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Abstract

We present a new approach to estimate the risk-neutral probability
density function (pdf) of the future prices of an underlying asset from
the prices of options written on the asset. The estimation is carried
out in the space of cubic spline functions, yielding appropriate smooth-
ness. The resulting optimization problem, used to invert the data and
determine the corresponding density function, is a convex quadratic
or semidefinite programming problem, depending on the formulation.
Both of these problems can be efficiently solved by numerical optimiza-
tion software.

In the quadratic programming formulation the positivity of the
risk-neutral pdf is heuristically handled by posing linear inequality
constraints at the spline nodes. In the other approach, this property
of the risk-neutral pdf is rigorously ensured by using a semidefinite pro-
gramming characterization of nonnegativity for polynomial functions.

We tested our approach using data simulated from Black-Scholes
option prices and using market data for options on the S&P 500 Index.
The numerical results we present show the effectiveness of our method-
ology for estimating the risk-neutral probability density function.
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1 Introduction

The risk-neutral probability measure is a fundamental concept in arbitrage
pricing theory. By definition, a risk-neutral probability measure (RNPM)
is a measure under which the current price of each security in the economy
is equal to the present value of the discounted expected value of its future
payoffs given a risk-free interest rate. Fundamental theorems of asset pricing
indicate that RNPMs are guaranteed to exist under an assumption of no
arbitrage.

If a unique RNPM on the space of future states of an economy is given,
we can price any security for which we can determine the future payoffs for
each state in the state space. Therefore, a fundamental problem in asset
pricing is the identification of a risk-neutral probability measure. While the
dynamics of an economy and the parameters for its stochastic models are not
directly observable, one can infer some information about these dynamics
from the current prices of the securities in this economy. In particular, one
can extract one or more implied risk-neutral densities of the future price
of a security that are consistent with the prices of options written on that
security. When there are multiple RNPMs consistent with the observed
prices, one may try to choose the “best” one, according to some criterion.
We address this problem in this article using optimization models.

For a stock or index, the set of possible future states can be represented
as an interval or ray, discretized if appropriate or necessary. In most cases,
the number of states in this state space is much larger than the number
of observed prices, resulting in a problem with many more variables than
equations. This underdetermined problem has many potential solutions and
we can not obtain an unique or sensible solution without imposing some
additional structure into the risk-neutral probability measure we are looking
for.

The type of additional structure imposed has been the differentiating
feature of the existing approaches to the problem of identifying implied
RNPMs. These approaches can be broadly classified as parametric and
nonparametric techniques and are reviewed by Jackwerth [20], and Bon-
darenko [9] (see also Section 2). Parametric methods choose a distribution
family (or a mixture of distributions) and then try to identify the parameters
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for these distributions that are consistent with the observed prices [6, 24]. In
non-parametric techniques, one achieves more flexibility by allowing general
functional forms. Structure is introduced either using prior distributions or
smoothness restrictions. Our approach fits into this last category and we
ensure the desired smoothness of the RNPM using spline functions.

Spline functions are piecewise polynomial functions that assume a pre-
determined value at certain points (knots) and satisfy certain smoothness
properties. Other authors have also used spline fitting techniques in the
context of risk-neutral density estimation, see [3, 13]. In contrast to existing
techniques, we allow the displacement of spline knots in a superset of the set
of points corresponding to option strikes. The additional set of knots makes
our model flexible and we use this flexibility to optimize the fit of the spline
function to the observed prices. The basic formulation, without requiring
the nonnegativity of the risk-neutral probability density function (pdf), is a
convex quadratic programming (QP) problem.

Two strategies to impose the nonnegativity of the RNPM are presented
and discussed in this paper. The first and simpler strategy is to require
the estimated pdf to remain nonnegative at the spline nodes. This scheme
maintains the QP structure of the problem since it brings only linear inequal-
ity constraints to the basic formulation. However, there is no guarantee of
nonnegativity between the spline nodes. Our second approach replaces the
basic QP formulation with a semidefinite programming (SDP) formulation
but rigorously ensures the nonnegativity of the estimated pdf in its entire
domain. It is based on an SDP characterization of nonnegative polynomial
functions due to Bertsimas and Popescu [5] and requires additional vari-
ables and linear equality constraints as well as semidefiniteness constraints
on some matrix variables. To our knowledge, this is the first spline function
approach to risk-neutral density estimation with a positivity guarantee.

The rest of this paper is organized as follows: In Section 2, we provide
the definition of RNPMs and briefly discuss some of the existing approaches.
In Section 3, we discuss our spline approximation approach to RNPMs and
develop our basic QP optimization model. The treatment of nonnegativity is
given in Section 4. Section 5 is devoted to a numerical study of our approach
both with simulated and market data. We provide a brief conclusion in
Section 6.
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2 Risk-neutral probability measures

We consider the following one-period economy: There are n securities whose
current prices are given by si

0 for i = 1, . . . , n. At the end of the current
period, the economy will be in one of the states from the state space Ω. If
the economy reaches state ω ∈ Ω at the end of the current period, security
i will have the payoff si

1(ω). We assume that we know all si
0’s and si

1(ω)’s
but do not know the particular terminal state ω, which will be determined
randomly.

As an example of the set-up explained in the previous paragraph, we
consider a particular security (stock, index, etc.) and let the n securities
be financial options written on this stock. Here, Ω denotes the state space
for the terminal price of the underlying stock and si

1(ω) denotes the payoff
of the option i when the underlying stock price is ω at termination. For
example, if option i is a European call with strike price Ki to be exercised
at the end of the current period, we would have si

1(ω) = (ω − Ki)
+.

Next, we give a definition of RNPMs:

Definition 1 Consider the economy described above. Let r denote the risk-
free interest rate in the period [t, T ]. A risk-neutral probability measure in
the

• discrete case and on the state space Ω = {ω1, ω2, . . . , ωm} is defined
by a vector of positive numbers p1, p2, . . . , pm such that

1.
∑m

j=1 pj = 1,

2. si
0 = e−r(T−t)∑m

j=1 pjs
i
1(ωj), i = 1, . . . , n;

• continuous case and on the state space Ω = (a, b) is defined by a
density function p : IR → IR+ such that

1.
∫ b
a p(ω)dω = 1,

2. si
0 = e−r(T−t)

∫ b
a p(ω)si

1(ω)dω, i = 1, . . . , n.

It is well known that the existence of a risk-neutral probability measure
is strongly related to the absence of arbitrage opportunities as expressed in
the First Fundamental Theorem of Asset Pricing (see [15]). We first give an
informal definition of arbitrage and then state this theorem:

Definition 2 An arbitrage is a trading strategy

• that has a positive initial cash flow and has no risk of a loss later, or
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• that requires no initial cash input, has no risk of a loss, and a positive
probability of making profits in the future.

Theorem 1 A risk-neutral probability measure exists if and only if there
are no arbitrage opportunities.

Definition 1 and Theorem 1 illustrate why we care about risk-neutral
probability measures. When a RNPM is available on the future states of
an economy, any security whose future payoffs in all these future states is
known can be reliably priced. Furthermore, if we assume that arbitrage
opportunities do not exist as commonly done in the financial literature, we
know that an RNPM must exist. Then the question becomes, how do we
find or estimate an RNPM on the future states of an economy?

One very important and potentially tractable instance of this problem
arises when the economy consists of a security (say a stock or a market
index) that we will call the underlying security and a number of derivative
securities based on this underlying security. We are interested in the RNPM
for the price of the underlying security at a fixed future date. As we argued
in the Introduction, since the payoffs of the derivatives depend on the future
values of the underlying asset, we can use the prices of these derivatives to
get information about the probability distribution of the future values of the
underlying. We can say that the prices of option contracts contain some in-
formation about the market expectations, namely a possible correspondence
between the price of the underlying and its strike.

The estimation of the risk-neutral densities serves several purposes. The
most common application of risk-neutral densities is related to the setting we
discussed in the previous paragraph. Given the observed prices of derivative
securities on a particular underlying asset, one can use the RNPM derived
from these prices to determine an arbitrage-free price (or limits on arbitrage-
free prices) of new, exotic derivatives with complicated payoff structures on
the same underlying security. By providing a mechanism for extrapolat-
ing information from observed derivative prices, risk-neutral densities can
also be used to detect arbitrage opportunities. Another relevant applica-
tion is related to capturing the market sentiment. A risk-neutral density
can compactly summarize the collective expectation of market participants
regarding the fluctuations of asset prices in the future (see, e.g., [6]). This
information may assume a greater importance under unusual economic or
political scenarios (see, e.g., [24]). The risk-neutral densities are also used
to determine new risk-adjusted densities that accommodate investors’ risk
preferences, namely the preferences that derive from the interaction between
the market participants.
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Mathematically, the problem of estimating risk-neutral densities provides
an interesting challenge. From an optimizer’s perspective, the problem is
to find the best RNPM estimate given the available information. The price
of each additional security provides an additional piece of information on
the structure of the density and makes the set of densities consistent with
all observed prices smaller. Structural properties of probability measures
(non-negativity, integrate to one) provide additional constraints that are
not always straightforward to impose.

There are several approaches, reported in the literature, to derive risk-
neutral probabilities from observed options prices (see the surveys in [6,
9, 20]). One can either assume that the density belongs to a parametric
family of distributions and reduce the problem to a simple parameter-fitting
problem, or use a non-parametric method. In the context of the Black-
Scholes model [7], it is well known that the geometric Brownian motion
followed by the underlying asset price implies a lognormal risk-neutral pdf.
In practice, parametric methods derive the risk-neutral pdf’s from a set
of statistical distributions and the set of observational data. A specific
parameterized form for the density function on the underlying asset (such
as a mixture of lognormals; see [6, 24]), or for the stochastic process [7, 14] is
assumed and then the optimal parameters are identified by fitting the data
(see also [4, 26]).

Non-parametric methods are more flexible as they essentially allow an
infinite number of parameters. Among the nonparametric approaches, and
following Bondarenko [9], we can point out: implied trees methods [25], ker-
nel methods [2], maximum-entropy methods [12, 28], methods applied to
the volatility smile [3, 11, 13, 27], methods applied to the risk-neutral prob-
ability [21, 23]. Other methods share both parametric and nonparametric
features [1, 9]. Here, we follow the non-parametric approach.

Several of the methods mentioned above, including both parametric and
non-parametric ones, suffer from a lack of guarantee of nonnegativity of the
risk-neutral density they generate. Jackwerth [20] notes that parametric
methods based on the expansion of a basic risk-neutral density can gen-
erate densities with negative values. Rubinstein [26] states that for some
set of parameters the risk-neutral densities generated violate the nonnega-
tivity constraint. The methods proposed by Shimko [27] and developed by
Aparicio and Hodges [4], Bliss and Panigirtzoglou [8], and Campa, Chang,
and Reider [13] can produce negative probabilities. Jackwerth [20] as well as
Brunner and Hafner [11] mention that, for these methods, the nonnegativity
of the density must be checked since there is no guarantee of nonnegativ-
ity. Bondarenko [9] corroborates the latter and indicates that also [21] may
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obtain negative probabilities. These concerns lead us to search for a guar-
antee of nonnegativity for the risk-neutral density. As we will later see, we
show that it is possible to guarantee the nonnegativity of the risk-neutral
density in a rigorous manner by reformulating the problem using tools from
semidefinite programming.

3 The basic formulation using splines

As discussed in the Introduction, one of the desired structural properties
of a RNPM estimate is smoothness. The strategy developed in this section
guarantees appropriate smoothness of the risk-neutral pdf by estimating it
using cubic splines (see the Appendix of this paper). The estimation is car-
ried out by the solution of an optimization problem where the optimization
variables are the parameters of the spline functions.

3.1 The quadratic programming formulation

We now formulate an optimization problem with the objective of finding a
risk-neutral pdf described by cubic splines for future values of an underlying
security that provides a best fit with the observed option prices on this
security.

For the security under consideration, we fix an exercise date, a range
[a, b] for possible terminal values of the price of the underlying security at
the exercise date of the options, and an interest rate r for the period between
now and the exercise date. The other inputs to our optimization problem are
the chosen expiration date and market prices, CK for call options and PK

for put options, on the chosen underlying security, with strike price K. Let
C and P, respectively, denote the set of strike prices K for which reliable
market prices CK and PK are available. For example, C may denote the
strike prices of call options that were traded on the day that the problem is
formulated.

Next, we consider a super-structure for the spline approximation to the
risk-neutral pdf, meaning that we choose how many knots to use, where
to place the knots and what kind of polynomial (quadratic, cubic, etc.)
functions to use. For example, one may decide to use cubic splines (as we
do in this paper) and ns + 1 equally spaced knots. The parameters of the
polynomial functions that comprise the spline function will be the variables
of the optimization problem we are formulating. For cubic splines with
ns + 1 knots, we will have 4ns variables (αs, βs, γs, δs), for s = 1, . . . , ns.
Collectively, we will represent these variables by y ∈ IR4ns . For all y chosen
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so that the corresponding polynomial functions fs satisfy the systems (20)-
(23) of the Appendix, we will have a particular (natural) spline function
defined on the interval [a, b]. Let py(ω) denote this function. Note that we
do not impose the constraints given in (19) because the values of the pdf we
are approximating are unknown and will be the result of the solution of an
optimization problem.

By imposing the following additional restrictions we make sure that py

is a probability density function:

py(ω) ≥ 0, ∀ω ∈ [a, b], (1)
∫ b

a
py(ω)dω = 1. (2)

In practice the requirement (2) is easily imposed by including the following
constraint in the optimization problem:

ns
∑

s=1

∫ xs+1

xs

fs(ω)dω = 1. (3)

One can easily see that this is a linear constraint in the components (αs, βs,
γs, δs) of the optimization variable y. The treatment of (1) is postponed to
the next section and is ignored until the end of this section.

Next, we define the discounted expected value of the terminal value of
each option using py as the risk-neutral probability density function (see
[14]):

CK(y) = e−r(T−t)
∫ b

a
py(ω)(ω − K)+dω, (4)

PK(y) = e−r(T−t)
∫ b

a
py(ω)(K − ω)+dω. (5)

If py was the actual risk-neutral probability density function, the quantities
CK(y) and PK(y) would be the fair values of the call and put options with
strikes K. The quantity

(CK − CK(y))2

measures the squared difference between the observed value and discounted
expected value considering py as the risk-neutral pdf. Now consider the
overall residual least squares function for a given y:

E(y) =
∑

K∈C

(CK − CK(y))2 +
∑

K∈P

(PK − PK(y))2. (6)
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The objective now is to choose y such that E(y) is minimized subject
to the constraints already mentioned. The resulting optimization problem
is a convex quadratic programming problem corresponding to the following
formulation:

min
y

E(y) s.t. (20), (21), (22), (23), (3). (7)

3.2 Functions CK(y) and PK(y)

We now look at the structure of problem (7) in more detail. In particu-
lar, we evaluate the function CK(y). Consider a call option with strike K
such that xℓ ≤ K < xℓ+1. Recall that y denotes a collection of variables
(αs, βs, γs, δs) for s = 1, . . . , ns and that x1 = a, x2, . . . , xns , xns+1 = b rep-
resent the locations of the knots. The formula for CK(y) can be derived as
follows:

er(T−t)CK(y)

=

∫ b

a
py(ω)(ω − K)+dω

=
ns
∑

s=ℓ

∫ xs+1

xs

py(ω)(ω − K)+dω

=

∫ xℓ+1

K
py(ω)(ω − K)dω +

ns
∑

s=ℓ+1

∫ xs+1

xs

py(ω)(ω − K)dω

=

∫ xℓ+1

K

(

αℓω
3 + βℓω

2 + γℓω + δℓ

)

(ω − K)dω

+
ns
∑

s=ℓ+1

∫ xs+1

xs

(αsω
3 + βsω

2 + γsω + δs)(ω − K)dω.

One can easily see that this expression for CK(y) is linear in the compo-
nents (αs, βs, γs, δs) of the optimization variable y. A similar formula can
be derived for PK(y). Another relevant aspect that should be pointed out
is that the formula for CK(y) will involve coefficients of the type x5

s which
can, and in fact do, make the Hessian matrix of the QP problem (7) severely
ill-conditioned.

4 Guaranteeing nonnegativity

The simplest way to deal with the requirement of nonnegativity of the risk-
neutral pdf is to weaken condition (1), requiring the cubic spline approxi-
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mation to be nonnegative only at the knots:

fs(xs) ≥ 0, s = 1, . . . , ns and fns(xns+1) ≥ 0. (8)

Then, the basic QP formulation changes to:

min
y

E(y) s.t. (20), (21), (22), (23), (3), (8). (9)

One can easily see that problem (9) is still a convex quadratic programming
problem, since (8) are linear inequalities in the optimization variables. The
drawback of this strategy is the lack of guarantee of nonnegativity of the
spline functions between the spline knots. This heuristic strategy proved
sufficient to obtain nonnegative pdf estimates in most of our experiments
some of which are reported in Section 5. However, in some instances pdf
estimates assumed negative values between knots. Since our aim is to esti-
mate a probability density function, estimates with negative values are not
acceptable.

In what follows, we develop an alternative optimization model where
the nonnegativity of the resulting risk-neutral pdf estimate is rigorously
guaranteed. The cost we must pay for this guarantee is an increase in the
complexity of the optimization problem. Indeed, the new model involves
semidefiniteness restrictions on some matrices related to new optimization
variables. While the resulting problem is still a convex optimization prob-
lem and can be solved with standard conic and semidefinite optimization
software (see, e.g., [30]), it is also more expensive to solve than a convex
QP.

The model we consider is based on necessary and sufficient conditions
for the nonnegativity of a single variable polynomial in intervals, as well as
on rays and on the whole real line. This characterization is due to Bertsimas
and Popescu [5] and is stated in the next proposition.

Proposition 1 (Proposition 1 (d),[5]) The polynomial g(x) =
∑k

r=0 yrx
r

satisfies g(x) ≥ 0 for all x ∈ [a, b] if and only if there exists a positive
semidefinite matrix X = [xij ]i,j=0,...,k such that

∑

i,j:i+j=2ℓ−1

xij = 0, ℓ = 1, . . . , k, (10)

∑

i,j:i+j=2ℓ

xij =
ℓ
∑

m=0

k+m−ℓ
∑

r=m

yr

(

r
m

)(

k − r
ℓ − m

)

ar−mbm, (11)

ℓ = 0, . . . , k, (12)

X � 0. (13)
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In the statement of the proposition above, the notation

(

r
m

)

stands for

r!
m!(r−m)! and X � 0 indicates that the matrix X is symmetric and positive

semidefinite. For the cubic polynomial fs(x) = αsx
3 + βsx

2 + γsx + δs we
have the following corollary:

Corollary 1 The polynomial fs(x) = αsx
3+βsx

2+γsx+δs satisfies fs(x) ≥
0 for all x ∈ [xs, xs+1] if and only if there exists a 4 × 4 matrix Xs =
[xs

ij ]i,j=0,...,3 such that

xs
ij = 0, if i + j is 1 or 5,

xs
03 + xs

12 + xs
21 + xs

30 = 0,
xs

00 = αsx
3
s + βsx

2
s + γsxs + δs,

xs
02 + xs

11 + xs
20 = 3αsx

2
sxs+1 + βs(2xsxs+1 + x2

s)
+ γs(xs+1 + 2xs) + 3δs,

xs
13 + xs

22 + xs
31 = 3αsxsx

2
s+1 + βs(2xsxs+1 + x2

s+1)
+ γs(xs + 2xs+1) + 3δs,

xs
33 = αsx

3
s+1 + βsx

2
s+1 + γsxs+1 + δs,

Xs � 0.

(14)

Observe that the positive semidefiniteness of the matrix Xs implies that
the first diagonal entry xs

00 is nonnegative, which corresponds to our earlier
requirement fs(xs) ≥ 0. In light of Corollary 1, we see that introducing the
additional variables Xs and the constraints (14), for s = 1, . . . , ns, into the
earlier quadratic programming problem (7), we obtain a new optimization
problem which necessarily leads to a risk-neutral pdf that is nonnegative in
its entire domain. The new formulation has the following form:

min
y,X1,...,Xns

E(y) s.t. (20), (21), (22), (23), (3), [(14), s = 1, . . . , ns]. (15)

All constraints in (15), with the exception of the positive semidefiniteness
constraints Xs � 0, s = 1, . . . , ns, are linear in the optimization variables
(αs, βs, γs, δs) and Xs, s = 1, . . . , ns. The positive semidefiniteness con-
straints are convex constraints and thus the resulting problem can be refor-
mulated as a (convex) semidefinite programming problem with a quadratic
objective function.

For appropriate choices of the vectors c, fi, gs
k, and matrices Q and Hs

k,

11



we can rewrite problem (15) in the following equivalent form:

miny,X1,...,Xns c⊤y + 1
2y⊤Qy

s.t. f⊤
i y = bi, i = 1, . . . , 3ns,

Hs
k • Xs = 0, k = 1, 2, s = 1, . . . , ns,

(gs
k)⊤y + Hs

k • Xs = 0, k = 3, 4, 5, 6, s = 1, . . . , ns,

Xs � 0, s = 1, . . . , ns,

(16)

where • denotes the trace matrix inner product.
We should note that standard semidefinite optimization software such as

SDPT3 [30] can solve only problems with linear objective functions. Since
the objective function of (16) is quadratic in y a reformulation is necessary
to solve this problem using SDPT3 or other SDP solvers. We replace the
objective function with min t where t is a new artificial variable and impose
the constraint t ≥ c⊤y + 1

2y⊤Qy. This new constraint can be expressed as
a second-order cone constraint after a simple change of variables; see, e.g.,
[22]. This final formulation is a standard form conic optimization problem,
which is a class of problems that contains semidefinite programming and
second-order cone programming as special classes. Since SDPT3 can solve
standard form conic optimization problems we used this formulation in our
numerical experiments.

5 Numerical experiments

In this section, we report some numerical experiments obtained with the
methodologies introduced in this paper to estimate the risk-neutral pdf,
namely the approaches that led to the formulation of problems (9) and (15).
We also consider a mixture of lognormals model and compare the three
approaches.

We have applied the active set method provided by Matlab to solve
the convex QP problem (9) and the Matlab-based interior-point code
SDPT3 [30] to solve the SDP problem (15) (more precisely its reformu-
lation described at the end of the last section). The performance of these
two approaches is illustrated with four different data sets, one generated
from a Black-Scholes model and the other three extracted from the S&P
500 Index.

Numerically, we solved scaled versions of both the QP problem (9) and
the SDP problem (16). The need for scaling the data of these problems
results from the fact that the Hessian matrix in (7), which appears in both
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problems, is highly ill-conditioned, as we have already pointed out in Sec-
tion 3.2. Since the magnitude of ω plays a relevant role in the size of the
entries of this Hessian matrix, we used as our reference scaling factor the
average value of the components of the vector of the knots. Let us call this
average value xavg. Then each knot xs, s = 1, . . . , ns + 1, is scaled by xavg

and replaced by x′
s = xs/xavg . Such a scaling amounts at the end to scale

the variables αs, βs, γs, δs corresponding to the spline coefficients by, respec-
tively, a, b, c, d, whose values depend on xavg as well as on the expressions
for the integrations given in Section 3.2. The problem is then solved in the
scaled variables α′

s, β
′
s, γ

′
s, δ

′
s, s = 1, . . . , ns. We also multiply each term of

the objective function in (7) by 1/x2
avg . The unscaled solution is recovered

by the formulas (αs, βs, γs, δs) = (aα′
s, bβ

′
s, cγ

′
s, dδ′s), s = 1, . . . , ns.

5.1 Mixture of lognormals approach

We compared our QP and SDP approaches with an approach based on
mixture of lognormals. Following the procedures presented by Bahra [6], we
considered the minimization of

E(z) =
∑

K∈C

(CK − CK(z))2 +
∑

K∈P

(PK − PK(z))2, (17)

where

CK(z) = e−r(T−t)
∫ b

a
pz(ω)(ω − K)+dω,

PK(z) = e−r(T−t)
∫ b

a
pz(ω)(K − ω)+dω.

Here, z is a vector of five parameters (γ, α1, α2, β1, β2) storing the means
and standard deviations of two lognormals and the weight of their linear
combination. In fact, the pdf in this approach takes the form

pz(ω) = γlogn(ω;α1, β1) + (1 − γ)logn(w;α2, β2),

logn(ω;α, β) =
1

ω
√

2πβ
e
−

(ln(ω)−α)2

2β2 ,

β = σ
√

T − t, and α = ln(St) + µ(T − t) − 1

2
β2,

where µ is the expected return of the underlying asset and σ its volatility.
The parameters of the lognormals are obtained by solving the constrained
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nonlinear least squares problem (LN2) defined by the objective function (17)
and one constraint:

min
z

E(z) s.t. γeα1+ 1
2
β2
1 + (1 − γ)eα2+ 1

2
β2
2 = Ste

r(T−t). (18)

The constraint is equivalent to

γSte
µ1(T−t) + (1 − γ)Ste

µ2(T−t) = Ste
r(T−t)

and it is basically saying that in the absence of arbitrage the estimated for-
ward price of the underlying security must coincide with its forward price [6].

Our numerical implementation was based on Matlab’s optimization
solver fmincon. We took into consideration the fact that E(z) is nonlinear
and nonconvex by scaling the problem appropriately and by paying special
attention to the initial point provided to fmincon (in the Black-Scholes
data set, for instance, we used the exact values of the targeted lognormal as
initial guesses).

5.2 Black-Scholes data

Our first test was conducted with simulated option prices. We generated
Black-Scholes options prices using the function blsprice provided by the
Financial Toolbox of Matlab. This function computes the value of the call
or put option in agreement with the Black-Scholes formula. To generate the
data we must supply the current value of the underlying asset, the exercise
price, the risk-free interest rate, the time to maturity of the option, the
volatility, and the dividend rate.

The call and put option prices were generated considering 50 as the
current price for the underlying asset, 0.1 as the risk-free interest rate, a time
to maturity of 0.5, a volatility of 0.2, and no dividend rate. We considered
20 call options with (equally spaced) strikes varying from 30 to 70. The
number of knots was set to 25 and the knots were equally spaced between
20 and 85. The risk-neutral pdf corresponding to the prices generated from
these data is known to be the following lognormal density function

p(ω) = logn(ω;α, β),

where µ = 0.1, σ = 0.2, T − t = 0.5, and St = 50. This function is depicted
in solid lines in the plots of Figure 1.

We solved the scaled instances of problems (9) and (16) defined by the
Black-Scholes data and the scaling reported above. We also solved prob-
lem (18) for the same data set. The plots of the recovered probability
density functions are depicted in Figure 1.

14



LN2 QP SDP

BS data set 2.83 × 10−10 2.31 × 10−9 4.32 × 10−9

Table 1: Residuals for the price option adjustments (Black-Scholes data).

In our formulations, the Hessian matrix is theoretically known to be
positive semidefinite. However, it is also highly rank-deficient and, due
to round-off errors, it exhibits small negative eigenvalues, around −10−19.
These negative eigenvalues proved to be troublesome for Matlab’s active
set QP. The scaling reduced significantly the ill-conditioning of this matrix,
allowing a relatively accurate eigenvalue computation. We have modified
the Hessian matrix, by adding a multiple ξ of the identity to the scaled
Hessian matrix, using as coefficient ξ = |λmin|. Under this adjustment,
the modified scaled Hessian becomes numerically positive definite. In the
SDP approach, this value for ξ does not guarantee a numerically positive
semidefinite matrix, and had to be increased to ξ = |λmin|103.

It can be seen from the left plots of Figure 1 that the pdf computed
adjusted perfectly well to the lognormal one, for all the approaches (QP,
SDP, and LN2). We also point out that the expected prices of the call
options computed using the recovered risk-neutral pdf adjusted very well
to the Black-Scholes prices (see right plots of Figure 1). The residuals for
these adjustments, computed according to (6) in the QP and SDP cases and
according to (17) in the LN2 approach, are reported in Table 1.

The order of approximation is almost the same for all approaches. It
should be nevertheless stressed how well the recovered pdf obtained by QP
and SDP exhibited the desired lognormality property.

In order to guarantee numerical success of the QP and SDP approaches,
the initial and final spline knots must be chosen within a minimum distance
from the first and last strikes. We found that this distance is around 6% of
the amplitude of the vector of strikes. We chose the number of knots not
much bigger than the number of strikes, but the pdf shapes exhibit some
robustness when we consider a different number of knots. In fact, for this
Black-Scholes data set, we also obtain a good estimative for the pdf if we
consider 40, 35, 20, or 15 knots. When we consider a logarithmically spaced
vector of knots instead of a linearly spaced one (corresponding to the results
reported above), the results remain the same: there is no difference in the
shape of the pdf and the residuals are still very low (2.83 × 10−10 for LN2,
2.07 × 10−9 for QP, and 1.37 × 10−7 for SDP).
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5.3 S&P 500 data

The second set of tests were conducted with publicly available market price
data. We collected information related to European call and put options on
S&P 500 Index traded in the Chicago Board of Options Exchange (CBOE)
on April 29, 2003 with maturity on May 17 (data set 1), on March 24, 2004
with maturity on April 17 (data set 2), and on March 24, 2004 with maturity
on June 20 (data set 3). We chose this market because it is one of the most
dynamic and liquid options markets in the world.

The interest rate was obtained from the Federal Reserve Bank of New
York. We considered a Treasury Bill with time to expiration as close as
possible to the time of expiration of the options.

5.3.1 Preprocessing the data

As indicated in Section 2, a risk-neutral probability measure exists if and
only if there are no arbitrage opportunities. It is possible, however, to ob-
serve arbitrage opportunities in the prices of illiquid derivative securities.
These prices do not reflect true arbitrage opportunities — once these secu-
rities start trading, their prices will be corrected and arbitrage will not be
realized.

Still, in order to have meaningful solutions for the optimization problems
that we formulated in the previous sections, it is necessary to use prices in
these optimization models which contain no arbitrage opportunities. Thus,
before solving these problems we need to eliminate prices with arbitrage vi-
olations such as absence of monotonicity. The following theorem establishes
necessary and sufficient conditions for the absence of arbitrage in the prices
of European call options with concurrent expiration dates:

Theorem 2 (Herzel [19]) Let K1 < K2 < · · · < Kn denote the strike
prices of European call options written on the same underlying security with
the same maturity, and let Ci denote the current prices of these options.
These securities do not contain any arbitrage opportunities if and only if
the prices Ci satisfy the following conditions:

1. Ci > 0, i = 1, . . . , n.

2. Ci > Ci+1, i = 1, . . . , n − 1.

3. The piecewise linear function C(K) with break-points at Ki’s and sat-
isfying C(Ki) = Ci, i = 1, . . . , n, is strictly convex in [K1,Kn].
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Theorem 2 provides us with a simple mechanism to eliminate “artificial”
arbitrage opportunities from the prices we use. In our numerical experi-
ments, after gathering price data for call and put options from the S&P
500 Index, we first eliminated options whose prices were outside the bid-ask
interval, and then we generated call option prices from each one of the put
option prices using the put-call parity. In cases where there was already a
call option with a matching strike price, in the event that the price of the
traded call option did not coincide with the price obtained from the put
option price using put-call parity, we used the price corresponding to the
option with the higher trading volume. After obtaining a fairly large set
of call option prices in this manner, we tested for monotonicity and strict
convexity in these call prices as indicated by Theorem 2. After the prices
that violated these conditions had been removed, we formulated and solved
the optimization problems, as outlined in Section 4 for QP and SDP and in
Subsection 5.1 for LN2.

In order to guarantee the quality of the data we collected another piece
of information related to the market options: the trading volume (see [18]).
It is known that end-of-day settlement prices can contain options that are
not very liquid and these prices may not reflect the true market prices.
Inaccurate prices are usually related to thinly traded options. In contrast,
options with higher volume represent better the “market sentiment” and the
investors expectations. We incorporated the trading volume in our problem
formulation by modifying the objective function of problems (9) and (16) in
the following way:

∑

K∈C

θK [CK − CK(y)]2 +
∑

K∈P

µK [PK − PK(y)]2

(and by modifying the objective function of problem (18) similarly). Here
θK is the ratio between the trading volume for the option CK and the trading
volume for all options:

θK =
trading volume for CK

trading volume for all call options
.

The weight µK is defined similarly for put options. Note that options with
zero volume have a weight equal to zero.

5.3.2 Results

The results are presented for the three data sets mentioned before, in a
manner similar to the Black-Scholes case. In the first data set (Figure 2) the
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LN2 QP SDP

S&P500 data set 1 0.05549748812 0.04408317006 0.03413501095
S&P500 data set 2 0.02793921868 0.02733846337 0.01450991754
S&P500 data set 3 0.02142219670 0.00834062178 0.00396678133

Table 2: Residuals for the price option adjustments (S&P 500 Index data).

original number of calls and puts was 40 each. After eliminating arbitrage
opportunities we reduced the problem dimension to 24 calls for which we
considered 32 knots. In the second data set (Figure 3) the original number
of calls and puts was 38 each. After eliminating arbitrage opportunities
we reduced the problem dimension to 23 calls for which we considered 28
knots. Finally, in the third data set (Figure 4) the original number of calls
and puts was 29 each. After eliminating arbitrage opportunities we reduced
the problem dimension to 14 calls for which we considered 29 knots. In the
QP and SDP approaches for the S&P 500 data, our experiments have shown
that the spline knots must be chosen close to the strike prices and that the
choice of the location of the spline nodes is more sensible than it was in the
Black-Scholes simulated data.

The Hessian modification has been done by adding ξI to the scaled
Hessian matrix, choosing the reference value ξ = |λmin| for QP and ξ =
|λmin|103 for SDP, both adjusted for the Black-Scholes data.

For data sets 1 and 2 the recovered probability density functions obtained
by QP and SDP approaches presented bimodality in the lower tail, a feature
which has not been observed in the LN2 approach. When we consider the
expected prices of the call options computed using the recovered risk-neutral
pdf, we see that they adjust well to the S&P500 prices (see Table 2). The
fitting for the QP and SDP approaches is always better than in the LN2
case.

We have observed that the pdf estimated using the QP model and the
Hessian modification assumes small negative values (10−5) at one of the tails
of the distribution, roughly between 700 and 735 (Figure 2), between 1200
and 1223 (Figure 3), and between 830 and 870 (Figure 4). As prescribed,
the semidefinite optimization model corrects this behavior and obtains a
nonnegative pdf estimate. Moreover, we see from the figures in the table
that the SDP fitting is always better than the QP one.

In order to measure the impact of data containing arbitrage opportunities
on our approach and the shape of the pdf generated, we repeated our tests

18



with market data. This time, for each data set, we use the mean of bid
and ask prices as call prices and did not eliminate prices that may contain
arbitrage opportunities. As we can see from Figure 5, the shape of the pdfs
is similar to the shape of the previous ones (without arbitrage) for the SDP
approach, indicating some robustness in our approach. For data set 3, we
found some discrepancies in the LN2 approach, where the pdf estimated
from data containing arbitrage differs significantly from the pdf estimated
with “clean” data.

6 Concluding remarks

We have developed and tested a new way of recovering the risk-neutral prob-
ability density function (pdf) of an underlying asset from its corresponding
option prices. Our approach is nonparametric and uses cubic splines. The
core inversion problem is a quadratic programming (QP) problem with a
convex objective function and linear equality constraints.

To guarantee the nonnegativity of the inverted risk-neutral pdf we fol-
lowed two alternatives. In the first one we kept the QP structure of the
core problem, adding linear inequalities that reflect only the nonnegativity
of this pdf at the spline nodes. The second one extends the nonnegativity
requirement to the entire domain of the recovered pdf by imposing appro-
priate semidefinite constraints. In the examples tested, we observed that
the QP approach is less sensitive to scaling than the semidefinite program-
ming (SDP) approach. While the simpler QP approach is generally sufficient
to recover an appropriate risk-neutral pdf both with simulated and market
data, there are instances where the solution of the more difficult SDP model
is necessary to obtain a nonnegative pdf estimate.

We plan to investigate the numerical estimation of the volatility based on
the knowledge of the previously estimated risk-neutral pdf. Another topic
of future research is to consider uncertainty in the data and to study the
robust solution of the corresponding uncertain QP and SDP problems.
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Appendix

We recall in this appendix the definition of spline functions. Consider a
function f : [a, b] → IR to be estimated by using its values f(xs) given on a
set of points xs, s = 1, . . . , ns + 1, called nodes or knots. It is assumed that
x1 = a and xns+1 = b.

Definition 3 A spline function, or spline, is a piecewise polynomial ap-
proximation S(x) to the function f such that the approximation agrees with
f on each node xs, i.e., S(xs) = f(xs), s = 1, . . . , ns + 1. A spline on [a, b]
is of order q if: (i) its first q − 1 derivatives exist on each interior knot;
(ii) the highest degree for the polynomials defining the spline function is q.

The graph of a spline function S contains the data points (xs, f(xs)). A
spline function S is always continuous on [a, b]. A cubic spline uses cubic
polynomials of the form fs(x) = αsx

3 + βsx
2 + γsx + δs to estimate the

function in each interval [xs, xs+1] for s = 1, . . . , ns. A cubic spline has
order 3 and can therefore be constructed in such a way that it has second-
order derivatives at each node. For ns +1 knots (x1, . . . , xns+1) there are ns

intervals and, therefore, 4ns unknown constants to evaluate. To determine
these 4ns parameters we use the following conditions:

fs(xs) = f(xs), s = 1, . . . , ns, and fns(xns+1) = f(xns+1), (19)

fs−1(xs) = fs(xs), s = 2, . . . , ns, (20)

f ′
s−1(xs) = f ′

s(xs), s = 2, . . . , ns, (21)

f ′′
s−1(xs) = f ′′

s (xs), s = 2, . . . , ns, (22)

f ′′
1 (x1) = 0 and f ′′

ns
(xns+1) = 0. (23)

The last condition leads to a so-called natural spline.
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Figure 1: Recovered probability density functions from data generated by a
Black-Scholes model using QP, SDP, and LN2 approaches (left plots). Fitted
recovered expected prices for these approaches (right plots).
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Figure 2: Recovered probability density functions from S&P 500 Index data
using QP, SDP, and LN2 approaches (left plots). Fitted recovered expected
prices for these approaches (right plots). Data set 1.
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Figure 3: Recovered probability density functions from S&P 500 Index data
using QP, SDP, and LN2 approaches (left plots). Fitted recovered expected
prices for these approaches (right plots). Data set 2.
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Figure 4: Recovered probability density functions from S&P 500 Index data
using QP, SDP, and LN2 approaches (left plots). Fitted recovered expected
prices for these approaches (right plots). Data set 3.
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Figure 5: Recovered probability density functions from S&P 500 Index data
using arbitrage data, respectively for data sets 1, 2, and 3.
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