed line), and ln10 kDkW Tk rfkk (solid line) are plotted as afunction of k.
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Figure 6.4 Illustration of the performance of the inexact TRIP reducedSQP algorithms applied to the distributed control problem. These plots showthe residuals ln10 kJksqkk in dashed line and ln10 kJk(sqk + stk)k in solid line.variables (n) constraints (m) iterations Cy(xk) solvers Cy(xk)T solvers578 289 18 54 372178 1089 22 66 458450 4225 26 (31) 83 5833282 16641 49 147 99Table 6.2 Number of iterations to solve largedistributed semi{linear control problems.



152Chapter 7Conclusions and Open Questions7.1 ConclusionsIn this dissertation we introduced and analyzed trust{region interior{point (TRIP)reduced sequential quadratic programming (SQP) algorithms for an important classof nonlinear programming problems which appear in many engineering applications.These problems appear from the discretization of many optimal control, parameteridenti�cation, and inverse problems and consequently their equality constraints areoften large discretized nonlinear partial di�erential equations. In Chapter 4 of thisthesis, we described this class of problems in a great detail, analyzed the structure,and derived the optimality conditions.The TRIP reduced SQP algorithms use the structure of the problem, and theycombine trust{region techniques for equality{constrained optimization with a primal{dual a�ne scaling interior{point approach for simple bounds. We proved in Chapter 5global and local convergence results for these algorithms that include as special casesboth the results established for equality constraints [35], [42] and those for simplebounds [24]. (See Figures 1.1 and 1.2.) We are satis�ed with the sharpness of theresults. In Sections 5.4 and 5.5, we proved global convergence to a point satisfying the�rst and second order necessary optimality conditions for these algorithms by usingassumptions that reduce to the weakest assumptions used to establish similar resultsin unconstrained, equality{constrained, and box{constrained optimization. Section5.6 showed that the TRIP reduced SQP algorithms behave properly close to a pointsatisfying the second{order su�cient optimality conditions: the trust radius is uni-formly bounded away from zero and the penalty parameter is uniformly bounded.This and the fact that the algorithms are Newton related allowed us to show a q{quadratic rate of convergence.Chapter 6 investigated the theoretical behavior of this class of TRIP reduced SQPalgorithms under the presence of inexactness in the solution of linear systems, suchas the linearized state and adjoint equations, and in the computation of directionalderivatives. The most important conclusion that we can derive from this analysisis that global convergence to a point satisfying the �rst{order necessary optimality



153conditions can be guaranteed if the absolute error in the solution of linear systems withCy(xk) (linearized state equations) is O (minf�k; kCkkg) and with Cy(xk)T (adjointequations) is O (kCkk). We recall that �k is the trust radius and kCkk is the residualof the equality constraints, and that these quantities are known at the beginning ofeach iteration k.We implemented the TRIP reduced SQP algorithms and included here resultson two discretized nonlinear optimal control problems. The implementation coversseveral step computations and second{order approximations. The numerical resultsreported in Sections 5.8 and 6.5 were quite satisfactory and con�rmed most of ourtheoretical �ndings. The software that produced these results currently is being beta{tested with the intent of electronic distribution [76].Chapter 3 demonstrates global convergence to a point satisfying the second{ordernecessary optimality conditions for a family of trust{region algorithms for equality{constrained optimization and presents a detailed analysis of the trust{region subprob-lem for the linearized constraints. The important feature of this family of algorithmsis that they do not require the computation of normal components for the step andan orthogonal basis for the null space of the Jacobian of the equality constraints.7.2 Open QuestionsThe extension of the TRIP reduced SQP algorithms to handle bounds on the statevariables y is probably the most important question that this dissertation leavesopen. If lower and upper bounds of the form c � y � d, with c; d 2 IRm, are imposedin problem (4.1), then the condition (4.23) in the �rst{order necessary optimalityconditions becomes0@ ryf(x�)ruf(x�) 1A+ 0@ Cy(x�)T��Cu(x�)T�� 1A �0@ �c��a� 1A + 0@ �d��b� 1A = 0;for some nonnegative multipliers �c�; �d� 2 IRm satisfying the complementarity condi-tion ((y�)i � ci) (�c�)i = (di � (y�)i) (�d�)i = 0; i = 1; : : : ;m:(See Proposition 4.4.1.) A key point here is that now�� = �Cy(x�)�T (ryf(x�)� �c� + �d�)



154and this dependence of �� on the unknown multipliers �c� and �d� is problematic. Ofcourse this a�ects the extension of the primal{dual a�ne scaling strategy to coverthe bound constraints on y. We have investigated this topic further, but up to thismoment we have not reached any satisfactory answer. It is not at all clear for usthat a�ne scaling strategies are the appropriate interior{point techniques to handleproblems of the form (4.1) with bounds on controls u and states y. As a possiblealternative for the a�ne scaling interior{point strategy, we have in mind the use ofprimal{dual interior{point algorithms. For general nonlinear programs of the form(4.20) these algorithms have been studied in [50], [98], [148] where they are referredalso as Newton or quasi{Newton interior{point methods.The formulation and analysis of the TRIP reduced SQP algorithms in an in�nitedimensional framework is another research topic that deserves to be investigated.Our implementation of the TRIP reduced SQP algorithms will be subject to manyimprovements. We have in mind for instance the computation of the quasi{normaland tangential components by adapting to our context the algorithms proposed in[129], [133]. Testing the e�ectiveness of the coupled approach for ill{conditionedproblems is part of our future plans.The conditions on the inexactness described in Chapter 6, and summarized inSection 6.2, are su�cient to guarantee global convergence to a point satisfying the�rst{order necessary optimality conditions. However, as it is the case for systemsof nonlinear equations, the practical implementation of such conditions greatly in-uences the performance of the algorithms. Issues like oversolving and forcing fasterrates of local convergence are of importance and should be the subject of future inves-tigations. Since the quasi{normal component of the step can be viewed as one step ofNewton's method (with a trust{region globalization) towards feasibility of C(y; u) = 0for �xed u, there is a close relationship with the studies of inexact Newton methodsfor systems of nonlinear equations [44], [45]. The computation of the tangential com-ponent using the coupled approach is another issue that needs further investigation.In particular the loss of symmetry due to the inexactness and the use of nonsymmet-ric iterative methods for the solution of these subproblems deserves attention (see[101]).



155Bibliography[1] N. Alexandrov,Multilevel Algorithms for Nonlinear Equations and EqualityConstrained Optimization, PhD thesis, Department of Computational and Ap-plied Mathematics, Rice University, Houston, Texas 77251, USA, 1993. Tech.Rep. TR93{20.[2] L. Armijo, Minimization of functions having Lipschitz{continuous �rst partialderivatives, Paci�c J. Math., 16 (1966), pp. 1{3.[3] R. Barret, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst,Templates for the Solution of Linear Systems: Building Blocks for IterativeMethods, SIAM, Philadelphia, Pennsylvania, 1994.[4] L. T. Biegler, J. Nocedal, and C. Schmid, A reduced Hessian method forlarge{scale constrained optimization, SIAM J. Optim., 5 (1995), pp. 314{347.[5] P. T. Boggs, Sequential quadratic programming, in Acta Numerica 1995,A. Iserles, ed., Cambridge University Press, Cambridge, London, New York,1995, pp. 1{51.[6] P. T. Boggs, J. W. Tolle, and A. J. Kearsley, A practical algorithmfor general large scale nonlinear optimization problems, Tech. Rep. NISTIR5407, Computing and Applied Mathematics Laboratory, National Institute ofStandards and Statistics, 1994. To appear in SIAM J. Optim.[7] J. F. Bonnans and C. Pola, A trust region interior point algorithm forlinearly constrained optimization, Tech. Rep. 1948, INRIA, 1993.[8] M. A. Branch, T. F. Coleman, and Y. Li, A subspace, interior, and conju-gate gradient method for large{scale bound{constrained minimization problems,Tech. Rep. CTC95TR217, Advancing Computing Research Institute, CornellUniversity, 1995.[9] P. N. Brown, A local convergence theory for combined inexact{Newton �nite{di�erence projection methods, SIAM J. Numer. Anal., 24 (1987), pp. 407{434.



156[10] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems ofequations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 450{481.[11] , Convergence theory of nonlinear Newton{Krylov algorithms, SIAM J. Op-tim., 4 (1994), pp. 297{330.[12] J. Burger and M. Pogu, Functional and numerical solution of a controlproblem originating from heat transfer, J. Optim. Theory Appl., 68 (1991),pp. 49{73.[13] J. V. Burke, A robust trust region method for constrained nonlinear program-ming problems, SIAM J. Optim., 2 (1992), pp. 325{347.[14] J. V. Burke, J. J. More, and G. Toraldo, Convergence properties oftrust region methods for linear and convex constraints, Math. Programming, 47(1990), pp. 305{336.[15] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi{Newton matrices and their use in limited memory methods, Math. Program-ming, 63 (1994), pp. 129{156.[16] R. H. Byrd and R. B. Schnabel, Continuity of the null space basis andconstrained optimization, Math. Programming, 35 (1986), pp. 32{41.[17] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithmfor nonlinearly constrained optimization, SIAM J. Numer. Anal., 24 (1987),pp. 1152{1170.[18] , Approximate solution of the trust region problem by minimization overtwo{dimensional subspaces, Math. Programming, 40 (1988), pp. 247{263.[19] R. G. Carter, On the global convergence of trust region algorithms usinginexact gradient information, SIAM J. Numer. Anal., 28 (1991), pp. 251{265.[20] A. Cauchy, M�ethode g�en�erale pour la r�esolution des syst�emes d'�equationssimultan�ees, Compte Rendu des S�eances de L'Acad�emie des Sciences XXV,(1847), pp. 536{538.



157[21] M. Celis, J. E. Dennis, and R. A. Tapia, A trust region strategy fornonlinear equality constrained optimization, in Numerical Optimization 1984,SIAM, Philadelphia, Pennsylvania, 1985, pp. 71{82.[22] E. M. Cliff, M. Heinkenschloss, and A. Shenoy, An optimal controlproblem for ows with discontinuities, J. Optim. Theory Appl., (1997), pp. (toappear, August).[23] T. F. Coleman and Y. Li, On the convergence of interior{reective Newtonmethods for nonlinear minimization subject to bounds, Math. Programming, 67(1994), pp. 189{224.[24] , An interior trust region approach for nonlinear minimization subject tobounds, SIAM J. Optim., 6 (1996), pp. 418{445.[25] T. F. Coleman and J. Liu, An interior Newton method for quadratic pro-gramming, Tech. Rep. TR93{1388, Department of Computer Science, CornellUniversity, 1993.[26] T. F. Coleman and D. C. Sorensen, A note on the computation of anorthonormal basis for the null space of a matrix, Math. Programming, 29 (1984),pp. 234{242.[27] T. F. Coleman and W. Yuan, A new trust region algorithm for equal-ity constrained optimization, Tech. Rep. TR95{1477, Department of ComputerScience, Cornell University, 1995.[28] A. R. Conn, N. I. M. Gould, A. Sartenaer, and P. L. Toint, Globalconvergence of a class of trust region algorithms for optimization using inexactprojections onto convex constraints, SIAM J. Optim., 3 (1993), pp. 164{221.[29] A. R. Conn, N. I. M. Gould, and P. L. Toint, Global convergence of aclass of trust region algorithms for optimization problems with simple bounds,SIAM J. Numer. Anal., 25 (1988), pp. 433{460.[30] , A globally convergent augmented Lagrangian algorithm for optimizationwith general constraints and simple bounds, SIAM J. Numer. Anal., 28 (1991),pp. 545{572.



158[31] E. J. Cramer, J. E. Dennis, P. D. Frank, R. M. Lewis, and G. R.Shubin, Problem formulation for multidisciplinary optimization, SIAM J. Op-tim., 4 (1994), pp. 754{776.[32] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods,SIAM J. Numer. Anal., 19 (1982), pp. 400{408.[33] R. S. Dembo and T. Steihaug, Truncated{Newton algorithms for large{scaleunconstrained optimization, Math. Programming, 19 (1983), pp. 190{212.[34] R. S. Dembo and U. Tulowitzki, Sequential truncated quadratic program-ming, in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B.Schnabel, eds., SIAM, Philadelphia, 1985, pp. 83{101.[35] J. E. Dennis, M. El-Alem, and M. C. Maciel, A global convergence theoryfor general trust{region{based algorithms for equality constrained optimization,SIAM J. Optim., 7 (1997), pp. 177{207.[36] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust{regioninterior{point SQP algorithms for a class of nonlinear programming problems,Tech. Rep. TR94{45, Department of Computational and Applied Mathematics,Rice University, 1994. Revised November 1995. Appeared also as Tech. Rep. 94{12{01, Interdisciplinary Center for Applied Mathematics, Virginia PolytechnicInstitute and State University.[37] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization al-gorithms which use function and gradient values, J. Optim. Theory Appl., 28(1979), pp. 453{482.[38] J. E. Dennis and J. J. Mor�e, Quasi{Newton methods, motivation and the-ory, SIAM Rev., 19 (1977), pp. 46{89.[39] J. E. Dennis and R. B. Schnabel, Numerical Methods for UnconstrainedOptimization and Nonlinear Equations, Prentice{Hall, Englewood Cli�s, NewJersey, 1983.[40] , A view of unconstrained optimization, in Handbooks in Operations Re-search and Management Science, G. L. Nemhauser, A. H. G. R. Kan, and M. J.Todd, eds., North Holland, Amsterdam, 1988. (Vol. 1, Optimization).



159[41] J. E. Dennis and L. N. Vicente, Trust{region interior{point algorithmsfor minimization problems with simple bounds, in Applied Mathematics andParallel Computing, Festschrift for Klaus Ritter, H. Fisher, B. Riedm�uller, andS. Sch�a�er, eds., Physica{Verlag, Springer{Verlag, 1996, pp. 97{107.[42] , On the convergence theory of general trust{region{based algorithms forequality{constrained optimization, SIAM J. Optim., (To appear).[43] P. Deuflhard, Global inexact Newton methods for very large scale nonlinearproblems, Impact of Computing in Science and Engineering, 4 (1991), pp. 366{393.[44] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newtonmethods, SIAM J. Optim., 4 (1994), pp. 393{422.[45] , Choosing the forcing terms in an inexact Newton method, SIAM J. Sci.Statist. Comput., 17 (1996), pp. 16{32.[46] M. El-Alem, A Global Gonvergence Theory for a Class of Trust Region Al-gorithms for Constrained Optimization, PhD thesis, Department of Computa-tional and Applied Mathematics, Rice University, Houston, Texas 77251, USA,1988. Tech. Rep. TR88{5.[47] , A global convergence theory for the Celis{Dennis{Tapia trust{region algo-rithm for constrained optimization, SIAM J. Numer. Anal., 28 (1991), pp. 266{290.[48] , Convergence to a second{order point for a trust{region algorithm witha nonmonotonic penalty parameter for constrained optimization, Tech. Rep.TR95{28, Department of Computational and Applied Mathematics, Rice Uni-versity, 1995.[49] , A robust trust{region algorithm with a non{monotonic penalty parameterscheme for constrained optimization, SIAM J. Optim., 5 (1995), pp. 348{378.[50] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang, On theformulation and theory of the Newton interior{point method for nonlinear pro-gramming, J. Optim. Theory Appl., 89 (1996), pp. 507{541.



160[51] M. El-Hallabi, A global convergence theory for arbitrary norm trust{regionalgorithms for equality constrained optimization, Tech. Rep. TR93{60, Depart-ment of Computational and Applied Mathematics, Rice University, 1993. Re-vised May 1995.[52] R. Fletcher, An `1 penalty method for nonlinear constraints, in NumericalOptimization 1984, P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM,Philadelphia, 1985, pp. 26{40.[53] , Practical Methods of Optimization, John Wiley & Sons, Chichester, sec-ond ed., 1987.[54] R. Fontecilla, On inexact quasi{Newton methods for constrained optimiza-tion, in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B.Schnabel, eds., SIAM, Philadelphia, 1985, pp. 102{118.[55] R. Freund, A transpose{free quasi{minimal residual algorithm for non{Hermitian linear systems, SIAM J. Sci. Statist. Comput., 14 (1993), pp. 470{482.[56] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist.Comput., 2 (1981), pp. 186{197.[57] I. M. Gel'fand, Some problems in the theory of quasilinear equations, Amer.Math. Soc. Transl., 29 (1963), pp. 295{381.[58] P. E. Gill, W. Murray, M. Saunders, G. W. Stewart, and M. H.Wright, Properties of a representation of a basis for the null space, Math.Programming, 33 (1985), pp. 172{186.[59] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User'sguide for NPSOL (version 4.0): A FORTRAN package for nonlinear program-ming, Technical Report SOL 86{2, Systems Optimization Laboratory, Depart-ment of Operations Research, Stanford University, Stanford, CA 94305{4022,1986.[60] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization,Academic Press, INC., San Diego, 1981.



161[61] , Some theoretical properties of an augmented Lagrangian merit function,Technical Report SOL 86{6, Systems Optimization Laboratory, Department ofOperations Research, Stanford University, Stanford, CA 94305{4022, 1986.[62] R. Glowinski, Numerical Methods for Nonlinear Variational Problems,Springer{Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.[63] R. Glowinski, H. B. Keller, and L. Reinhart, Continuation{conjugategradient methods for the least{squares solution of nonlinear boundary valueproblems, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 793{832.[64] S. Goldfeld, R. Quandt, and H. Trotter, Maximization by quadratichill climbing, Econometrica, 34 (1966), pp. 541{551.[65] A. A. Goldstein, On steepest descent, SIAM J. Control Optim., 3 (1965),pp. 147{151.[66] G. H. Golub and C. F. Van Loan,Matrix Computations, The John HopkinsUniversity Press, Baltimore and London, second ed., 1989.[67] G. H. Golub and U. von Matt, Quadratically constrained least squares andquadratic problems, Numer. Math., 59 (1991), pp. 561{580.[68] J. Goodman, Newton's method for constrained optimization, Math. Program-ming, 33 (1985), pp. 162{171.[69] C. W. Groetsch, Generalized Inverses of Linear Operators, Marcel Dekker,Inc., New York, Basel, 1977.[70] W. A. Gruver and E. W. Sachs, Algorithmic Methods In Optimal Control,Pitman, London, 1980.[71] M. D. Hebden, An algorithm for minimization using exact second orderderivatives, Tech. Rep. T.P. 515, Atomic Energy Research Establishment, Har-well, England, 1973.[72] M. Heinkenschloss, SQP methods for the solution of optimal control prob-lems governed by the Navier Stokes equations. In preparation.



162[73] , Krylov subspace methods for the solution of linear systems and linear leastsquares problems. Lecture Notes, 1994.[74] ,On the solution of a two ball trust region subproblem, Math. Programming,64 (1994), pp. 249{276.[75] , Projected sequential quadratic programming methods, SIAM J. Optim., 6(1996), pp. 373{417.[76] M. Heinkenschloss and L. N. Vicente, TRICE: A Package of Trust{Region Interior{Point SQP Algorithms for the Solution of Optimal Control andEnginnering Design Problems { User's Guide {. In preparation.[77] , Analysis of inexact trust{region interior{point SQP algorithms, Tech.Rep. TR95{18, Department of Computational and Applied Mathematics, RiceUniversity, 1995. Revised April 1996. Appeared also as Tech. Rep. 95{06{01, In-terdisciplinary Center for Applied Mathematics, Virginia Polytechnic Instituteand State University.[78] M. R. Hestenes and E. Stiefel,Methods of conjugate gradients for solvinglinear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409{436.[79] K. Ito and K. Kunisch, The augmented Lagrangian method for parameterestimation in elliptic systems, SIAM J. Control Optim., 28 (1990), pp. 113{136.[80] W. Karush, Minima of Functions of Several Variables with Inequalities asSide Constraints, Master's thesis, Department of Mathematics, University ofChicago, 1939.[81] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,Philadelphia, Pennsylvania, 1995.[82] C. T. Kelley and E. W. Sachs, Solution of optimal control problems bya pointwise projected Newton method, SIAM J. Control Optim., 33 (1995),pp. 1731{1757.[83] C. T. Kelley and S. J. Wright, Sequential quadratic programming for cer-tain parameter identi�cation problems, Math. Programming, 51 (1991), pp. 281{305.



163[84] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in Proceedingsof the Second Berkeley Symposium on Mathematical Statistics and Probability,J. Neyman, ed., University of California Press, 1951.[85] K. Kunisch and G. Peichl, Estimation of a temporally and spatially varyingdi�usion coe�cient in a parabolic system by an augmented Lagrangian tech-nique, Numer. Math., 59 (1991), pp. 473{509.[86] K. Kunisch and E. Sachs, Reduced SQP methods for parameter identi�cationproblems, SIAM J. Numer. Anal., 29 (1992), pp. 1793{1820.[87] F.-S. Kupfer, Reduced Successive Quadratic Programming in Hilbert Spacewith Applications to Optimal Control, PhD thesis, Universit�at Trier, Fb{IV,Mathematik, D{54286 Trier, Germany, 1992.[88] F.-S. Kupfer and E. W. Sachs, A prospective look at SQP methods forsemilinear parabolic control problems, in Optimal Control of Partial Di�erentialEquations, Irsee 1990, K.-H. Ho�mann and W. Krabs, eds., vol. 149, SpringerLect. Notes in Control and Information Sciences, 1991, pp. 143{157.[89] , Numerical solution of a nonlinear parabolic control problem by a reducedSQP method, Comput. Optim. and Appl., 1 (1992), pp. 113{135.[90] J. L. Lagrange,Oeuvres de Lagrange, Volumes XI and XII, Gauthier{Villars,Paris, 1888{1889.[91] M. Lalee, J. Nocedal, and T. Plantenga, On the implementation ofan algorithm for large{scale equality constrained optimization. Submitted forpublication, 1994.[92] F. Leibfritz and E. W. Sachs, Numerical solution of parabolic state con-strained control problems using SQP{ and interior{point{methods, in LargeScale Optimization: State of the Art, W. W. Hager, D. Hearn, and P. Pardalos,eds., Kluwer, 1994, pp. 251{264.[93] K. Levenberg, A method for the solution of certain nonlinear problems inleast squares, Quart. Appl. Math., 2 (1944), pp. 164{168.



164[94] Y. Li, On global convergence of a trust region and a�ne scaling method for non-linearly constrained minimization, Tech. Rep. CTC94TR197, Advanced Com-puting Research Institute, Cornell University, 1994.[95] , A trust region and a�ne scaling method for nonlinearly constrained min-imization, Tech. Rep. CTC94TR198, Advanced Computing Research Institute,Cornell University, 1994.[96] D. G. Luenberger, Linear and Nonlinear Programming, Addison-WesleyPublishing Company, Massachusetts, 1989.[97] D. W. Marquardt, An algorithm for least squares estimation of nonlinearparameters, SIAM J. Math. Anal., 11 (1963), pp. 431{441.[98] H. J. Martinez, Z. Parada, and R. A. Tapia, On the characterization ofq{superlinear convergence of quasi{Newton interior{point methods for nonlinearprogramming, Boletin de la Sociedad Matematica Mexicana, 1 (1995), pp. 1{12.[99] J. M. Martinez, An algorithm for solving sparse nonlinear least squares prob-lems, Computing, 39 (1987), pp. 307{325.[100] J. M. Martinez and S. A. Santos, A trust{region strategy for minimizationon arbitrary domains, Math. Programming, 68 (1995), pp. 267{301.[101] J. C. Meza and W. W. Symes, Conjugate residual methods for almost sym-metric linear systems, J. Optim. Theory Appl., 72 (1992), pp. 415{440.[102] J. J. Mor�e, The Levenberg{Marquardt algorithm: implementation and theory,in Proceedings of the Dundee Conference on Numerical Analysis, G. A. Watson,ed., Springer Verlag, New York, 1978.[103] , Recent developments in algorithms and software for trust regions methods,in Mathematical programming. The state of art, A. Bachem, M. Grotschel, andB. Korte, eds., Springer Verlag, New York, 1983, pp. 258{287.[104] , A collection of nonlinear model problems, in Computational Solution ofNonlinear Systems of Equations, E. L. Allgower and K. Georg, eds., AmericalMathematical Society, Providence , Rhode Island, 1990, pp. 723{762. Lecturesin Applied Mathematics Vol. 26.



165[105] , Generalizations of the trust region problem, Optimization Methods andSoftware, 2 (1993), pp. 189{209.[106] J. J. Mor�e and D. C. Sorensen, Computing a trust region step, SIAM J.Sci. Statist. Comput., 4 (1983), pp. 553{572.[107] J. J. Mor�e and D. Thuente, Line search algorithms with guaranteed su�-cient decrease, ACM Trans. Math. Software, 20 (1994), pp. 286{307.[108] W. Murray and F. J. Prieto, A sequential quadratic programming algo-rithm using an incomplete solution of the subproblem, SIAM J. Optim., 5 (1995),pp. 590{640.[109] S. G. Nash, Newton{like minimization via the Lanczos method, SIAM J. Nu-mer. Anal., 21 (1984), pp. 770{788.[110] , Solving nonlinear programming problems using truncated{Newton tech-niques, in Numerical Optimization 1984, P. T. Boggs, R. H. Byrd, and R. B.Schnabel, eds., SIAM, Philadelphia, 1985, pp. 119{136.[111] S. G. Nash and J. Nocedal, A numerical study of the limited memory BFGSmethod and the truncated{Newton method for large scale optimization, SIAM J.Optim., 1 (1991), pp. 358{372.[112] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw{Hill, New York, 1996.[113] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Nu-merica, (1992), pp. 199{242.[114] J. Nocedal and M. L. Overton, Projected Hessian updating algorithmsfor nonlinearly constrained optimization, SIAM J. Numer. Anal., 22 (1985),pp. 821{850.[115] E. O. Omojokon, Trust Region Algorithms for Optimization with NonlinearEquality and Inequality Constraints, PhD thesis, University of Colorado, 1989.[116] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of NonlinearEquations in Several Variables, Academic Press, New York, 1970.



166[117] J. S. Pang, Inexact Newton methods for the nonlinear complementarity prob-lem, Math. Programming, 36 (1986), pp. 54{71.[118] T. Plantenga, Large{Scale Nonlinear Constrained Optimization using TrustRegions, PhD thesis, Northwestern University, Evanston, Illinois, 1994.[119] E. Polak, Computational Methods in Optimization. A Uni�ed Approach, Aca-demic Press, New York, London, Paris, San Diego, San Francisco, 1971.[120] M. J. D. Powell, A new algorithm for unconstrained optimization, in Non-linear Programming, J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds.,Academic Press, New York, 1970.[121] , Convergence properties of a class of minimization algorithms, in NonlinearProgramming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds.,Academic Press, New York, 1975, pp. 1{27.[122] , On the global convergence of trust region algorithms for unconstrainedminimization, Math. Programming, 29 (1984), pp. 297{303.[123] M. J. D. Powell and Y. Yuan, A trust region algorithm for equality con-strained optimization, Math. Programming, 49 (1991), pp. 189{211.[124] J. Raphson, Analysis Aequationum Universalis Seu Ad Aequationes Alge-braicas Resolvendas Methodus Generalis, et Expedita, Ex nova In�nitarum Se-rierum Doctrina, Deducta Ac Demonstrata, London, 1690. Original in BritishLibrary, London.[125] C. H. Reinsch, Smoothing by spline functions II, Numer. Math., 16 (1971),pp. 451{454.[126] F. Rendl and H. Wolkowicz, A semide�nite framework for trust regionsubproblems with applications to large scale minimization, Tech. Rep. 94{32,CORR, 1994.[127] Y. Saad and M. H. Schultz, GMRES a generalized minimal residual algo-rithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput.,7 (1986), pp. 856{869.



167[128] C. M. Samuelson, The Dikin{Karmarkar Principle for Steepest Descent, PhDthesis, Department of Computational and Applied Mathematics, Rice Univer-sity, Houston, Texas 77251, USA, 1992. Tech. Rep. TR92{29.[129] S. A. Santos and D. C. Sorensen, A new matrix{free algorithm for thelarge{scale trust{region subproblem, Tech. Rep. TR95{20, Department of Com-putational and Applied Mathematics, Rice University, 1994.[130] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust{region{based algorithms for unconstrained minimization with strong global convergenceproperties, SIAM J. Numer. Anal., 22 (1985), pp. 47{67.[131] T. Simpson, Essays on several Curious and Useful Subjects, In Speculative andMix'd Mathematicks, Ilustrated by a Variety of Examples, London, 1740.[132] D. C. Sorensen, Newton's method with a model trust region modi�cation,SIAM J. Numer. Anal., 19 (1982), pp. 409{426.[133] , Minimization of a large scale quadratic function subject to an sphericalconstraint, SIAM J. Optim., (To appear).[134] T. Steihaug, The conjugate gradient method and trust regions in large scaleoptimization, SIAM J. Numer. Anal., 20 (1983), pp. 626{637.[135] , Local and superlinear convergence for truncated iterated projections meth-ods, Math. Programming, 27 (1983), pp. 176{190.[136] R. Stern and H. Wolkowitz, Inde�nite trust region subproblems and non-symmetric eigenvalue perturbations. To appear in SIAM J. Optim., 1995.[137] S. W. Thomas, Sequential Estimation Techniques for Quasi-Newton Algo-rithms, PhD thesis, Cornell University, Ithaca, New York, 1975.[138] A. N. Tichonoff,Methods for the regularization of optimal control problems,Dokl. Akad. Nauk., Soviet Maths., 162 (1965), pp. 761{763.[139] P. L. Toint, Towards an e�cient sparsity exploiting Newton method for min-imization, in Sparse Matrices and Their Uses, I. S. Du�, ed., Academic Press,New York, 1981, pp. 57{87.



168[140] , Global convergence of a class of trust{region methods for nonconvex min-imization in Hilbert space, IMA J. Numer. Anal., 8 (1988), pp. 231{252.[141] A. Vardi, A trust region algorithm for equality constrained minimization: con-vergence properties and implementation, SIAM J. Numer. Anal., 22 (1985),pp. 575{591.[142] L. N. Vicente, What happens when we trust a region that is a line, Tech.Rep. TR95{10, Department of Computational and Applied Mathematics, RiceUniversity, 1995.[143] D. T. Whiteside, ed., The Mathematical Papers of Issac Newton (VolumesI{VII), Cambridge University Press, Cambridge, 1967{1976.[144] P. Wolfe, Convergent conditions for ascent methods, SIAM Rev., 11 (1969),pp. 226{235.[145] , Convergent conditions for ascent methods. II: Some corrections, SIAMRev., 13 (1971), pp. 185{188.[146] S. J. Wright, Interior point methods for optimal control of discrete{timesystems, J. Optim. Theory Appl., 77 (1993), pp. 161{187.[147] Y. Xie, Reduced Hessian Algorithms for Solving Large{Scale Equality Con-strained Optimization Problems, PhD thesis, Dept. of Computer Science, Uni-versity of Colorado, 1991.[148] H. Yamashita, A globally convergent primal{dual interior{point method forconstrained optimization, tech. rep., Mathematical Systems Institute, Japan,1992.[149] D. P. Young, W. P. Huffman, R. G. Melvin, M. B. Bieterman, C. L.Hilmes, and F. T. Johnson, Inexactness and global convergence in designoptimization, in 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisci-plinary Analysis and Optimization, September 1994.[150] T. Ypma, Historical development of the Newton{Raphson method, SIAM Rev.,37 (1995), pp. 531{551.



169[151] H. Yserentant, On the multi{level splitting of �nite element spaces, Numer.Math., 49 (1986), pp. 379{412.[152] Y. Yuan, On a subproblem of trust region algorithms for constrained optimiza-tion, Math. Programming, 47 (1990), pp. 53{63.[153] , A dual algorithm for minimizing a quadratic function with two quadraticconstraints, J. Comput. Math., 9 (1991), pp. 348{359.[154] , On the convergence of a new trust region algorithm, Numer. Math., 70(1995), pp. 515{539.[155] J. Zhang, N. Kim, and L. Lasdon, An improved successive linear program-ming algorithm, Management Sci., 31 (1985), pp. 1312{1331.[156] J. Z. Zhang and D. T. Zhu, Projected quasi{Newton algorithm with trustregion for constrained optimization, J. Optim. Theory Appl., 67 (1990), pp. 369{393.[157] Y. Zhang, Computing a Celis{Dennis{Tapia trust{region step for equality con-strained optimization, Math. Programming, 55 (1992), pp. 109{124.[158] G. Zoutendijk, Nonlinear Programming, Computational Methods, in Integerand Nonlinear Programming, J. Abadie, ed., North{Holland, Amsterdam, 1970,pp. 37{86.


