
Smoothing and Worst-Case Complexity for Direct-Search

Methods in Nonsmooth Optimization

R. Garmanjani ∗ L. N. Vicente†

September 13, 2012

Abstract

In the context of the derivative-free optimization of a smooth objective function, it has
been shown that the worst case complexity of direct-search methods is of the same order
as the one of steepest descent for derivative-based optimization, more precisely that the
number of iterations needed to reduce the norm of the gradient of the objective function
below a certain threshold is proportional to the inverse of the threshold squared.

Motivated by the lack of such a result in the non-smooth case, we propose, analyze, and
test a class of smoothing direct-search methods for the unconstrained optimization of non-
smooth functions. Given a parameterized family of smoothing functions for the non-smooth
objective function dependent on a smoothing parameter, this class of methods consists of
applying a direct-search algorithm for a fixed value of the smoothing parameter until the
step size is relatively small, after which the smoothing parameter is reduced and the process
is repeated.

One can show that the worst case complexity (or cost) of this procedure is roughly one
order of magnitude worse than the one for direct search or steepest descent on smooth
functions.

The class of smoothing direct-search methods is also showed to enjoy asymptotic global
convergence properties. Some preliminary numerical experiments indicates that this ap-
proach leads to better values of the objective function, pushing in some cases the optimization
further, apparently without an additional cost in the number of function evaluations.

Keywords: derivative-free optimization, direct search, smoothing function, worst case com-
plexity, non-smooth, non-convex

1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a locally Lipschitz continuous function, but not necessarily differentiable
or convex. However, given our objective function f we will assume the existence and knowledge
of a smoothing function (see [10, 36]):

∗Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal (nima@mat.uc.pt). Support
for this author was provided by FCT under the scholarship SFRH/BD/33367/2008.

†CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal (lnv@mat.uc.pt).
Support for this research was provided by FCT under the grant PTDC/MAT/098214/2008.

1



Definition 1.1 Let f : R
n → R be a locally Lipschitz continuous function. We call f̃ :

R
n × [0,+∞) → R a smoothing function of f if, for any µ ∈ (0,+∞), f̃(·, µ) is continuously

differentiable in R
n and, for any x ∈ R

n,

lim
z→x,µ↓0

f̃(z, µ) = f(x). (1)

Under reasonable assumptions (including boundedness of the objective function level sets), the
smoothing direct-search methods derived in this paper will generate a sequence of points (con-
verging to a point x∗) and a sequence of smoothing parameters (converging to zero) for which
the gradient of the smoothing function tends to zero. In other words, we will show that x∗ is a
stationary point of the smoothing function f̃ , in the sense that 0 ∈ Gf̃ (x∗), with

Gf̃ (x∗) = {v : ∃N ∈ N∞, (x, µ) −−→
N

(x∗, 0) with ∇f̃(x, µ) −−→
N

v}, (2)

where N∞ represents the set of infinite sequences. As we will see later (see Sections 7 and 8),
it is known that for certain types of objective functions and corresponding smoothing func-
tions, Gf̃ (x∗) ⊆ ∂f(x∗), where ∂f(x∗) denotes the Clarke subdifferential of f at x∗. Thus, in
those cases, the smoothing direct-search methods are capable to generate a sequence of iterates
converging to a Clarke stationary point.

A smoothing direct-search method consists of the application of a direct-search method to
the function f̃(·, µ) for decreasing values of µ. In each outer iteration the value of µ is fixed and
a certain number of direct-search inner iterations are applied until the step size becomes lower
than a power of µ. Given that f̃(·, µ) is continuously differentiable, the choice of direct-search
iteration can be simply reduced to polling around the current iterate using a positive spanning
set (a set of directions generating R

n with non-negative coefficients). Such a smoothing direct
search is shown to be globally convergent in the sense that for any starting point it generates a
subsequence of outer iterates (the output of outer iterations) converging to a point x∗ for which
0 ∈ Gf̃ (x∗). Furthermore, one can prove also that such a smoothing direct-search method takes
a number of iterations and function evaluations one order of magnitude higher in the worst case
than steepest descent or direct search on smooth functions (see [34]).

Our work applies for instance to composite functions of the type f = h(F ), where h is non-
smooth (and for which a smoothing function is known) and F is a vectorial function assumed
smooth (continuously differentiable) but in practice given as a black box or zero order oracle
(meaning that only function values can be evaluated). Given the popularity of optimization
problems in parameter identification and inversion, our approach finds room whenever the fitting
is measured in terms of a non-differentiable norm (for which smoothing functions are available)
and the underlying simulation does not provide derivatives.

The paper is organized as follows. In Section 2, we review the global convergence and worst
case complexity properties of direct-search methods based on a sufficient decrease condition for
smooth functions. Then, in Section 3, we review some basic concepts in non-smooth calcu-
lus, and explain briefly what are the difficulties in deriving a worst case complexity bound for
non-smooth functions. The smoothing direct-search approach is introduced in Section 4 and
the corresponding global convergence and worst case complexity properties are described, re-
spectively, in Sections 5 and 6. The paper continues then by reviewing the known properties
of smoothing functions of relevance to our work in direct search (the general case in Section 7
and the composite type functions mentioned above in Section 8). A summary of our numerical

2



experiments with smoothing functions in the context of direct search applied to f = h(F ) with
h = ‖ · ‖1 is reported in Section 9, and the paper is finished in Section 10 with some concluding
remarks.

The notation O(M) means a multiple of M , where the constant multiplying M does not
depend on the dimension n of the problem or on the iteration counter k of the method under
analysis (thus depending only on f or on algorithmic constants that are set at the initialization
of the method).

2 Direct search and its complexity for smooth functions

Direct-search methods are derivative-free methods which evaluate the objective function at a
finite number of points at each iteration and choose the next iterate based on comparisons among
such function values. In this paper, we will deal only with direct-search methods of directional
type, where descent is achieved along directions belonging to positive spanning sets (see the
surveys in [13, 25]).

Each iteration of these direct-search algorithms consists of a search step and a poll step. The
search step is optional and irrelevant from the point of view of proving global convergence. Its
goal is strictly to improve the numerical performance of the method. When a search step is not
performed or is performed unsuccessfully (see Algorithm 2.1 below), a poll step is taken around
the current iterate by the means of a step size parameter αj and a positive spanning set Dj .
The poll step evaluates the objective function at the poll points in Pj = {yj + αjd : d ∈ Dj},
being successful if it can sufficiently reduce the value of the objective function at yj .

Given the (first order) continuously differentiable nature of the objective function, one could
work with a single positive spanning set throughout all the iterations, but the analysis of both
global convergence [25] and worst case complexity [34] (in the case where a sufficient decrease
condition is imposed to accept new iterates) tells us that one can have considerable freedom
when choosing the positive spanning sets for polling. In fact, based on the notion of the cosine
measure of a positive spanning set Dj (with nonzero vectors), defined by (see [25])

cm(Dj) = min
06=v∈Rn

max
d∈Dj

v⊤d

‖v‖‖d‖ ,

the positive spanning sets used by the algorithm can be selected as follows.

Assumption 2.1 For all j, the positive spanning set Dj used for polling must satisfy cm(Dj) ≥
cmmin and dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dj (where cmmin > 0 and 0 < dmin < dmax are
constants).

A positive spanning set (with nonzero vectors) has a positive cosine measure. One can thus
see that Assumption 2.1 allows plenty of freedom to choose positive spanning sets as long as they
do not deteriorate significantly (in the sense of becoming close to loosing the positive spanning
property).

We are almost ready to present the algorithmic framework (also used in [34]) for the direct-
search optimization of smooth functions based on a sufficient decrease condition. As we can see
below in Algorithm 2.1, sufficient decrease is imposed in both the search and the poll steps by
means of a forcing function [25] (a non-decreasing function ρ : (0,+∞) → (0,+∞) satisfying
ρ(t)/t→ 0 when t ↓ 0). The most typical examples of forcing functions are ρ(t) = c tp, for p > 1,
c > 0.

3



Algorithm 2.1 (Direct-search method (search-poll based, for smooth functions))

Initialization
Choose y0 with f(y0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For j = 0, 1, 2, . . .

1. Search step: Try to compute a point with f(y) < f(yj) − ρ(αj) by evaluating the
function f at a finite number of points. If such a point is found, then set yj+1 = y,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dj . Order the set of poll points Pj =
{yj +αjd : d ∈ Dj}. Start evaluating f at the poll points following the chosen order.
If a poll point yj + αjdj is found such that f(yj + αjdj) < f(yj) − ρ(αj), then stop
polling, set yj+1 = yj + αjdj , and declare the iteration and the poll step successful.
Otherwise declare the iteration (and the poll step) unsuccessful and set yj+1 = yj .

3. Mesh parameter update: If the iteration was successful, then maintain or increase
the step size parameter: αj+1 ∈ [αj , γαj ]. Otherwise decrease the step size parameter:
αj+1 ∈ [β1αj , β2αj ].

Imposing sufficient decrease in both the search and the poll steps results in new iterates
always satisfying f(yj+1) < f(yj) − ρ(αj). A simple consequence of this fact is that the step
size αj will approach zero when the objective function is bounded below. Consider thus the
following assumption.

Assumption 2.2 The function f is bounded below in L(y0) = {y ∈ R
n : f(y) ≤ f(y0)}.

The result motivated above can then be formalized as follows (see [13, 25]).

Theorem 2.1 Let Assumption 2.2 hold. There exists a subsequence J of unsuccessful iterations
such that

lim
j∈J

αj = 0.

If L(y0) is bounded, then there exist a point y∗ and subsequence J of unsuccessful iterations such
that limj∈J αj = 0 and limj∈J yj = y∗.

We will describe both the global convergence and the worst case complexity results when
sufficient decrease is imposed. In the continuously differentiable case, such results are heavily
based on the following result (which is taken from [25]; see also [13, Theorem 2.8 and Equa-
tion (7.14)]), describing the relationship between the size of the gradient and the step size
parameter at unsuccessful iterations.

Theorem 2.2 Let Dj be a positive spanning set and αj > 0 be given. Assume that ∇f is
Lipschitz continuous (with constant L∇f > 0) in an open set containing all the poll points in Pj.
If f(yj) ≤ f(yj + αjd), for all d ∈ Dj, then

‖∇f(yj)‖ ≤ cm(Dj)
−1





L∇f

2
αj max

d∈Dj

‖d‖+ ρ(αj)

αj min
d∈Dj

‖d‖



 . (3)

4



As observed originally in [25], global convergence can be immediately derived from a direct
combination of Theorems 2.1 and 2.2.

Theorem 2.3 Let Assumptions 2.1 and 2.2 hold. Assume also that f is continuously dif-
ferentiable with Lipschitz continuous gradient on an open set containing L(y0) (with constant
L∇f > 0). Then, there exists a subsequence J of unsuccessful iterations such that limj∈J αj = 0
and

lim
j∈J

∇f(yj) = 0.

If L(y0) is bounded, then there exists a point y∗ such that ∇f(y∗) = 0.

From a worst case complexity or cost point of view, one asks the question of, given ǫ ∈ (0, 1),
how many iterations j1 are needed to reach ‖∇f(yj1+1)‖ ≤ ǫ. Such a result was derived by
Vicente [34] and is summarized below for an algorithm of the type of Algorithm 2.1 where (i)
the search step is either empty or, when applied, uses a number of function evaluations less than
the maximum number of function evaluations made in a poll step, and (ii) the positive spanning
sets used for polling have a cardinal of the order of n and a cosine measure of the order of 1/

√
n

(like, for instance, Dj = [I − I] as in coordinate search).

Theorem 2.4 Consider the application of Algorithm 2.1 when ρ(t) = c tp, p > 1, c > 0. Let
Assumptions 2.1 and 2.2 hold. Let f be continuously differentiable with Lipschitz continuous
gradient on an open set containing L(y0) (with constant L∇f > 0).

Under these assumptions, to reduce the gradient below ǫ ∈ (0, 1), Algorithm 2.1 takes at most

O
(

(√
nL∇f

)
p

min(p−1,1) ǫ
− p

min(p−1,1)

)

iterations, and at most

O
(

n
(√
nL∇f

)
p

min(p−1,1) ǫ
− p

min(p−1,1)

)

function evaluations.

When p = 2, these numbers are of O
(

nL2
∇f ǫ

−2
)

and O
(

n2L2
∇f ǫ

−2
)

, respectively.

The constant in O(·) depends only on dmin, dmax, c, p, β1, β2, γ, α0, and on the lower bound
flow of f in L(y0).

We pause now from the presentation of the material needed for our smoothing direct-search
approach to briefly review the recent developments on the study of the worst case complexity in
non-linear optimization. Nesterov [29, Page 29] first showed that the steepest descent method
for unconstrained optimization takes at most O(ǫ−2) iterations (or gradient evaluations) to drive
the norm of the gradient of the objective function below ǫ. It has been proved by Cartis, Gould,
and Toint [7] that the worst case bound O(ǫ−2) for steepest descent is sharp or tight (see the
details in [7]). Gratton, Toint, and co-authors [20, 21] and Cartis, Gould, and Toint [6] proved
a similar worst case complexity bound of O(ǫ−2) for trust-region methods and adaptive cubic
overestimation methods, respectively, when these algorithms are based on a Cauchy decrease
condition. The worst case complexity bound on the number of iterations was reduced to O(ǫ−

3
2 )

(in the sense that the negative power of ǫ increases) for the cubic regularization of Newton’s
method (see Nesterov and Polyak [31]) and for the adaptive cubic overestimation method (see
Cartis, Gould, and Toint [6]).

5



Regarding the unconstrained minimization of non-smooth functions, Cartis, Gould, and
Toint [8] showed also that the bound O(ǫ−2) can be retained by some first order methods
for objective functions resulting from the composition of a convex, non-smooth term with a
continuously differentiable function.

In the domain of derivative-free optimization, and besides the above described resulted de-
rived by Vicente [34] for direct-search methods based on a sufficient decrease condition when
applied to smooth functions, Cartis, Gould, and Toint [9] have investigated the worst case
complexity of their adaptive cubic overestimation algorithm when using finite differences to ap-
proximate derivatives. They derived the following bound on the number of function evaluations
required to drive the norm of the gradient below ǫ

O
(

(n2 + 5n)
1 + | log(ǫ)|

ǫ3/2

)

.

Note that the bound O(n2ǫ−2) for direct search is worse in terms of the power of ǫ.
Nesterov [30], using Gaussian smoothing, proposes a random derivative-free approach for

which he proves that the number of function evaluations needed for bringing the expected norm
of the gradient of the smoothing function of a non-convex non-smooth function below ǫ ∈ (0, 1)

(for a smoothing parameter lower than ǫ/(n
1
2Lf ), where Lf is a Lipschitz constant of f) is

O
(

n(n+ 4)2

ǫ3

)

. (4)

In the presence of smoothness this bound will be O(nǫ−2) (for a smoothing parameter lower
than ǫ/(nL∇f )).

3 Difficulties in the extension to the non-smooth case

Let f be Lipschitz continuous near x. As it is well known [12], the Clarke generalized directional
derivative at x along v is defined by

f◦(x; v) = lim sup
x̄→x t↓0

f(x̄+ tv)− f(x̄)

t
,

and the Clarke subdifferential by

∂f(x) = {s ∈ R
n : f◦(x; v) ≥ 〈v, s〉, ∀v ∈ R

n}.

A point x∗ is Clarke stationary if f◦(x∗; v) ≥ 0 ∀v ∈ R
n or, in alternative, if 0 ∈ ∂f(x∗).

Clarke stationarity is a first order necessary condition for local minimization of locally Lipschitz
functions.

The Clarke subdifferential enjoys an equivalent characterization which helps motivating the
use of smoothing functions for optimization of non-smooth functions. Let Df be the subset of
R
n where f is differentiable. Rademacher’s Theorem says that the set of all non-differentiable

points of a locally Lipschitz continuous function is a set of Lebesgue measure 0. Based on such
a result, it is shown in [12, Theorem 2.5.1] that

∂f(x) = co{lim∇f(x̄) : x̄→ x, x̄ ∈ Df},

6



where co represents the convex hull operator. One can now realize how close stationarity of a
smoothing function, 0 ∈ Gf (x∗) (see (2)), is to true stationarity, 0 ∈ ∂f(x∗).

It seems difficult to derive a worst case complexity bound for direct search in the non-
smooth setting, directly and without the use of smoothing functions. In the non-smooth case,
the condition ‖∇f(yj1+1)‖ ≤ ǫ (see the argument before Theorem 2.4) can be replaced by
f◦(yj1+1; v) ≥ −ǫ for all normalized directions v ∈ R

n, where f◦(x; d) represents the Clarke
generalized directional derivative of f at x along d (which, as mentioned before, is guaranteed to
exist if f is Lipschitz continuous near x). The first step in the analysis of worst case complexity
would be to extend (3) from the smooth to the non-smooth case. However, ultimately, what we
would need to show is that when ℓ is the index of an unsuccessful iteration and f◦(yℓ; vℓ) < −ǫ
for some normalized direction vℓ in R

n, the step size αℓ is bounded below by a constant times an
appropriate power of ǫ. While attempting to prove such a result one sees a difficulty, given the
potentially large distance from vℓ to any of the (normalized) polling directions used in iteration ℓ
(see the details in [18, Section 4.4]).

The lack of a worst case complexity bound for direct search in the non-smooth setting
contrasts with the corresponding availability of global convergence results under the assumption
of some form of density of the polling directions in the unit sphere (see [35] for the approach
using sufficient decrease and [1, 3] for MADS where a simple decrease is used in accepting
new iterates). The reader is also pointed to [25] for an example where a direct-search method
using a finite number of polling directions may get stuck and to [2] for an example where under
similar assumptions the sequence of iterates might converge to point where 0 is not in the Clarke
subdifferential.

4 Smoothing direct-search methods

One way of developing an approach for derivative-free non-smooth optimization for which one can
measure the worst case complexity of the algorithms is by means of a smoothing function. The
idea is simple and consists of applying directly a direct-search method to the smoothing function
with a fixed value of the smoothing parameter µ until a certain precision is achieved, after which
the smoothing parameter is reduced and the process repeated. The stopping criterion for each
inner direct-search optimization is achieved when the step size gets below a certain function r(µ)
of the smoothing parameter µ, to be selected in advance.

Algorithm 4.1 (Smoothing direct-search method (for non-smooth functions))

Initialization
Choose x0 with f(x0) < +∞, α0 > 0, µ0 > 0 and σ ∈ (0, 1).

For k = 0, 1, 2, . . .

1. Direct Search for a fixed smoothing parameter: Apply DS (Algorithm 2.1) to
f̃(·, µk) (starting from y0,k = xk) generating points y0,k, . . . , yj,k until αj+1,k < r(µk).

2. Update of the smoothing parameter: Set xk+1 = yj,k and decrease the smooth-
ing parameter: µk+1 = σµk.

7



A stopping criterion for this algorithm would consist of verifying if µk is smaller than a given
positive tolerance smaller than µ0.

5 Global convergence of smoothing direct search

The analysis of global convergence of smoothing direct search (Algorithm 4.1) relies heavily on
the one for direct search. The boundedness from below of the smoothing functions is not restric-
tive since the difference from the smoothing functions to the original one depends continuously
on µ for a fixed x (see Definition 1.1), and thus Assumption 5.1 is not more restrictive than an
assumption like Assumption 2.2 on the original function.

Assumption 5.1 For all k: the functions f̃(·, µk) are bounded below in L(y0,k) = {y ∈ R
n :

f̃(y, µk) ≤ f̃(y0,k, µk)}.

Theorem 5.1 Let Assumption 5.1 hold. Then the smoothing parameter goes to zero:

lim
k→∞

µk = 0.

Proof. For each k, one knows, from Theorem 2.1, that lim infj→+∞ αj,k = 0. Thus, one
always reaches the stopping criterion for every k and µk is reduced an infinite number of times.

Now, for each k, let jk be the unsuccessful inner direct-search iteration that achieves the
stopping criterion αjk+1,k < r(µk). After having showed that µk converges to zero, one then
obtains the property given below for the sequences {xk} and {αjk,k} defined by such jk’s. At
this point one needs to select the function r(µ) such that it tends to zero when µ ↓ 0.

Theorem 5.2 Let Assumption 5.1 hold. If limµ↓0 r(µ) = 0, then

lim
k→+∞

αjk,k = 0,

and if, in addition, {xk} is bounded, there exists a point x∗ and a subsequence K ⊆ {j1, j2, . . .}
such that limk∈K αjk,k = 0 and limk∈K xk = limk∈K yjk,k = x∗.

To derive global convergence for smoothing direct search it suffices to use Theorem 2.2, which
tells (under Assumption 2.1) us that

‖∇f̃(xk, µk)‖ ≤ cm−1
min

(

L∇f̃ (µk)

2
αjk,kdmax +

ρ(αjk,k)

αjk,kdmin

)

, (5)

where L∇f̃ (µk) is the Lipschitz constant of ∇f̃(·, µk).

Theorem 5.3 Let Assumptions 2.1 and 5.1 hold. Assume also that f̃ is a smoothing function
for f , where, for all k, f̃(·, µk) has a Lipschitz continuous gradient on an open set containing
L(y0,k) with constant L∇f̃ (µk) > 0. Let x∗ (which exists if {xk} is bounded) and K be as in
Theorem 5.2.

8



Under these conditions, if limµ↓0 r(µ) = 0 and

lim
µ↓0

L∇f̃ (µ)r(µ) = 0, (6)

then
lim
k∈K

‖∇f̃(xk, µk)‖ = 0

and x∗ is a stationary point associated with the smoothing function f̃ .

Proof. From (5), β1αjk,k ≤ αjk+1,k (see Step 3 of Algorithm 4.1), and αjk+1,k < r(µk)

‖∇f̃(xk, µk)‖ ≤ cm−1
min

(

L∇f̃ (µk)

2β1
r(µk)dmax +

ρ(αjk,k)

αjk,kdmin

)

.

The result then follows from Theorems 5.1 and 5.2, and condition (6).

Thus, choosing r(·) appropriately (for instance, r(µ) = µ2 when L∇f̃ (µ) = 1/µ), leads to a
globally convergent Algorithm 4.1.

6 Worst case complexity of smoothing direct search

We start by first analyzing the worst case complexity of Algorithm 4.1 as it stands.

Theorem 6.1 Consider the application of Algorithm 4.1 when ρ(t) = c1t
p and r(t) = c2t

q, with
p, q > 1 and c1, c2 > 0. Let Assumptions 2.1 and 5.1 hold.

Given any ξ ∈ (0, 1) such that ξ < µ0, let k1 be the first iteration such that µk1+1 ≤ ξ.
Under these assumptions, Algorithm 4.1 takes at most O ((− log(ξ))ξ−pq) iterations to reduce

the smoothing parameter below ξ ∈ (0, 1), i.e., to have µk1+1 ≤ ξ.

Proof. First let us consider each inner loop of Algorithm 4.1 where direct search is applied
for a fixed µk > ξ. To bound the number of successful iterations we recall that such a loop is
repeated while αj+1,k ≥ r(µk) = c2µ

q
k. Thus, since αj,k ≥ (1/γ)αj+1,k,

f̃(yj,k, µk)− f̃(yj+1,k, µk) ≥ c1(αj,k)
p ≥ c1(c2/γ)

p(µqk)
p,

and the number of successful iterations |Sk| is bounded by

|Sk| ≤ f̃(y0,k, µk)− f̃low,k

c1(c2/γ)pµ
pq
k

,

where f̃low,k is the lower bound of f̃(·, µk) in L(y0,k). To bound the number |Uk| of unsuccessful
iterations, since either αj+1,k ≤ β2αj,k or αj+1,k ≤ γαj,k, we obtain by induction

αj,k ≤ α0,kγ
|Sk|β

|Uk|
2 ,

which in turn implies from log(β2) < 0

|Uk| ≤ − log(γ)

log(β2)
|Sk| −

log(α0,k)

log(β2)
+

log(αj,k)

log(β2)
.

9



Thus, from log(β2) < 0 and αj,k ≥ r(µk) > r(ξ), we conclude that the maximum number of
iterations needed in each inner loop minimization is O (ξ−pq).

Finally, we need an upper bound for the number of outer loops, i.e., for the number of times
that µ is reduced. The smoothing parameter update of Algorithm 4.1 yields µk+1 ≤ σkµ0.
Hence, in order to have µk1+1 ≤ ξ, we need to have

k1 ≥ log(ξ)− log(µ0)

log(σ)
,

and the proof is completed

Using the best known dependence of L∇f̃ (µ) on µ, which is of the order of 1/µ, one can
derive the following order of accuracy for the norm of the gradient of the smoothing function
(after the effort to reduce µk below ξ).

Corollary 6.1 Consider the application of Algorithm 4.1 when ρ(t) = c1t
p and r(t) = c2t

q, with
p, q > 1 and c1, c2 > 0. Let Assumptions 2.1 and 5.1 hold. Assume also that f̃ is a smoothing
function for f , where, for all k, f̃(·, µk) has a Lipschitz continuous gradient on an open set
containing L(y0,k) with constant L∇f̃ (µk) > 0 satisfying L∇f̃ (µk) = O(1/µk).

Given any ξ ∈ (0, 1) such that ξ < µ0, let k1 be the first iteration such that µk1+1 ≤ ξ.
Under these conditions, one has

‖∇f̃(xk1 , µk1)‖ = O
(

ξq−1 + ξ(p−1)q
)

.

Proof. Using Theorem 2.2 (see, rather, (5)) and the fact that αjk1 ,k1
< (1/β1)r(µk1), one

can write

‖∇f̃(xk1 , µk1)‖ ≤
(

dmaxc2
2 cmmin β1

)

{L∇f̃ (µk1)}µ
q
k1

+

(

c1c
p−1
2

cmmin dminβ
p−1
1

)

µ
(p−1)q
k1

.

The proof is completed by nothing that L∇f̃ (µk1) = O(1/µk1) and that, from µk1+1 = σµk1 , one
has that µk1 ≤ ξ/σ.

In the following corollary, we will show how to select p and q to achieve the best possible
reduction in the norm of the gradient of the smoothing function.

Corollary 6.2 Under the same assumptions and conditions of Corollary 6.1 and when q = 2
and p = 3

2 , Algorithm 4.1 takes at most O
(

(− log(ξ))ξ−3
)

iterations (and at most
O
(

n(− log(ξ))ξ−3
)

function evaluations) to reduce the smoothing parameter below ξ ∈ (0, 1),
ending such process with

‖∇f̃(xk1 , µk1)‖ = O(n
1
2 ξ). (7)

Proof. The result follows directly from Theorem 6.1 and Corollary 6.1, where the O(1/
√
n)

and O(n) come, respectively, from the cosine measure and the cardinal of a positive spanning
set such as the one used in coordinate search (see Section 2).

One can also count the number of iterations and function evaluations needed to reach
‖∇f̃(xk1 , µk1)‖ ≤ ǫ and µk1 ≤ ξ = n−

1
2 ǫ/C, where C > 0 is the constant that multiplies

10



n
1
2 ξ in the right hand side of (7). By replacing ξ in O

(

(− log(ξ))ξ−3
)

by n−
1
2 ǫ/C, one obtains

the following overall worst case complexity bound in terms of number of iterations

O
(

n
3
2 [− log(ǫ) + log(n)]ǫ−3

)

,

and thus the following overall worst case complexity bound in terms of number of function
evaluations

O
(

n
5
2 [− log(ǫ) + log(n)]ǫ−3

)

. (8)

We can compare this worst case complexity bound on function evaluations to the one achieved
by Nesterov [30] also for the non-smooth and derivative-free case, given in (4), and conclude
that ours is slightly better in terms of the power of n.

Another perspective on the issue of the worst case complexity of Algorithm 4.1 can be taken
by considering µk fixed and already no larger than a prescribed tolerance ξ and to measure
how many iterations would it then be required from direct search to lead to a gradient of the
smoothing function smaller than ǫ. In this case, we can apply directly Theorem 2.4 and conclude
that the number of iterations required would be

O
(

(√
nL∇f̃ (µ)

)
p

min(p−1,1)
ǫ
− p

min(p−1,1)

)

.

When L∇f̃ (µ) = O(1/µ) and µ ≤ ξ = ǫ, one then obtains

O
(

(
√
n)

p

min(p−1,1) ǫ
− 2p

min(p−1,1)

)

,

leading to the optimal choice p = 2 and a worst case cost of O(nǫ−4) direct-search iterations,

and thus O(n2ǫ−4) in function evaluations. If we choose ξ = n−
1
2 ǫ, similar as we did in the

paragraph above, then these bounds become O(n2ǫ−4) and O(n3ǫ−4), respectively. It is thus
interesting to realize that such a cost is worse than the cost of Algorithm 4.1 (in terms of ǫ,
see (8)), suggesting that a strategy where µ is progressively reduced might be advantageous.

Following what Nesterov [29, Page 29] states for first order oracles (see also [34] for the
smooth zero order case), one can consider the following problem class (where one can only
evaluate the objective function and not its derivatives):

Model:
Unconstrained minimization
f Lipschitz continuous
f bounded below

Oracle: Zero order oracle (evaluation of f)

ǫ–solution: µ ≤ ǫ, ‖∇f̃(xappr∗ , µ)‖ ≤ ǫ

where xappr∗ is the approximated solution found (given a starting point x0 for a method). Our
result in the paragraph above implies that the number of calls of the oracle is O(n2ǫ−4), and thus
establishes an upper complexity bound for the above problem class. Moreover, if we redefine
our ǫ–solution as µ ≤ n−

1
2 ǫ/C, ‖∇f̃(xappr∗ , µ)‖ ≤ ǫ, where C > 0 is the constant that multiplies

n
1
2 ξ in the right hand side of (7), the upper complexity bound becomes (8).
We would also like to point out that we have ignored a possible dependence on n in L∇f̃ (µ) =

O(1/µ). Such dependence might occur or not, as we will see in the next two sections (in the
case of Section 8 there is no explicit dependence on n).

11



7 Construction of smoothing functions

As we have seen, smoothing direct-search methods are capable of generating a sequence of
iterates converging to a stationary point associated with the smoothing function. However, it
remains to know if such a point is indeed a Clarke stationary point, and thus determining the
relationship between the sets Gf̃ (x∗) and ∂f(x∗) is of main important for us. We have also
seen that is mandatory to make precise the dependence of the Lipschitz constant L∇f̃ (µ) of the
gradient of the smoothing function explicitly in terms of the smoothing parameter µ. In this
section we will review the results of interest to us on the construction of smoothing functions in
the general case, meaning without assuming a specific structure of the function f to be smoothed.

There are various techniques for constructing a smoothing function. One possible way is
by convolution with mollifiers [33] (see also [17, 36]). A parameterized family or sequence of
measurable functions {ψµ : R

n → [0,+∞), µ ∈ (0,+∞)} is called a (bounded) mollifier or
mollifier sequence if

∫

Rn ψ
µ(z)dz = 1 and if Bµ = {z : ψµ(z) > 0} forms a (bounded) sequence

converging to {0} as µ ↓ 0. A smoothing function can be constructed through convolution or
averaging with mollifiers [33]:

f̃(x, µ) =

∫

Rn

f(x− z)ψµ(z)dz =

∫

Rn

f(z)ψµ(x− z)dz. (9)

It is known (see [33, Example 7.19]) that such a sequence of mollifiers converges pointwise to f ,
i.e., it verifies condition (1) required in the definition of a smoothing function. Furthermore, if the
mollifiers {ψµ} are continuous on R

n, then the functions f̃(·, µ) are continuously differentiable,
(this fact is a direct application of [33, Theorem 9.67] in the case where f is Lipschitz continuous
near x∗), and thus f̃ is indeed a smoothing function of f . Under these assumptions one also
knows from [33, Theorem 9.67] that such f̃ satisfies the gradient consistency property

∂f(x∗) = coGf̃ (x∗),

thus yielding Gf̃ (x∗) ⊆ ∂f(x∗) as desired.
A well known family of mollifiers are the so-called Steklov, defined by setting

ψµ(z) =

{

1/µn if z ∈ [−µ/2, µ/2]n,
0 otherwise,

(10)

used in [17, 22] to construct smoothing functions by averaging or convolution. Such smooth-
ing functions were used in [24] to introduce a derivative-free version of the gradient sampling
algorithm [5]. In particular, it is known that the resulting smoothing function has the form

f̃(x, µ) =
1

µn

∫ x1+µ/2

x1−µ/2
dz1 . . .

∫ xn+µ/2

xn−µ/2
dznf(z).

Furthermore, if f : Rn → R is locally Lipschitz, then the Steklov smoothing function f̃(·, µ) is
continuously differentiable, and its gradient is given by (see [17])

∇f̃(x, µ) =
n
∑

i=1

ei
1

µn

∫ x1+µ/2

x1−µ/2
dz1 . . .

∫ xi−1+µ/2

xi−1−µ/2
dzi−1

∫ xi+1+µ/2

xi+1−µ/2
dzi+1 . . .

∫ xn+µ/2

xn−µ/2

dzn[f(z1, . . . , zi−1, xi +
1

2
µ, zi+1, . . . , zn)− f(z1, . . . , zi−1, xi −

1

2
µ, zi+1, . . . , zn)],

12



where ei is the i–th column of the identity matrix of order n. One can also show that such
a gradient is Lipschitz continuous with Lipschitz constant 2nLf/µ, where Lf is the Lipschitz
constant of f (see [22]).

Smoothing functions can also be developed by convolution with probability density func-
tions [17, 30]. In fact, given a density function ̺ (thus satisfying

∫

Rn ̺(z)dz = 1 and ̺(z) ≥ 0
∀z ∈ R

n), one can define ψµ(z) = ̺(z/µ)/µn and then apply (9). In the approach [30], a Gaus-
sian density function is used and the gradient of the smoothing function has been proved to be
Lipschitz continuous with a constant O(1/µ).

A number of optimization algorithms for non-smooth optimization have been developed
using some form of smoothing of the non-differentiable objective function. One of the earliest
contributions, based on previous work by Ermoliev, was made by Katkovnik [23], in the early
70s. He developed ‘random search algorithms’ as first order methods using the gradient of an
averaged (smoothing) function computed via convolution with mollifiers defined by probability
density functions. Several authors further investigated smoothing in optimization, see Kreimer
and Rubinstein [26] for a summary of those and a generalization of Katkovnik’s work, and the
papers [10, 17, 22].

More recently, smoothing techniques have been used in derivative-based optimization by
Zhang and Chen [36] to derive a smoothing projected gradient method for non-smooth and non-
convex optimization over a constrained set (involving an application to the solution of stochastic
linear complementarity problems where the non-smoothness of the resulting objective function
comes from the min operator), and by Chen and Zhou [11] to develop a smoothing nonlinear
conjugate gradient method for non-smooth and nonconvex unconstrained optimization problems
(solving an application in image restoration where the non-smoothness of the objective function is
determined from the absolute value operator). On the derivative-free side, Liuzzi and Lucidi [27]
have proposed an algorithm for inequality constrained optimization using a smoothing form of
an ℓ∞ penalty function.

8 A smoothing function for ‖F (·)‖1
The ℓ1 norm is widely used in applications of optimization problems. One possible usage is as
an error distance in parameter identification or inverse problems, replacing the role of the ℓ2
norm in least-squares problems. Another popular role is in sparse optimization and compressed
sensing. We are thus interested in defining a smoothing function for the ℓ1 norm and, more
precisely, for a function of the type ‖F (·)‖1 where F is a continuously differentiable vectorial
operator from R

n to R
m.

Such a smoothing function will be provided by first pointing out a smoothing function for
the absolute value and, later, to use composition of functions and non-smooth calculus rules to
pass from | · | to ‖F (·)‖1. Chen and Zhou [11] have introduced the following smoothing function
for | · |:

s̃(t, µ) =

∫ +∞

−∞
|t− µτ |̺(τ)dτ, (11)

where ̺ : Rn → [0,+∞) is a piecewise continuous density function with a finite number of pieces
satisfying

̺(τ) = ̺(−τ) and

∫ +∞

−∞
|τ |̺(τ)dτ < +∞.

13



Let κ =
∫ +∞
−∞ |τ |̺(τ)dτ . The following proposition, which is a special case of [11, Proposition

3.1], describes the relevant properties of s̃(t, µ).

Proposition 8.1 The function s̃(t, µ) defined by (11) has the following properties:
(i) s̃(t, µ) = s̃(−t, µ) for t ∈ R, that is, s̃(·, µ) is symmetric.
(ii) s̃(·, µ) is continuously differentiable on R, and its derivative can be given by

s̃′(t, µ) = 2

∫ t
µ

0
̺(τ)dτ.

(iii) s̃(·, µ) converges uniformly to |t| on R with

|s̃(t, µ)− |t|| ≤ κµ.

(iv) The set of limits of the derivatives s̃′(t, µ) coincides with the Clarke subdifferential of the
absolute value, that is,

{

lim
t→0,µ↓0

s̃′(t, µ)

}

= [−1, 1] = ∂| · |(0) and lim
t→t∗,µ↓0

s̃′(t, µ) =

{

1 t∗ > 0,
−1 t∗ < 0.

Moreover, one has

lim
µ↓0

s̃′(t, µ) =







1 t > 0,
0 t = 0,
−1 t < 0.

(v) For any fixed µ > 0, s̃′(t, µ) is Lipschitz continuous with constant 2κ0/µ, where κ0 is an
upper bound for ̺.

If one considers the following uniform density function [11],

̺(τ) =

{

1 if τ ∈ [−1
2 ,

1
2 ],

0 otherwise,

then, using (11), the smoothing function for | · | corresponding to this density function is

s̃(t, µ) =

{

t2

µ + µ
4 if t ∈ [−µ

2 ,
µ
2 ],

|t| otherwise,

with gradient given by

s̃′(t, µ) =

{ 2t
µ if t ∈ [−µ

2 ,
µ
2 ],

sign(t) otherwise.

The Lipschitz constant of s̃′(·, µ) is 2/µ. Note that this smoothing function is precisely the one
that is derived using the Steklov mollifier (10).

As mentioned in the beginning of this section, we are interested in the minimization of the ℓ1
norm of a vectorial function F : Rn → R

m, where F (x) = (F1(x), . . . , Fm(x))⊤ and each Fi is a
continuous differentiable function (with a Lipschitz continuous gradient), and we are interested
in doing so by means of the smoothing direct-search approach suggested in this paper. Thus,

14



we are looking for a smoothing function of ‖F (·)‖1. The possibility we will explore in this paper
is based on the above given smoothing function for | · | and is given by

F̃ (x, µ) =
m
∑

i=1

s̃(Fi(x), µ). (12)

We will show that F̃ is indeed a smoothing function for ‖F (·)‖1, satisfying the gradient consis-
tency property and exhibiting a Lipschitz continuous gradient with constant of the order of 1/µ.
Such properties will result from the corresponding properties of s̃ and the use of non-smooth
calculus rules for regular functions.

In fact, the absolute value is a regular function, as defined in [12]. A function g : Rn → R

is said to be regular at x if it is Lipschitz continuous near x and, for all v, the traditional
one-sided directional derivative g′(x; v) exists and coincides with g◦(x; v). For instance, all
Lipschitz continuous convex functions and continuous differentiable functions are regular [12,
Proposition 2.3.6]. The following lemma describes the relations of interest to us between the
Clarke subdifferential of sum and composition of functions and the corresponding individual
subdifferentials (for a proof see [12, Theorem 2.3.9]).

Theorem 8.1 Consider a function like h(F (x)), where F : Rn → R
m is Lipschitz continuous

near x and h : Rm → R is Lipschitz continuous near F (x). Then h(F ) is Lipschitz continuous
near x and

∂(h(F ))(x) ⊆ co

{

m
∑

i=1

αiζi : ζi ∈ ∂Fi(x), α = (α1, . . . , αm)⊤ ∈ ∂h(F (x))

}

,

where co denotes the closed convex hull. If h is regular at F (x) and F is continuously differen-
tiable at x, co is superfluous and equality holds.

We are now ready to show the desired properties about our smoothing function (12).

Theorem 8.2 Let F̃ (x, µ) =
∑m

i=1 s̃(Fi(x), µ) be defined as in (12). Then
(i) F̃ is a smoothing function for ‖F‖1.
(ii) F̃ (·, µ) satisfies the gradient consistent property, that is,

{

lim
x→x∗,µ↓0

∇F̃ (x, µ)
}

= ∂‖F‖1(x∗).

(iii) For each µ, ∇F̃ (·, µ) is Lipschitz continuous with a Lipschitz constant of the order of 1/µ.

Proof. (i) From Proposition 8.1.iii and the smoothness of F one can easily show that

lim
z→x∗,µ↓0

F̃ (z, µ) = ‖F (x)‖1.

Furthermore, from Proposition 8.1.ii and the smoothness of F , we obtain continuous gradients
for F̃ (·, µ)

∇F̃ (z, µ) =
m
∑

i=1

s̃′(Fi(x), µ)∇Fi(x),

15



and thus F̃ is a smoothing function of ‖F‖1.
(ii) One has the following derivation

{

lim
x→x∗,µ↓0

∇F̃ (x, µ)
}

=

{

lim
x→x∗,µ↓0

m
∑

i=1

s̃′(Fi(x), µ)∇Fi(x)

}

=

{

m
∑

i=1

lim
x→x∗,µ↓0

s̃′(Fi(x), µ)∇Fi(x)

}

=

{

m
∑

i=1

∇Fi(x∗) lim
x→x∗,µ↓0

s̃′(Fi(x), µ)

}

=
m
∑

i=1

∇Fi(x∗)∂| · |(Fi(x∗))

= ∂‖F‖1(x∗),

where the last equality is justified by Theorem 8.1 and the penultimate one by Proposition 8.1.iv.
(iii) Since, from Proposition 8.1.v, s̃′(·, µ) is Lipschitz continuous, one can easily derive

‖∇F̃ (x, µ)−∇F̃ (y, µ)‖ ≤
m
∑

i=1

‖s̃′(Fi(x), µ)∇Fi(x)− s̃′(Fi(y), µ)∇Fi(y)‖

=
m
∑

i=1

‖s̃′(Fi(x), µ)∇Fi(x)− s̃′(Fi(x), µ)∇Fi(y) + s̃′(Fi(x), µ)∇Fi(y)− s̃′(Fi(y), µ)∇Fi(y)‖

≤
m
∑

i=1

{

|s̃′(Fi(x), µ)|‖∇Fi(x)−∇Fi(y)‖+ |s̃′(Fi(x), µ)− s̃′(Fi(y), µ)|‖∇Fi(y)‖
}

≤
m
∑

i=1

{

|s̃′(Fi(x), µ)|L∇Fi
‖x− y‖+ Ls̃′(µ)|Fi(x)− Fi(y)|‖∇Fi(y)‖

}

≤
m
∑

i=1

(MiL∇Fi
+ Ls̃′(µ)LFi

Ni)‖x− y‖,

where L∇Fi
, LFi

, and Ls̃′(µ) are the Lipschitz constants of respectively ∇Fi, Fi, and s̃′(·, µ),
and Mi and Ni are upper bounds of respectively |s̃′(Fi, µ)| and ‖∇Fi‖ in R

n or in a certain
subdomain or level set.

In summary, we have identified a continuously differentiable smoothing function for f(·) =
‖F (·)‖1, satisfying Gf̃ (x∗) = ∂f(x∗) and for which the gradient is Lipschitz continuous with
constant O(1/µ).

9 Numerical results

We have made a number of experiments regarding the use of smoothing in direct search, on a
test set suggested in [28] consisting of 53 problems of the form minx∈Rn f(x) = ‖F (x)‖1, where F
varies among 22 nonlinear vector functions of the CUTEr collection [19] with 2 ≤ n ≤ 12 and
different initial points were considered. We chose sid-psm as our direct-search solver. This

16



code performed relatively well in a number of benchmarkings [14, 32], especially among direct-
search solvers, in particular due to a search step where a quadratic model is fitted using previous
function evaluations and minimized in a trust region, and due to a poll step where polling points
are ordered for evaluation using a negative simplex gradient.

We will report here only a limited number of the tests performed. We compared the default
version of sid-psm to Algorithm 4.1 where we also applied sid-psm for each value of µk, using
the smoothing function (12) for f(x) = ‖F (x)‖1. Algorithm 4.1 was run using µ0 = 10−2,
r(µ) = max(10−5, µ2) (note that 10−5 is the default stopping tolerance of sid-psm for the
step size parameter), and the update µk+1 = µk/10. The algorithm was stopped when µk
reaches 10−3, which, given the initial value for µ0, amounts in doing 2 major iterations (k = 0, 1).
We refer as Ssid-psm to such a version of Algorithm 4.1.

We start by depicting in Figure 1 the best value of f(x) = ‖F (x)‖1 obtained by the 2
methods/solvers for all the problems.

0 10 20 30 40 50
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Problems

Im
pr

ov
em

en
t i

n 
be

st
 o

bt
ai

ne
d 

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

Figure 1: Difference in best function values obtained for a set of piecewise smooth problems.
Positive (resp. negative) values indicate better performance of Ssid-psm/Algorithm 4.1 (resp.
of sid-psm).

In Figure 2 we show a data profile [28] indicating the percentage of problems solved by the
two solvers under consideration as function of a budget of objective function evaluations (scaled
by n+ 1). A problem is considered solved when

f(x0)− f(x) ≥ (1− θ)[f(x0)− fL],

where θ ∈ (0, 1) is a level of accuracy, x0 is the initial iterate, and fL is the best objective value
found by the two solvers for a budget of 1500 function evaluations. In Figure 2 we set θ = 10−7.

In addition, a performance profile [15] is given in Figure 3, depicting how well a solver
performed relatively to the other in reaching the same (scale invariant) convergence test [16], in
our case chosen as

f(x)− f∗ ≤ θ(|f∗|+ 1|),

17



0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scaled budget of function evaluations

Data Profile for piecewise smooth problems, θ=1e−7

Ssid−psm
sid−psm

Figure 2: Data profiles computed for a set of piecewise smooth problems. Ssid-psm stands for
a version of Algorithm 4.1.

where θ is the accuracy level and f∗ is an approximation for the optimal value of the problem
being tested. For each solver, the respective curve describes (at τ = 1) the fraction of problems
for which the solver performs the best (efficiency) and (for τ sufficiently large) the fraction of
problems solved by the solver (robustness). In Figure 3 we set θ = 10−4. In an attempt to
measure the ability to rigorously solve the problems in hand we set f∗ for each problem to the
best value attained by these 2 solvers and by those also tested in [14].

Figure 1 indicated that the smoothing direct-search approach led to better objective function
values, but did not inform us if such an improvement came at the cost of more function evalu-
ations. The data and performance profiles assured us that indeed one can solve more problems
accurately without paying an additional cost in effort. The data profile of Figure 2 tell us that
the budget needed to achieve the best precision among the two solvers is approximately the same
until a point where sid-psm looses in number of problems ‘solved’. The performance profile of
Figure 3 says that Ssid-psm takes roughly less iterations than sid-psm in approximately 60%
of the problems, loosing in about 30%. In terms of robustness Ssid-psm solves approximately
30% times more problems than sid-psm, where solving here is now related to (an approximated)
optimal value.

Besides varying the accuracy level in data and performance profiles, we also made a number of
other tests trying to measure of the impact of smoothing in the search and poll steps separately.
For instance we turned off the search step, both in sid-psm and in the usage of sid-psm in
Algorithm 4.1. We then tried the default poll step and another one where the ordering of
the polling points is made in a cycling fashion (without the use of a simplex gradient). Since
we observed approximately the same order of improvement in using smoothing direct search as
before, we will omit the details for sake of brevity. These and other experiments will be reported
in the forthcoming PhD thesis of the first author. Overall, we did observe significant gainings
in smoothing a function before applying direct search (when such a smoothing function exists,

18



1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ (log scaled)

Performance Profile for piecewise smooth problems, θ=1e−4

Ssid−psm
sid−psm

Figure 3: Performance profiles computed a the set of piecewise smooth problems, in a logarithmic
scale. Ssid-psm stands for a version of Algorithm 4.1.

and for a type of direct search which does not aim at a set of polling directions dense in the unit
sphere).

10 Conclusions

Establishing a bound on the worst case complexity or cost of direct-search methods is a nontrivial
problem when the function being optimized is non-smooth. In part this is because one needs
an infinity of polling directions to approach some form of stationary in the non-smooth case.
However, even in the simple situation where the objective function is the sum of a smooth term
with a piecewise linear one (minx∈Rn f(x) + ‖Ax − b‖p, with p = 1,∞, see [4]) for which the
number of polling directions can be finite, the authors are incapable of deriving such a bound.

The use of smoothing appears thus as a natural tool to yield the desired bound. As we have
seen in our paper, smoothing direct search is not only globally convergent but also exhibits a
worst case behavior for which the corresponding number of iterations or function evaluations
can be measured. One pays a price in smoothing non-smooth objective functions, in the sense
that the bound in the worst case complexity is at least one order worse than the corresponding
bound for smooth direct search. This extra order of effort is related to the dependence of the
Lipschitz constant of the gradient of the smoothing function on the inverse of the smoothing
parameter.

Finally, it should be pointed out that the results of this paper can be extended to bound and
linear constraints, where the number of positive generators of the tangent cones of the nearly
active constraints is finite.

19



References

[1] M. A. Abramson and C. Audet. Convergence of mesh adaptive direct search to second-order sta-
tionary points. SIAM J. Optim., 17:606–619, 2006.

[2] C. Audet. Convergence results for pattern search algorithms are tight. Optim. Eng., 5:101–122,
2003.

[3] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

[4] C. Bogani, M. G. Gasparo, and A. Papini. Generalized set search methods for piecewise smooth
problems. SIAM J. Optim., 20:321–335, 2009.

[5] J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for nonsmooth,
nonconvex optimization. SIAM J. Optim., 15:751–779, 2005.

[6] N. I. M. Gould C. Cartis and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part II: worst-case function-evaluation complexity. Math. Program., 2012, to appear.

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, Newton’s
and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM J. Optim.,
20:2833–2852, 2010.

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the evaluation complexity of composite function
minimization with applications to nonconvex nonlinear programming. Technical Report naXys-06-
2011, Département de Mathématiques, FUNDP, Namur (B), 2011.

[9] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-order and derivative-free
algorithms for smooth nonconvex minimization. SIAM J. Optim., 22:66–86, 2012.

[10] C. Chen and O. L. Mangasarian. A class of smoothing functions for nonlinear and mixed comple-
mentarity problems. Comput. Optim. Appl., 5:97–138, 1996.

[11] X. Chen and W. Zhou. Smoothing nonlinear conjugate gradient method for image restoration using
nonsmooth nonconvex minimization. SIAM J. Imaging Sciences, 3:765–790, 2010.

[12] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, (reprinted by
SIAM, Philadelphia), 1990.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[14] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm models in
direct search. Comput. Optim. Appl., 46:265–278, 2010.

[15] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Program., 91:201–213, 2002.

[16] E. D. Dolan, J. J. Moré, and T. S. Munson. Optimality measures for performance profiles. SIAM
J. Optim., 16:891–909, 2006.

[17] Y. M. Ermoliev, V. I. Norkin, and R. J.-B. Wets. The minimization of semicontinuous functions:
Mollifier subgradients. SIAM J. Control Optim., 32:149–167, 1995.

[18] R. Garmanjani. Smoothing and Worst Case Complexity for Direct-Search Methods in Non-Smooth
Optimization. PhD thesis, Dept. Mathematics, Univ. Coimbra, 2012.

[19] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a constrained and unconstrained
testing environment, revisited. 29:373–394, 2003.

20



[20] S. Gratton, M. Mouffe, Ph. L. Toint, and M. Weber-Mendonca. A recursive trust-region method
in infinity norm for bound-constrained nonlinear optimization. IMA J. Numer. Anal., 28:827–861,
2008.

[21] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM J. Optim., 19:414–444, 2008.

[22] A. M. Gupal. On a method for the minimization of almost-differentiable functions. Cybernet. Systems
Anal., 13:115–117, 1977.

[23] V. Y. Katkovnik. Method of averaging operators in iteration algorithms for stochastic optimization.
Cybernet. Systems Anal., 4:670–679, 1972.

[24] K. C. Kiwiel. A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM J. Optim., 20:1983–1994, 2010.

[25] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[26] J. Kreimer and R. Y. Rubinstein. Nondifferentiable optimization via smooth approximation: General
analytical approach. Ann. Oper. Res., 39:97–119, 1992.

[27] G. Liuzzi and S. Lucidi. A derivative-free algorithm for inequality constrained nonlinear programming
via smoothing of an ℓ∞ penalty function. SIAM J. Optim., 20:1–29, 2009.

[28] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J. Optim.,
20:172–191, 2009.

[29] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dor-
drecht, 2004.

[30] Y. Nesterov. Random gradient-free minimization of convex functions. Technical Report 2011/1,
CORE, 2011.

[31] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global performance.
Math. Program., 108:177–205, 2006.

[32] L. M. Rios and N. Sahinidis. Derivative-free optimization: A review of algorithms and comparison
of software implementations. 2010.

[33] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 1997, third printing in
2009.

[34] L. N. Vicente. Worst case complexity of direct search. Technical Report 10-17, Dept. Mathematics,
Univ. Coimbra, 2010.

[35] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Math.
Program., 133:299–325, 2012.

[36] C. Zhang and X. Chen. Smoothing projected gradient method and its application to stochastic linear
complementarity problems. SIAM J. Optim., 20:627–649, 2009.

21


