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Abstract. It has been shown recently that the efficiency of direct search methods that use
opportunistic polling in positive spanning directions can be improved significantly by reordering the
poll directions according to descent indicators built from simplex gradients.

The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of
nonsmooth functions in the context of direct search methods like the Generalized Pattern Search
(GPS) and the Mesh Adaptive Direct Search (MADS), for which there exists a convergence analysis
in the nonsmooth setting. Our analysis does not require continuous differentiability and can be
seen as an extension of the accuracy properties of simplex gradients known for smooth functions.
Secondly, we test the use of simplex gradients when pattern search is applied to nonsmooth functions,
confirming the merit of the poll ordering strategy for such problems.
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1. Introduction. Pattern search methods, and more generally, direct search
methods, are directional methods that do not use derivatives. Thus, they can be ap-
plied to nonsmooth functions. The main goal of this paper is to analyze the properties
of simplex gradients when direct search methods are applied to a nonsmooth function
f : Rn −→ R. We are particularly interested in two classes of direct search methods
of the directional type, for which convergence has been analyzed in the nonsmooth
setting, namely generalized pattern search (GPS) and mesh adaptive direct search
(MADS) (see Audet and Dennis [1, 2, 3]). Other classes of direct search methods
have been developed and analyzed, and we refer the reader to the surveys in [15, 20].

Simplex gradients are basically the first order coefficients of polynomial interpo-
lation or regression models, which, in turn, are used in derivative-free trust region
methods. However, simplex gradients can also serve as directions for search or orien-
tation, as suggested by Mifflin [19]. Bortz and Kelley [4] used simplex gradients as
search directions in their implicit filtering method. In the context of the Nelder-Mead
simplex-based direct search algorithm, Kelley [13] used the simplex gradient norm
in a sufficient decrease type condition to detect stagnation, and he used the simplex
gradient signs to orient the simplex restarts. More recently, Custódio and Vicente [8]
suggested several procedures to improve the efficiency of pattern search methods us-
ing simplex derivatives. In particular, they showed that when opportunistic polling is
employed, i.e., polling is terminated at an iteration as soon as a better point is found,
then ordering the poll directions according to a negative simplex gradient can lead to
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a significant reduction in the overall number of function evaluations.
This paper focuses on the unconstrained case and is structured as follows. In

Section 2 we review the basic smooth case properties of simplex gradients. The prop-
erties of simplex gradients of nonsmooth functions are stated and proved in Section 3
for a general application of direct search methods using the concepts of refining subse-
quence and refining direction. The use of simplex gradients in direct search methods
based on positive spanning sets is discussed in Section 4. We confirm in Section 5
that, in particular, it is possible for both GPS and MADS to identify sample sets as
specified in Section 3. We report numerical results in Section 6 for a set of nonsmooth
problems, confirming that ordering the poll directions according to a negative simplex
gradient leads to significant reductions in the overall number of function evaluations,
as it was observed in [8] for smooth problems. The paper ends in Section 7 with some
concluding remarks.

2. Simplex gradients. Consider a function f : Rn −→ R and a finite set of
sampling points. When the sample set is poised for linear interpolation or regres-
sion, simplex gradients are defined as the gradients of the corresponding models.
Depending on the number of points available, simplex gradients can be computed in
determined or underdetermined forms (corresponding to linear interpolation models)
or in overdetermined forms (corresponding to linear regression models).

In the determined case, let us assume that we have a sample set with n + 1
affinely independent points {y0, y1, . . . , yn}. Set S = [ y1 − y0 · · · yn − y0 ] and δ =
[ f(y1)− f(y0) · · · f(yn)− f(y0) ]>. The simplex gradient ∇sf(y0) computed at y0 is
calculated as ∇sf(y0) = S−>δ.

When the number q+1 of points is not necessarily equal to n+1, simplex gradients
can be also regarded as ‘solutions’ of the system

S>∇sf(y0) = δ,(2.1)

where S = [ y1 − y0 · · · yq − y0 ] and δ = [ f(y1) − f(y0) · · · f(yq) − f(y0) ]>. For
instance, when only q + 1 < n + 1 affinely independent points are available, a simplex
gradient can be calculated as the minimum norm solution of the system (2.1).

Affine independence is not possible when q > n. In general, we say that a sample
set is poised for a simplex gradient calculation (or for linear interpolation or regression)
when S is full rank, i.e., when rank(S) = min{n, q}. Thus, if we have a poised set
with q + 1 > n + 1 points, one can compute a simplex gradient as the least squares
solution of the system (2.1).

We can express the simplex gradient as ∇sf(y0) = V Σ−1U>δ/∆ in any of the
cases, where UΣV > is the reduced singular value decomposition (SVD) of S>/∆ and
∆ = max1≤i≤q ‖yi−y0‖. Division by ∆ is important to scale the points to an unitary
ball centered at y0.

For smooth functions, it is easy to derive bounds for the error between the simplex
gradient and the true function gradient. The following result summarizes all the cases
considered above (for proofs see [7] and [14]). The accuracy of these bounds is mea-
sured in terms of ∆. It is assumed that the gradient of f is Lipschitz continuous on
a domain containing the smallest enclosing ball B(y0;∆) = {y ∈ Rn : ‖y− y0‖ ≤ ∆}
of the sample set, centered at y0.

Theorem 2.1. Let {y0, y1, . . . , yq} be a poised sample set for a simplex gradient
calculation in Rn. Assume that ∇f is Lipschitz continuous in an open domain Ω

2



containing B(y0;∆) with constant γ∇f > 0. Then, the error of the simplex gradient
at y0, as an approximation to ∇f(y0), satisfies

‖V̂ >[∇f(y0)−∇sf(y0)]‖ ≤
(
q

1
2
γ∇f

2
‖Σ−1‖

)
∆,

where V̂ = I if q ≥ n and V̂ = V if q < n.

In order to control the quality of the simplex gradient, it is therefore crucial to
monitor the quality of the geometry of the sample set considered, in other words,
the size of ‖Σ−1‖. Conn, Scheinberg, and Vicente in [6, 7] introduced the so-called
notion of Λ–poisedness to measure the quality of sample sets, as well as algorithms
to build or maintain Λ–poised sets. The definition of Λ–poisedness is omitted. For
the purposes of this paper, we say that a poised set {y0, y1, . . . , yq} is Λ–poised, for a
given positive constant Λ > 0, if ‖Σ−1‖ ≤ Λ. A sequence of sample sets is Λ–poised
if all the individual sample sets are.

3. Simplex gradients, refining subsequences, and nonsmooth functions.
Let us start by recalling the definition of a refining subsequence, introduced first by
Audet and Dennis in [1] in the context of GPS. This definition can be extended to
any direct search algorithm that, at each iteration k, samples a poll set or a frame
of the form {xk + αkd : d ∈ Dk}, where Dk is a positive spanning set and αk > 0
is the mesh size or step size parameter. A simple strategy for updating αk consists
of halving it at unsuccessful iterations and maintaining or doubling it at successful
iterations.

A subsequence {xk}k∈K of the iterates generated by a direct search method is said
to be a refining subsequence if two conditions are satisfied: (i) xk is an unsuccessful
iterate (meaning that f(xk) ≤ f(xk + αkd), for all d ∈ Dk); (ii) {αk}k∈K converges
to zero. A point xk satisfying condition (i) is called a mesh local optimizer (in GPS)
or a minimal frame center (in MADS). The analysis of direct search methods like
GPS or MADS assumes that the sequence of iterates generated by the algorithms
lie in compact sets. Hence, we can assume without loss of generality that a refining
subsequence converges to a limit point.

Note that when the function value cannot be calculated one can have f(xk +
αkd) = +∞ for some d ∈ Dk. We must therefore assume that the poll points used
in the simplex gradient calculations are such that f(xk + αkd) < +∞. To build
appropriate simplex gradients at refining subsequences, we will also use the fact that
Dk is a positive spanning set. However, we point out that the fact that the frame
center is minimal (f(xk) ≤ f(xk + αkd), for all d ∈ Dk) is not needed in the analysis.
Of importance to our analysis are the facts that a refining subsequence {xk}k∈K
converges to x∗ and that αk → 0 for k ∈ K.

Of relevance to us are also refining directions associated with refining subse-
quences. Refining directions are limits of subsequences {dk/‖dk‖}, k ∈ J , where
each dk represents a poll direction corresponding to an iterate belonging to a con-
vergent refining subsequence, {xk}k∈K, and J ⊆ K. (Without loss of generality we
can assume J = K.) Refining directions are guaranteed to exist in GPS [1] and
in MADS [3]. In our paper, we will assume for simplification and without loss of
generality that {dk/‖dk‖} converges for every refining subsequence considered.

Finally we will also use the fact that αk‖dk‖ → 0 for k ∈ K, which can be trivially
guaranteed for GPS (since here Dk is contained in a positive spanning set D fixed
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for all k; see [1]) and also for MADS under further appropriate requirements on the
frames (see [3, Definition 2.2]).

The global convergence results for pattern and direct search methods are obtained
by analyzing the behavior of the generalized derivatives of f at the limit points of
refining subsequences. Thus, it is natural to pay particular attention to simplex
gradients calculated at iterates of refining subsequences. As we will see later, since
these iterates are unsuccessful and positive bases have special geometrical properties,
it is possible to calculate Λ–poised sample sets in a number of different ways, some of
which have already been introduced by Custódio and Vicente [8]. For the time being,
all we need is to assume that, given a refining subsequence, it is possible to identify
a subset Zk of the poll set, described as

Zk = {xk + αkd : d ∈ Ek} ⊆ {xk + αkd : d ∈ Dk},

such that

Yk = {xk} ∪ Zk

is Λ–poised for k ∈ K. Let Zk denote the subset of the index set {1, . . . , |Dk|} which
defines the poll points in Zk (or the poll directions in Ek). The simplex gradient is
calculated in an overdetermined form when |Zk| ≥ n + 1, and in a determined or
underdetermined form when |Zk| ≤ n.

First, we show that the subsequence of refining simplex gradients has a limit
point. Let

∆k = max{‖z − xk‖ : z ∈ Zk} = αk max{‖dj
k‖ : dj

k ∈ Ek},

∇sf(xk) = VkΣ−1
k U>

k δk/∆k, and S>k /∆k = UkΣkV >
k ,

where Sk is the matrix whose columns are (xk + αkdj
k) − xk = αkdj

k and δk is the
vector whose components are f(xk +αkdj

k)−f(xk), for all dj
k ∈ Ek. For the result we

need to assume that the number |Zk| of elements used for the overdetermined simplex
gradients remains uniformly bounded. If all Dk are positive bases, since these have a
maximum number of 2n elements, we trivially get |Zk| ≤ 2n. In general we need to
assume, reasonably, that the number |Dk| of elements of the positive spanning sets
Dk is uniformly bounded.

Lemma 3.1. Let {xk}k∈K be a refining subsequence converging to x∗ such that
{Yk}k∈K is Λ–poised. Let f be Lipschitz continuous near x∗. Then, the simplex gra-
dient subsequence {∇sf(xk)}k∈K has at least one limit point.

Proof. Let Ω be a neighborhood of x∗ where f is Lipschitz continuous, with
Lipschitz constant γf . Since the sequence {xk}k∈K converges to x∗, the iterates xk

are in Ω for k sufficiently large. Thus, for all i ∈ Zk and k sufficiently large,∣∣∣∣( δk

∆k

)
i

∣∣∣∣ ≤ |f(xk + αkdi
k)− f(xk)|

αk max{‖dj
k‖ : dj

k ∈ Ek}
≤ γf‖di

k‖
max{‖dj

k‖ : dj
k ∈ Ek}

≤ γf .

From these inequalities, we get

‖∇sf(xk)‖ =
∥∥∥∥VkΣ−1

k U>
k

δk

∆k

∥∥∥∥ ≤ ‖Σ−1
k ‖

√
|Zk| γf ≤ ‖Σ−1

k ‖
√
|Dk| γf .
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Thus, since ‖Σ−1
k ‖ ≤ Λ for all k ∈ K, we conclude that {∇sf(xk)}k∈K is bounded,

from which the statement of the lemma follows trivially.

The next step is to study, in the nonsmooth context, the properties of a limit point
identified in Lemma 3.1 for subsequences of simplex gradients constructed at refining
subsequences. For this purpose, we will make use of Clarke’s nonsmooth analysis [5].
Next we summarize the results we need for locally Lipschitz functions.

Let f be Lipschitz continuous near x∗. The Clarke generalized directional deriva-
tive of f computed at x∗ in the direction v is the limit

f◦(x∗; v) = lim sup
y → x∗

t ↓ 0

f(y + tv)− f(y)
t

.

Since f is Lipschitz continuous near x∗, this limit is well defined and so is the gener-
alized subdifferential (or subgradient)

∂f(x∗) = {s ∈ Rn : f◦(x∗; v) ≥ v>s, ∀v ∈ Rn}.

Moreover,

f◦(x∗; v) = max{v>s : s ∈ ∂f(x∗)}.

The Clarke generalized subdifferential is a nonempty convex set and, as set-valued
mapping, is closed and locally bounded (see [5]). The mean value theorem can be
formulated for locally Lipschitz functions using the Clarke generalized subdifferential.
In fact, if x and y are points in Rn and if f is Lipschitz continuous on an open set
containing the line segment [x, y], then there exists a point z in (x, y) such that

f(y)− f(x) = s(z)>(y − x),(3.1)

for some s(z) ∈ ∂f(z).
A function is strictly differentiable at x∗ if and only if is Lipschitz continuous

near x∗ and there exists a vector ∇f(x∗) such that

lim
x → x∗

t ↓ 0

f(x + tv)− f(x)
t

= ∇f(x∗)>v, ∀v ∈ Rn.

In this case, the Clarke generalized subdifferential reduces to a singleton ∂f(x∗) =
{∇f(x∗)}.

3.1. The Lipschitz continuous case. The first case we consider is when |Zk| ≤
n, in other words, when simplex gradients are determined or underdetermined. This
case is not of great interest since underdetermined simplex gradients do not capture
the appropriate geometrical properties of positive spanning sets. In the limit case
|Zk| = 1, we are dealing with approximations to one-sided directional derivatives.

Theorem 3.2. Let {xk}k∈K be a refining subsequence converging to x∗. Let
us consider a sequence {Yk}k∈K of Λ–poised sets, with |Zk| ≤ n for all k ∈ K, and
assume that dk ∈ Ek is a direction used in the computation of ∇sf(xk) for all k ∈ K.
Assume also that

lim
k → +∞

k ∈ K

dk

‖dk‖
= v and lim

k → +∞
k ∈ K

αk‖dk‖ = 0.

5



If f is Lipschitz continuous near x∗, then {∇sf(xk)}k∈K has a limit point ∇sf(xk) →
∇sf∗, k ∈ L ⊆ K, such that

f◦(x∗; v) ≥ ∇sf
>
∗ v.

Proof. From Lemma 3.1, there exists a subsequence L ⊆ K such that ∇sf(xk) →
∇sf∗ for k ∈ L. From the definition of the simplex gradient ∇sf(xk) when |Zk| ≤ n,
we have

f(xk + αkdk)− f(xk)
αk

= ∇sf(xk)>dk.

Since dk/‖dk‖ → v and αk‖dk‖ → 0 for k ∈ K,

f◦(x∗; v) ≥ lim sup
k → +∞

k ∈ K

f(xk + αk‖dk‖ dk

‖dk‖ )− f(xk)

αk‖dk‖

= lim sup
k → +∞

k ∈ K

f(xk + αk dk)− f(xk)
αk‖dk‖

≥ ∇sf
>
∗ v.

Let us consider now the more interesting case where |Zk| ≥ n+1 (overdetermined
simplex gradients). From the definition of simplex gradient, we have

δk = S>k ∇sf(xk) + Rkδk,(3.2)

where

Rk = I − S>k (SkS>k )−1Sk

is a projector onto the null space of Sk. For convenience, we will denote the rows
of Rk by (ri

k)>, i ∈ Zk. In this subsection we analyze the case where f is Lipschitz
continuous near x∗.

Theorem 3.3. Let {xk}k∈K be a refining subsequence converging to x∗. Let us
consider a sequence {Yk}k∈K of Λ–poised sets, with |Zk| ≥ n + 1 for all k ∈ K, and
assume that dk ∈ Ek is a direction used in the computation of ∇sf(xk) for all k ∈ K.
Assume also that

lim
k → +∞

k ∈ K

dk

‖dk‖
= v and lim

k → +∞
k ∈ K

αk‖dk‖ = 0.(3.3)

If f is Lipschitz continuous near x∗, then {∇sf(xk)}k∈K has a limit point ∇sf(xk) →
∇sf∗, k ∈ L ⊆ K, such that

f◦(x∗; v) ≥ ∇sf
>
∗ v + lim sup

k → +∞
k ∈ L

(
rik

k

)>(
δk

αk‖dk‖

)
,(3.4)
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where ik is the index in Zk for which dk = dik

k ∈ Ek.

Proof. As in the proof of Theorem 3.2, and using Lemma 3.1, we can claim the
existence of a subsequence L ⊆ K such that ∇sf(xk) → ∇sf∗ for k ∈ L. Now, we
express the ik-th row in (3.2) as

f(xk + αkdk)− f(xk)
αk

= ∇sf(xk)>dk +
1
αk

(rik

k )>(δk).

Since dk/‖dk‖ → v and αk‖dk‖ → 0 for k ∈ K,

f◦(x∗; v) ≥ lim sup
k → +∞

k ∈ K

f(xk + αk‖dk‖ dk

‖dk‖ )− f(xk)

αk‖dk‖

= lim sup
k → +∞

k ∈ K

f(xk + αk dk)− f(xk)
αk‖dk‖

= lim sup
k → +∞

k ∈ K

{
∇sf(xk)>dk

‖dk‖
+ (rik

k )>
(

δk

αk‖dk‖

)}

≥ ∇sf
>
∗ v + lim sup

k → +∞
k ∈ L

(rik

k )>
(

δk

αk‖dk‖

)

and the proof is concluded.
Theorem 3.3 should be primarily regarded as a first step to understand the use

of overdetermined simplex gradients in the nonsmooth setting. It illustrates the dif-
ficulties that appear due to the nonzero least-squares residual term.

3.2. The strictly differentiable case. To better understand Theorem 3.3 and
the role of the lim sup term in (3.4), let us focus now on the case where |Zk| is constant
for all k ∈ K and f is strictly differentiable at x∗. As an example, let us look at the
case of coordinate search, where Dk = [In − In] for all k (and In = [ e1 · · · en ] stands
for the identity matrix of size n). Let us consider the calculation of overdetermined
simplex gradients using all the poll points (|Zk| = 2n). It is easy to see that

Rk = I2n − S>k (SkS>k )−1Sk = 0.5
[

In In

In In

]
.

Thus, what we get in this case from Theorem 3.3 are the following 2n inequalities

f ′(x∗; ei) ≥ ∇sf
>
∗ ei + 0.5 [f ′(x∗; ei) + f ′(x∗;−ei)] , i = 1, ..., n,

f ′(x∗;−ei) ≥ ∇sf
>
∗ (−ei) + 0.5 [f ′(x∗; ei) + f ′(x∗;−ei)] , i = 1, ..., n.

Since f is strictly differentiable at x∗, we also get f ′(x∗; ei) + f ′(x∗;−ei) = 0 and,
thus, the extra terms in the above inequalities (which come from the lim sup term in
(3.4)) vanish. The following corollary summarizes a consequence of Theorem 3.3 in
the strictly differentiable case.

Corollary 3.4. Let the assumptions of Theorem 3.3 hold. Assume further that
the function f is strictly differentiable at x∗, |Zk| is constant for all k ∈ K, and the

7



normalized form of Ek given by Ek/‖dk‖, where dk ∈ Ek is the direction mentioned
in Theorem 3.3, converges to Vv in K. Then, for the refining direction v ∈ Vv given
by (3.3),

f◦(x∗; v) =
(

f ′(x∗; v) = ∇f(x∗)>v
)

= ∇sf
>
∗ v.

Proof. First, we point out that

Rk = I − (Ek/‖dk‖)>
(
(Ek/‖dk‖)(Ek/‖dk‖)>

)−1
(Ek/‖dk‖),

and, as a result, Rk → R∗ ≡ I − V >
v (VvV >

v )−1Vv in K. The result stated in the
corollary can then be obtained by replacing the last two inequalities of the proof of
Theorem 3.3 by equalities. Note that the lim sup term in (3.4) is, in fact, always zero:(

I − V >
v (VvV >

v )−1Vv

)
f ′(x∗;Vv) =

(
I − V >

v (VvV >
v )−1Vv

)
V >

v ∇f(x∗) = 0,

where f ′(x∗;Vv) is the vector formed by the directional derivatives of f at x∗ along
the directions in Vv.

Note that Vv depends on v since the normalization of the columns in Ek is done
with respect to ‖dk‖, which, in turn, is associated with the refining direction v. Sup-
pose now that Corollary 3.4 is applicable to a set of linearly independent refining
directions v ∈ V for which Vv = V for all v. In this case, as a result of Corollary 3.4,
applied for all v ∈ V , we would conclude that ∇sf∗ = ∇f(x∗).

Our next theorem focuses exclusively on the case where f is strictly differentiable
at the limit point x∗ of a refining subsequence. The result of this theorem is only true
for determined or overdetermined simplex gradients (|Zk| ≥ n). However, it is true
for any cardinal |Zk| = |Ek| ≥ n and it does not require any assumption on limits of
normalized directions of Ek.

Theorem 3.5. Let {xk}k∈K be a refining subsequence converging to x∗ such that
{Yk}k∈K is Λ–poised and |Zk| ≥ n for all k ∈ K. Let f be strictly differentiable at x∗.
Then, there exists a subsequence of indices L ⊆ K such that

lim
k → +∞

k ∈ L

∇sf(xk) = ∇f(x∗).

Proof. Since f is strictly differentiable at x∗, then it is Lipschitz continuous
near x∗ and we can apply Lemma 3.1. Let L ⊆ K be the index set for which the
corresponding subsequence of simplex gradients converges.

From the mean value theorem (3.1) for locally Lipschitz functions, we have, for
all i ∈ Zk and k ∈ L sufficiently large, that

f(xk + αkdi
k)− f(xk) = αks(zi

k)>di
k,

where zi
k is a point in the line segment (xk, xk + αkdi

k) and s(zi
k) ∈ ∂f(zi

k). Now,
because ∂f is locally bounded, the sequence {s(zi

k)}k∈L is bounded. But, since ∂f is
a closed set-valued mapping and zi

k → x∗ for k ∈ L, any limit point of {s(zi
k)}k∈L is

necessarily in ∂f(x∗). Thus, s(zi
k) → ∇f(x∗) for k ∈ L.
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Now we write for all i ∈ Zk,

f(xk + αkdi
k)− f(xk) = αk∇f(x∗)>di

k + αk[s(zi
k)−∇f(x∗)]>di

k.

Let r̄k denote the vector of dimension |Zk| and components [s(zi
k) − ∇f(x∗)]>di

k.
Then,

δk = S>k ∇f(x∗) + αkr̄k

and

∇sf(xk) ≡ (SkS>k )−1Skδk = ∇f(x∗) + αk(SkS>k )−1Skr̄k.

Moreover, note that

αk(SkS>k )−1Skr̄k =
αk

∆k

[
(Sk/∆k)(Sk/∆k)>

]−1
(Sk/∆k)r̄k.(3.5)

Now, let r̃k denote the vector of dimension |Zk| and components ‖s(zi
k)−∇f(x∗)‖.

One can easily prove that

‖r̄k‖ ≤ max{‖dj
k‖ : dj

k ∈ Ek}‖r̃k‖.

Thus, from this bound, (3.5), and the Λ–poisedness of {Yk}k∈K,∥∥αk(SkS>k )−1Skr̄k

∥∥ ≤ 1
max{‖dj

k‖ : dj
k ∈ Ek}

‖Σ−1
k ‖‖r̄k‖ ≤ Λ ‖r̃k‖.

The proof is thus concluded from the fact that r̃k → 0 for k ∈ L.

The result of Theorem 3.5 cannot possibly be true for simplex gradients computed
with less than n + 1 points (|Zk| < n). Even in the smooth case such result would
not be valid as one could infer from Theorem 2.1, where V̂ 6= I when q < n. From
the proof of Theorem 3.5, we have

‖∇f(x∗)−∇sf(xk)‖ ≤ Λ ‖r̃k‖, r̃k → 0 (for k ∈ L),

which is a nonsmooth counterpart of Theorem 2.1.

4. Applications in direct search methods. A point x∗ at which f is locally
Lipschitz is (Clarke) stationary if f◦(x∗; d) ≥ 0, for all d in Rn. If the function f
is strictly differentiable at x∗ then, for ensuring the stationarity of x∗, it suffices to
show that f◦(x∗; d) ≥ 0,∀d ∈ D, where D is a positive spanning set for Rn. In this
context, the material of Section 3 suggests a new stopping criterion for an algorithm
that polls a positive basis at each iteration. In fact, if at an unsuccessful iteration

∇sf(xk)>(αkd) ≥ −εtol, ∀d ∈ Ek,

for a given tolerance εtol > 0, then it could be appropriate to stop the algorithm. We
should have |Zk| ≥ n + 1. A natural choice is Ek = Dk. Our numerical experience
has shown, however, that the use of this stopping criterion has an effect similar to the
use of a stopping criterion in which the algorithm would stop if the size of αk follows
below a prescribed tolerance.

9



The simplex gradient can also be used to reorder the poll directions before sam-
pling the poll points. This strategy was suggested by Custódio and Vicente [8], in the
context of generalized pattern search, but it can be applied to any algorithm that polls
using a positive spanning set. In fact, we can define a descent indicator by considering
−∇sf(xk) and order the poll vectors according to increasing magnitudes of the angles
between this descent indicator and the poll directions. Based on a test set of smooth
problems, and in the context of coordinate search, it has been observed that ordering
the poll directions using simplex gradients can reduce the average number of function
evaluations more than 50% [8]. Numerical results for the application of this strategy
to nonsmooth problems will be reported in Section 6.

The last part of this section addresses the study of poisedness and Λ–poisedness
of poll sets. The Λ–poisedness of the sequences of poll sets will be then analyzed in
more detail in Section 5 for the context of particular algorithmic settings.

Positive bases for Rn must have between n + 1 and 2n vectors (see [9]). Positive
bases with n+1 (2n) elements are called minimal (maximal). The most used positive
bases in practice probably are the ones of the form [B −B ] or [B −

∑n
i=1 bi ], where

B is a nonsingular matrix in Rn×n (see [17]).
The question that arises is how to compute overdetermined simplex gradients from

poll points defined by positive spanning sets, in other words how to identify poised
poll sets. One possible approach is to use all the poll directions, in other words, all
the vectors in each positive spanning set used for polling. It is easy to see that the
corresponding overdetermined simplex gradients are well-defined in this circumstance
(see Proposition 1). Furthermore, this proposition also tells us that if cosine measures
of positive spanning sets are bounded away from zero then the corresponding poll sets
are Λ–poised. It is known [15] that the cosine measure

κ(D) = min
v∈Rn, v 6=0

max
d∈D

v>d

‖v‖‖d‖
of a positive basis or positive spanning set D is always positive.

Proposition 1. Let D be a positive spanning set for Rn. Let ‖d‖ ≥ dmin > 0
for all d ∈ D. Then D is full rank and

‖Σ−1‖ ≤ 1
dminκ(D)

,

where D> = UΣV >.

Proof. Since ‖d‖ ≥ dmin,∀d ∈ D, we have

κ(D) = min
‖v‖=1

max
d∈D

v>d

‖d‖

≤ 1
dmin

min
‖v‖=1

max
d∈D

|v>d| = 1
dmin

min
‖v‖=1

‖D>v‖∞

≤ 1
dmin

min
‖v‖=1

‖D>v‖.

The Courant-Fischer inequalities applied to singular values (see, for example, [12])
allow us to conclude that

κ(D) ≤ 1
dmin

min
‖v‖=1

‖D>v‖ =
1

dmin‖Σ−1‖
.
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5. Two algorithmic contexts. This section is devoted to the validation of the
conditions needed for the theorems stated in Section 3 in the context of two differ-
ent direct search methods. These results were established by Audet and Dennis for
generalized pattern search (GPS) in [1] and for mesh adaptive direct search (MADS)
in [3].

5.1. Generalized pattern search. GPS allows the use of different positive
spanning sets Dk at each iteration, but all Dk must be chosen from a positive spanning
set D. As a result, the number of possible distinct positive spanning sets Dk is finite,
and thus, so is the number of different direction sets Ek ⊆ Dk used in the computation
of simplex gradients. As a result, all refining subsequences {Yk}k∈K of poised poll
sets are Λ–poised for some Λ > 0 only dependent on D. The computation of poised
poll sets Yk for overdetermined simplex gradients can adopt the choice Ek = Dk for
instance.

The existence of a convergent refining subsequence for a sequence of iterates
generated by GPS is proved in [1, Theorem 3.6]). From the finiteness of D, we
trivially guarantee αk‖dk‖ → 0 and the existence of refining directions.

5.2. Mesh adaptive direct search. The poll set or frame in MADS is of the
form {xk + ∆m

k d : d ∈ Dk}, where ∆m
k > 0 represents a mesh size parameter and Dk

is a positive spanning set not necessarily extracted from a single positive spanning
set D. One can have, in MADS, an infinite number of distinct positive spanning
sets Dk, but each d in Dk must be a nonnegative integer combination of directions
in a fixed positive basis D. MADS considers also a poll size parameter ∆p

k > 0, but
we omit that part of the description of the algorithm since it plays no role in our
discussion. In the context of our paper we have αk = ∆m

k .
The existence of a convergent refining subsequence for a sequence of iterates

generated by MADS is proved in [3]. From the relationship between ∆m
k and ∆p

k,
it is known that αk‖dk‖ → 0 for all refining subsequences. Refining directions are
guaranteed to exist in the unconstrained case.

Audet and Dennis [3, Proposition 4.2] suggested a practical implementation of
MADS, called LTMADS, that generates a dense set of poll directions in Rn with
probability one, satisfying all MADS requirements. The positive spanning sets Dk in
LTMADS are of the form [Bk −Bk ] or [ Bk −

∑n
j=1(bk)j ].

Let us start by looking at the maximal case [ Bk −Bk ]. If we are interested in
overdetermined simplex gradients one can set Ek = Dk = [ Bk − Bk ]. In this case,
Sk = αk[Bk −Bk ] and ∆k = αk max{‖(bk)i‖ : (bk)i ∈ Bk}.

Now let us look at the minimal case [Bk −
∑n

j=1(bk)j ]. The use of overdetermined
simplex gradients is also straightforward. We can set Ek = Dk = [Bk −

∑n
j=1(bk)j ].

In this case, Sk = αk[Bk −
∑n

j=1(bk)j ] and ∆k = αk max{‖ −
∑n

j=1(bk)j‖, ‖(bk)i‖ :
(bk)i ∈ Bk}.

From the fact that the smallest singular value of a matrix does not decrease
when rows or columns are added, we can infer, for both cases, that the corresponding
sequences of sample sets {Yk}k∈K are Λ–poised if the inverse of the matrix αkBk/∆k

is uniformly bounded in K. Let us see that that is the case for the maximal basis.
The definition of ∆k is slightly different in the minimal case, but the proof is similar.

The matrix Bk in LTMADS results from row and column permutations of a lower
triangular matrix Lk, where each diagonal element is given by ±1/

√
αk and the lower
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diagonal elements are integers in the open interval
(
−1/

√
αk, 1/

√
αk

)
. Thus, since

the 2-norm of a matrix is invariant under row and column permutations and from the
property of singular values mentioned above,

‖Σ−1
k ‖ ≤ ‖(αkBk/∆k)−1‖ = ‖(αkLk/∆k)−1‖.(5.1)

One can see that αkLk is a lower triangular matrix with diagonal elements ±√αk and
lower diagonal elements in the interval (−√αk,

√
αk). So, the norms of the columns

of αkLk are in [
√

αk,
√

nαk) and one can observe that αkLk/∆k is a lower triangular
matrix with diagonal elements in (1/

√
n, 1] in absolute value.

The 1-norm of the inverse of a nonsingular lower triangular matrix L of dimen-
sion n can be bounded by

‖L−1‖1 ≤ (β1 + 1)n−1

β2
,

where β1 = maxi>j |`ij |/|`ii| and β2 = mini |`ii| ([16]; see also [11]). Thus, we obtain
(with β1 < 1 and β2 > 1/

√
n):

‖(αkLk/∆k)−1‖ ≤
√

n‖(αkLk/∆k)−1‖1 ≤ n 2n−1.(5.2)

Finally, from (5.1) and (5.2), we conclude that {Yk}k∈K is Λ–poised with Λ = n2n−1.

6. Numerical experiments. We collected a set of nonsmooth functions from
the nonsmooth optimization literature. As far as we could verify all the functions are
continuous. Several types of nondifferentiability are represented. The list of problems
is given in Table 6.1.

problem source dimension
activefaces [10] 20

elattar [18] 6
EVD61 [18] 6
filter [18] 9
goffin [18] 50
HS78 [18] 5

L1HILB [18] 50
MXHILB [18] 50
osborne2 [18] 11
PBC1 [18] 5
polak2 [18] 10
shor [18] 5

wong1 [18] 7
wong2 [18] 10

Table 6.1
Test set of nonsmooth functions.

In Table 6.2 we report the results of two (generalized) pattern search (GPS)
methods on this test set. The basic version corresponds to a simple implementation
of coordinate search with opportunistic pooling, where the positive basis used for
polling is [ I −I ]. No search step is considered. The mesh size parameter is halved in
unsuccessful iterations and kept constant in successful iterations. The other version
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order differs from the basic one only in the fact that the polling vectors are ordered
according to increasing angles with a descent indicator (the negative simplex gradi-
ent). All previously sample points are candidates for the simplex gradient calculations
(store-all mode in [8]).

Our implementation looks at all points at which the objective function was pre-
viously evaluated to attempt to identify a Λ–poised set of points (Λ was set to 100)
with cardinality as large as possible between (n + 1)/2 and 2n + 1. In case of success
in identifying a Λ–poised set, a simplex gradient is built and used for ordering the poll
basis. Otherwise, the order considered for the polling vectors is maintained from the
last iteration. We use all iterations, and not just those from the refining subsequences,
as we try to capture as much information as possible from previous evaluations of f .
For more details see [8].

fevals fvalue
problem fbest basic order basic order

activefaces 0.00e+00 913 713 2.30e+00 2.30e+00
elattar 5.60e-01 1635 569 6.66e+00 6.91e-01
EVD61 3.49e-02 538 335 3.16e-01 9.07e-02
filter 6.19e-03 370 333 9.50e-03 9.50e-03
goffin 0.00e+00 22526 17038 0.00e+00 0.00e+00
HS78 -2.92e+00 329 212 -1.52e+00 2.07e-04

L1HILB 0.00e+00 3473240 7660 2.33e+00 2.20e-01
MXHILB 0.00e+00 26824 3164 1.24e+00 1.24e+00
osborne2 4.80e-02 727 761 2.80e-01 1.01e-01
PBC1 2.23e-02 287 264 4.39e-01 4.34e-01
polak2 5.46e+01 2179 1739 5.46e+01 5.46e+01
shor 2.26e+01 215 257 2.43e+01 2.34e+01

wong1 6.81e+02 343 366 6.85e+02 6.85e+02
wong2 2.43e+01 819 763 3.97e+01 2.58e+01

Table 6.2
Ordering poll vectors using simplex gradients on a set of nonsmooth problems. fbest is the best

function value reported in the source reference, fevals is the number of functions evaluations taken,
and fvalue is the final function value computed.

The results show clearly that the ordering strategy based on simplex gradients for
nonsmooth functions leads to better performance. The average reduction in function
evaluations was around 27%. In some cases the reduction is significant and when an
increase occurs it is relatively small. The average reduction of function evaluations
reported in [8] for similar simplex derivatives based strategies was around 50% for
continuously differentiable problems. The application of direct search methods to
nonsmooth functions is however less well understood in practice and the sources for
different numerical behavior are greater.

7. Concluding remarks. In this paper we analyzed the properties of simplex
gradients computed for nonsmooth functions in the context of direct search methods of
directional type, like GPS and MADS. We proved that the limit points of sequences
of simplex gradients can be used to derive estimates for the Clarke’s generalized
directional derivatives of the objective function. In particular, when assuming strict
differentiability of the objective function, a subsequence of simplex gradients is proved
to converge to the exact function gradient.

These theoretical results support the application of the simplex gradient ordering
strategies, proposed in [8], when such direct search methods are used for nonsmooth
optimization. The numerical experiments presented in this paper for a test set of
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nonsmooth functions have confirmed a significant improvement in terms of number of
function evaluations when using the simplex gradient ordering.
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