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Abstract

In this paper we analyze the rate of local convergence of the Newton primal-dual interior-
point method when the iterates are kept strictly feasible with respect to the inequality con-
straints.

It is shown under the classical conditions that the rate is q—quadratic when the functions
associated to the binding inequality constraints are concave. In general, the q—quadratic rate is
achieved provided the step in the primal variables does not become asymptotically orthogonal
to any of the gradients of the binding inequality constraints.

Some preliminary numerical experience showed that the feasible method can be implemented
in a relatively efficient way, requiring a reduced number of function and derivative evaluations.
Moreover, the feasible method is competitive with the classical infeasible primal-dual interior-
point method in terms of number of iterations and robustness.
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1 Introduction

The local convergence theory of (infeasible) primal-dual interior-point methods for nonlinear
programming was developed in the papers by El-Bakry et al. |5] and Yamashita and Yabe [14].
These papers show a q quadratic rate of local convergence under the classical assumptions (second
order sufficient optimality conditions, linear independence of the gradients of functions defining the
binding constraints (LICQ), and strict complementarity). The study of q superlinear convergence
for quasi-Newton updates is reported in [10] and [14]|. Furthermore, Vicente and Wright |13] proved
a q quadratic rate of convergence for a variant of the primal-dual interior-point method under de-
generacy (replacing the LICQ by the Mangasarian—Fromowitz constraint qualification). In these
approaches, the corresponding primal-dual interior-point method deals with the multipliers associ-
ated to both equality and inequality constraints as independent variables, and the primal-dual step
is a Newton step for a perturbation of the first order necessary conditions for optimality. These
approaches are infeasible since feasibility, corresponding to equality and, more importantly, to in-
equality constraints (rather than simple bounds), is only achieved asymptotically. Other rates of
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convergence for different interior-point methods for nonlinear programming have been established
in 2], 3], [9], and [12].

Gould, Orban, Sartenaer, and Toint [7| investigated the rate of convergence of primal-dual log-
arithmic barrier interior-point methods for linear equality constraints and general inequalities. The
log-barrier approach maintains the iterates strictly feasible with respect to the inequality constraints,
and the multipliers corresponding to the equalities are treated implicitly as dependent variables.
The authors proved g—superlinear convergence, with a rate that may be chosen arbitrarily close
to quadratic. Basically, they studied conditions under which a single primal-dual Newton step is
strictly feasible and satisfies appropriate log-barrier subproblem termination criteria.

The feasible primal-dual interior-point method of Tits et al. [11]| achieves a quadratic rate of
local convergence. In this algorithm, the multipliers corresponding to the inequality constraints are
updated according to an appropriate formula and do not result directly from the Newton related
primal-dual step on the perturbed KKT system of first-order optimality conditions. As we explain
below, we are interested in analyzing the local convergence of a feasible primal-dual interior-point
method without any special provision or correction formula for these multipliers.

In this paper we analyze the rate of local convergence of the feasible primal-dual interior-point
method along the lines of the analyses in [5] and [14]. The aspect considered is that inequality
constraints are not converted into equalities using slack variables. The method keeps strict feasibility
with respect to the inequality constraints. The other components of the primal-dual interior-point
method remain essentially the same: the primal-dual step is a Newton step on the perturbed KKT
system and the various parameters are updated appropriately to induce a q quadratic rate on the
sequence of primal-dual iterates.

The material of this paper is organized in the following way. In Section 2, we describe the
feasible primal-dual interior-point method in detail. The method is analyzed in Section 3, where it
is shown that the iterates converge locally with a g—quadratic rate in the case of concave inequalities.
The analysis includes the case where the step length is computed inexactly. The nonconcave case
is discussed in Section 4. The rate remains g—quadratic for nonconcave inequalities as long as the
primal component of the step is asymptotically nonorthogonal to the gradients of the (nonconcave)
functions defining the binding inequalities. In Section 5 we report some numerical results which
show that the feasible method is competitive with the infeasible method in terms of number of
iterations. We present a scheme to calculate the step length for the feasible method which requires
a moderate number of constraint function evaluations. The paper is concluded in Section 6 with
remarks about the theoretical interest and computational limitation of the analyzed approach.

2 The feasible primal-dual interior-point method

We consider the general nonlinear programming problem written in the form

st.  h(z)=0, (1)
g(x) <0,

where f: R" — IR, h: R" — IR, and g : IR™ — IR™9. The assumptions on the differentia-
bility of the functions f, g, and h will be stated later. The numbers mj, and m, are assumed to be
positive integers. The material of this paper remains valid in the case where there are no equality
constraints (my = 0).



The Lagrangean function for problem (1) is £ : R™"™*™s — R defined by

Ux,y,2) = f(x)+ hx) y+g(x) 2

where x are the primal variables and the pair (y,z) represents the dual variables (or Lagrange
multipliers). The gradient and the Hessian of ¢ with respect to the primal variables are given by

Vol(z,y,2) = Vf(x)+ Vh(z)y+ Vg(z) 2,

mp Mg
V2 l(x,y,2) = Vif(zx)+ Zijzhj(a;) + Z 2;V2g; (),
j=1 j=1

whenever f, g, and h are twice continuously differentiable at x.
The Karush Kuhn Tucker (KKT) first order (necessary optimality) conditions for problem (1)
are described by
VZEE(':L" y7 z)
FO(x7y7Z) déf h ‘T) (2)
—G(z)z
g(x) <0, z >0,

where G(z) = diag(g(z)). As we will see later, the primal-dual interior-point method is based on a
perturbation of the conditions (2), given by

e [ Vel@y2)
FM(.’L’7y7Z) é h(‘r) = 07
—G(x)z — pe

where p is a positive scalar and e is a vector of ones of dimension mg,. Note that, for € = (0, 0, e €
IRn—i—mh—i-mg
Y

F,U«(x’y’z) = FO(x’y’Z)_:ué' (3)

We will also make use of ||e]| = |e]|.

The main part of the iterative step of the primal-dual interior-point method consists of the
linearization of the perturbed KKT system. One computes a primal-dual step Aw = (Az, Ay, Az),
by solving the linear system of equations

F;/L(w) Aw = —Fy(w), (4)

for fixed w = (v,y,2) and p > 0, where F},(w) is the Jacobian of F),(w). Notice that, from (3),
F)(w) is also the Jacobian of Fy(w). The primal-dual system (4) can be written by blocks in the

Vil(z,y,2) Vh(z) Vg() Az Vel(z,y,z)
Vh(z)" 0 0 Ay | =— h(x) : (5)
—ZVg(x)T 0 —G(x) Az —G(z)z — pe

where Z = diag(z).

Most variants of the primal-dual interior-point method keep positive all the variables subject to
nonnegativity constraints. In our case, it means keeping the multipliers z positive. The parameter
1 is driven to zero asymptotically. Since we are looking at the feasible variant of the primal-dual



interior-point method, we must also keep g(x) negative throughout the iterations. The main steps
of this feasible variant are described below in Algorithm 2.1. For the purpose of analyzing local
convergence, we do not include any stopping criterion.

Algorithm 2.1 (Feasible primal-dual interior-point method.)
Choose an initial point wg = (g, Yo, z0) with g(z¢) < 0 and zy > 0.

For £ =0,1,2,...
Step 1. Choose the parameter pg > 0.

Step 2. Compute the solution Awy = (Azk, Ayg, Azi) of the system (5), for x = zg, y = yg, and
Z = Zk.

Step 3. Compute a positive step length ay such that

g(xp + arAzg) < 0 and  zp + apAzp > 0. (6)

Step 4. Define the next iterate wgi1 = (Tga1, Yk+1, 2k+1) according to:

W1 = Wk + pAwg. (7)

Since the step size aj must satisfy (6) throughout the iterations, we will impose that

ap = min{l, T min {— (21): s (Azg)i < 0}, Ti  min ai}, (8)

i=1,...,mg (Azk), i=1,...,mg
where 7, € (0,1) and
ai. < min{a: g(zp + aArp) =0, a >0}, i=1,...,my. 9)

Whenever the minimum is not achieved, it is assumed by convention that it is set to +oc.

We point out first that when the inequality constraints are of the simple bound type (—x < 0),
the choice for «ay is of the type given above with the inequalities in (9) satisfied as equalities. In
general, when the functions defining the inequality constraints are nonlinear, it might be computa-
tionally expensive to actually determine the step lengths 642 such that

ap = min{a: gi(zg+alzy) =0, a >0}, i=1,...,m,. (10)

On the other hand, to get a fast rate of local convergence one cannot compute step lengths d}; that
differ too much from (10). However, it is possible to allow a certain inexactness in this computation.
Let us define the residuals

i def 4 .
r, = gi(zr +apAzy), i=1,...,m,.

We will show that the feasible primal-dual interior-point method will retain local g—quadratic con-
vergence as long as the residuals 7} satisfy the condition

—gi(zg)cr || Awy]| }
1+ ClHAwk”

~rj < min{o(-g(o0) 1y, ()
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where o € (0,1) and ¢; > 0 are chosen independently of the iteration counter k. In Section 5.1 we
will describe a scheme to compute 54}; that seems to be relatively efficient in practice.

Moreover, to achieve a q—quadratic rate of local convergence, the feasible primal-dual interior-
point method must update the parameters 7, € (0,1) and g > 0 satisfying the classical conditions

1—7 < coFo(wg)l, (12)
e < cs|Fo(wg)|?, (13)

where co and c3 are constants independent of k. Vector and matrix norms in this paper are chosen
to be the Euclidean ones.

3 Analysis of local convergence

The local convergence of the feasible primal-dual interior-point method is analyzed at a point
., satisfying the following assumptions. In what follows, B(a,;7) denotes the open ball {a € RY :
lla — a.|| < r} of radius r centered at a,.

(A1) There exists an € > 0 such that the functions f, g, and h are twice continuously differentiable
in the ball B(z,;€). Moreover, the second order partial derivatives of f, g, and h are Lipschitz
continuous in B(zy;€).

(A2) The point z, is feasible and the gradients of the active constraints are linearly independent
at x,.

(A3) There exist Lagrange multipliers y, and z, such that w, = (z, y«, z«) satisfies the first order
KKT conditions and the second order sufficient conditions and such that the pair (—g(x.), 2«)
satisfies the strict complementarity condition (—g(x) + 2z, > 0).

Assumptions A1-A3 are the classical (nondegenerate) assumptions used to locally analyze interior-
point methods. It results from Assumption A3 that the multipliers associated with the inequalities
are nonnegative (z, > 0) and also that

Fo(ws) = 0. (14)

We recall now the basic smoothness results that are required in the proof of the local convergence
of the primal-dual interior-point method.

Lemma 3.1 Let z, be a point for which Assumptions A1-A3 hold and w, = (4, Y, 2¢). Then,
there exists a positive constant v such that

IFo(w') = Fo(w?)|| < ~llw' —w?l, (15)
IF(w') = Fp(w?)|| < ~llw' —w?],
[Fo(w') = Fo(w?) = Fy(w?)(w' —w?)| < allw! —w?|?, (16)

for all w' and w? in B(wy;e).

The next lemma states that the primal-dual matrix is nonsingular around wy, in the sense that
is of interest to us. For a proof see, for instance, [6].



Lemma 3.2 Let x, be a point for which Assumptions A1 A8 hold and w, = («,Yx, 2x). Then the
following holds:

(1) F{(wy) is nonsingular;
(ii) Fj(w) is nonsingular for w in B(wy;€ys), for some €,5 satisfying 0 < €,s < €.
From this lemma, it is assured the existence of a constant ¢ > 0 such that
IF(w) ™M = [IFp ()| < ¢, (17)

for all w in B(ws;€ps). For such points w, the primal-dual step Aw given by the solution of the
system (4) is well-defined and is equal to

Aw = —F/l(w)_lFu(w). (18)

The local asymptotic behavior of the feasible primal-dual interior-point method is studied first
for concave binding inequalities.

(A4) The functions g;, for i € {1,...,mg4} such that g;(z,) = 0, are concave.

The main part of the analysis is spent proving a lower bound for the length of the step size
parameter ay.

Lemma 3.3 Let x, be a point for which Assumptions A1-A4 hold and w, = (x4, y«, z«). Consider
a sequence {wg = (T, Yk, 2k)} generated by the feasible primal-dual interior-point method described
in Algorithm 2.1. If oy, satisfies (8)-(9) and (11) and 1, € (0,1) and pi > 0 satisfy (12) and (13),
then there exist positive constants € and x independent of k such that, when

wy € B(wy;e), (19)
either a, = 1 or the bound
1—ap < (1= 7k) + rC(I1Fo(we)ll + pellel]), (20)
holds for all iterates k.

Proof: First we have to set € = €5, where €, is given in Lemma 3.2.
Using (18), (3), (14), (17), (15), and (19) sequentially, it is easily derived the following bound
for the primal-dual step:

[Awgl] = || F}(wi) ™" Fu(wy) |
< 1 (wie) T U Fo (wi) | + pellel])
< C(Yllwk — w* || + pllell)
< Clye + pllel)-

Thus, from the condition (13) on the size of uy, and given a constant n > 0, one can reduce ¢ if

necessary such that
[Awg]| < 7. (21)



In particular, it is possible to choose a sufficiently small € such that
K[| Awg|| < 7, (22)

where k is defined by

def
K = Inhax
1l—0

The constants k1 and kg are given by

, K1 —1—/-@101174-01}.

K1 = 2max{  (24)i >0, ie{l,...,mg}}

(Z*)i
and

K9 2My 4 max { (@)
where My, is an upper bound on the size of Vg in B(xz4;e€).
We divide the proof in two separate cases: the case where the step length is defined by a
multiplier and the case where the step length is defined by an inequality.

s gi(xs) <0, i € {1,...,mg}},

Case where step length is defined by a multiplier. In this first case we assume that there

exists an index ¢ € {1,...,my} for which (Az); < 0 and
_ (2k)i
ap = Tk (Azk), .

If 7 is such that (z.); > 0 then, from the definition of x and from (22)

Y

(zk)i Th
o = T > 1.
TN AR) T slAw] T

When (z,); =0 (and g;(z.) < 0), we make use of the primal-dual block equation (see (5))
—ZiVg(xp) T Az, — Glap) Az = G(xp)z, + pxe,

to write
—(2)iVgi () " Axy — gi(zp)(Azr)i = gilwr)(z)i + s

or equivalently,

(Az)i Lk ;
- =14+ —E 4
(2k)i gi(ze)(zn)e | TF
with T T
~ Vgi(zr) ' Ax Vygi(xzr)' Ax
. gi(zx) " Axy, < [Vgi(wg) Az < wl|Awl.
gi(zk) —gi(xr)
Thus, since i,/ (gi(xr)(2k)i) <0,
BB A
(21)i
and
(2)i Tk

ap = Tp— k(1 — ]| Awg ).

>
(Azk)z - 1+/{||Awk|| -
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Case where step length is defined by an inequality. Now we are interested in the case
ap = Tpdy,
for some index ¢ € {1,...,my}. By applying the mean value theorem, we have
r,i —gi(zx) = gi(zp + @%A$k) — gi(zg) = @?;Vgi(:nk + t?;d};Axk)TAxk,
for some ti € (0,1), and the step length &% can be written as

—j 7"2 — gi(zk)
= — . 23
Yk Vgi(xk + tZ@iAxk)TAxk ( )

Since —r} < o(—g;(zx)), both the numerator and the denominator in this expression for & are
positive.
If 7 is such that g;(x,) < 0 then, from the definitions of k2 and k and from (22),

(1 = o)(=gi(zr))

o = 547; > —
k T = ngi(xk +t2@%A$k)TA:Ek

> (1- O;)Ei_gi(fﬂk))

IVgi(zr + t,05,Az) || | Az
(I-0)

> Th AT
Ko || Awg |

> Tk

K[| Awg||
> 1.

When g;(z,) =0 (and (z4); > 0), we must first add and subtract

r +r,+r———————
it P (s
to the right hand side in the primal-dual equation
(Azg)i Ik
—V~kaAazk: i(rp)———— + g;(xk) + gi(xp) —————.
gi( ) gl( ) (Zk)z gl( ) gl( )gz(xk)(zk)z
After division by g;(xx) — r%, this results in
_Vgi(xk)TAa;k _ (Azk), M
gi(xy) — 1}, (2k)i gi(xk) (2k)i
. (Azi r [T

_l’_

7

gilwg) =i ()i gilew) =l giler) (2e)i(gi(zr) — )



Since the third and the sixth terms in the right hand side of this equality are negative and since,
from (11),

rh
7 < alAw,

gi(zr) — 1},

we obtain, from (21),

Vi(zy) T Azy,
Vi) ATk A+ mren | Awgl? + | Ay
gi(zr) " =1},
< 1+ (k14 k1 + a) || Awg| (24)
< 1+ &[Awgl|.

Now, from the concavity of g;, we derive

B Vgi(xk + t;;@iA:Ek)TA:Ek

gi(zk) — 1y,
B Vgi(xk + tz&iAﬂjk)TA:Ek Vgi(:nk)TAxk B Vgi(ﬂjk)TA:Ek
gi(xk) — 1% gi(wr) =14 gi(wk) — 7},
_ [Vgi(:nk + ti@zAZEk) — Vgi(ﬂjk)]TA:Ek B Vgi(:nk)TAxk
N i — gi(xr) gi(xk) =7}
< _Vgi(xk)TA% (25)
gi(x) =1y
< 1+ k|| Awg|
and .
T — 9i(zk) T

ap = TpA) = Te(1 — K[| Awg]]).

Tk 70 T = Z
Vgi(xy + ta;Axy) " Ay, 1+ k|| Awg|

Conclusion. Combining all the four bounds derived for «ay (two in each case considered), one
obtains
ar > min{l, 7% (1 — k||Awk|))} = (1 — &||Awk|]) > 7% — k|| Awg]|.

The last inequality above is based on the fact that 7, < 1 for all k provided ¢ is chosen small enough.
Finally, from this lower bound on «j, we get

0 <1-op < (1=m)+allAwl < (1 —7k) + rC(I1Fo(we)ll + pellel]),
which concludes the proof of the lemma. o
We can state now the gq—quadratic rate of local convergence of Algorithm 2.1. The proof can be
found in [14] and we describe it briefly for completeness.

Theorem 3.1 Let x, be a point for which Assumptions A1-Aj hold and wy, = (x4, Yx, 2+). Consider
a sequence {wg = (T, Yk, 2k)} generated by the feasible primal-dual interior-point method described



in Algorithm 2.1. If oy, satisfies (8)-(9) and (11) and 1, € (0,1) and py > 0 satisfy (12) and (13),
then there exists a positive constant € independent of k such that, when

wy € B(wy;e),
the sequence {wy} is well defined and converges to w.. Moreover, we have
[wg1 = wil| < vjwy, —w.]?, (26)
for all iterates k, where v is a positive constant independent of k.

Proof: Let us assume that |jwy —w.|| < e. By applying (7), (18), (3), and (14), we obtain
Wry1 —Ws = (W — wy) + o Awy,
= (1 — ap)(wk —wy)
+ aFy, (wi) " [Fo(w.) — Fo(wy) — F, (wi) (e — wy) + ppél-
Now, using (20), (16), (17), and oy < 1, we have, for a sufficiently small ¢,
[wprr —wel| < (1= ag)lwr — w.]]

+ || F, (wi) " [ Fo(ws) — Fo(w) — F, (wi) (wy — wg) |

+ apprl| Fy, (wi) 7| lel]

IA

(1= m) + £ Fo(wn)l| + ¢ lellime] lw — w.]
¢
+ 2w = wnl? + fellCp

We also known that 7, and py satisfy (12) and (13). Thus, using the fact that ||Fy(wg)| =
|1 Eo(wg) — Fo(ws)|| < v|Jwr — wsl|, we assure the existence of a constant v > 0 independent of the
iterates such that (26) holds. It is possible to prove by induction that {wy} converges to wy, if € is
chosen sufficiently small. The inequality (26) shows that the local convergence rate is q quadratic. o

4 The nonconcave case

The concavity of the inequality constraint functions was required in (25) when the binding
constraint function g; was responsible for the step size aj. However, one can see that the method
retains a q quadratic rate in the nonconcave case as long as there exists a positive constant § such
that

e — 9i(zk) = gi(zr + apAxg) — gi(zr) > Bag[|Azy| (27)

for all £ and all indices i corresponding to g;(x,) = 0. In fact, one would get

[ng($k + t2d2A$k) - ng($k)]TA$k < LVQ@' ||A$k||
Ty, — gi(zk) - B ’

10



where Ly, is the Lipschitz constant of the function Vg; in B(x,;e€). Then, from (23) and (24),
r Vgi(zk + tZ@ZA:Ek)TA:Bk

a, gi(zr) —ry,

< 1+ [(k1 + kicin+c1) + Ly, /B)] || Awg||

S 1+ HHA’wk”,

after an appropriate redefinition of .
The bound (27) is satisfied for k sufficiently large as long as

Axy
[ Az

lim inf Vgi(xp) " = 43 > 0. (28)

k—

To see why this is true let us expand g;(zx + dZAxk) around zy:
, N , = &iValr)TA (d2)2AT 2 i a8 Ar)A
gi(xp + apAzy) — gi(xg) = apVei(xg) ' Axg + —y AT Vegi(xg + spaAxg)Axy,
for some 32 € (0,1). Since we are only looking at the cases where di < 1, one can see that

gi(z + &b Axg) — gi(w)

— > B
a[| Az
holds for k sufficiently large as long as
20
A < ||A <
[Aze]] < [[Awg| < e

where Myg:2,, is an upper bound on the size of the Hessian V2g; in B(z,;¢€), requiring again a
redefinition of .

Condition (28) has no influence if the constraint is concave because, even when this condition is
not satisfied, the concavity of the function defining the constraint allows a locally full step (o = 1)
with respect to that constraint.

5 Implementation and numerical results

We have implemented Algorithm 2.1 (the feasible primal-dual interior point method) and tested
it on a set of small CUTEr problems [8]. Subsection 5.1 completes the algorithm description, namely,
we explain there how to compute, without too much effort, a stepsize that satisfies condition (11).
As a baseline for comparison, we have also tested the infeasible primal-dual interior point method
(details are explained in Subsection 5.2). Numerical results are reported in Subsection 5.3.

5.1 Step size calculation for the feasible method

To achieve a q quadratic rate of convergence, condition (11) is imposed on the size of the
residual r,ig = gi(xk + d};Axk). A simple procedure to calculate 54}; is Newton’s method, fully
described in Algorithm 5.1 below. Obviously, the scheme is to be applied only to the nonlinear
inequality constraints, as for the linear constraints (including bounds) one can easily determine the
exact maximum allowed step length.

11



Algorithm 5.1 (Step size calculation for the feasible method.)
Choose an initial step size a > 0 (for instance, a = 0.5 if k = 0 and a = a%_, for k > 1). Choose
o € (0,1) and ¢; > 0 (for instance, ¢ = 1072 and ¢; = 0.5). Set also Aa = 1.

While |Aa| > 1073 and —g;(xx + aAzy) > min {0(—gi(:17k)), —‘Q;fjl)@'mk”} do

; A
compute Aa = _Vgif;ixj- ngjlf'—)Axk and replace a by a + Aa.

After termination set d}; = .

We incorporated a safeguard for negative values of . When a became negative we projected it
back to the positive axis by setting it to 1072, This safeguard acted only in two of the problems
tested (leading then to a convergent run).

We also experimented an alternative scheme where the calculation of the derivatives Vg;(z) +
alAxy) T Azy, was approximated by Vg;(z;) T Azy. While this alternative seemed not to affect the
efficiency of the feasible method (in terms of number of iterations), it provided a less robust method
(in the sense that less problems were solved).

5.2 The infeasible primal-dual interior-point method

As a baseline for comparison we also ran the infeasible primal-dual interior-point method
reported in Algorithm 5.2. This version of the infeasible method is the same as the feasible
method applied to a reformulated problem, where inequality constraints are converted into equal-
ities with the introduction of nonnegative slack variables. The feasible region can thus be written
as {# € R": h() =0, &> 0} and the Lagrangean function as £(%,9,2) = f(2) + h(@)T§— 2" 2.

Algorithm 5.2 (Infeasible primal-dual interior-point method.)
Choose an initial point wg = (Zo, 9o, 20) with Zg > 0 and 2y > 0.

For £k =0,1,2,...
Step 1. Choose the parameter g > 0.

Step 2. Compute the solution Awy = (AZk, Ayg, AZx) of the system

Vﬁilﬁ(ﬁk,gk,ék) V;l(i’k) —Iﬁxﬁ Ai’k Vfé(ii'kagkyék)
Vh(ig)" 0 0 Ajp | =— h(&y) :
Zy, 0 X Az Xi2p — ke

where X}, = diag(iy) and Zj, = diag(%).

Step 3. Choose 7 € (0,1). Compute a positive step length ay such that

1,...,n i=1,...,n

o = min{l, 7 min {—(f’“)f (Ady); < 0}, Tk min_ {—((AZZ) (AZ) < 0}}

Step 4. Define the next iterate w1 = (Zg+1, Jk+1, 2k+1) according to:

Wrt1 = Wk + apAwy.

12



5.3 Numerical results

We tested both feasible and infeasible primal-dual interior point methods (Algorithms 2.1
and 5.2) on a set of small CUTEr [8] problems. We restricted our attention to problems with
nonlinear inequality constraints and for which the initial point xg, provided by CUTEr, satisfies
9(zo) < 0.

The initial primal point given to the infeasible method was the point xy provided by CUTEr.
When the initial primal values are nonpositive we projected them to the positive axis. In some
cases, not all variables are restricted in sign and the infeasible method was adapted to take care of
this situation. The remaining components of the initial vector for the infeasible method are defined
as follows: gio = argming|[V(20)§ + [~5" + VF(20)]| and 2o = max{Vh(Z)go + Vf(&0), 2"},
where Zj" is a vector of ones of the appropriate size. For the feasible method, ¢ is provided by
CUTEr (satisfying g(zo) < 0). Then, we compute yo = argmin, ||Vh(zo)y + [Vg(zo) 25" + V f (20)]]]
and 29 = max{argmin,||Vg(zo)z + [Vh(zo)yo + V f(x0)] ||, 25" }-

The codes were implemented in Fortran 90 and ran on a Compaq Tru64 (operating system Unix
V5.1, 2 GB RAM, Alpha 21264A 667 MHz). For both algorithms, we updated 7 and py as follows:

1 =7, = min {1072, 10| Fo(wy)[|} and g = min {1072, 10| Fo (wy)|*} -

The stopping criterion was || Fo(wy)|| < 1078 for the feasible method and ||(Val(Zx, Gk, 2x), h(2k),
Xké'k)H < 1078 for the infeasible case. The linear algebra was implemented in the dense form using
the LAPACK [1] routines DGESV (for the primal-dual systems) and DGELSD (for the least-squares
multiplier problems).

The results are reported in Table 1. The legend of the table is as follows: infeasible method (var
= number of variables, eq — number of equalities after slacks are incorporated, bd — number of
bounds, it = number of iterations, evals = number of function evaluations); feasible method (var =
number of variables, eq — number of equalities, linear g — number of linear inequality constraints
including bounds, nlinear g = number of nonlinear inequality constraints, it = number of iterations,
evals — number of function evaluations). The number of function evaluations counts the associated
derivative calls (and accommodates either calls to set the primal-dual data for the systems solves
or calls needed to apply Scheme 5.1). When convergence was not achieved was either because
the maximum number of iterations (200) was achieved, or because the step size became too small
(o < 10710), or because the iterates start growing to infinity (div).

Both infeasible and feasible methods converged only for a subset of the problems, given that
no globalization strategy was incorporated. In the cases where both converged, the number of
iterations was approximately the same. The infeasible method converged for 11 problems whereas
the feasible method converged for 15. Actually, this gain in robustness was also observed by looking
at the size of the residuals for the problems where both methods did not converge, which showed
that the feasible method achieved, in average, smaller residuals.

The procedure to determine the step size for the feasible method (Algorithm 5.1) took a low
average number of steps (roughly 2), as we can observe from the difference between the number of
function evaluations and the number of iterations taken by this method.

The only problem of the form (1) that satisfies Assumption A4 (concave binding inequalities)
is, as far as we could check, problem HS16. The feasible method took much less iterations on this
problem than the infeasible method.
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infeasible method

feasible method

problems var n = eq bd it evals | varn eq linear g nlinear g it evals
CHACONN1 6 3 3 10 11 3 0 0 3 10 25
ERRINBAR 19 9 15 a<10719] 18 8 14 1 a < 10710
EXPFITA 27 22 22 a<10710 5 0 0 22 a< 10710
EXPFITB 107 102 102 a<10710 5 0 0 102 a< 10710
HAIFAS 22 9 9 div 13 0 0 9 div
HIMMELP2 3 1 5 a<10710 2 0 4 1 div
HIMMELP3 4 2 6 a<10710 2 0 4 2 10 21
HIMMELP4 5 3 7 a<10710 2 0 4 3 10 21
HS13 3 1 3 it > 200 2 0 2 1 a < 10710
HS16 4 2 5 24 25 2 0 3 2 12 26
HS20 5 3 5 a<10710 2 0 2 3 12 29
HS24 5 3 5 a<10710 2 0 2 3 a< 10710
HS29 4 1 1 12 13 3 0 0 1 15 30
HS30 4 1 7 a<10710 3 0 6 1 39 78
HS32 4 2 7 14 15 3 1 3 1 a< 10710
HS33 5 2 6 it > 200 3 0 4 2 a < 10710
HS65 4 1 4  a<10710 3 0 6 1 a< 10710
HS67 17 14 20 a< 10710 3 0 6 14 it > 200
HS73 6 3 6 a<10710 4 1 5 1 a< 10710
HS84 8 3 16 a<10710 5 0 10 6 a < 10710
HS95 10 4 16 a<10710 6 0 12 4 a< 10710
HS96 10 4 16 a<10710 6 0 12 4 a < 10710
HS109 13 10 20 a<10710 9 6 18 2 a< 10710
HS113 18 8 8 it > 200 10 0 3 5 a < 10710
HS117 20 5 20 it > 200 15 0 15 5 a< 10710
HUBFIT 3 1 2 8 9 2 0 1 1 8 16
KSIP 1021 1001 1001 12 13 20 0 0 1001 12 24
LSQFIT 3 1 2 8 9 2 0 1 1 8 16
MATRIX?2 8 2 6 15 16 6 0 4 2 a < 10710
MIFFLIN1 5 2 2 10 11 3 0 0 2 6 20
MINMAXBD | 25 20 20 div 5 0 0 20 a < 10710
NGONE 13 8 14 div 5 0 8 6 a< 10710
OPTMASS 77 55 11 div 66 44 0 11 7 14
PRODPL( 69 29 69 a<10710] 60 20 60 9 a< 10710
PRODPL1 69 29 69 div 60 20 65 9 a < 10710
READING4 4 2 8 a<10710 2 0 4 4 a< 10710
ROSENMMX | 9 4 4 18 19 5 0 0 4 15 46
SVANBERG 20 10 30 a<1070 | 10 0 20 10 19 93
SWOPF 107 102 34 a«a<1070| 83 78 20 14 a< 10710
WOMFLET 6 3 3 div 3 0 0 3 it > 200
ZECEVIC2 4 2 6 a<10710 2 0 4 2 12 29
7ZY?2 5 2 6 7 8 3 0 4 2 a < 10710

Table 1: Numerical behavior of infeasible and feasible methods on a set of CUTEr problems.
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6 Concluding remarks

Keeping strict feasibility with respect to the inequality constraints in the way required by the
feasible primal-dual interior-point method can be numerically affordable. Although the exact com-
putation of the step sizes requires the solution of a number of nonlinear equations per iteration, it
is possible to compute them satisfying inexact requirements in a relatively efficient way.

Our numerical findings show that the proposed method can be particularly efficient when the
number of inequality constraints is not very large or when the structure of the functions defining
the inequality constraints eases the step size calculation considerably. Strict feasibility can be
imposed only partially, with a subset of the problem inequalities being treated by slack variables.
The inequalities imposed strictly may be those that restrict the objective function domain, or the
domain of some other constraint functions.

The most restrictive aspect of the proposed algorithm seems to be the initial point. However,
the issue of finding a primal strictly feasible point (g(xg) < 0) is out of the scope of this paper.
See [4], and the references therein, for the determination of feasible points of systems of (nonlinear)
equalities and inequalities.

Despite the numerical considerations, looking at the infeasible variant of the primal-dual interior-
point method is of interest on itself. It is worth pointing out that the approach presented in this
paper covers the infeasible case (|5, 14|) since simple bounds of the type —x < 0 correspond to
concave inequalities. Linear inequality constraints are also concave and can be treated without
slack variables for achieving the purpose of fast local convergence. Finally, the observation that the
q quadratic rate is retained in the general nonconcave case provided the angle between the primal
step and the gradients of the binding constraints is kept away from ninety degrees, see (28), fits
well into the theory of interior-point methods since it corresponds to the notion of centrality.
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