
USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN

SEARCH METHODS

A. L. CUSTÓDIO ∗ AND L. N. VICENTE †

Abstract. In this paper, we introduce ways of making pattern search more efficient by reusing
previous evaluations of the objective function, based on the computation of simplex derivatives (e.g.,
simplex gradients).

At each iteration, one can attempt to compute an accurate simplex gradient by identifying a
sampling set of previously evaluated points with good geometrical properties. This can be done
using only past successful iterates or by considering all past function evaluations.

The simplex gradient can then be used to reorder the evaluations of the objective function
associated with the directions used in the poll step or to update the mesh size parameter according
to a sufficient decrease criterion, neither of which requires new function evaluations.

We present these procedures in detail and apply them to a set of problems from the CUTEr
collection. Numerical results show that these procedures can enhance significantly the practical
performance of pattern search methods.

Key words. derivative free optimization, pattern search methods, simplex gradient, poll order-
ing, multivariate polynomial interpolation, poisedness

AMS subject classifications. 65D05, 90C30, 90C56

1. Introduction. We are interested in this paper in designing efficient (derivati-
ve-free) pattern search methods for nonlinear optimization problems. We focus our
attention on unconstrained optimization problems of the form minx∈Rn f(x).

The curve representing the objective function value as a function of the number
of function evaluations frequently exhibits an L-shape for pattern search runs. This
class of methods, perhaps because of their directional features, is relatively good at
quickly decreasing the objective function from its initial value. However, they can be
slow thereafter and especially towards stationarity, when the frequency of unsuccessful
iterations tends to increase.

There has not been much effort in trying to develop efficient serial implemen-
tations of pattern search methods for the minimization of general functions. Some
attention has been paid to parallelization (see Hough, Kolda, and Torczon [14]). In
the context of generating set search methods, Frimannslund and Steihaug [12] rotate
the generating sets based on curvature information extracted from function values.
Other authors have considered particular instances where the problem structure can
be exploited efficiently. Price and Toint [20] examined how to take advantage of par-
tial separability. Alberto et al [2] have shown ways of incorporating user-provided
function evaluations. Abramson, Audet, and Dennis [1] looked at the case where
some incomplete form of gradient information is available.

The goal of this paper is to develop strategies for improving the efficiency of the
current pattern search iteration, based on function evaluations obtained at previous
iterations. We make no use or assumption about the structure of the objective func-
tion, so that one can apply the techniques here to any functions (in particular, those

∗Departamento de Matemática, FCT-UNL, Quinta da Torre 2829-516 Caparica, Portugal
(alcustodio@fct.unl.pt). Support for this author was provided by Centro de Matemática da Uni-
versidade de Coimbra, Centro de Matemática e Aplicações da Universidade Nova de Lisboa, Fundação
Calouste Gulbenkian, and by FCT under grant POCI/MAT/59442/2004.

†Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt). Support for this author was provided by Centro de Matemática da Universidade
de Coimbra and by FCT under grant POCI/MAT/59442/2004.

1

resulting from running black-box codes or performing physical experiments). More
importantly, these strategies (i) require no extra function evaluation and (ii) do not
interfere with existing requirements for global convergence.

The paper is organized as follows. Section 2 describes the pattern search frame-
work over which we introduce the material of this paper. Section 3 summarizes geo-
metrical features of sample sets (Λ–poisedness) and simplex derivatives, like simplex
gradients and simplex Hessians.

The key ideas of this paper are reported in Section 4, where we show how to
use sample sets of points previously evaluated in pattern search to compute simplex
derivatives. The sample sets can be built by storing points where the function has been
evaluated or by storing only points which lead to a decrease. The main destination
of this computation is the efficient ordering of the directions used for polling. In fact,
a descent indicator direction (like a negative simplex gradient) can be used to order
the polling directions according to a simple angle criterion.

In Section 5 we describe one way of ensuring sample sets with adequate geom-
etry at iterations succeeding unsuccessful ones. We study the pruning properties of
negative simplex gradients in Section 6. Other uses of simplex derivatives in pat-
tern search are suggested in Section 7, namely one way of updating the mesh size
parameter according to a sufficient decrease condition.

These ideas were tested in a set of CUTEr [13] unconstrained problems, collected
from papers on derivative-free optimization. The corresponding numerical results
are reported in Section 8 and show the effectiveness of using sampling-based simplex
derivatives in pattern search. Section 9 states some concluding remarks and ideas for
future work. The default norms used in this paper are Euclidean.

2. Pattern search. Pattern search methods are directional methods that make
use of a finite number of directions with appropriate descent properties. In the un-
constrained case, these directions must positively span Rn. A positive spanning set
is guaranteed to contain one positive basis, but it can contain more. A positive basis
is a positive spanning set which has no proper subset positively spanning Rn. Posi-
tive bases have between n + 1 and 2n elements. Properties and examples of positive
bases can be found in [2, 10, 17]. If the objective function possesses certain smooth-
ness properties and the number of positive bases used remains finite, then pattern
search is known to exhibit global convergence to stationary points in the lim inf sense
(see [3, 17]).

We present pattern search methods in the generalized format introduced by Audet
and Dennis [3]. The positive spanning set used is represented by D, and its cardinality
by |D|. It is convenient to regard D as an n × |D| matrix whose columns are the
elements of D. A positive basis in D is denoted by B and is also viewed as a matrix
(an n × |B| column submatrix of D).

At each iteration k of a pattern search method, the next iterate xk+1 is selected
among the points of a mesh Mk, defined as

Mk = {xk + αkDz : z ∈ Z
|D|
+ },

where Z+ is the set of nonnegative integers. This mesh is centered at the current
iterate xk, and its fineness is defined by the mesh size (or step size) parameter αk > 0.
Each direction d ∈ D must be of the form d = Gz̄, z̄ ∈ Zn, where G is a nonsingular
(generating) matrix. This property is crucial for global convergence, ensuring that
the mesh has only a finite number of points in a compact set (provided that the mesh

2

size parameter is also updated according to some rationality requirements, as we will
point out later).

The process of finding a new iterate xk+1 ∈ Mk can be described in two phases
(the search step and the poll step). The search step is optional and unnecessary for the
convergence properties of the method. It consists of evaluating the objective function
at a finite number of points lying on the mesh Mk. The choice of points in Mk is totally
flexible as long as its number remains finite. The points could be chosen according to
specific application properties or following some heuristic algorithm. The search step
is declared successful if a new mesh point xk+1 is found such that f(xk+1) < f(xk).

The poll step is only performed if the search step has been unsuccessful. It
consists of a local search around the current iterate, exploring the points in the mesh
neighborhood defined by the parameter αk and a positive basis Bk ⊂ D:

Pk = {xk + αkb : b ∈ Bk} ⊂ Mk.

We call the points xk +αkb ∈ Pk the polling points and the vectors b ∈ Bk the polling
vectors or polling directions.

The purpose of the poll step is to ensure decrease in the objective function for
sufficiently small mesh sizes. Provided that the function retains some differentiability
properties, one knows that the poll step must be eventually successful, unless the
current iterate is a stationary point. In fact, given any vector w in Rn, there exists
at least one vector b in Bk such that w⊤b > 0 (see [10]). For instance, if the function
f is continuously differentiable and one selects w = −∇f(xk), then one is guaranteed
the existence of a descent direction in Bk.

The polling vectors (or points) are ordered according to some criterion in the poll
step. The report [18] presents two distinct classes of pattern search algorithms, namely
the rank ordering and the positive bases pattern search methods. In the context of
rank ordering pattern search, it is suggested ordering the simplex vertices, but with
the single purpose of identifying the vertices with the best and the worst objective
function values in order to compute a crude estimate of the direction of steepest
descent. The authors explicitly state in [18] that their intention was not reordering
the remaining vertices. Most papers do not address the issue of poll ordering at all
and, as a result, numerical testing is typically done using the ordering in which the
vectors are originally stored. Another ordering we discuss later consists of bringing
into the first column (in Bk+1) the polling vector bk associated with the most recent
successful polling iterate (f(xk + αkbk) < f(xk)). This ordering procedure has been
called dynamic polling (see Audet and Dennis [4]). Our presentation of pattern search
assumes that poll ordering is specified before polling starts.

If the poll step also fails to produce a point with a lower objective function value
f(xk), then both the poll step and the iteration are declared unsuccessful. In this
situation the mesh size parameter is decreased. On the other hand, the mesh size is
held constant or increased if, in either the search or poll step, a new iterate is found
yielding objective function decrease.

The class of pattern search methods used in this paper is described in Figure 2.1.
Our description follows the one given in [3] for the generalized pattern search. We
leave three procedures undetermined in the statement of the method: the search

procedure in the search step, the order procedure that determines the order of the
polling directions, and the mesh procedure that updates the mesh size parameter.
These procedures are called within squared brackets for better visibility.

The search and order routines are not asked to meet any requirements for global

3

Pattern Search Method

Initialization

Choose x0 and α0 > 0. Choose a positive spanning set D. Select all constants needed
for procedures [search], [order], and [mesh]. Set k = 0.

Search step

Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating the
function only at a finite number of points in Mk. If such a point is found, then set
xk+1 = x, declare the iteration as successful, and skip the poll step.

Poll step

Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following the order
determined. If a polling point xk +αkbk is found such that f(xk + αkbk) < f(xk), then
stop polling, set xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise
declare the iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter

Call [mesh] to compute αk+1. Increment k by one and return to the search step.

Fig. 2.1. Class of pattern search methods used in this paper.

procedure mesh

The constant τ must satisfy τ ∈ Q and τ > 1, and should be initialized at iteration
k = 0 together with jmax ∈ Z, jmax ≥ 0, and jmin ∈ Z, jmin ≤ −1.

If the iteration was successful, then maintain or expand the mesh by taking

αk+1 = τ j
+

k αk, with j+

k ∈ {0, 1, 2, . . . , jmax}. Otherwise, contract the mesh by

decreasing the mesh size parameter αk+1 = τ j
−

k αk, with j−k ∈ {jmin, . . . ,−1}.

Fig. 2.2. Updating the mesh size parameter (for rational lattice requirements).

convergence purposes (except for finiteness of the number of mesh points considered
in search).

The mesh procedure, however, must update the mesh size parameter as described
in Figure 2.2. The most common choice is to divide the parameter in half at unsuc-
cessful iterations and to keep it or double it at successful ones. As noted by Hough,
Kolda, and Torczon [14], increasing the mesh size parameter for all successful itera-
tions can result into an excessive number of later contractions, each one requiring a
complete polling, thus leading to an increase in the total number of function evalu-
ations required. A possible strategy to avoid this behavior (fitting the procedure of
Figure 2.2) has been suggested in [14] and consists of expanding the mesh only if two
consecutive successful iterates have been computed using the same direction.

The global convergence analysis for this class of pattern search methods is divided
into two parts. The first part establishes that a subsequence of mesh size parameters
goes to zero. This result was first proved by Torczon in [21] and it is stated here as
Theorem 2.1.

Theorem 2.1. Consider a sequence {xk} of pattern search iterates. If L(x0) =
{x ∈ Rn : f(x) ≤ f(x0)} is compact, then the sequence of the mesh size parameters

4

satisfies lim inf
k→+∞

αk = 0.

The second part of the analysis requires some differentiability properties of the
objective function, and can be found, for instance, in [3, 17]. We formalize it here for
unconstrained minimization.

Theorem 2.2. Consider a sequence {xk} of pattern search iterates. If L(x0) =
{x ∈ Rn : f(x) ≤ f(x0)} is compact, then there exists at least one convergent sub-
sequence {xk}k∈K (with limit point x∗) of unsuccessful iterates for which the corre-
sponding subsequence of the mesh size parameters {αk}k∈K converges to zero. If f is
strictly differentiable near x∗, then ∇f(x∗) = 0. If f is continuously differentiable in
an open set containing L(x0), then lim inf

k−→+∞
‖∇f(xk)‖ = 0.

Pattern search and direct search methods for unconstrained optimization are sur-
veyed in the comprehensive SIAM Review paper of Kolda, Lewis, and Torczon [17].

3. Simplex derivatives. A simplex derivative of order one is known as a simplex
gradient. Simplex gradients were used by Bortz and Kelley [5] in their implicit filtering
method, which can be viewed as a line search method based on simplex gradients.
Tseng [22] developed a class of simplex-based direct search methods imposing sufficient
decrease conditions. He suggested the use of the norm of a simplex gradient in a
stopping criterion for his class of methods. No numerical results were reported with
this criterion, and no other use of the simplex gradient was suggested. In the context of
the Nelder-Mead simplex-based direct search algorithm, Kelley [15] used the simplex
gradient norm in a sufficient decrease type condition to detect stagnation, and the
simplex gradient signs to orient the simplex restarts.

Calculation of a simplex gradient first requires selection of a set of sample points.
The geometrical properties of the sample set determine the quality of the correspond-
ing simplex gradient as an approximation to the exact gradient of the objective func-
tion. In this paper, we use (determined) simplex gradients as well as underdetermined
and overdetermined (or regression) simplex gradients.

In the determined case, a simplex gradient is computed by first sampling the
objective function at n+1 points. The convex hull of a set of n+1 affinely independent
points {y0, y1, . . . , yn} is called a simplex. The n+1 points are called the vertices of the
simplex. Since the points are affinely independent, the matrix S = [y1−y0 · · · yn−y0]
is nonsingular. Given a simplex of vertices y0, y1, . . . , yn, the simplex gradient at y0 is
defined as ∇sf(y0) = S−⊤δ(f ; S) with δ(f ; S) = [f(y1)− f(y0), . . . , f(yn)− f(y0)]⊤.

The simplex gradient is intimately related to linear multivariate polynomial inter-
polation. In fact, it is easy to see that the linear model m(y) = f(y0)+∇sf(y0)⊤(y−
y0) centered at y0 interpolates f at the points y1, . . . , yn.

In practical instances, one might have q+1 6= n+1 points from which to compute a
simplex gradient. We say that a sample set is poised for a simplex gradient calculation
if S is full rank, i.e., if rank(S) = min{n, q}. (The notions of poisedness and affine
independence coincide for q ≤ n, but affine independence is not defined when q > n.)
Given the sample set {y0, y1, . . . , yq}, the simplex gradient ∇sf(y0) of f at y0 can be
defined as the ‘solution’ g of the system

S⊤g = δ(f ; S),

where S = [y1 − y0 · · · yq − y0] and δ(f ; S) = [f(y1) − f(y0), . . . , f(yq) − f(y0)]⊤.
This system is solved in the least-squares sense if q > n. A minimum norm solution

5

is computed if q < n. This definition includes the determined case (q = n) as a
particular case.

The formulae for the nondetermined simplex gradients can be expressed using
the reduced singular value decomposition (SVD) of S⊤. However, to deal with the
geometrical properties of the poised sample set and to better express the error bound
for the corresponding gradient approximation, it is appropriate to take the reduced
SVD of a scaled form of S⊤. For this purpose, let

∆ = max
1≤i≤q

‖yi − y0‖,

which is the radius of the smallest enclosing ball of {y0, y1, . . . , yq} centered at y0. Now
we write the reduced SVD of the scaled matrix S⊤/∆ = UΣV ⊤, which corresponds
to a sample set in a ball of radius one centered around y0. The underdetermined and
overdetermined simplex gradients are both given by ∇sf(y0) = V Σ−1U⊤δ(f ; S)/∆.

The accuracy of simplex gradients is summarized in the following theorem. The
proof of the determined case (q = n) is given, for instance, in Kelley [16]. The
extension of the analysis to the nondetermined cases is developed in Conn, Scheinberg,
and Vicente [6].

Theorem 3.1. Let {y0, y1, . . . , yq} be a poised sample set for a simplex gradient
calculation in Rn. Consider the enclosing (closed) ball B(y0; ∆) of this sample set,
centered at y0, where ∆ = max1≤i≤q ‖yi − y0‖. Let S = [y1 − y0 · · · yq − y0] and let
UΣV ⊤ be the reduced SVD of S⊤/∆.

Assume that ∇f is Lipschitz continuous in an open domain Ω containing B(y0; ∆)
with constant γ > 0.

Then the error of the simplex gradient at y0, as an approximation to ∇f(y0),
satisfies

‖V̂ ⊤[∇f(y0) −∇sf(y0)]‖ ≤
(

q
1
2
γ

2
‖Σ−1‖

)

∆,

where V̂ = I if q ≥ n and V̂ = V if q < n.

Notice that the error difference is projected over the null space of S⊤/∆. Un-
less we have enough points (q + 1 ≥ n + 1), there is no guarantee of accuracy for
the simplex gradient. Despite this observation, underdetermined simplex gradients
contain relevant gradient information for q close to n and might be of some value in
computations where the number of sample points is relatively low.

The quality of the error bound of Theorem 3.1 depends on the size of the constant√
qγ‖Σ−1‖/2 which multiplies ∆. This constant, in turn, depends essentially on an

unknown Lipschitz constant γ and on ‖Σ−1‖, which is associated to the geometry of
the sample set.

Conn, Scheinberg, and Vicente [7] introduced an algorithmic framework for build-
ing and maintaining sample sets with good geometry. They have suggested the notion
of a Λ–poised sample set, where Λ is a positive constant. The notion of Λ–poisedness
is closely related to Lagrange interpolation [7, 6]. If a sample set {y0, y1, . . . , yq} is
Λ–poised in the sense of [7, 6], then one can prove that ‖Σ−1‖ is bounded by a multi-
ple of Λ. For the purpose of this paper, it is enough to consider ‖Σ−1‖ as a measure
of the well-poisedness (quality of the geometry) of our sample sets. We therefore say
that a poised sample set is Λ–poised if ‖Σ−1‖ ≤ Λ, for some positive constant Λ.

In pattern search, we do not necessarily need an algorithm to build or maintain
Λ–poised sets. Rather, we are given a sample set at each iteration, and our goal is
just to identify a Λ–poised subset. The constant Λ > 0 is chosen at iteration k = 0.

6

The notion of simplex gradient can be extended to higher order derivatives [6].
One can consider the computation of a simplex Hessian, by extending the linear
system S⊤g = δ(f ; S) to the following system in the variables g ∈ Rn and H ∈ Rn×n

with H = H⊤

(yi − y0)⊤g +
1

2
(yi − y0)⊤H(yi − y0) = f(yi) − f(y0), i = 1, . . . , p.(3.1)

The number of points in the sample set Y = {y0, y1, . . . , yp} must be equal to p+1 =
(n + 1)(n + 2)/2 if one wants to compute a full symmetric simplex Hessian. Similar
to the linear case, the simplex gradient g = ∇sf(y0) and the simplex Hessian H =
∇2

sf(y0), computed from system (3.1) with p + 1 = (n + 1)(n + 2)/2 points, coincide
with the coefficients of the quadratic multivariate polynomial interpolation model
associated with Y . The notions of poisedness and Λ–poisedness and the derivation
of the error bounds for simplex Hessians in determined and nondetermined cases is
reported in [7, 6].

In our application to pattern search we are interested in using sample sets with a
relatively low number of points. One alternative is to consider less points than coef-
ficients in the model and to compute solutions in the minimum norm sense. Another
option is to choose to approximate only some portions of the simplex Hessian. For
instance, if one is given 2n+1 points one can compute the n components of a simplex
gradient and an approximation to the n diagonal terms of a simplex Hessian. The
system to be solved in this case is of the form

[

y1 − y0 · · · y2n − y0

(1/2)(y1 − y0).̂ 2 · · · (1/2)(y2n − y0).̂ 2

]⊤ [

g
diag(H)

]

= δ(f ; S),

where δ(f ; S) = [f(y1) − f(y0), . . . , f(y2n) − f(y0)]⊤ and the notation .̂ 2 stands for
component-wise squaring. Once again, if the number of points is lower than 2n + 1 a
minimum norm solution can be computed.

4. Ordering the polling in pattern search. A pattern search method gen-
erates a number of function evaluations at each iteration. One can store some of
these points and corresponding objective function values during the course of the it-
erations. Thus, at the beginning of each iteration, one can try to identify a subset of
these points with desirable geometrical properties (Λ–poisedness in our context).

If successful in such an attempt, we compute some form of simplex derivatives,
such as a simplex gradient. We can then compute, at no additional cost, a direction
of potential descent or of potential steepest descent (a negative simplex gradient,
for example). We call such direction a descent indicator. There may be iterations
(especially at the beginning) in which we fail to compute a descent indicator, but
such failures cost no extra function evaluations either.

Our main goal is to use descent indicators based on simplex derivatives to order
the poll vectors efficiently in the poll step. We can also explore the use of simplex
derivatives in other components of a pattern search method such as the search step
or the mesh size parameter update.

We adapt the description of pattern search to follow the approach described above.
The class of pattern search methods remains essentially the same and is spelled out
in Figure 4.1. All modifications to the algorithm reported in Figure 2.1 are marked
in italics in Figure 4.1 for better identification.

The algorithm maintains a list Xk of evaluated points with maximum size pmax.
Each time a new point is evaluated, the algorithm calls a new procedure store, which
controls the adding (and deleting) of points to Xk.

7

Pattern Search Method — Using Sampling and Simplex Derivatives

Initialization

Choose x0 and α0 > 0. Choose a positive spanning set D. Select all constants needed
for procedures [search], [order], and [mesh]. Set k = 0. Set X0 = [x0] to initialize
the list of points maintained by [store]. Choose a maximum number pmax of points
that can be stored. Choose also the minimum smin and the maximum smax number
of points involved in any simplex derivatives calculation (2 ≤ smin ≤ smax). Choose
Λ > 0 and σmax ≥ 1.

Identifying a Λ–poised sample set and computing simplex derivatives

Skip this step if there are not enough points, i.e., if |Xk| < smin. Set
∆k = σk αk−1 maxb∈Bk−1

‖b‖, where σk ∈ [1, σmax]. Try to identify a set of
points Yk in Xk ∩ B(xk; ∆k), with as many points as possible (up to smax) and such
that Yk is Λ–poised and includes the current iterate xk. If |Yk| ≥ smin compute some
form of simplex derivatives based on Yk (and from that compute a descent indicator dk).

Search step

Call [search] to try to compute a point x ∈ Mk with f(x) < f(xk) by evaluating
the function only at a finite number of points in Mk and calling [store] each time a
point is evaluated. If such a point is found, then set xk+1 = x, declare the iteration as
successful, and skip the poll step.

Poll step

Choose a positive basis Bk ⊂ D. Call [order] to order the polling set
Pk = {xk + αkb : b ∈ Bk}. Start evaluating f at the polling points following
the order determined and calling [store] each time a point is evaluated. If a polling
point xk + αkbk is found such that f(xk + αkbk) < f(xk), then stop polling, set
xk+1 = xk + αkbk, and declare the iteration as successful. Otherwise declare the
iteration as unsuccessful and set xk+1 = xk.

Updating the mesh size parameter

Call [mesh] to compute αk+1. Increment k by one and return to the simplex derivatives
step.

Fig. 4.1. Class of pattern search methods used in this paper, adapted now for identifying
Λ–poised sample sets and computing simplex derivatives.

A new step is included at the beginning of each iteration for computing simplex
derivatives. In this step, the algorithm attempts first to extract from Xk a sample set
Yk with appropriate size and desirable geometrical properties. The points in Yk must
be within a certain distance ∆k to the current iterate:

∆k = σk αk−1 max
b∈Bk−1

‖b‖,

where σk ∈ [1, σmax] and σmax ≥ 1 is fixed a priori for all iterations. Note that ∆k

is chosen such that B(xk; ∆k) contains all the points in Pk−1 = {xk−1 + αk−1b : b ∈
Bk−1} when k − 1 is an unsuccessful iteration. The dependence of ∆k on αk−1 guar-
antees the asymptotic quality of the simplex derivatives computed at a subsequence
of unsuccessful iterates (see Theorems 3.1 and 5.1).

We consider two simple strategies for deciding whether or not to store a point,
once the function has been evaluated there:

8

procedure order

Compute cos(dk, b) for all b ∈ Bk. Order the columns in Bk according to decreasing
values of the corresponding cosines.

Fig. 4.2. Ordering the polling vectors according to their angle distance to the descent
indicator.

• store-succ: keeps only the successful iterates xk+1 (for which f(xk+1) <
f(xk)).

• store-all: keeps every evaluated point.

In both cases, points are added sequentially to Xk at the top of the list. In store-

succ, the points in the list Xk are ordered by increasing objective function values.
When (and if) Xk has reached its predetermined size pmax, we must first remove a
point before adding a new one. We assume that the points are removed from the
end of the list. Note that both variants store successful iterates xk+1 (for which
f(xk+1) < f(xk)). Clearly, the current iterate xk is always in Xk, when store-succ

is chosen. However, for store-all, xk could be removed from the list if a number of
consecutive unsuccessful iterates occur. We must therefore add a safeguard to prevent
this from happening.

Having a descent indicator dk at hand, we can order the polling vectors according
to increasing magnitudes of the angles between dk and the polling directions. So,
the first polling point to be evaluated is the one corresponding to the polling vector
making the smallest angle with dk. We describe this procedure order in Figure 4.2
and illustrate it in Figure 4.3.

The descent indicator could be a negative simplex gradient dk = −∇sf(xk), where
Sk = [y1

k − xk · · · yqk

k − xk] is formed from the sample set Yk = {y0
k, y1

k, . . . , yqk

k },
with qk + 1 = |Yk| and y0

k = xk. We designate this approach by sgradient. Another
possibility is to compute dk = −H−1

k gk, where gk is a simplex gradient and Hk ap-
proximates a simplex Hessian. In Section 8, we test numerically the diagonal simplex
Hessians described at the end of Section 3. This approach is designated by shessian.

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

d-� 6

?
xk

�
�
�
���

dk

1

4

23

Fig. 4.3. Ordering the polling vectors using a descent indicator. The positive basis considered
is Bk = [I −I].

5. Geometry of the sample sets. If evaluated points are added to the list
Xk according to the store-all criterion, it is possible to guarantee the quality of
the sample sets Yk used to compute the simplex derivatives after the occurrence of
unsuccessful iterations.

Let us focus on the case where our goal is to compute simplex gradients. We

9

define

spb = min{|B| : B ⊂ D, B positive basis}.

First we assume that smin ≤ spb, i.e., that simplex gradients can be computed
from spb points of Xk with appropriate geometry. If iteration k − 1 was unsuccessful,
then at least |Bk−1| points were added to Xk−1 (the polling points xk−1 + αk−1b, for
all b ∈ Bk−1). Such points are part of Xk as well as the current iterate xk = xk−1. It
is shown in the next theorem that the sample set Yk = {xk} ∪ {xk−1 + αk−1b : b ∈
Bk−1} ⊂ Xk is poised for a simplex gradient calculation.

It is also shown that the sample set Yk ⊂ Xk formed by xk and by only |Bk−1|−1
of the points xk−1 +αk−1b, b ∈ Bk−1, is also poised for a simplex gradient calculation.
In this case, we set smin ≤ spb − 1.

Theorem 5.1. Let k − 1 be any unsuccessful iteration of the pattern search
method of Figure 4.1 using the store-all strategy.

• Suppose smin ≤ spb. There exists a positive constant Λ1 (independent of
k) such that the sample set Yk ⊂ Xk formed by xk = xk−1 and the points
xk−1+αk−1b, b ∈ Bk−1, is Λ1–poised for a (overdetermined) simplex gradient
calculation.

• Suppose smin ≤ spb − 1. There exist a positive constant Λ2 (independent
of k) such that the sample set Yk ⊂ Xk formed by xk = xk−1 and by only
|Bk−1|−1 of the points xk−1+αk−1b, b ∈ Bk−1, is Λ2–poised for a (determined
or overdetermined) simplex gradient calculation.

Proof. To simplify the notation we write B = Bk−1. To prove the first statement,
let Yk = {y0

k, y1
k, . . . , yqk

k } with qk + 1 = |Yk| = |B| + 1 and y0
k = xk. Then

Sk = [y1
k − xk · · · yqk

k − xk] = [αk−1b1 · · · αk−1b|B|] = αk−1B.

The matrix B has rank n since it linearly spans Rn by definition. Thus,

1

∆k

Sk =
αk−1

σk αk−1 maxb∈B ‖b‖B =
1

σk

1

maxb∈B ‖b‖B,

and the geometry constant associated with this sample set Yk is given by

1

σk

‖Σ−1‖ with
1

maxb∈B ‖b‖B⊤ = UΣV ⊤.

Since σk ≥ 1, if we choose the poisedness constant such that

Λ1 ≥ max
{

‖Σ−1‖ : 1
maxb∈B ‖b‖B⊤ = UΣV ⊤,

∀positive basesB ⊂ D} ,

then we are guaranteed to identify a Λ1–poised sample set after any unsuccessful
iteration.

In the second case, we have qk + 1 = |Yk| = |B| and

Sk = αk−1B|B|−1,

where B|B|−1 is some column submatrix of B with |B| − 1 columns. Since B is a
positive spanning set, B|B|−1 linearly spans Rn (see [10, Theorem 3.7]), and therefore

10

it has rank n. The difference now is that we must consider all submatrices B|B|−1 of
B. Thus, if we choose the poisedness constant such that

Λ2 ≥ max
{

‖Σ−1‖ : 1
maxb∈B ‖b‖B⊤

|B|−1 = UΣV ⊤,

∀ B|B|−1 ⊂ B, ∀positive basesB ⊂ D
}

,

we are guaranteed to identify a Λ2–poised sample set after any unsuccessful iteration.

We point out that a result of this type is not necessarily restricted to unsuccessful
iterations. Other geometry scenarios can be explored at successful iterations.

6. Pruning the polling directions. Abramson, Audet, and Dennis [1] show
that, for a special choice of the positive spanning set D, rough approximations to the
gradient of the objective function can be used to reduce the polling step to a single
function evaluation. The gradient approximations considered were ǫ–approximations
to the large components of the gradient vector.

Let g be a nonzero vector in Rn and ǫ ≥ 0. Consider

Jǫ(g) = {i ∈ {1, . . . , n} : |gi| + ǫ ≥ ‖g‖∞} ,

and for every i ∈ {1, . . . , n} let

dǫ(g)i =

{

sign(gi) if i ∈ Jǫ(g),
0 otherwise.

(6.1)

The vector g is said to be an ǫ–approximation to the large components of a nonzero
vector v ∈ Rn if and only if i ∈ Jǫ(g) whenever |vi| = ‖v‖∞ and sign(gi) = sign(vi)
for every i ∈ Jǫ(g).

The question that arises now is whether a descent indicator dk, and, in particular,
a negative simplex gradient −∇sf(xk), is an ǫ–approximation to the large components
of −∇f(xk) for some ǫ > 0. We show in the next theorem that the answer is affir-
mative, provided that the mesh size parameter αk is sufficiently small, an issue we
readdress at the end of this section.

We will use the notation previously introduced in this paper. We consider a
sample set Yk and the corresponding matrix Sk. The set Yk is included in the ball
B(xk; ∆k) centered at xk with radius ∆k = σk αk−1 maxb∈Bk−1

‖b‖, where Bk−1 is
the positive basis used for polling at the previous iteration.

Theorem 6.1. Let Yk be a Λ–poised sample set (for simplex gradients) computed
at iteration k of a pattern search method, with qk + 1 ≥ n + 1 points.

Assume that ∇f is Lipschitz continuous in an open domain Ω containing
B(xk; ∆k) with constant γ > 0.

Then, if

αk ≤ ‖∇f(xk)‖∞√
qkγΛσmax maxb∈Bk−1

‖b‖ ,(6.2)

the negative simplex gradient −∇sf(xk) is an ǫk–approximation to the large compo-
nents of −∇f(xk), where

ǫk =

(

q
1
2

k γΛσmax max
b∈Bk−1

‖b‖
)

αk.

11

Proof. For i in the index set

Ik = {i ∈ {1, . . . , n} : |∇f(xk)i| = ‖∇f(xk)‖∞},

we get from Theorem 3.1 that

‖∇sf(xk)‖∞ ≤ ‖∇f(xk) −∇sf(xk)‖∞ + |∇f(xk)i|
≤ 2‖∇f(xk) −∇sf(xk)‖ + |∇sf(xk)i|

≤ q
1
2

k γΛ∆k + |∇sf(xk)i|
≤ ǫk + |∇sf(xk)i|.

From Theorem 3.1 we also know that

−∇sf(xk)i = −∇f(xk)i + ξk,i, where |ξk,i| ≤ q
1
2

k

γ

2
Λ∆k.

If −∇f(xk)i and ξk,i are equally signed so are −∇f(xk)i and −∇sf(xk)i. Otherwise,
they are equally signed if

|ξk,i| ≤ q
1
2

k

γ

2
Λ∆k ≤ 1

2
‖∇f(xk)‖∞ =

1

2
|∇f(xk)i|.

The proof is concluded using the expression for ∆k and the bound for αk given in the
statement of the theorem.

Theorem 4 in Abramson, Audet, and Dennis [1] shows that an ǫ–approximation
prunes the set of the polling directions to a singleton, when considering

D = {−1, 0, 1}n

and the positive spanning set

Dk = {dǫ(gk)} ∪ A(−∇f(xk)),

where gk is an ǫ–approximation to −∇f(xk), dǫ(·) is defined in (6.1), and

A(−∇f(xk)) = {d ∈ D : −∇f(xk)⊤d < 0}

represents the set of the ascent directions in D. The pruning is to the singleton
{dǫ(gk)}, meaning that dǫ(gk) is the only vector d in Dk such that −∇f(xk)⊤d ≥ 0.

So, under the hypotheses of Theorem 6.1, it follows that the negative simplex
gradient −∇sf(xk) prunes the positive spanning set,

Dk = {dǫk(−∇sf(xk))} ∪ A(−∇f(xk)),

to a singleton, namely {dǫk(−∇sf(xk))}, where ǫk is given in Theorem 6.1.
Now we analyze in more detail the role of condition (6.2). There is no guarantee

that this condition on αk can be satisfied asymptotically. Condition (6.2) gives us
only an indication of the pruning effect of the negative simplex gradient, and it is
more likely to be satisfied at points where the gradient is relatively large. What is
known is actually a condition that shows that αk dominates ‖∇f(xk)‖ at unsuccessful
iterations k:

‖∇f(xk)‖ ≤
(

γκ(Bk)−1 max
b∈Bk

‖b‖
)

αk,

12

where

κ(Bk) = min
d∈Rn;d 6=0

max
b∈Bk

d⊤b

‖d‖‖b‖ > 0

is the cosine measure of the positive basis Bk (see [17, Theorem 3.3]). Since only a
finite number of positive bases is used, κ(Bk)−1 is uniformly bounded. So, one can
be assured that at unsuccessful iterations the norm of the gradient is bounded by a
constant times αk.

However, it has been observed in [11] that, for some problems, αk goes to zero
faster than ‖∇f(xk)‖. Our numerical experience with pattern search has also pointed
us in this direction. It is more difficult, however, to sharply verify condition (6.2),
since it depends on the Lipschitz constant of ∇f . A detailed numerical study of these
asymptotic behaviors is beyond the scope of this paper.

7. Other uses for simplex derivatives. Having computed before some form
of simplex derivatives, one can use the available information for purposes other than
ordering the polling vectors. In this section, we suggest two other uses for simplex
derivatives in pattern search: the update of the mesh size parameter and the compu-
tation of a search step.

When a simplex gradient ∇sf(xk) is computed, a linear model mk(y) = f(xk) +
∇sf(xk)⊤(y − xk) can be used to update the mesh size parameter αk by imposing a
sufficient decrease condition. In this case, we set

ρk =
f(xk) − f(xk+1)

mk(xk) − mk(xk+1)
=

f(xk) − f(xk+1)

−∇sf(xk)⊤(xk+1 − xk)
.

If xk+1 is computed in a successful poll step, then xk+1−xk = αkbk for some bk ∈ Bk.
In the quadratic case, the model is replaced by mk(y) = f(xk)+g⊤k (y−xk)+(1/2)(y−
xk)⊤Hk(y−xk). We call this procedure mesh-sd and describe it in Figure 7.1, where
the sufficient decrease is only applied to successful iterations.

Since the expansion and contraction parameters are restricted to integer powers
of τ and since the contraction rules match what was given in the mesh procedure of
Figure 2.2, the modification introduced in mesh-sd has no influence on the global
convergence properties of the underlying pattern search method.

There are many possibilities for a search step. One possibility is to first form a
surrogate model mk(y) based on some form of simplex derivatives computed using the
sample set Yk, and then to minimize this model in B(xk; ∆k), after which we would
project the minimizer onto the mesh Mk. We described above two examples of such
a model mk(y), but many others could be considered. The use of surrogate models
in the search step is the topic of a separate research.

8. Implementation and numerical results. To serve as a baseline for numer-
ical comparisons, we have implemented a basic pattern search algorithm of the form
given in Figure 2.1. Specifically, no search step is used, the mesh size parameter is left
unchanged at successful iterations, and points in the poll step are always evaluated
in the same consecutive order as originally stored. We refer to this version of pattern
search as basic.

We have tested a number of pattern search methods of the form described in Fig-
ure 4.1. The strategies order (Figure 4.2) and mesh-sd (Figure 7.1) were run in four
different modes according to the way of storing points (store-succ or store-all)
and to the way of computing simplex derivatives and descent indicators (sgradient

13

procedure mesh-sd

The constants τ and ξ must satisfy τ ∈ Q, τ > 1, and ξ > 0, and should be initialized
at iteration k = 0 together with jmax ∈ Z, jmax ≥ 0, and jmin ∈ Z, jmin ≤ −1. The
exponents satisfy j+

k ∈ {0, 1, 2, . . . , jmax} and j−k ∈ {jmin, . . . ,−1}.

If the iteration was successful, then compute

ρk =
f(xk) − f(xk+1)

mk(xk) − mk(xk+1)
.

If ρk > ξ then αk+1 = τ j
+

k αk,
If ρk ≤ ξ then αk+1 = αk.

If the iteration was unsuccessful, then contract mesh by decreasing the mesh

size parameter αk+1 = τ j
−

k αk.

Fig. 7.1. Updating the mesh size parameter (using sufficient decrease but meeting rational
lattice requirements).

or shessian). Moreover, we implemented the strategy suggested in [14] and described
in Section 2 for updating the mesh size parameter (here named as mesh-HKT), and
the dynamic polling strategy suggested in [4] for changing the order of the polling
directions (see Section 2). We tested a very crude search step based on taking a step
along the descent indicator with a step size of the order of αk (see [9] for the details).

The algorithms were coded in Matlab and ran on 27 unconstrained problems
belonging to the CUTEr collection [13], gathered mainly from papers on derivative-
free optimization. The objective functions of these problems are twice continuously
differentiable. Their dimensions are given in Table 8.1. The starting points used were
those reported in CUTEr. Problems bdvalue, integreq, and broydn3d were posed
as unconstrained optimization problems like originally in [19]. The stopping criterion
consisted of the mesh size parameter becoming lower than 10−5 or a maximum number
of 100000 iterations being reached.

The simplex derivatives were computed based on Λ-poised sets Yk, where Λ = 100.
The factor σk was chosen as: 1 (k−1 unsuccessful); 2 (k−1 successful and αk = αk−1);
4 (k − 1 successful and αk > αk−1). The values for the parameters smin, smax, and
pmax are given in Table 8.2. We started all runs with the mesh size parameter α0 = 1.

In all versions, the contraction factor was set to τ j
−

k = 0.5 and the expansion factor

(when used) was set to τ j
+

k = 2. In the mesh-sd strategy of Figure 7.1, we set ξ equal
to 0.75.

We draw conclusions based on two positive bases: [I −I] and [−e I]. The
maximal positive basis [I −I] corresponds to coordinate search and it provided the
best results for the basic version among a few positive bases stored in different orders
(which included [I −I], [−I I], [−e I], [e −I], [I −e], [−I e], and a minimal basis
with angles between vectors of uniform amplitude). The positive basis stored as
[−e I] was the minimal positive basis which behaved the best. In Table 8.1 we report
the results obtained by the basic version for these two positive bases.

By combining all possibilities, we tested a total of 120 versions, 112 involving
simplex derivatives. A summary of the complete numerical results is reported in [9].

8.1. Discussion based on complete results. First, we point out that 91% of
the versions involving simplex derivatives lead to an average decrease in the number

14

positive basis

D = [−e I] D = [I −I]

problem dimension fevals fvalue fevals fvalue

arwhead 10 1068 4.19e-09 361 0.00e+00
arwhead 20 3718 8.85e-09 721 0.00e+00
bdqrtic 10 2561 1.19e+01 948 1.19e+01
bdqrtic 20 19038 3.54e+01 4120 3.54e+01
bdvalue 10 36820 4.39e-07 33077 4.39e-07
bdvalue 20 255857 1.30e-05 245305 1.29e-05
biggs6 6 339840 6.50e-03 467886 9.58e-06
brownal 10 468150 1.84e+00 74922 2.02e-06
brownal 20 1073871 1.55e+01 284734 1.04e-05
broydn3d 10 2281 3.26e-08 1743 4.52e-09
broydn3d 20 17759 2.91e-07 6868 2.47e-08
integreq 10 2595 4.42e-09 1034 2.35e-10
integreq 20 20941 3.20e-08 4244 4.86e-10
penalty1 10 552357 7.33e-05 234274 7.09e-05
penalty1 20 999305 1.66e-04 535100 1.58e-04
penalty2 10 46696 4.09e-04 496275 4.04e-04
penalty2 20 366131 8.32e-03 1494751 8.30e-03
powellsg 12 192270 1.85e-04 58987 9.85e-07
powellsg 20 480158 3.08e-04 158591 1.64e-06
srosenbr 10 401321 6.83e-05 171061 6.83e-05
srosenbr 20 1076983 2.68e-02 649621 1.37e-04
tridia 10 1000805 5.95e-01 901720 5.85e-01
tridia 20 20483 6.24e-01 6635 6.24e-01
vardim 10 251599 2.23e-05 86316 6.64e-07
vardim 20 961697 1.76e+04 1230761 8.71e-04
woods 12 164675 1.02e-04 110662 3.78e-05
woods 20 435786 3.53e-04 300296 6.29e-05

Table 8.1

Test set and results for the basic version.

sgradient shessian

size store-succ store-all store-succ store-all

pmax 2(n + 1) 4(n + 1) 4(n + 1) 8(n + 1)
smin (n + 1)/2 n + 1 n 2n + 1
smax n + 1 n + 1 2n + 1 2n + 1

Table 8.2

Sizes of the list Xk and of the set Yk.

of function evaluations [9]. Moreover, 61 out of the 112 strategies tested provided a
negative 75% percentile for the variation in the number of function evaluations. This
means that for each of these 61 strategies, a reduction in the number of function
evaluations was achieved for 75% of the problems tested.

The overall results [9] showed a superiority of sgradient over shessian, which
is not surprising because the number of points required to identify Λ–poised sets in
sgradient is lower than in shessian. Also, another reason for sgradient being

15

possibly better than shessian is that, if the simplex gradient is sufficiently close to
the true gradient, then directions making a small angle with the negative simplex
gradient will be descent directions, while the same is not guaranteed when we use
simplex Newton directions. Some shessian versions, however, have behaved relatively
well [9].

For the positive basis [I −I] there is a clear gain when using store-all compared
to store-succ [9]. However, for the positive basis [−e I], the advantage of store-all
over store-succ is not as clear [9]. In general, the advantage of store-all may be
explained by the frequent number of unsuccessful iterations that tend to occur in the
last iterations of a pattern search run. The effect of the poll ordering is also more
visible when using the positive basis [I −I], due to the larger number of polling
vectors.

Strategies mesh-sd, and mesh-HKT made a clear positive impact when using the
smaller positive basis [−e I] (see [9]). This effect was lost in the larger positive basis
[I −I], where the order procedure seems to perform well on its own for this test set.

8.2. Discussion based on best results. We report in Table 8.3 a summary
of the results for a number of versions based on [I −I]. Included in this restricted
set of versions are the ones that lead to the best results among all the 120 versions
tested. (The results for the remaining versions are summarized in [9].)

An explanation about Table 8.3 is in order. For each strategy and for each prob-
lem, we calculated the percentage of iterations that used simplex descent indicators as
well as the variation in the number of function evaluations required relatively to the
basic version. These percentages were grouped by strategy and their average values
are reported in the second and third columns of Table 8.3. The last three columns
of the table represent the cumulative percentages for the optimal gaps of the final
iterates.

number of optimal gap

strategy % poised evaluations 10−7 10−4 10−1

basic — — 33.33% 81.48% 92.59%

mesh-HKT — +4.02% 40.74% 81.48% 92.59%

dynamic polling — -10.99% 33.33% 81.48% 92.59%

mesh-HKT,dynamic polling — -15.17% 48.15% 81.48% 92.59%

mesh-sd (store-succ) 14.40% -3.07% 33.33% 81.48% 92.59%

mesh-sd (store-all) 73.33% +0.45% 33.33% 81.48% 92.59%

order (store-all) 27.26% -51.16% 37.04% 85.19% 92.59%

mesh-sd,order (store-all) 28.56% -51.47% 37.04% 85.19% 92.59%

mesh-HKT,order (store-all) 58.51% -54.22% 51.85% 81.48% 88.89%

Table 8.3

Average percentage of iterations that used simplex descent indicators (second column), average
variation of function evaluations by comparison to the basic version (third column), and cumulative
percentages for the optimal gaps of the final iterates (fourth to sixth columns). Case sgradient and
D = [I −I].

The quality of the final objective function values obtained for the versions included
in Table 8.3 is comparable to the basic version, as one see from the final cumulative
optimal gaps reported.

It is clear that none of the strategies for updating the step size parameter (mesh-sd
and mesh-HKT) made improvements on their one, the former being slightly better than

16

the latter.
The best result without using simplex derivatives was obtained by combining

dynamic polling and mesh-HKT (15% less function evaluations than the basic ver-
sion).

Three versions that incorporated order reached a reduction of around 50% in
number of function evaluations. The order procedure in the store-all mode lead,
on its own, to a 51% improvement, compared to 11% of dynamic polling.

The best version achieved a reduction of 54% in number of evaluations by com-
bining order and mesh-HKT in the store-all mode. In Table 8.4 we report the
results obtained by this version as well as by the version that only applies the order

procedure in the store-all mode.

strategy

order order,mesh-HKT

problem dimension fevals fvalue fevals fvalue

arwhead 10 361 0.00e+00 361 0.00e+00
arwhead 20 721 0.00e+00 721 0.00e+00
bdqrtic 10 696 1.19e+01 696 1.19e+01
bdqrtic 20 2138 3.54e+01 2138 3.54e+01
bdvalue 10 34922 6.89e-07 28411 6.52e-07
bdvalue 20 255989 1.66e-05 213297 1.65e-05
biggs6 6 105592 4.50e-07 164168 4.53e-07
brownal 10 21045 1.88e-06 38398 2.44e-06
brownal 20 67152 6.16e-06 4227 1.00e+00
broydn3d 10 917 4.73e-09 917 4.73e-09
broydn3d 20 2940 2.35e-08 2940 2.35e-08
integreq 10 597 2.35e-10 597 2.35e-10
integreq 20 1573 4.86e-10 1573 4.86e-10
penalty1 10 126307 7.09e-05 177360 7.09e-05
penalty1 20 229825 1.58e-04 279491 1.58e-04
penalty2 10 55087 4.04e-04 93192 4.05e-04
penalty2 20 189446 8.29e-03 355154 8.29e-03
powellsg 12 594 0.00e+00 614 0.00e+00
powellsg 20 45258 1.31e-06 8702 2.81e-11
srosenbr 10 136327 6.83e-05 119830 6.83e-05
srosenbr 20 567937 1.37e-04 358656 1.36e-04
tridia 10 539119 5.85e-01 908097 5.89e-01
tridia 20 2724 6.24e-01 2828 6.24e-01
vardim 10 5382 2.29e-07 6550 9.15e-08
vardim 20 67487 9.27e-06 71692 1.68e-06
woods 12 59565 3.94e-05 577 0.00e+00
woods 20 106339 6.55e-05 1064 0.00e+00

Table 8.4

Results for the best versions, using the positive basis D = [I −I].

8.3. Additional tests. We picked some of these problems and ran several ver-
sions for n = 40 and n = 80. Our conclusions remain essentially the same. The ratios
of improvement in the number of function evaluations and the quality of the final
iterates do not change significantly with the increase of the dimension of the problem,

17

but rather with the increase of the number of polling vectors in the positive spanning
set or with the increase in its cosine measure (both of which happen, for instance,
when going from [−e I] to [I −I]).

We also tried to investigate how sensitive the different algorithmic versions are
to the choice of the parameter ξ used in the mesh-sd strategy. We tried other values
(for instance 0.5 and 0.95), but the results did not improve.

We repeated these computational tests on a different set of test problems, consist-
ing of seven randomly generated quadratic functions, each one of dimension 10. The
quadratic functions were defined by f(x) = x⊤Ax, where A = B⊤B and B is a matrix
with random normal entries of mean 0 and standard deviation 1. We also randomly
generated the starting point for the algorithm, using the same normal distribution.
Once again, the conclusions for the different strategies remained essentially the same
(with improvement of the results for the minimal positive basis [−e I]). We used
these examples to study the descent properties of the negative simplex gradient. In
our experiments, the simplex gradient made an acute angle with the true gradient
in average in 77% of the cases where it was computed. These occurrences tend to
happen more towards the end of the runs when the mesh size parameter gets smaller.

8.4. Pruning. To better understand the theoretical results derived in Section 6,
we implemented a computational variant of the pruning strategy. We did not con-
sider the generating set D = {−1, 0, 1}n, as suggested by Abramson, Audet, and
Dennis [1], nor did we verify condition (6.2) (or some approximated form of it by
estimating the Lipschitz constant involved) before pruning the polling vectors. As
result, we are violating the conditions required for the analysis of the pruning strat-
egy. We tested two different variants for pruning the positive bases [I −I] and
[−e I]: (i) pruning to a single direction, namely the one that makes the angle of
smallest amplitude with the descent indicator; (ii) pruning to all the directions that
make an acute angle with the descent indicator.

To reach a final iterate of quality nearly similar to the one obtained by the basic

version, we had to use the positive basis [I −I] and prune with more than one
direction. In this case, pruning achieved an average reduction in the number of
function evaluations of 10% and 42%, for the store-succ and store-all variants,
respectively. Pruning tends to generate less polling points, which in turn decreases
the chances of building well-poised sets.

More research is needed in order to evaluate the potential of the negative simplex
gradient as an ǫ-approximation to the large components of the negative gradient
vector and its use for pruning the polling directions. The use of the generating set
D = {−1, 0, 1}n and the implementation of some form of the condition (6.2) might
have a positive impact.

9. Concluding remarks and future work. We have proposed the use of sim-
plex derivatives in pattern search methods in two ways: ordering the polling vectors
and updating the mesh size parameter. For the calculation of the simplex derivatives,
we considered sample sets constructed in two variants: storing only all recent success-
ful iterates, or storing all recent points where the objective function was evaluated.
Finally, we studied two types of simplex derivatives: simplex gradients and diagonal
simplex Hessians. It is important to remark that the incorporation of these strategies
in pattern search is done at no further expense in function evaluations.

The introduction of simplex derivatives in pattern search methods can lead to a
significant reduction in the number of function evaluations, for the same quality of
the final iterates.

18

As a descent indicator, we recommend the use of the negative simplex gradient
over the simplex Newton direction. In fact, most of the iterations of a pattern search
run are performed for small values of the mesh size parameter. In such cases, the
negative gradient is better than the Newton direction as an indicator for descent, and
the same argument applies to their simplex counterparts.

For coordinate search (D = [I −I]), ordering the polling directions according to
a simplex descent indicator (negative simplex gradient) made a significant impact in
the reduction of the number of function evaluations. For this type of positive basis,
storing all recent points where the objective function was evaluated seems to be the
best approach.

Our numerical findings showed that updating the mesh size parameter based on a
sufficient decrease condition can be worthwhile applying when using minimal positive
bases (like D = [−e I]). In such cases, storing only all recent successful iterates may
also be advantageous.

There are at least two natural generalizations of the ideas presented in this paper.
One is to apply simplex derivatives based strategies to improve parallel versions of
pattern search. Another generalization consists of analyzing the properties of simplex
gradients when direct search methods are applied to nonsmooth functions [8]. The
use of simplex derivatives in the design of an efficient search step is also subject of
future research.

REFERENCES

[1] M. A. Abramson, C. Audet, and J. E. Dennis Jr., Generalized pattern searches with deriva-
tive information, Math. Program., 100 (2004), pp. 3–25.

[2] P. Alberto, F. Nogueira, H. Rocha, and L. N. Vicente, Pattern search methods for user-
provided points: Application to molecular geometry problems, SIAM J. Optim., 14 (2004),
pp. 1216–1236.

[3] C. Audet and J. E. Dennis Jr., Analysis of generalized pattern searches, SIAM J. Optim., 13
(2003), pp. 889–903.

[4] , Mesh adaptive direct search algorithms for constrained optimization, SIAM J. Optim.,
17 (2006), pp. 188–217.

[5] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy optimization problems, in
Computational Methods in Optimal Design and Control, Progress in Systems and Control
Theory, edited by J. T. Borggaard, J. Burns, E. Cliff, and S. Schreck, vol. 24, Birkhäuser,
Boston, 1998, pp. 77–90.

[6] A. R. Conn, K. Scheinberg, and L. N. Vicente, Geometry of sample sets in derivative free
optimization: Polynomial regression and underdetermined interpolation, Tech. Report 05-
15, Departamento de Matemática, Universidade de Coimbra, Portugal, 2005.

[7] , Geometry of interpolation sets in derivative free optimization, Math. Program., (2006,
to appear).

[8] A. L. Custódio, J. E. Dennis Jr., and L. N. Vicente, Using simplex gradients of nonsmooth
functions in direct search methods, Tech. Report 06-48, Departamento de Matemática,
Universidade de Coimbra, Portugal, 2006.

[9] A. L. Custódio and L. N. Vicente, Using sampling and simplex derivatives in pat-
tern search methods (complete numerical results). See http://www.mat.uc.pt/∼lnv/

papers/sid-psm-complete.pdf, 2006.
[10] C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733–746.
[11] E. D. Dolan, R. M. Lewis, and V. Torczon, On the local convergence of pattern search,

SIAM J. Optim., 14 (2003), pp. 567–583.
[12] L. Frimannslund and T. Steihaug, A generating set search method using curvature infor-

mation, Comput. Optim. and Appl., (2006, to appear).
[13] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr, a Constrained and Unconstrained

Testing Environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–394.
[14] P. Hough, T. G. Kolda, and V. Torczon, Asynchronous parallel pattern search for nonlinear

optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.

19

[15] C. T. Kelley, Detection and remediation of stagnation in the Nelder-Mead algorithm using a
sufficient decrease condition, SIAM J. Optim., 10 (1999), pp. 43–55.

[16] , Iterative Methods for Optimization, SIAM, Philadelphia, 1999.
[17] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives

on some classical and modern methods, SIAM Rev., 45 (2003), pp. 385–482.
[18] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algorithms,

Tech. Report 96-71, ICASE, NASA Langley Research Center, USA, 1999.
[19] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-

ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.
[20] C. Price and Ph. L. Toint, Exploiting problem structure in pattern-search methods for un-

constrained optimization, Optim. Methods Softw., 21 (2006), pp. 479–491.
[21] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),

pp. 1–25.
[22] P. Tseng, Fortified-descent simplicial search method: a general approach, SIAM J. Optim., 10

(1999), pp. 269–288.

Acknowledgments.

During the course of the revision of this paper, the first author visited College of
William & Mary. The authors are grateful to Robert Michael Lewis, Virginia Tor-
czon, and Michael Trosset for many interesting and stimulating comments, which
have contributed to improvements in the manuscript. We also thank the anonymous
referees for their suggestions.

20

