
Spa
e Mapping: Models, Sensitivities,and Trust-Regions MethodsLu��s N. Vi
ente �May 24, 2002Abstra
tThe goal of this paper is to organize some of the mathemati
al and algorithmi
 aspe
ts of thespa
e-mapping te
hnique for 
ontinuous optimization with expensive fun
tion evaluations. First,we 
onsider the mapping from the �ne spa
e to the 
oarse spa
e when the models are ve
tor-valued fun
tions and when the spa
e-mapping (nonlinear) least-squares residual is nonzero.We show how the sensitivities of the spa
e mapping 
an be used to deal with spa
e-mappingsurrogates of the �ne model. We derive a framework where it is possible to design globally
onvergent trust-region methods to minimize su
h �ne-model surrogates.We 
onsider also a di�erent perspe
tive of spa
e mapping and apply it, for sake of simpli
ity,to the situation where the models are s
alar fun
tions. The spa
e mapping is de�ned in a waywhere it is reasonable to assume that it is point-to-point. We prove that the surrogate modelbuilt by 
omposition of the spa
e mapping and the 
oarse model is a regular fun
tion. We alsodis
uss trust-region methods in this 
ontext.Keywords. spa
e mapping, surrogate-based optimization, trust-region methods, global
onvergen
e, sensitivitiesAMS subje
t 
lassi�
ations. 49M37, 90C06, 90C30, 90C311 Introdu
tionNew te
hniques have been re
ently developed to deal with optimization problems that involveexpensive fun
tion evaluations that may require long 
pu 
al
ulations. Spa
e mapping assumes theexisten
e of two models for the same physi
al phenomenon: a �ne model, a

urate and expensive,and a 
oarse model, signi�
antly 
heaper and 
onsiderably less a

urate. The idea behind spa
emapping is to 
onstru
t a mapping between the �ne-model spa
e of parameters or variables andthe 
oarse-model spa
e that allows to defer the minimization pro
ess to the 
oarse model, wheremost fun
tion evaluations should take pla
e. Spa
e-mapping te
hniques are typi
ally iterative asthe mapping is unknown a priori and it is 
al
ulated for a sequen
e of points in the �ne spa
e.The spa
e-mapping te
hnique was introdu
ed �rst by Bandler et al. [5℄ in 1994. It has been mod-i�ed and enhan
ed by 
lassi
al optimization methods for nonlinear optimization. Bandler et al [6℄proposed the use of Broyden's method to 
onstru
t linear approximations for the spa
e mappingand Bakr et al. [2℄ applied the trust-region te
hnique to globalize the minimization pro
ess. These�Departamento de Matem�ati
a, Universidade de Coimbra, 3001-454 Coimbra, Portugal (lvi
ente�mat.u
.pt).Support for this work was provided by Centro de Matem�ati
a da Universidade de Coimbra, by FCT under grantPOCTI/35059/MAT/2000, and by the European Union under grant IST-2000-26063.1



and other approa
hes are reviewed in the paper by Bakr et al. [3℄ and in the masters thesis ofS�ndergaard [15℄. Leary, Bhaskar, and Keane [11℄ introdu
ed spa
e-mapping te
hniques for thetreatment of models that appear as 
onstraints. New spa
e-mapping appli
ations are reported inthe papers 
olle
ted in the volume edited by Nielsen [13℄ (see also [9℄).We address �rst in this paper the mapping from the �ne spa
e to the 
oarse spa
e when themodels are ve
tor-valued fun
tions, as analyzed in the work by Bakr et al. [4℄. We show that thesensitivities of the spa
e mapping P , de�ned in (1), 
an be 
al
ulated provided �rst-order derivativesof the �ne model f and �rst-order and se
ond-order derivatives of the 
oarse model 
 are given andsome invertibility is assumed related with the size of the spa
e-mapping (nonlinear) least-squaresresidual. The sensitivities of the spa
e mapping P de�ne the linearization P` of this mapping.Thus, we 
an use 
 ÆP` to lo
ally minimize the surrogate 
 ÆP that the spa
e mapping P providesfor the �ne model f . An alternative surrogate introdu
ed by Bakr et al. [4℄ is w(
ÆP )+(1�w)fapp` ,where w 2 [0; 1℄ and fapp` is an approximation to the linearized model of the �ne model f . In asimilar way, we 
an work with w(
 ÆP`)+ (1�w)fapp` to minimize w(
 ÆP )+ (1�w)fapp` . The ideabehind this linear 
ombination is to introdu
e more a

urate lo
al information of the �ne model.We show how to develop trust-region methods that are globally 
onvergent to stationary points ofthese surrogates.We address then a di�erent situation where the �ne and the 
oarse models are s
alar fun
tions,denoted by g and ĝ, respe
tively. The shape of the surrogate ĝ Æ P , de�ned by the 
omposition ofthe spa
e mapping P and the 
oarse model ĝ, is investigated. Given a point x in the �ne spa
e,the spa
e-mapping image P (x) is de�ned in this 
ontext by minimizing, in the 
oarse spa
e, thedistan
e to x subje
t to the mat
hing of the 
oarse model to the �ne-model value g(x), see (21) and(22). It is possible to observe that su
h de�nition of spa
e mapping yields a point-to-point map inseveral instan
es where spa
e mapping based only on the mat
hing of the models is point-to-set.When P is point-to-point, it is proved that the surrogate ĝ Æ P is a regular fun
tion, i.e., that ithas always �rst-order dire
tional derivatives. The surrogate ĝ Æ P 
oin
ides with the �ne modelex
ept possibly near minimizers of the 
oarse model where it may be
ome 
at. The transition 
an
reate kinks, the sour
e of non-di�erentiability. We also dis
uss trust-region methods to minimizethis type of surrogate models.We have stru
tured this paper in two main se
tions, 
orresponding to the two spa
e-mappingapproa
hes mentioned above. At the end of ea
h se
tion, we draw some 
on
lusions and dis
usspossible extensions. Norms and inner produ
ts used in this paper are the `2 ones.2 Spa
e mapping using ve
tor-valued models2.1 The spa
e-mapping de�nitionLet us 
onsider a physi
al phenomenon where the variables de�ning it belong to a subset of IRn andthe fun
tion values that de�ne it belong to IRm. We follow the approa
h in Bakr et al. [4℄ and de�nespa
e mapping by 
onsidering a �ne model of this phenomenon denoted by f with f : S(f) ! IRm,and a 
oarse model represented by 
 with 
 : S(
) ! IRm, where S(f); S(
) � IRn. The �ne model fis expensive to evaluate but the 
oarse model 
 is relatively 
heap. It is assumed that m > n (thepra
ti
al situation in mind is when m � n). The 
ase m � n requires a di�erent, more generalapproa
h, gives rise to nondi�erentiable surrogates, and will be dis
ussed in se
tion 2.5.The performan
e of both models is measured by a merit fun
tion H : IRm ! IR. In severalengineering appli
ations H is not di�erentiable as it may result from the use of the `1 norm. Wewill assume in this paper that H is quadrati
: for instan
e the squared `2 norm in IRm, or other2



quadrati
 variants based on the squared `2 distan
e (as it is the 
ase in several data �tting andparameter estimation problems).The goal is to minimize Hf def= H Æ fby 
onsidering the surrogate H
 def= H Æ 
and the 
omposition of H
 with a mapping relating the models f and 
.The spa
e mapping P : S(f) ! S(
) is based on the solution of a nonlinear least-squaresminimization problem, in the following way:P (x) def= argminx̂2S(
) 12 k
(x̂)� f(x)k2 : (1)(We will assume in this paper that the minimal argument is always unique and therefore we 
an
onsider the notation where argmin returns a point and not a singleton.)Bakr et al. [4℄ 
onsider also a linear approximation p(x) for P (x) 
onstru
ted by Broyden'smethod, looking then at the surrogate H Æ 
 Æ p that take values in the �ne spa
e S(f). Thesurrogate they work with is a
tually given byH ((w)
(p(x)) + (1� w)`(x)) (2)where w 2 [0; 1℄ is a weighted parameter and ` is a linear approximation for f : S(f) ! IRm. Theirlinear approximation ` is 
omputed using on
e again Broyden's method and the term (1 � w)`provides to the surrogate more lo
al a

urate information about the �ne model.2.2 Spa
e-mapping sensitivities and adjointsAssuming that P is well de�ned as a point-to-point map and assuming appropriate smoothness forf and 
, the spa
e-mapping image P (x) is given by the �rst-order ne
essary 
onditions for (1):J
(P (x))>(
(P (x)) � f(x)) = 0 ; (3)where J
 denotes the Ja
obian of 
. We will assume that S(f) and S(
) are open domains and that(3) is true for all x 2 S(f).2.2.1 Sensitivities of the spa
e mappingTo 
ompute the sensitivities of P , JP : S(f) ! IRn�n, we now di�erentiate (3) with respe
t to x,yieldingmXi=1[
i(P (x))� fi(x)℄r2
i(P (x))JP (x) + J
(P (x))> �JP (x)>J
(P (x))> � Jf (x)>�> = 0 ; (4)where Jf and J
 denote the Ja
obians of f and 
, respe
tively. Thus, JP (x) 
an be 
omputed fromG(x)JP (x) = J
(P (x))>Jf (x) ;where G(x) def= mXi=1[
i(P (x)) � fi(x)℄r2
i(P (x)) + J
(P (x))>J
(P (x)) :3



Sin
e G(x) is symmetri
, we also haveJP (x)>G(x) = Jf (x)>J
(P (x)) : (5)Had we assumed that f(x) = 
(P (x)) for all x 2 S(f), whi
h is ideally the underlying motivation,we would have obtained Jf (x) = J
(P (x))JP (x), 
onsistently with (4,5).The 
al
ulation (5) of the sensitivities JP (x) requires the solution of n systems of linear equationswith the matrix G(x). It also requires the evaluation of �rst-order derivatives of the �ne modeland the evaluation of �rst-order and se
ond-order derivatives of the 
oarse model. We will see laterthat it is not JP (x) but rather its a
tion on appropriate ve
tors that needs to be 
omputed.We will assume that G(x)�1 exists for all x in S(f). The 
ase where JP (x) and Jf (x) areapproximated, say by JappP (x) and Jappf (x), respe
tively, will be dis
ussed later.2.2.2 Gradient of the surrogate H
(P )The spa
e mapping provides a surrogate model H
(P ) def= H Æ 
 Æ P for the �ne-model fun
tion Hf .The next iteration involves solvingminx2S(f) H
(P )(x) = H(
(P (x))) :The sensitivities of P provide the gradient for the surrogate H
(P ):rH
(P )(x) = JP (x)>J
(P (x))>rH(
(P (x))) ;where rH(
(P (x))) is the gradient of H at 
(P (x)). One 
an see that the gradient rH
(P )(x) 
anbe also 
omputed by an adjoint-type 
al
ulation (note that G(x) is symmetri
):rH
(P )(x) = Jf (x)>J
(P (x))G(x)�1J
(P (x))>rH(
(P (x))) ;requiring the solution of a single system of linear equations with G(x).2.3 Trust-region methods for minimizing the surrogate H
(P )2.3.1 A quadrati
 model for the surrogate H
(P )Given the sensitivities JP (x), one 
an 
onsider a lo
al linear model P`(x+ �) for P (x) near x:P`(x+ s) def= P (x) + JP (x)s : (6)The minimization of the surrogate H
(P ) 
an be 
arried out by a trust-region approa
h. To
ompute a step s from x, we introdu
e a trust-region subproblem of the typeminksk��H
`(P`)(x+ s) def= (H Æ 
` Æ P`) (x+ s) ; (7)where � > 0 is the trust radius. Here 
`(P (x)+ �) denotes a lo
al linear model of the 
oarse modelnear P (x) with exa
t �rst-order information, i.e., a linear model of the form
`(P (x) + ŝ) def= 
(P (x)) + J
(P (x))ŝ : (8)At this point it is important to remark that we are using 
` instead of 
. Sin
e the 
oarsemodel 
 is 
heap to evaluate, it is reasonable to expe
t that 
 
ould be used dire
tly instead of4



being approximated, as happens in [4℄. The algorithmi
 approa
hes that we develop next 
ouldbe 
arried out in that way, with H
`(P`) repla
ed by H
(P`). However, we remark that for global
onvergen
e purposes, the surrogate H
(P`) would be required to yield a 
ondition of the type (11)and it is not 
lear that that would hold for every 
oarse model 
. We will return to this point later.Sin
e H
`(P`) = H Æ
`ÆP` has been de�ned by the 
omposition of two linear models (6,8) holdingexa
t �rst-order information with the quadrati
H, we obtain thatH
`(P`) is itself a quadrati
 model,of the form H
`(P`)(x+ s) = a(x) + hb(x); si+ 12 hs;B(x)si ;where a(x) = H
(P )(x) ;b(x) = rH
(P )(x) = JP (x)>J
(P (x))>rH(
(P (x))) ;B(x) = JP (x)>J
(P (x))>r2H J
(P (x))JP (x) ;rH(
(P (x))) is the gradient of H at 
(P (x)), and r2H is the Hessian of the quadrati
 H.2.3.2 Cau
hy de
reaseThe step s 
an be required to satisfy a fra
tion of Cau
hy de
rease:H
`(P`)(x)�H
`(P`)(x+ s) � � �H
`(P`)(x)�H
`(P`)(x+ sC)� ; (9)where � 2 (0; 1℄. Here sC is the Cau
hy step de�ned by sC = ��CrH
(P )(x), with �C given bythe solution of the one-dimensional problem:�C = argmin�>0; k��rH
(P )(x)k�� H
`(P`)(x� �rH
(P )(x)) :There are several algorithms that produ
e steps satisfying the fra
tion of Cau
hy de
rease 
ondi-tion (9); see [8℄.Sin
e H
`(P`) is quadrati
, a result due to Powell [14, theorem 4℄ (see also [8, se
tion 6.3℄, [12,lemma 4.8℄) impliesH
`(P`)(x)�H
`(P`)(x+ sC) � 12krH
(P )(x)kmin(�; krH
(P )(x)kkB(x)k ) : (10)where B(x) is the Hessian of the quadrati
 model H
`(P`) of the surrogate H
(P ) as de�ned before.The Hessian B(x), or a symmetri
 approximation thereof, will be assumed uniformly boundeda
ross all iterations of the trust-region methods. The lower bound (10) for the de
rease obtainedin H
`(P`) by sC , together with the fra
tion of Cau
hy de
rease 
ondition (9) implyH
`(P`)(x)�H
`(P`)(x+ s) � �2 krH
(P )(x)kmin(�; krH
(P )(x)kkB(x)k ) : (11)This estimate is key to prove global 
onvergen
e of trust-region methods to stationary points ofH
(P ).One 
an repla
e 
` by 
 and still retain global 
onvergen
e provided (11), or alternatively (9)and (10), is valid for 
 instead of 
`. More elaborated model managing te
hniques (see Alexandrovet al. [1℄) 
ould be applied to enfor
e (11) with 
` repla
ed by 
.5



2.3.3 Minimization of the surrogate H
(P ) using surrogate fun
tion valuesIf the goal is only to minimize the surrogate H
(P ), then we have all the ingredients we need toidentify a 
lass of trust-region methods that are able to 
onverge to stationary points of H
(P ).In fa
t, all it takes is to require the step s to satisfy the fra
tion of Cau
hy de
rease 
ondition (9)and to a

ept the step s and possibly in
rease � ifared(x; s)pred(x; s) def= H
(P )(x)�H
(P )(x+ s)H
`(P`)(x)�H
`(P`)(x+ s) � �1 (12)and, otherwise, to reje
t the step s (redu
ing � to 
1� and re
omputing a new step s yielding (9)).The 
onstants 
1 and �1 must belong to (0; 1) and be �xed a
ross all iterations. We des
ribe nextthis family of trust-region methods.Algorithm 2.1 Trust-region methods for the minimization of H
(P ) using surrogate fun
tion valuesLet x0 2 IRn, �0 > 0, and 
1; �1 2 (0; 1) be given.For k = 0; 1; 2; : : :� Compute a step sk from the trust-region subproblem (7) that satis�es (9), for x = xk.� Let �k = ared(xk; sk)pred(xk; sk) = H
(P )(xk)�H
(P )(xk + sk)H
`(P`)(xk)�H
`(P`)(xk + sk) :� If �k � �1 then xk+1 = xk + sk and �k+1 is 
hosen so that �k+1 � �k.� If �k < �1 then xk+1 = xk and �k+1 = 
1�k.endThe rules to update the trust radius �k are in pra
ti
e more sophisti
ated. What we have justdes
ribed enables the method to a
hieve global 
onvergen
e and it is veri�ed by most implementa-tions.Any su
h trust-region method generates a sequen
e of iterates fxkg that veri�es an asymptoti
result of the following form [8, se
tion 6.4℄:Theorem 2.1 Let H
(P ) be a 
ontinuously di�erentiable fun
tion with uniformly 
ontinuous gra-dient in S(f). Consider a sequen
e fxkg generated by a trust-region method of the form of algo-rithm 2.1. Let also H
(P ) be bounded below onL(x0) = fx 2 S(f) : H
(P )(x) � H
(P )(x0)g :Finally, let fB(xk)g be a bounded sequen
e. Thenlimk!+1 krH
(P )(xk)k = 0: (13)The assumptions of theorem 2.1 are posed in terms of the surrogate H
(P ). Those assumptionsare satis�ed provided:Conditions 2.1� S(f) and S(
) are open domains; 6



� the Ja
obian of f is uniformly 
ontinuous in S(f);� the Hessians of 
i, i = 1; : : : ;m, are uniformly 
ontinuous in S(
);� P : S(f) ! S(
) is a well de�ned point-to-point map, H
(P ) = H Æ 
 Æ P is bounded below onS(f) (whi
h is trivially satis�ed when H is the squared `2 norm), (3) is true for all x 2 S(f),and G(�)�1 exists in S(f).The strongest assumptions 
on
ern the well-de�niteness and the smoothness of the mapping P .Assuming that P : S(f) ! S(
) is a well de�ned point-to-point map and that G(�)�1 exists in S(f)is reasonable when m� n. It is diÆ
ult to establish s
enarios under whi
h these assumptions areveri�ed, as the situation is highly problem dependent. It is reasonable to say that the 
han
es ofsatisfying su
h assumptions in
rease as m be
omes bigger and bigger than n, as the 
ontributionof the semi-positive de�nite term J>
 J
 in G be
omes more and more relevant.2.3.4 Minimization of the surrogate H
(P ) using �ne-model fun
tion valuesSin
e we need to evaluate the �ne model f to 
ompute H
(P )(x) and H
(P )(x+ s), we 
ould thinkof repla
ing the a
tual redu
tion H
(P )(x)�H
(P )(x+ s)given in (12), by Hf (x)�Hf (x+ s) :Sin
e we are inexa
tly approximating H
(P ) by Hf in this algorithmi
 
ontext, we need toimpose the following 
onditions: jHf (x)�H
(P )(x)j � �0 pred(x; s);jHf (x+ s)�H
(P )(x+ s)j � �0 pred(x; s); (14)where 0 < �0 < 12�1.It is proved in [8, se
tion 10.6℄ that the limit result (13) is retained if 
onditions (14) aresatis�ed. However, the satisfa
tion of these 
onditions might be problemati
 and expensive. They
an be expensive be
ause they may for
e the re
omputation of Hf or H
(P ) at x or x + s morea

urately (see [8, se
tion 10.6℄). But, more importantly, they 
an be problemati
 be
ause there isno guarantee that the surrogate H
(P ) agrees with the �ne model Hf .2.4 Trust-region methods for minimizing a surrogate based on 
 ÆP and on the�ne model fBased on the work by Bakr et al. [4℄, in parti
ular in what has been developed for their surrogate(2), we 
onsider now the surrogateHw def= Hf(w)
 Æ P + (1� w)fg ;with w 2 [0; 1℄, and the 
orresponding quadrati
 modelqw def= Hf(w)
` Æ P` + (1� w)f`g ;where f`(x+ �) is a lo
al linear model of the �ne model f . (The bra
kets are used to easy notation.Hffg represents H Æ f .) 7



We will assume now that both JP (x) and Jf (x) are 
omputed inexa
tly, and 
onsider a lo
allinear model of the �ne model f with inexa
t �rst-order information, of the formfapp` (x+ s) = f(x) + Jappf (x)s ;using an approximation Jappf (x) for the Ja
obian Jf (x) of the �ne model, and a lo
al linear modelof the spa
e mapping with inexa
t �rst-order information, of the formP app` (x+ s) = P (x) + JappP (x)s ;using an approximation JappP (x) for the sensitivities JP (x).Thus, we get qappw (x+ s) = aw(x) + hbw(x); si+ 12hs;Bw(x)si ;wherebw(x) = rsH �(w)
` Æ P app` + (1�w)fapp` 	 (x+ s)= �(w)JappP (x)>J
(P (x))> + (1� w)Jappf (x)>�rH((w)
(P (x)) + (1� w)f(x)) ;and rH((w)
(P (x))+ (1�w)f(x)) is the gradient of H at (w)
(P (x))+ (1�w)f(x). The HessianBw(x), or a symmetri
 approximation thereof, is assumed to be uniformly bounded a
ross alliterations of the trust-region methods.We 
onsider now a trust-region subproblem of the typeminksk�� qappw (x+ s) ; (15)with � > 0, and require the step s to satisfy the following fra
tion of Cau
hy de
rease 
ondition:qappw (x)� qappw (x+ s) � �w �qappw (x)� qappw (x+ sCw)� ; (16)where �w 2 (0; 1℄. Here sCw is the Cau
hy step de�ned by sCw = ��Cwbw(x), with �Cw given by thesolution of the one-dimensional problem:�Cw = argmin�>0; k��bw(x)k�� qappw (x� �bw(x)) :The step s is a

epted and � is possibly in
reased ifared(x; s;w)pred(x; s;w) def= Hw(x)�Hw(x+ s)qappw (x)� qappw (x+ s) � �1 :Otherwise, the step s is reje
ted and � is redu
ed to 
1�. The 
onstants 
1 and �1 must belongto (0; 1) and be �xed a
ross all iterations.The gradient of Hw at x is given byrHw(x) = �(w)JP (x)>J
(P (x))> + (1�w)Jf (x)>�rH((w)
(P (x)) + (1� w)f(x)) :Sin
e the term bw(x) used in qappw (x + s) is not exa
tly the gradient rHw(x), we need to imposethe following 
ondition [7℄,[8, se
tion 8.4℄ on this �rst-order approximation:krHw(x)� bw(x)kkbw(x)k � �w(1� �1)2 : (17)8



One 
an see that the term bw(x) is di�erent from rHw(x) be
ause of the approximations Jappf (x)for Jf (x) and JappP (x) for JP (x). The approximation Jappf (x) for Jf (x) is used expli
itly in theformula for bw(x) and in the 
omputation of JappP (x). The sensitivities JP (x) 
an be inexa
t justbe
ause of the inexa
tness of Jappf (x). But even when exa
t �rst-order derivatives are available forthe �ne model f , the sensitivities 
omputation 
an be inexa
t (e.g., it might result of the appli
ationof iterative linear solvers or of Broyden's method). Thus, 
ondition (17) is 
ontrolling both thequality of the approximation of the �rst-order derivatives of the �ne model f and the quality ofthe approximation of the sensitivities of P . We des
ribe next this family of trust-region methods,this time for the surrogate Hw.Algorithm 2.2 Trust-region methods for the minimization of HwLet x0 2 IRn, �0 > 0, and 
1; �1 2 (0; 1) be given.For k = 0; 1; 2; : : :� Compute bw(xk) su
h that krHw(xk)� bw(xk)kkbw(xk)k � �w(1� �1)2 :� Compute a step sk from the trust-region subproblem (15) that satis�es (16), for x = xk.� Let �k = ared(xk; sk)pred(xk; sk) = Hw(xk)�Hw(xk + sk)qappw (xk)� qappw (xk + sk) :� If �k � �1 then xk+1 = xk + sk and �k+1 is 
hosen so that �k+1 � �k.� If �k < �1 then xk+1 = xk and �k+1 = 
1�k.endThe 
omment about the trust radius �k made after algorithm 2.1 also applies here.The global 
onvergen
e result [7℄,[8, se
tion 8.4℄ for any trust-region method in this family issummarized in the next theorem.Theorem 2.2 Let Hw be a 
ontinuously di�erentiable fun
tion with uniformly 
ontinuous gradientin S(f). Consider a sequen
e fxkg generated by a trust-region method of the form of algorithm 2.2.Let also Hw be bounded below onLw(x0) = fx 2 S(f) : Hw(x) � Hw(x0)g :Finally, let fBw(xk)g be a bounded sequen
e. Thenlimk!+1 krHw(xk)k = 0 :The assumptions of theorem 2.2 are posed in terms of the surrogate Hw. Those assumptionsare satis�ed provided 
onditions 2.1 hold.By tuning the parameter w iteratively, repla
ing w by wk in algorithm 2.2, and by for
ing wkto 
onverge to zero, we get an asymptoti
 result for the �ne model:Corollary 2.1 Under the assumptions of the previous theorem, if limk!+1wk = 0 thenlimk!+1 krHf (xk)k = 0 :9



2.5 Dis
ussion and extensionsResults des
ribing global 
onvergen
e to points satisfying se
ond-order ne
essary 
onditions 
ouldalso be proved for modi�ed versions of algorithms 2.1 and 2.2, but su
h modi�
ations are lessrealisti
 from a pra
ti
al point of view sin
e they would require, among other things, one moreorder of di�erentiability for f and 
. Several other algorithmi
 enhan
ements 
ould be 
onsidered.One 
ould, for instan
e, use line-sear
h te
hniques instead of the trust-region approa
h, developingalgorithms also globally 
onvergent. Quasi-Newton methods, su
h as the BFGS or SR1, or theirlimited memory versions, 
ould be applied to improve the numeri
al behavior related with lo
al
onvergen
e, without requiring more di�erentiability.When m � n, the de�nition of the spa
e mapping given by (1) gives easily rise to a point-to-setmap, as it is expe
ted that the system 
(x̂) = f(x), for �xed x, has nonunique solutions in S(
). Inthis 
ase, one 
ould instead de�ne P (x) by looking at the problemminx̂2S(
) 12kx̂� xk2s.t. 
(x̂) = f(x) : (18)If S(x) def= fx̂ 2 S(
) : 
̂(x̂) = f(x)g 6= ;, one 
ould de�ne P (x) as the (uniquely assumed) solutionof (18). Otherwise, P (x) would be the (uniquely assumed) least-squares solution of the 
onstraintsin (18), already de�ned in (1). Su
h de�nition does not lead to a smooth mapping, even when themodels f and 
 are smooth. In the next se
tion, we will dis
uss spa
e mapping using s
alar-valuedmodels, where we will 
onsider a spa
e mapping given by a problem of the form (18) with only one
onstraint. It will be
ome 
lear from the 
ontext of the next se
tion what type of nondi�erentiabilityarises when spa
e mapping is based on (18).3 Spa
e mapping using s
alar-valued modelsLet us 
onsider a 
oarse model ĝ : X̂ � IRn ! IR of a �ne model g : X � IRn ! IR. A parallel tothe previous notation 
an be drawn by 
onsidering ĝ = H
 = H Æ 
, S(
) = X̂, g = Hf = H Æ f ,and S(f) = X. The goal is to minimize the �ne model g(x) in X.3.1 The spa
e-mapping de�nitionLet us assume that X and X̂ are open sets of IRn. IfS(x) def= fx̂ 2 X̂ : ĝ(x̂) = g(x)g 6= ; (19)then, assuming that the problem minx̂2X̂ 12kx̂� xk2s.t. ĝ(x̂) = g(x) (20)has an unique solution, we de�ne P (x) asP (x) def= argminx̂2X̂ 12kx̂� xk2 s.t. ĝ(x̂) = g(x) : (21)If the set S(x) given in (19) is empty then P (x) is given by the solution, assumed unique, of theun
onstrained problem that 
onsists of the minimization of the least-squares norm of the 
onstraintĝ(x̂) = g(x): P (x) def= argminx̂2X̂ 12 (ĝ(x̂)� g(x))2 : (22)10



ĝ(x̂)gP (x)g(x) ĝ(x̂)gP (x)g(x)Figure 1: The surrogate gP = ĝ Æ P is the same in both examples.3.2 The surrogate gPThe spa
e mapping provides a surrogate model gP def= ĝ Æ P for the �ne model. The next stepinvolves solving minx2X gP (x) = ĝ(P (x)) :We analyze now the di�erentiability properties of the surrogate gP . We show �rst that gP is aregular fun
tion, i.e., that it has dire
tional (or Gâteaux) derivatives along any dire
tion and at anypoint in X. The proof of the next theorem is itself an introdu
tion to the shape of the surrogategP . For a better understanding of the proof let us �rst introdu
e a simple example. Let X = X̂ = IR,g(x) = x2, and ĝ(x̂) = (x̂ � 1)2 + 1. In this example, P (x) = 1 and gP (x) = ĝ(P (x)) = 1 forx 2 [�1; 1℄. Outside [�1; 1℄, the �ne model g and the surrogate gP = ĝ Æ P 
oin
ide. This exampleis depi
ted in �gure 1 (left).Theorem 3.1 Let g and ĝ be 
ontinuously di�erentiable fun
tions in X and X̂, respe
tively. Letus assume also that P is a well de�ned point-to-point map from X to X̂.Then gP is regular.Proof: We will show that gP has dire
tional derivatives for every x in X. The proof is dividedin three parts: in the �rst part we deal with the 
ase where gP 
oin
ides with g; in the se
ond wewill look at the 
ase where gP is 
at; the last part analyzes the kinks.Part 1.In a neighborhood N1 of X where for all x 2 N1 one has S(x) 6= ; and rĝ(P (x)) 6= 0, P (x) mustsatisfy the �rst-order ne
essary 
onditions for (20):P (x)� x+ �(x)rĝ(P (x)) = 0 ; (23)ĝ(P (x)) = g(x) ; (24)where �(x) is the multiplier 
orresponding to the 
onstraint ĝ(x̂) = g(x). The fa
t that rĝ(P (x)) 6=0 a
ts like the 
onstraint quali�
ation needed for the ne
essary 
onditions. Thus, inN1, gP 
oin
ideswith g, and gP is di�erentiable with a gradient given byrgP (y) = rg(y) :11



Part 2.If for a given x we have that S(x) = ;, then P (x) must verify the �rst-order ne
essary 
onditionsfor (22): [ĝ(P (x))� g(x)℄rĝ(P (x)) = 0 :Sin
e ĝ(P (x)) 6= g(x) we obtain rĝ(P (x)) = 0 ;i.e., P (x) is a stationary point for the 
oarse model ĝ. Moreover, we 
an easily prove by 
ontradi
tionthat P (x) is either a lo
al minimizer of ĝ (when ĝ(P (x)) > g(x)) or a lo
al maximizer of ĝ (whenĝ(P (x)) < g(x)). A 
ontinuity argument shows that there exists a neighborhood N2 of x whereS(y) = ;, P (y) = P (x), and rĝ(P (y)) = 0 for all y 2 N2. Thus, P and gP are 
onstant in N2. Asa 
onsequen
e, gP is di�erentiable in N2, and its gradient is given byrgP (y) = 0 :Part 3.We are left with situations 
hara
terized by the existen
e of points z 2 X where one hasrĝ(P (z)) = 0 ; (25)ĝ(P (z)) = g(z) : (26)In this situation one 
annot appeal to (23)-(24) due to the apparent absen
e of a 
onstraint quali-�
ation. Two 
ases 
an o

ur here and we analyze them separately.The �rst 
ase is when S(�) is still nonempty in a neighborhood of z. In this 
ase we fall in theN1-neighborhood situation des
ribed above, where g and gP 
oin
ide, with the parti
ularity thatrg(z) = 0, i.e., z is a stationary point for the �ne model g.The se
ond 
ase is when there is no neighborhood of z where the set S(�) is nonempty. One
an also show here by 
ontradi
tion that P (z) is either a lo
al minimizer or a lo
al maximizer ofĝ. Furthermore, for any dire
tion d eitherg0P (z; d) = hrg(z); di(when hrg(z); di � 0 and P (z) is a lo
al minimizer of ĝ or when hrg(z); di < 0 and P (z) is a lo
almaximizer of ĝ), or g0P (z; d) = 0(when hrg(z); di < 0 and P (z) is a lo
al minimizer of ĝ or when hrg(z); di � 0 and P (z) is a lo
almaximizer of ĝ). We 
on
lude that the dire
tional derivative g0P (z; d) exists for all dire
tions d. Weremark that when P (z) is a lo
al minimizer of ĝ, we have0 2 �gP (z) def= �r 2 IRn : hr; di � g0P (z; d) for all d 2 IRn	 ;i.e., z is a stationary point for the surrogate fun
tion gP . It 
an be proved here that z is a lo
alminimizer of gP , although not unique, sin
e gP is 
at along dire
tions d for whi
h hrg(z); di < 0.Æ In the example where X = X̂ = IR, g(x) = x2, and ĝ(x̂) = (x̂ � 1)2 + 1, there are two kinks,�1 and 1. We have that P (�1) = 1 and the gradient of ĝ at P (�1) is zero: there is no Lagrange12



multiplier �(�1) that solves (23). At the other kink, we observe that P (1) = 1, but the gradientof ĝ at P (1) is also zero. Despite the la
k of the linear independen
e 
onstraint quali�
ation, anyreal multiplier �(1) solves 
ondition (23).The proof provides signi�
ant insight about the surrogate gP . There is however one point thathas not been analyzed expli
itely in the proof and that is relevant for the numeri
al minimizationof gP . Consider a sequen
e of points in a N1-neighborhood that is 
onverging to a kink pointz 2 
l(N1), where z satis�es (25){(26). We have thatlimk!+1 krĝ(P (yk))k = 0 :In su
h a situation, two 
ases 
an happen. The �rst 
ase is whenlimk!+1 kP (yk)� ykk = 0 ;and in this 
ase the behavior of �(yk) is not relevant, providedlimk!+1�(yk)rĝ(P (yk)) = 0 :(In the example analyzed in this se
tion this 
ase 
orresponds to z = 1.) The se
ond 
ase 
orre-sponds to limk!+1 kP (yk)� ykk 6= 0 ; (27)where we must have limk!+1�(yk) = +1 :(In the example analyzed in this se
tion this 
ase 
orresponds to z = �1.)Thus, the sizes of the multiplier �(yk) and of the distan
e kP (yk) � ykk are an indi
ation ofthe 
onvergen
e to a kink point z, where 0 2 �gP (z) and z is a lo
al minimizer of gP or where0 2 ��gP (z) and z is a lo
al maximizer of gP .In the example that we have been 
onsidering, if we 
hange the 
oarse model to ĝ(x) = (x̂�2)2+1then we 
an see that P (x) = 2 for x 2 [�1; 1℄ but gP = ĝ Æ P does not 
hange. The kinks �1 and1 are now both of the se
ond 
ase (27). There is now a point x = 5=4 in a N1-neighborhood forwhi
h P (5=4) = 5=4, rĝ(P (5=4)) 6= 0, and �(5=4) = 0. This example is depi
ted in �gure 1 (right).We illustrate also, in �gure 2, a situation where the �ne model has no minimizer but where thesurrogate gP 
an be su

essfully minimized.Another relevant aspe
t is that 
ondition (23) provides a lo
al linear model for P around x:P app` (y) = y � �(x)rĝ(P (x)) ;that might be useful to build a new (lo
al) surrogate ĝ Æ P app` .3.3 Dis
ussion and extensionsThe results of se
tion 3 
an be generalized in various ways. The approa
h is not restri
ted to IRn and
ould be easily developed in in�nite dimensional spa
es (Bana
h re
exive or Hilbert), by requiringFr�e
het di�erentiability of the models g and ĝ and by assuming the same type of well-de�nitenessfor the spa
e mapping. The norm used in (21) should be smooth to allow di�erentiability. Theapproa
h des
ribed here for IRn also works with ellipsoidal norms of the form kxk = kQ1=2xk, whereQ is a symmetri
 positive de�nite matrix. 13



ĝ(x̂) gP (x)
g(x)Figure 2: The surrogate gP = ĝ Æ P is bounded below despite the fa
t that the �ne model g isunbounded.Assuming that P : X ! X̂ is point-to-point is 
ertainly strong, problem dependent, and onlyguaranteed under spe
ial 
onvexity assumptions. But su
h assumption allowed us to study themain properties of gP = ĝ Æ P (see the last paragraph in this se
tion) whose 
avor is also presentwhen P : X ! X̂ is point-to-set.The regularity of gP allows the appli
ation of the approa
h and global 
onvergen
e results ofDennis, Li, and Tapia [10℄. This paper 
onsiders a trust-region step that is an optimal solution ofthe trust-region subproblem. Conn, Gould, and Toint [8, 
hapter 11℄ generalized their approa
hfor the 
ase where the trust-region steps satisfy only a fra
tion of Cau
hy de
rease 
ondition.The analysis of se
tion 3 for s
alar-valued models has shown that the surrogate gP = ĝ ÆP maybe 
at when the image of P is 
lose to a minimizer of ĝ. Thus, spa
e-mapping te
hniques solelybased on the minimization of gP should be applied with 
aution and abandoned when 
atness isen
ountered. The same 
omment applies to spa
e-mapping te
hniques for ve
tor-valued modelswhen m � n, as dis
ussed in se
tion 2.5.A
knowledgmentsThe author would like to thank John E. Dennis (Ri
e University, Houston, USA) and Kaj Madsenand Ja
ob S�ndergaard (Te
hni
al University of Denmark) for their 
omments and suggestions onan earlier draft of this paper.Referen
es[1℄ N. M. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Tor
zon, A trust region frame-work for managing the use of approximation models in optimization, Stru
tural Optimization,15 (1998), pp. 16{23. 14



[2℄ M. H. Bakr, J. W. Bandler, R. M. Bierna
ki, S. H. Chen, and K. Madsen, A trustregion agressive spa
e mapping algorithm for EM optimization, IEEE Trans. Mi
rowave TheoryTe
h., 46 (1998), pp. 2412{2425.[3℄ M. H. Bakr, J. W. Bandler, K. Madsen, and J. S�ndergaard, Review of the spa
emapping approa
h to engineering optimization and modeling, Optimization and Engineering,1 (2000), pp. 241{276.[4℄ , An introdu
tion to the spa
e mapping te
hnique, (2002). To appear in Optimization andEngineering.[5℄ J. W. Bandler, R. M. Bierna
ki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers,Spa
e mapping te
hnique for ele
tromagneti
 optimization, IEEE Trans. Mi
rowave TheoryTe
h., 42 (1994), pp. 2536{2544.[6℄ J. W. Bandler, R. M. Bierna
ki, S. H. Chen, R. H. Hemmers, and K. Madsen, Ele
-tromagneti
 optimization exploiting agressive spa
e mapping, IEEE Trans. Mi
rowave TheoryTe
h., 43 (1995), pp. 2874{2882.[7℄ R. G. Carter, On the global 
onvergen
e of trust region algorithms using inexa
t gradientinformation, SIAM J. Numer. Anal., 28 (1991), pp. 251{265.[8℄ A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, MPS-SIAM Serieson Optimization, SIAM, Philadelphia, 2000.[9℄ J. E. Dennis, Surrogate Modelling and Spa
e Mapping for Engineering Optimization. A sum-mary of the Danish Te
hni
al University November 2000 Workshop, Te
h. Rep. TR00{35,Department of Computational and Applied Mathemati
s, Ri
e University, 2000.[10℄ J. E. Dennis, S.-B. B. Li, and R. A. Tapia, A uni�ed approa
h to global 
onvergen
e oftrust region methods for nonsmooth optimization, Math. Programming, 68 (1995), pp. 319{346.[11℄ S. Leary, A. Bhaskar, and A. Keane, A 
onstraint mapping approa
h to the stru
turaloptimization of an expensive model using surrogates, in Surrogate Modelling and Spa
e Map-ping for Engineering Optimization, H. B. Nielsen, ed., DK-2800, Lyngby { Denmark, 2000,Department of Mathemati
al Modelling, Te
hni
al University of Denmark.[12℄ J. J. Mor�e, Re
ent developments in algorithms and software for trust regions methods, inMathemati
al programming. The state of art, A. Ba
hem, M. Grots
hel, and B. Korte, eds.,Springer Verlag, New York, 1983, pp. 258{287.[13℄ H. B. Nielsen, ed., Surrogate Modelling and Spa
e Mapping for Engineering Optimization,DK-2800, Lyngby { Denmark, 2000, Department of Mathemati
al Modelling, Te
hni
al Uni-versity of Denmark.[14℄ M. J. D. Powell, Convergen
e properties of a 
lass of minimization algorithms, in NonlinearProgramming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., A
ademi
 Press,New York, 1975, pp. 1{27.[15℄ J. S�ndergaard, Non-Linear Optimization Using Spa
e Mapping, Master's thesis, Depart-ment of Mathemati
al Modelling, Te
hni
al University of Denmark, 1999.15


