
Loal Analysis of the Feasible Primal-Dual Interior-Point MethodR. Silva∗ J. Soares† L. N. Viente‡AbstratIn this paper we analyze the rate of loal onvergene of the Newton primal-dual interior-point method when the iterates are kept stritly feasible with respet to the inequality on-straints.It is shown under the lassial onditions that the rate is q�quadrati when the funtionsassoiated to the binding inequality onstraints are onave. In general, the q�quadrati rate isahieved provided the step in the primal variables does not beome asymptotially orthogonalto any of the gradients of the binding inequality onstraints.Some preliminary numerial experiene showed that the feasible method an be implementedin a relatively e�ient way, requiring a redued number of funtion and derivative evaluations.Moreover, the feasible method is ompetitive with the lassial infeasible primal-dual interior-point method in terms of number of iterations and robustness.Keywords: Interior-point methods, strit feasibility, entrality, loal onvergene.AMS Subjet Classi�ation (2000): 90C30, 90C511 IntrodutionThe loal onvergene theory of (infeasible) primal-dual interior-point methods for nonlinearprogramming was developed in the papers by El-Bakry et al. [5℄ and Yamashita and Yabe [14℄.These papers show a q�quadrati rate of loal onvergene under the lassial assumptions (seondorder su�ient optimality onditions, linear independene of the gradients of funtions de�ning thebinding onstraints (LICQ), and strit omplementarity). The study of q�superlinear onvergenefor quasi-Newton updates is reported in [10℄ and [14℄. Furthermore, Viente and Wright [13℄ proveda q�quadrati rate of onvergene for a variant of the primal-dual interior-point method under de-generay (replaing the LICQ by the Mangasarian�Fromowitz onstraint quali�ation). In theseapproahes, the orresponding primal-dual interior-point method deals with the multipliers assoi-ated to both equality and inequality onstraints as independent variables, and the primal-dual stepis a Newton step for a perturbation of the �rst order neessary onditions for optimality. Theseapproahes are infeasible sine feasibility, orresponding to equality and, more importantly, to in-equality onstraints (rather than simple bounds), is only ahieved asymptotially. Other rates of
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onvergene for di�erent interior-point methods for nonlinear programming have been establishedin [2℄, [3℄, [9℄, and [12℄.Gould, Orban, Sartenaer, and Toint [7℄ investigated the rate of onvergene of primal-dual log-arithmi barrier interior-point methods for linear equality onstraints and general inequalities. Thelog-barrier approah maintains the iterates stritly feasible with respet to the inequality onstraints,and the multipliers orresponding to the equalities are treated impliitly as dependent variables.The authors proved q�superlinear onvergene, with a rate that may be hosen arbitrarily loseto quadrati. Basially, they studied onditions under whih a single primal-dual Newton step isstritly feasible and satis�es appropriate log-barrier subproblem termination riteria.The feasible primal-dual interior-point method of Tits et al. [11℄ ahieves a quadrati rate ofloal onvergene. In this algorithm, the multipliers orresponding to the inequality onstraints areupdated aording to an appropriate formula and do not result diretly from the Newton relatedprimal-dual step on the perturbed KKT system of �rst-order optimality onditions. As we explainbelow, we are interested in analyzing the loal onvergene of a feasible primal-dual interior-pointmethod without any speial provision or orretion formula for these multipliers.In this paper we analyze the rate of loal onvergene of the feasible primal-dual interior-pointmethod along the lines of the analyses in [5℄ and [14℄. The aspet onsidered is that inequalityonstraints are not onverted into equalities using slak variables. The method keeps strit feasibilitywith respet to the inequality onstraints. The other omponents of the primal-dual interior-pointmethod remain essentially the same: the primal-dual step is a Newton step on the perturbed KKTsystem and the various parameters are updated appropriately to indue a q�quadrati rate on thesequene of primal-dual iterates.The material of this paper is organized in the following way. In Setion 2, we desribe thefeasible primal-dual interior-point method in detail. The method is analyzed in Setion 3, where itis shown that the iterates onverge loally with a q�quadrati rate in the ase of onave inequalities.The analysis inludes the ase where the step length is omputed inexatly. The nononave aseis disussed in Setion 4. The rate remains q�quadrati for nononave inequalities as long as theprimal omponent of the step is asymptotially nonorthogonal to the gradients of the (nononave)funtions de�ning the binding inequalities. In Setion 5 we report some numerial results whihshow that the feasible method is ompetitive with the infeasible method in terms of number ofiterations. We present a sheme to alulate the step length for the feasible method whih requiresa moderate number of onstraint funtion evaluations. The paper is onluded in Setion 6 withremarks about the theoretial interest and omputational limitation of the analyzed approah.2 The feasible primal-dual interior-point methodWe onsider the general nonlinear programming problem written in the form
min f(x),

s.t. h(x) = 0, (1)
g(x) ≤ 0,where f : IRn −→ IR, h : IRn −→ IRmh , and g : IRn −→ IRmg . The assumptions on the di�erentia-bility of the funtions f , g, and h will be stated later. The numbers mh and mg are assumed to bepositive integers. The material of this paper remains valid in the ase where there are no equalityonstraints (mh = 0). 2



The Lagrangean funtion for problem (1) is ℓ : IRn+mh+mg −→ IR de�ned by
ℓ(x, y, z) = f(x) + h(x)⊤y + g(x)⊤z,where x are the primal variables and the pair (y, z) represents the dual variables (or Lagrangemultipliers). The gradient and the Hessian of ℓ with respet to the primal variables are given by

∇xℓ(x, y, z) = ∇f(x) + ∇h(x) y + ∇g(x) z,

∇2
xxℓ(x, y, z) = ∇2f(x) +

mh
∑

j=1

yj∇
2hj(x) +

mg
∑

j=1

zj∇
2gj(x),whenever f , g, and h are twie ontinuously di�erentiable at x.The Karush�Kuhn�Tuker (KKT) �rst order (neessary optimality) onditions for problem (1)are desribed by

F0(x, y, z)
def
=





∇xℓ(x, y, z)
h(x)

−G(x)z



 = 0,

g(x) ≤ 0, z ≥ 0,

(2)where G(x) = diag(g(x)). As we will see later, the primal-dual interior-point method is based on aperturbation of the onditions (2), given by
Fµ(x, y, z)

def
=





∇xℓ(x, y, z)
h(x)

−G(x)z − µe



 = 0,

g(x) < 0, z > 0,where µ is a positive salar and e is a vetor of ones of dimension mg. Note that, for ē = (0, 0, e⊤)⊤ ∈
IRn+mh+mg ,

Fµ(x, y, z) = F0(x, y, z) − µē. (3)We will also make use of ‖ē‖ = ‖e‖.The main part of the iterative step of the primal-dual interior-point method onsists of thelinearization of the perturbed KKT system. One omputes a primal-dual step ∆w = (∆x,∆y,∆z),by solving the linear system of equations
F ′

µ(w) ∆w = −Fµ(w), (4)for �xed w = (x, y, z) and µ > 0, where F ′
µ(w) is the Jaobian of Fµ(w). Notie that, from (3),

F ′
µ(w) is also the Jaobian of F0(w). The primal-dual system (4) an be written by bloks in theform





∇2
xxℓ(x, y, z) ∇h(x) ∇g(x)
∇h(x)⊤ 0 0

−Z∇g(x)⊤ 0 −G(x)









∆x
∆y
∆z



 = −





∇xℓ(x, y, z)
h(x)

−G(x)z − µe



 , (5)where Z = diag(z).Most variants of the primal-dual interior-point method keep positive all the variables subjet tononnegativity onstraints. In our ase, it means keeping the multipliers z positive. The parameter
µ is driven to zero asymptotially. Sine we are looking at the feasible variant of the primal-dual3



interior-point method, we must also keep g(x) negative throughout the iterations. The main stepsof this feasible variant are desribed below in Algorithm 2.1. For the purpose of analyzing loalonvergene, we do not inlude any stopping riterion.Algorithm 2.1 (Feasible primal-dual interior-point method.)Choose an initial point w0 = (x0, y0, z0) with g(x0) < 0 and z0 > 0.For k = 0, 1, 2, . . .Step 1. Choose the parameter µk > 0.Step 2. Compute the solution ∆wk = (∆xk,∆yk,∆zk) of the system (5), for x = xk, y = yk, and
z = zk.Step 3. Compute a positive step length αk suh that

g(xk + αk∆xk) < 0 and zk + αk∆zk > 0. (6)Step 4. De�ne the next iterate wk+1 = (xk+1, yk+1, zk+1) aording to:
wk+1 = wk + αk∆wk. (7)Sine the step size αk must satisfy (6) throughout the iterations, we will impose that

αk = min

{

1, τk min
i=1,...,mg

{

−
(zk)i

(∆zk)i
: (∆zk)i < 0

}

, τk min
i=1,...,mg

ᾱi
k

}

, (8)where τk ∈ (0, 1) and
ᾱi

k ≤ min {α : gi(xk + α∆xk) = 0, α > 0} , i = 1, . . . ,mg. (9)Whenever the minimum is not ahieved, it is assumed by onvention that it is set to +∞.We point out �rst that when the inequality onstraints are of the simple bound type (−x ≤ 0),the hoie for αk is of the type given above with the inequalities in (9) satis�ed as equalities. Ingeneral, when the funtions de�ning the inequality onstraints are nonlinear, it might be omputa-tionally expensive to atually determine the step lengths ᾱi
k suh that

ᾱi
k = min {α : gi(xk + α∆xk) = 0, α > 0} , i = 1, . . . ,mg. (10)On the other hand, to get a fast rate of loal onvergene one annot ompute step lengths ᾱi

k thatdi�er too muh from (10). However, it is possible to allow a ertain inexatness in this omputation.Let us de�ne the residuals
ri
k

def
= gi(xk + ᾱi

k∆xk), i = 1, . . . ,mg.We will show that the feasible primal-dual interior-point method will retain loal q�quadrati on-vergene as long as the residuals ri
k satisfy the ondition

−ri
k ≤ min

{

σ(−gi(xk)),
−gi(xk)c1‖∆wk‖

1 + c1‖∆wk‖

}

, i = 1, . . . ,mg, (11)4



where σ ∈ (0, 1) and c1 > 0 are hosen independently of the iteration ounter k. In Setion 5.1 wewill desribe a sheme to ompute ᾱi
k that seems to be relatively e�ient in pratie.Moreover, to ahieve a q�quadrati rate of loal onvergene, the feasible primal-dual interior-point method must update the parameters τk ∈ (0, 1) and µk > 0 satisfying the lassial onditions
1 − τk ≤ c2‖F0(wk)‖, (12)

µk ≤ c3‖F0(wk)‖
2, (13)where c2 and c3 are onstants independent of k. Vetor and matrix norms in this paper are hosento be the Eulidean ones.3 Analysis of loal onvergeneThe loal onvergene of the feasible primal-dual interior-point method is analyzed at a point

x∗ satisfying the following assumptions. In what follows, B(a∗; r) denotes the open ball {a ∈ IRd :
‖a − a∗‖ < r} of radius r entered at a∗.(A1) There exists an ǫ > 0 suh that the funtions f , g, and h are twie ontinuously di�erentiablein the ball B(x∗; ǫ). Moreover, the seond order partial derivatives of f , g, and h are Lipshitzontinuous in B(x∗; ǫ).(A2) The point x∗ is feasible and the gradients of the ative onstraints are linearly independentat x∗.(A3) There exist Lagrange multipliers y∗ and z∗ suh that w∗ = (x∗, y∗, z∗) satis�es the �rst orderKKT onditions and the seond order su�ient onditions and suh that the pair (−g(x∗), z∗)satis�es the strit omplementarity ondition (−g(x∗) + z∗ > 0).Assumptions A1-A3 are the lassial (nondegenerate) assumptions used to loally analyze interior-point methods. It results from Assumption A3 that the multipliers assoiated with the inequalitiesare nonnegative (z∗ ≥ 0) and also that

F0(w∗) = 0. (14)We reall now the basi smoothness results that are required in the proof of the loal onvergeneof the primal-dual interior-point method.Lemma 3.1 Let x∗ be a point for whih Assumptions A1�A3 hold and w∗ = (x∗, y∗, z∗). Then,there exists a positive onstant γ suh that
‖F0(w

1) − F0(w
2)‖ ≤ γ‖w1 − w2‖, (15)

‖F ′
0(w

1) − F ′
0(w

2)‖ ≤ γ‖w1 − w2‖,

‖F0(w
1) − F0(w

2) − F ′
0(w

2)(w1 − w2)‖ ≤ 1

2
γ‖w1 − w2‖2, (16)for all w1 and w2 in B(w∗; ǫ).The next lemma states that the primal-dual matrix is nonsingular around w∗, in the sense thatis of interest to us. For a proof see, for instane, [6℄.5



Lemma 3.2 Let x∗ be a point for whih Assumptions A1�A3 hold and w∗ = (x∗, y∗, z∗). Then thefollowing holds:(i) F ′
0(w∗) is nonsingular;(ii) F ′
0(w) is nonsingular for w in B(w∗; ǫns), for some ǫns satisfying 0 < ǫns < ǫ.From this lemma, it is assured the existene of a onstant ζ > 0 suh that

‖F ′
0(w)−1‖ = ‖F ′

µ(w)−1‖ ≤ ζ, (17)for all w in B(w∗; ǫns). For suh points w, the primal-dual step ∆w given by the solution of thesystem (4) is well-de�ned and is equal to
∆w = −F ′

µ(w)−1Fµ(w). (18)The loal asymptoti behavior of the feasible primal-dual interior-point method is studied �rstfor onave binding inequalities.(A4) The funtions gi, for i ∈ {1, . . . ,mg} suh that gi(x∗) = 0, are onave.The main part of the analysis is spent proving a lower bound for the length of the step sizeparameter αk.Lemma 3.3 Let x∗ be a point for whih Assumptions A1�A4 hold and w∗ = (x∗, y∗, z∗). Considera sequene {wk = (xk, yk, zk)} generated by the feasible primal-dual interior-point method desribedin Algorithm 2.1. If αk satis�es (8)-(9) and (11) and τk ∈ (0, 1) and µk > 0 satisfy (12) and (13),then there exist positive onstants ε and κ independent of k suh that, when
wk ∈ B(w∗; ε), (19)either αk = 1 or the bound

1 − αk ≤ (1 − τk) + κζ(‖F0(wk)‖ + µk‖e‖), (20)holds for all iterates k.Proof: First we have to set ε = ǫns, where ǫns is given in Lemma 3.2.Using (18), (3), (14), (17), (15), and (19) sequentially, it is easily derived the following boundfor the primal-dual step:
‖∆wk‖ = ‖F ′

µ(wk)
−1Fµ(wk)‖

≤ ‖F ′
µ(wk)

−1‖(‖F0(wk)‖ + µk‖e‖)

≤ ζ(γ‖wk − w∗‖ + µk‖e‖)

≤ ζ(γε + µk‖e‖).Thus, from the ondition (13) on the size of µk, and given a onstant η > 0, one an redue ε ifneessary suh that
‖∆wk‖ ≤ η. (21)6



In partiular, it is possible to hoose a su�iently small ε suh that
κ‖∆wk‖ ≤ τk, (22)where κ is de�ned by

κ
def
= max

{

κ2

1 − σ
, κ1 + κ1c1η + c1

}

.The onstants κ1 and κ2 are given by
κ1 = 2max

{

1

(z∗)i
: (z∗)i > 0, i ∈ {1, . . . ,mg}

}and
κ2 = 2M∇g max

{

−
1

gi(x∗)
: gi(x∗) < 0, i ∈ {1, . . . ,mg}

}

,where M∇g is an upper bound on the size of ∇g in B(x∗; ǫ).We divide the proof in two separate ases: the ase where the step length is de�ned by amultiplier and the ase where the step length is de�ned by an inequality.Case where step length is de�ned by a multiplier. In this �rst ase we assume that thereexists an index i ∈ {1, . . . ,mg} for whih (∆zk)i < 0 and
αk = −τk

(zk)i
(∆zk)i

.If i is suh that (z∗)i > 0 then, from the de�nition of κ and from (22),
αk = τk

(zk)i
−(∆zk)i

≥
τk

κ‖∆wk‖
≥ 1.When (z∗)i = 0 (and gi(x∗) < 0), we make use of the primal-dual blok equation (see (5))

−Zk∇g(xk)
⊤∆xk − G(xk)∆zk = G(xk)zk + µke,to write

−(zk)i∇gi(xk)
⊤∆xk − gi(xk)(∆zk)i = gi(xk)(zk)i + µk,or equivalently,

−
(∆zk)i
(zk)i

= 1 +
µk

gi(xk)(zk)i
+ pi

kwith
pi

k =
∇gi(xk)

⊤∆xk

gi(xk)
≤

|∇gi(xk)
⊤∆xk|

−gi(xk)
≤ κ‖∆wk‖.Thus, sine µk/(gi(xk)(zk)i) < 0,

−
(∆zk)i
(zk)i

≤ 1 + κ‖∆wk‖and
αk = τk

(zk)i
−(∆zk)i

≥
τk

1 + κ‖∆wk‖
≥ τk(1 − κ‖∆wk‖).7



Case where step length is de�ned by an inequality. Now we are interested in the ase
αk = τkᾱ

i
k,for some index i ∈ {1, . . . ,mg}. By applying the mean value theorem, we have

ri
k − gi(xk) = gi(xk + ᾱi

k∆xk) − gi(xk) = ᾱi
k∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk,for some tik ∈ (0, 1), and the step length ᾱi
k an be written as

ᾱi
k =

ri
k − gi(xk)

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

. (23)Sine −ri
k ≤ σ(−gi(xk)), both the numerator and the denominator in this expression for ᾱi

k arepositive.If i is suh that gi(x∗) < 0 then, from the de�nitions of κ2 and κ and from (22),
αk = τkᾱ

i
k ≥ τk

(1 − σ)(−gi(xk))

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

≥ τk

(1 − σ)(−gi(xk))

‖∇gi(xk + tikᾱ
i
k∆xk)‖ ‖∆xk‖

≥ τk

(1 − σ)

κ2‖∆wk‖

≥
τk

κ‖∆wk‖

≥ 1.When gi(x∗) = 0 (and (z∗)i > 0), we must �rst add and subtrat
ri
k

(∆zk)i
(zk)i

+ ri
k + ri

k

µk

gi(xk)(zk)ito the right hand side in the primal-dual equation
−∇gi(xk)

⊤∆xk = gi(xk)
(∆zk)i
(zk)i

+ gi(xk) + gi(xk)
µk

gi(xk)(zk)i
.After division by gi(xk) − ri

k, this results in
−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

=
(∆zk)i
(zk)i

+ 1 +
µk

gi(xk)(zk)i

+
ri
k

gi(xk) − ri
k

(∆zk)i
(zk)i

+
ri
k

gi(xk) − ri
k

+
µkr

i
k

gi(xk)(zk)i(gi(xk) − ri
k)

.8



Sine the third and the sixth terms in the right hand side of this equality are negative and sine,from (11),
ri
k

gi(xk) − ri
k

≤ c1‖∆wk‖,we obtain, from (21),
−
∇gi(xk)

⊤∆xk

gi(xk)⊤ − ri
k

≤ 1 + κ1‖∆wk‖ + κ1c1‖∆wk‖
2 + c1‖∆wk‖

≤ 1 + (κ1 + κ1c1η + c1)‖∆wk‖ (24)
≤ 1 + κ‖∆wk‖.Now, from the onavity of gi, we derive

−
∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk

gi(xk) − ri
k

= −
∇gi(xk + tikᾱi∆xk)

⊤∆xk

gi(xk) − ri
k

+
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

=
[∇gi(xk + tikᾱ

i
k∆xk) −∇gi(xk)]

⊤∆xk

ri
k − gi(xk)

−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

≤ −
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

(25)
≤ 1 + κ‖∆wk‖and

αk = τkᾱ
i
k = τk

ri
k − gi(xk)

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

≥
τk

1 + κ‖∆wk‖
≥ τk(1 − κ‖∆wk‖).Conlusion. Combining all the four bounds derived for αk (two in eah ase onsidered), oneobtains

αk ≥ min{1, τk(1 − κ‖∆wk‖)} = τk(1 − κ‖∆wk‖) ≥ τk − κ‖∆wk‖.The last inequality above is based on the fat that τk < 1 for all k provided ε is hosen small enough.Finally, from this lower bound on αk, we get
0 ≤ 1 − αk ≤ (1 − τk) + κ‖∆wk‖ ≤ (1 − τk) + κζ(‖F0(wk)‖ + µk‖e‖),whih onludes the proof of the lemma. ◦We an state now the q�quadrati rate of loal onvergene of Algorithm 2.1. The proof an befound in [14℄ and we desribe it brie�y for ompleteness.Theorem 3.1 Let x∗ be a point for whih Assumptions A1�A4 hold and w∗ = (x∗, y∗, z∗). Considera sequene {wk = (xk, yk, zk)} generated by the feasible primal-dual interior-point method desribed9



in Algorithm 2.1. If αk satis�es (8)-(9) and (11) and τk ∈ (0, 1) and µk > 0 satisfy (12) and (13),then there exists a positive onstant ε independent of k suh that, when
w0 ∈ B(w∗; ε),the sequene {wk} is well de�ned and onverges to w∗. Moreover, we have

‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖
2, (26)for all iterates k, where ν is a positive onstant independent of k.Proof: Let us assume that ‖wk − w∗‖ < ε. By applying (7), (18), (3), and (14), we obtain

wk+1 − w∗ = (wk − w∗) + αk∆wk

= (1 − αk)(wk − w∗)

+ αkF
′
µk

(wk)
−1[F0(w∗) − F0(wk) − F ′

µk
(wk)(w∗ − wk) + µkē].Now, using (20), (16), (17), and αk ≤ 1, we have, for a su�iently small ε,

‖wk+1 − w∗‖ ≤ (1 − αk)‖wk − w∗‖

+ αk‖F
′
µk

(wk)−1‖ ‖F0(w∗) − F0(wk) − F ′
µk

(wk)(w∗ − wk)‖

+ αkµk‖F
′
µk

(wk)
−1‖ ‖e‖

≤ [(1 − τk) + κζ‖F0(wk)‖ + κζ‖e‖µk] ‖wk − w∗‖

+
ζγ

2
‖wk − w∗‖

2 + ‖e‖ζµk.We also known that τk and µk satisfy (12) and (13). Thus, using the fat that ‖F0(wk)‖ =
‖F0(wk) − F0(w∗)‖ ≤ γ‖wk − w∗‖, we assure the existene of a onstant ν > 0 independent of theiterates suh that (26) holds. It is possible to prove by indution that {wk} onverges to w∗, if ε ishosen su�iently small. The inequality (26) shows that the loal onvergene rate is q�quadrati. ◦4 The nononave aseThe onavity of the inequality onstraint funtions was required in (25) when the bindingonstraint funtion gi was responsible for the step size αk. However, one an see that the methodretains a q�quadrati rate in the nononave ase as long as there exists a positive onstant β suhthat

ri
k − gi(xk) = gi(xk + ᾱi

k∆xk) − gi(xk) ≥ βᾱi
k‖∆xk‖ (27)for all k and all indies i orresponding to gi(x∗) = 0. In fat, one would get

[∇gi(xk + tikᾱ
i
k∆xk) −∇gi(xk)]

⊤∆xk

ri
k − gi(xk)

≤
L∇gi

β
‖∆xk‖,10



where L∇gi
is the Lipshitz onstant of the funtion ∇gi in B(x∗; ǫ). Then, from (23) and (24),

1

ᾱi
k

= −
∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk

gi(xk) − ri
k

≤ 1 + [(κ1 + κ1c1η + c1) + L∇gi
/β)] ‖∆wk‖

≤ 1 + κ‖∆wk‖,after an appropriate rede�nition of κ.The bound (27) is satis�ed for k su�iently large as long as
lim inf
k−→+∞

∇gi(xk)
⊤ ∆xk

‖∆xk‖
= 4β > 0. (28)To see why this is true let us expand gi(xk + ᾱi

k∆xk) around xk:
gi(xk + ᾱi

k∆xk) − gi(xk) = ᾱi
k∇gi(xk)

⊤∆xk +
(ᾱi

k)
2

2
∆x⊤

k ∇
2gi(xk + si

kᾱ
i
k∆xk)∆xk,for some si

k ∈ (0, 1). Sine we are only looking at the ases where ᾱi
k ≤ 1, one an see that

gi(xk + ᾱi
k∆xk) − gi(xk)

ᾱi
k‖∆xk‖

≥ βholds for k su�iently large as long as
‖∆xk‖ ≤ ‖∆wk‖ ≤

2β

M∇2gi

,where M∇2gi
is an upper bound on the size of the Hessian ∇2gi in B(x∗; ǫ), requiring again arede�nition of κ.Condition (28) has no in�uene if the onstraint is onave beause, even when this ondition isnot satis�ed, the onavity of the funtion de�ning the onstraint allows a loally full step (αk = 1)with respet to that onstraint.5 Implementation and numerial resultsWe have implemented Algorithm 2.1 (the feasible primal-dual interior point method) and testedit on a set of small CUTEr problems [8℄. Subsetion 5.1 ompletes the algorithm desription, namely,we explain there how to ompute, without too muh e�ort, a stepsize that satis�es ondition (11).As a baseline for omparison, we have also tested the infeasible primal-dual interior point method(details are explained in Subsetion 5.2). Numerial results are reported in Subsetion 5.3.5.1 Step size alulation for the feasible methodTo ahieve a q�quadrati rate of onvergene, ondition (11) is imposed on the size of theresidual ri

k = gi(xk + ᾱi
k∆xk). A simple proedure to alulate ᾱi

k is Newton's method, fullydesribed in Algorithm 5.1 below. Obviously, the sheme is to be applied only to the nonlinearinequality onstraints, as for the linear onstraints (inluding bounds) one an easily determine theexat maximum allowed step length. 11



Algorithm 5.1 (Step size alulation for the feasible method.)Choose an initial step size α > 0 (for instane, α = 0.5 if k = 0 and α = ᾱi
k−1 for k ≥ 1). Choose

σ ∈ (0, 1) and c1 > 0 (for instane, σ = 10−2 and c1 = 0.5). Set also ∆α = 1.While |∆α| > 10−3 and −gi(xk + α∆xk) > min
{

σ(−gi(xk)),
−gi(xk)c1‖∆wk‖

1+c1‖∆wk‖

} doompute ∆α = −
gi(xk + α∆xk)

∇gi(xk + α∆xk)⊤∆xk

and replae α by α + ∆α.After termination set ᾱi
k = α.We inorporated a safeguard for negative values of α. When α beame negative we projeted itbak to the positive axis by setting it to 10−2. This safeguard ated only in two of the problemstested (leading then to a onvergent run).We also experimented an alternative sheme where the alulation of the derivatives ∇gi(xk +

α∆xk)
⊤∆xk was approximated by ∇gi(xk)

⊤∆xk. While this alternative seemed not to a�et thee�ieny of the feasible method (in terms of number of iterations), it provided a less robust method(in the sense that less problems were solved).5.2 The infeasible primal-dual interior-point methodAs a baseline for omparison we also ran the infeasible primal-dual interior-point methodreported in Algorithm 5.2. This version of the infeasible method is the same as the feasiblemethod applied to a reformulated problem, where inequality onstraints are onverted into equal-ities with the introdution of nonnegative slak variables. The feasible region an thus be writtenas {x̂ ∈ IRn̂ : ĥ(x̂) = 0, x̂ ≥ 0} and the Lagrangean funtion as ℓ̂(x̂, ŷ, ẑ) = f̂(x̂) + ĥ(x̂)⊤ŷ − x̂⊤ẑ.Algorithm 5.2 (Infeasible primal-dual interior-point method.)Choose an initial point w0 = (x̂0, ŷ0, ẑ0) with x̂0 > 0 and ẑ0 > 0.For k = 0, 1, 2, . . .Step 1. Choose the parameter µk > 0.Step 2. Compute the solution ∆wk = (∆x̂k,∆ŷk,∆ẑk) of the system




∇2
x̂x̂ℓ̂(x̂k, ŷk, ẑk) ∇ĥ(x̂k) −In̂×n̂

∇ĥ(x̂k)
⊤ 0 0

Ẑk 0 X̂k









∆x̂k

∆ŷk

∆ẑk



 = −





∇x̂ℓ̂(x̂k, ŷk, ẑk)

ĥ(x̂k)

X̂kẑk − µken̂



 ,where X̂k = diag(x̂k) and Ẑk = diag(ẑk).Step 3. Choose τk ∈ (0, 1). Compute a positive step length αk suh that
αk = min

{

1, τk min
i=1,...,n̂

{

−
(x̂k)i

(∆x̂k)i
: (∆x̂k)i < 0

}

, τk min
i=1,...,n̂

{

−
(ẑk)i

(∆ẑk)i
: (∆ẑk)i < 0

}}

.Step 4. De�ne the next iterate wk+1 = (x̂k+1, ŷk+1, ẑk+1) aording to:
wk+1 = wk + αk∆wk.12



5.3 Numerial resultsWe tested both feasible and infeasible primal-dual interior point methods (Algorithms 2.1and 5.2) on a set of small CUTEr [8℄ problems. We restrited our attention to problems withnonlinear inequality onstraints and for whih the initial point x0, provided by CUTEr, satis�es
g(x0) < 0.The initial primal point given to the infeasible method was the point x0 provided by CUTEr.When the initial primal values are nonpositive we projeted them to the positive axis. In someases, not all variables are restrited in sign and the infeasible method was adapted to take are ofthis situation. The remaining omponents of the initial vetor for the infeasible method are de�nedas follows: ŷ0 = argminŷ‖∇ĥ(x̂0)ŷ + [−ẑin

0 + ∇f̂(x̂0)]‖ and ẑ0 = max{∇ĥ(x̂0)ŷ0 + ∇f̂(x̂0), ẑ
in
0 },where ẑin

0 is a vetor of ones of the appropriate size. For the feasible method, x0 is provided byCUTEr (satisfying g(x0) < 0). Then, we ompute y0 = argminy‖∇h(x0)y + [∇g(x0)z
in

0 +∇f(x0)]‖and z0 = max{argminz‖∇g(x0)z + [∇h(x0)y0 + ∇f(x0)]‖, z
in
0 }.The odes were implemented in Fortran 90 and ran on a Compaq Tru64 (operating system UnixV5.1, 2 GB RAM, Alpha 21264A 667 MHz). For both algorithms, we updated τk and µk as follows:

1 − τk = min
{

10−2, 10−2‖F0(wk)‖
} and µk = min

{

10−2, 10−1‖F0(wk)‖
2
}

.The stopping riterion was ‖F0(wk)‖ ≤ 10−8 for the feasible method and ‖(∇x̂ℓ̂(x̂k, ŷk, ẑk), ĥ(x̂k),
X̂kẑk)‖ ≤ 10−8 for the infeasible ase. The linear algebra was implemented in the dense form usingthe LAPACK [1℄ routines DGESV (for the primal-dual systems) and DGELSD (for the least-squaresmultiplier problems).The results are reported in Table 1. The legend of the table is as follows: infeasible method (var= number of variables, eq = number of equalities after slaks are inorporated, bd = number ofbounds, it = number of iterations, evals = number of funtion evaluations); feasible method (var =number of variables, eq = number of equalities, linear g = number of linear inequality onstraintsinluding bounds, nlinear g = number of nonlinear inequality onstraints, it = number of iterations,evals = number of funtion evaluations). The number of funtion evaluations ounts the assoiatedderivative alls (and aommodates either alls to set the primal-dual data for the systems solvesor alls needed to apply Sheme 5.1). When onvergene was not ahieved was either beausethe maximum number of iterations (200) was ahieved, or beause the step size beame too small(α < 10−10), or beause the iterates start growing to in�nity (div).Both infeasible and feasible methods onverged only for a subset of the problems, given thatno globalization strategy was inorporated. In the ases where both onverged, the number ofiterations was approximately the same. The infeasible method onverged for 11 problems whereasthe feasible method onverged for 15. Atually, this gain in robustness was also observed by lookingat the size of the residuals for the problems where both methods did not onverge, whih showedthat the feasible method ahieved, in average, smaller residuals.The proedure to determine the step size for the feasible method (Algorithm 5.1) took a lowaverage number of steps (roughly 2), as we an observe from the di�erene between the number offuntion evaluations and the number of iterations taken by this method.The only problem of the form (1) that satis�es Assumption A4 (onave binding inequalities)is, as far as we ould hek, problem HS16. The feasible method took muh less iterations on thisproblem than the infeasible method. 13



infeasible method feasible methodproblems var n̂ eq bd it evals var n eq linear g nlinear g it evalsCHACONN1 6 3 3 10 11 3 0 0 3 10 25ERRINBAR 19 9 15 α < 10−10 18 8 14 1 α < 10−10EXPFITA 27 22 22 α < 10−10 5 0 0 22 α < 10−10EXPFITB 107 102 102 α < 10−10 5 0 0 102 α < 10−10HAIFAS 22 9 9 div 13 0 0 9 divHIMMELP2 3 1 5 α < 10−10 2 0 4 1 divHIMMELP3 4 2 6 α < 10−10 2 0 4 2 10 21HIMMELP4 5 3 7 α < 10−10 2 0 4 3 10 21HS13 3 1 3 it > 200 2 0 2 1 α < 10−10HS16 4 2 5 24 25 2 0 3 2 12 26HS20 5 3 5 α < 10−10 2 0 2 3 12 29HS24 5 3 5 α < 10−10 2 0 2 3 α < 10−10HS29 4 1 1 12 13 3 0 0 1 15 30HS30 4 1 7 α < 10−10 3 0 6 1 39 78HS32 4 2 7 14 15 3 1 3 1 α < 10−10HS33 5 2 6 it > 200 3 0 4 2 α < 10−10HS65 4 1 4 α < 10−10 3 0 6 1 α < 10−10HS67 17 14 20 α < 10−10 3 0 6 14 it > 200HS73 6 3 6 α < 10−10 4 1 5 1 α < 10−10HS84 8 3 16 α < 10−10 5 0 10 6 α < 10−10HS95 10 4 16 α < 10−10 6 0 12 4 α < 10−10HS96 10 4 16 α < 10−10 6 0 12 4 α < 10−10HS109 13 10 20 α < 10−10 9 6 18 2 α < 10−10HS113 18 8 8 it > 200 10 0 3 5 α < 10−10HS117 20 5 20 it > 200 15 0 15 5 α < 10−10HUBFIT 3 1 2 8 9 2 0 1 1 8 16KSIP 1021 1001 1001 12 13 20 0 0 1001 12 24LSQFIT 3 1 2 8 9 2 0 1 1 8 16MATRIX2 8 2 6 15 16 6 0 4 2 α < 10−10MIFFLIN1 5 2 2 10 11 3 0 0 2 6 20MINMAXBD 25 20 20 div 5 0 0 20 α < 10−10NGONE 13 8 14 div 5 0 8 6 α < 10−10OPTMASS 77 55 11 div 66 44 0 11 7 14PRODPL0 69 29 69 α < 10−10 60 20 60 9 α < 10−10PRODPL1 69 29 69 div 60 20 65 9 α < 10−10READING4 4 2 8 α < 10−10 2 0 4 4 α < 10−10ROSENMMX 9 4 4 18 19 5 0 0 4 15 46SVANBERG 20 10 30 α < 10−10 10 0 20 10 19 93SWOPF 107 102 34 α < 10−10 83 78 20 14 α < 10−10WOMFLET 6 3 3 div 3 0 0 3 it > 200ZECEVIC2 4 2 6 α < 10−10 2 0 4 2 12 29ZY2 5 2 6 7 8 3 0 4 2 α < 10−10Table 1: Numerial behavior of infeasible and feasible methods on a set of CUTEr problems.14



6 Conluding remarksKeeping strit feasibility with respet to the inequality onstraints in the way required by thefeasible primal-dual interior-point method an be numerially a�ordable. Although the exat om-putation of the step sizes requires the solution of a number of nonlinear equations per iteration, itis possible to ompute them satisfying inexat requirements in a relatively e�ient way.Our numerial �ndings show that the proposed method an be partiularly e�ient when thenumber of inequality onstraints is not very large or when the struture of the funtions de�ningthe inequality onstraints eases the step size alulation onsiderably. Strit feasibility an beimposed only partially, with a subset of the problem inequalities being treated by slak variables.The inequalities imposed stritly may be those that restrit the objetive funtion domain, or thedomain of some other onstraint funtions.The most restritive aspet of the proposed algorithm seems to be the initial point. However,the issue of �nding a primal stritly feasible point (g(x0) < 0) is out of the sope of this paper.See [4℄, and the referenes therein, for the determination of feasible points of systems of (nonlinear)equalities and inequalities.Despite the numerial onsiderations, looking at the infeasible variant of the primal-dual interior-point method is of interest on itself. It is worth pointing out that the approah presented in thispaper overs the infeasible ase ([5, 14℄) sine simple bounds of the type −x ≤ 0 orrespond toonave inequalities. Linear inequality onstraints are also onave and an be treated withoutslak variables for ahieving the purpose of fast loal onvergene. Finally, the observation that theq�quadrati rate is retained in the general nononave ase provided the angle between the primalstep and the gradients of the binding onstraints is kept away from ninety degrees, see (28), �tswell into the theory of interior-point methods sine it orresponds to the notion of entrality.AknowledgmentsWe thank Dominique Orban and two anonymous referees for their omments and suggestions.Referenes[1℄ E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. Dongarra,J. DuCroz, A. Greenbaum, S. Hammarling, A. MKenney, and D. Sorensen, LA-PACK Users' Guide, SIAM, Philadelphia, third ed., 1999.[2℄ R. H. Byrd, G. Liu, and J. Noedal, On the loal behaviour of an interior point method fornonlinear programming, in Numerial analysis 1997 (Dundee), vol. 380 of Pitman Res. NotesMath. Ser., Longman, Harlow, 1998, pp. 37�56.[3℄ T. F. Coleman and Y. Li, On the onvergene of interior�re�etive Newton methods fornonlinear minimization subjet to bounds, Math. Program., 67 (1994), pp. 189�224.[4℄ J. E. Dennis, M. El-Alem, and K. Williamson, A trust region approah to nonlinearsystems of equalities and inequalities, SIAM J. Optim., 9 (1999), pp. 291�315.[5℄ A. S. El-Bakry, R. A. Tapia, T. Tsuhiya, and Y. Zhang, On the formulation and theoryof the Newton interior�point method for nonlinear programming, J. Optim. Theory Appl., 89(1996), pp. 507�541. 15
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