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al Analysis of the Feasible Primal-Dual Interior-Point MethodR. Silva∗ J. Soares† L. N. Vi
ente‡Abstra
tIn this paper we analyze the rate of lo
al 
onvergen
e of the Newton primal-dual interior-point method when the iterates are kept stri
tly feasible with respe
t to the inequality 
on-straints.It is shown under the 
lassi
al 
onditions that the rate is q�quadrati
 when the fun
tionsasso
iated to the binding inequality 
onstraints are 
on
ave. In general, the q�quadrati
 rate isa
hieved provided the step in the primal variables does not be
ome asymptoti
ally orthogonalto any of the gradients of the binding inequality 
onstraints.Some preliminary numeri
al experien
e showed that the feasible method 
an be implementedin a relatively e�
ient way, requiring a redu
ed number of fun
tion and derivative evaluations.Moreover, the feasible method is 
ompetitive with the 
lassi
al infeasible primal-dual interior-point method in terms of number of iterations and robustness.Keywords: Interior-point methods, stri
t feasibility, 
entrality, lo
al 
onvergen
e.AMS Subje
t Classi�
ation (2000): 90C30, 90C511 Introdu
tionThe lo
al 
onvergen
e theory of (infeasible) primal-dual interior-point methods for nonlinearprogramming was developed in the papers by El-Bakry et al. [5℄ and Yamashita and Yabe [14℄.These papers show a q�quadrati
 rate of lo
al 
onvergen
e under the 
lassi
al assumptions (se
ondorder su�
ient optimality 
onditions, linear independen
e of the gradients of fun
tions de�ning thebinding 
onstraints (LICQ), and stri
t 
omplementarity). The study of q�superlinear 
onvergen
efor quasi-Newton updates is reported in [10℄ and [14℄. Furthermore, Vi
ente and Wright [13℄ proveda q�quadrati
 rate of 
onvergen
e for a variant of the primal-dual interior-point method under de-genera
y (repla
ing the LICQ by the Mangasarian�Fromowitz 
onstraint quali�
ation). In theseapproa
hes, the 
orresponding primal-dual interior-point method deals with the multipliers asso
i-ated to both equality and inequality 
onstraints as independent variables, and the primal-dual stepis a Newton step for a perturbation of the �rst order ne
essary 
onditions for optimality. Theseapproa
hes are infeasible sin
e feasibility, 
orresponding to equality and, more importantly, to in-equality 
onstraints (rather than simple bounds), is only a
hieved asymptoti
ally. Other rates of
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onvergen
e for di�erent interior-point methods for nonlinear programming have been establishedin [2℄, [3℄, [9℄, and [12℄.Gould, Orban, Sartenaer, and Toint [7℄ investigated the rate of 
onvergen
e of primal-dual log-arithmi
 barrier interior-point methods for linear equality 
onstraints and general inequalities. Thelog-barrier approa
h maintains the iterates stri
tly feasible with respe
t to the inequality 
onstraints,and the multipliers 
orresponding to the equalities are treated impli
itly as dependent variables.The authors proved q�superlinear 
onvergen
e, with a rate that may be 
hosen arbitrarily 
loseto quadrati
. Basi
ally, they studied 
onditions under whi
h a single primal-dual Newton step isstri
tly feasible and satis�es appropriate log-barrier subproblem termination 
riteria.The feasible primal-dual interior-point method of Tits et al. [11℄ a
hieves a quadrati
 rate oflo
al 
onvergen
e. In this algorithm, the multipliers 
orresponding to the inequality 
onstraints areupdated a

ording to an appropriate formula and do not result dire
tly from the Newton relatedprimal-dual step on the perturbed KKT system of �rst-order optimality 
onditions. As we explainbelow, we are interested in analyzing the lo
al 
onvergen
e of a feasible primal-dual interior-pointmethod without any spe
ial provision or 
orre
tion formula for these multipliers.In this paper we analyze the rate of lo
al 
onvergen
e of the feasible primal-dual interior-pointmethod along the lines of the analyses in [5℄ and [14℄. The aspe
t 
onsidered is that inequality
onstraints are not 
onverted into equalities using sla
k variables. The method keeps stri
t feasibilitywith respe
t to the inequality 
onstraints. The other 
omponents of the primal-dual interior-pointmethod remain essentially the same: the primal-dual step is a Newton step on the perturbed KKTsystem and the various parameters are updated appropriately to indu
e a q�quadrati
 rate on thesequen
e of primal-dual iterates.The material of this paper is organized in the following way. In Se
tion 2, we des
ribe thefeasible primal-dual interior-point method in detail. The method is analyzed in Se
tion 3, where itis shown that the iterates 
onverge lo
ally with a q�quadrati
 rate in the 
ase of 
on
ave inequalities.The analysis in
ludes the 
ase where the step length is 
omputed inexa
tly. The non
on
ave 
aseis dis
ussed in Se
tion 4. The rate remains q�quadrati
 for non
on
ave inequalities as long as theprimal 
omponent of the step is asymptoti
ally nonorthogonal to the gradients of the (non
on
ave)fun
tions de�ning the binding inequalities. In Se
tion 5 we report some numeri
al results whi
hshow that the feasible method is 
ompetitive with the infeasible method in terms of number ofiterations. We present a s
heme to 
al
ulate the step length for the feasible method whi
h requiresa moderate number of 
onstraint fun
tion evaluations. The paper is 
on
luded in Se
tion 6 withremarks about the theoreti
al interest and 
omputational limitation of the analyzed approa
h.2 The feasible primal-dual interior-point methodWe 
onsider the general nonlinear programming problem written in the form
min f(x),

s.t. h(x) = 0, (1)
g(x) ≤ 0,where f : IRn −→ IR, h : IRn −→ IRmh , and g : IRn −→ IRmg . The assumptions on the di�erentia-bility of the fun
tions f , g, and h will be stated later. The numbers mh and mg are assumed to bepositive integers. The material of this paper remains valid in the 
ase where there are no equality
onstraints (mh = 0). 2



The Lagrangean fun
tion for problem (1) is ℓ : IRn+mh+mg −→ IR de�ned by
ℓ(x, y, z) = f(x) + h(x)⊤y + g(x)⊤z,where x are the primal variables and the pair (y, z) represents the dual variables (or Lagrangemultipliers). The gradient and the Hessian of ℓ with respe
t to the primal variables are given by

∇xℓ(x, y, z) = ∇f(x) + ∇h(x) y + ∇g(x) z,

∇2
xxℓ(x, y, z) = ∇2f(x) +

mh
∑

j=1

yj∇
2hj(x) +

mg
∑

j=1

zj∇
2gj(x),whenever f , g, and h are twi
e 
ontinuously di�erentiable at x.The Karush�Kuhn�Tu
ker (KKT) �rst order (ne
essary optimality) 
onditions for problem (1)are des
ribed by

F0(x, y, z)
def
=





∇xℓ(x, y, z)
h(x)

−G(x)z



 = 0,

g(x) ≤ 0, z ≥ 0,

(2)where G(x) = diag(g(x)). As we will see later, the primal-dual interior-point method is based on aperturbation of the 
onditions (2), given by
Fµ(x, y, z)

def
=





∇xℓ(x, y, z)
h(x)

−G(x)z − µe



 = 0,

g(x) < 0, z > 0,where µ is a positive s
alar and e is a ve
tor of ones of dimension mg. Note that, for ē = (0, 0, e⊤)⊤ ∈
IRn+mh+mg ,

Fµ(x, y, z) = F0(x, y, z) − µē. (3)We will also make use of ‖ē‖ = ‖e‖.The main part of the iterative step of the primal-dual interior-point method 
onsists of thelinearization of the perturbed KKT system. One 
omputes a primal-dual step ∆w = (∆x,∆y,∆z),by solving the linear system of equations
F ′

µ(w) ∆w = −Fµ(w), (4)for �xed w = (x, y, z) and µ > 0, where F ′
µ(w) is the Ja
obian of Fµ(w). Noti
e that, from (3),

F ′
µ(w) is also the Ja
obian of F0(w). The primal-dual system (4) 
an be written by blo
ks in theform





∇2
xxℓ(x, y, z) ∇h(x) ∇g(x)
∇h(x)⊤ 0 0

−Z∇g(x)⊤ 0 −G(x)









∆x
∆y
∆z



 = −





∇xℓ(x, y, z)
h(x)

−G(x)z − µe



 , (5)where Z = diag(z).Most variants of the primal-dual interior-point method keep positive all the variables subje
t tononnegativity 
onstraints. In our 
ase, it means keeping the multipliers z positive. The parameter
µ is driven to zero asymptoti
ally. Sin
e we are looking at the feasible variant of the primal-dual3



interior-point method, we must also keep g(x) negative throughout the iterations. The main stepsof this feasible variant are des
ribed below in Algorithm 2.1. For the purpose of analyzing lo
al
onvergen
e, we do not in
lude any stopping 
riterion.Algorithm 2.1 (Feasible primal-dual interior-point method.)Choose an initial point w0 = (x0, y0, z0) with g(x0) < 0 and z0 > 0.For k = 0, 1, 2, . . .Step 1. Choose the parameter µk > 0.Step 2. Compute the solution ∆wk = (∆xk,∆yk,∆zk) of the system (5), for x = xk, y = yk, and
z = zk.Step 3. Compute a positive step length αk su
h that

g(xk + αk∆xk) < 0 and zk + αk∆zk > 0. (6)Step 4. De�ne the next iterate wk+1 = (xk+1, yk+1, zk+1) a

ording to:
wk+1 = wk + αk∆wk. (7)Sin
e the step size αk must satisfy (6) throughout the iterations, we will impose that

αk = min

{

1, τk min
i=1,...,mg

{

−
(zk)i

(∆zk)i
: (∆zk)i < 0

}

, τk min
i=1,...,mg

ᾱi
k

}

, (8)where τk ∈ (0, 1) and
ᾱi

k ≤ min {α : gi(xk + α∆xk) = 0, α > 0} , i = 1, . . . ,mg. (9)Whenever the minimum is not a
hieved, it is assumed by 
onvention that it is set to +∞.We point out �rst that when the inequality 
onstraints are of the simple bound type (−x ≤ 0),the 
hoi
e for αk is of the type given above with the inequalities in (9) satis�ed as equalities. Ingeneral, when the fun
tions de�ning the inequality 
onstraints are nonlinear, it might be 
omputa-tionally expensive to a
tually determine the step lengths ᾱi
k su
h that

ᾱi
k = min {α : gi(xk + α∆xk) = 0, α > 0} , i = 1, . . . ,mg. (10)On the other hand, to get a fast rate of lo
al 
onvergen
e one 
annot 
ompute step lengths ᾱi

k thatdi�er too mu
h from (10). However, it is possible to allow a 
ertain inexa
tness in this 
omputation.Let us de�ne the residuals
ri
k

def
= gi(xk + ᾱi

k∆xk), i = 1, . . . ,mg.We will show that the feasible primal-dual interior-point method will retain lo
al q�quadrati
 
on-vergen
e as long as the residuals ri
k satisfy the 
ondition

−ri
k ≤ min

{

σ(−gi(xk)),
−gi(xk)c1‖∆wk‖

1 + c1‖∆wk‖

}

, i = 1, . . . ,mg, (11)4



where σ ∈ (0, 1) and c1 > 0 are 
hosen independently of the iteration 
ounter k. In Se
tion 5.1 wewill des
ribe a s
heme to 
ompute ᾱi
k that seems to be relatively e�
ient in pra
ti
e.Moreover, to a
hieve a q�quadrati
 rate of lo
al 
onvergen
e, the feasible primal-dual interior-point method must update the parameters τk ∈ (0, 1) and µk > 0 satisfying the 
lassi
al 
onditions
1 − τk ≤ c2‖F0(wk)‖, (12)

µk ≤ c3‖F0(wk)‖
2, (13)where c2 and c3 are 
onstants independent of k. Ve
tor and matrix norms in this paper are 
hosento be the Eu
lidean ones.3 Analysis of lo
al 
onvergen
eThe lo
al 
onvergen
e of the feasible primal-dual interior-point method is analyzed at a point

x∗ satisfying the following assumptions. In what follows, B(a∗; r) denotes the open ball {a ∈ IRd :
‖a − a∗‖ < r} of radius r 
entered at a∗.(A1) There exists an ǫ > 0 su
h that the fun
tions f , g, and h are twi
e 
ontinuously di�erentiablein the ball B(x∗; ǫ). Moreover, the se
ond order partial derivatives of f , g, and h are Lips
hitz
ontinuous in B(x∗; ǫ).(A2) The point x∗ is feasible and the gradients of the a
tive 
onstraints are linearly independentat x∗.(A3) There exist Lagrange multipliers y∗ and z∗ su
h that w∗ = (x∗, y∗, z∗) satis�es the �rst orderKKT 
onditions and the se
ond order su�
ient 
onditions and su
h that the pair (−g(x∗), z∗)satis�es the stri
t 
omplementarity 
ondition (−g(x∗) + z∗ > 0).Assumptions A1-A3 are the 
lassi
al (nondegenerate) assumptions used to lo
ally analyze interior-point methods. It results from Assumption A3 that the multipliers asso
iated with the inequalitiesare nonnegative (z∗ ≥ 0) and also that

F0(w∗) = 0. (14)We re
all now the basi
 smoothness results that are required in the proof of the lo
al 
onvergen
eof the primal-dual interior-point method.Lemma 3.1 Let x∗ be a point for whi
h Assumptions A1�A3 hold and w∗ = (x∗, y∗, z∗). Then,there exists a positive 
onstant γ su
h that
‖F0(w

1) − F0(w
2)‖ ≤ γ‖w1 − w2‖, (15)

‖F ′
0(w

1) − F ′
0(w

2)‖ ≤ γ‖w1 − w2‖,

‖F0(w
1) − F0(w

2) − F ′
0(w

2)(w1 − w2)‖ ≤ 1

2
γ‖w1 − w2‖2, (16)for all w1 and w2 in B(w∗; ǫ).The next lemma states that the primal-dual matrix is nonsingular around w∗, in the sense thatis of interest to us. For a proof see, for instan
e, [6℄.5



Lemma 3.2 Let x∗ be a point for whi
h Assumptions A1�A3 hold and w∗ = (x∗, y∗, z∗). Then thefollowing holds:(i) F ′
0(w∗) is nonsingular;(ii) F ′
0(w) is nonsingular for w in B(w∗; ǫns), for some ǫns satisfying 0 < ǫns < ǫ.From this lemma, it is assured the existen
e of a 
onstant ζ > 0 su
h that

‖F ′
0(w)−1‖ = ‖F ′

µ(w)−1‖ ≤ ζ, (17)for all w in B(w∗; ǫns). For su
h points w, the primal-dual step ∆w given by the solution of thesystem (4) is well-de�ned and is equal to
∆w = −F ′

µ(w)−1Fµ(w). (18)The lo
al asymptoti
 behavior of the feasible primal-dual interior-point method is studied �rstfor 
on
ave binding inequalities.(A4) The fun
tions gi, for i ∈ {1, . . . ,mg} su
h that gi(x∗) = 0, are 
on
ave.The main part of the analysis is spent proving a lower bound for the length of the step sizeparameter αk.Lemma 3.3 Let x∗ be a point for whi
h Assumptions A1�A4 hold and w∗ = (x∗, y∗, z∗). Considera sequen
e {wk = (xk, yk, zk)} generated by the feasible primal-dual interior-point method des
ribedin Algorithm 2.1. If αk satis�es (8)-(9) and (11) and τk ∈ (0, 1) and µk > 0 satisfy (12) and (13),then there exist positive 
onstants ε and κ independent of k su
h that, when
wk ∈ B(w∗; ε), (19)either αk = 1 or the bound

1 − αk ≤ (1 − τk) + κζ(‖F0(wk)‖ + µk‖e‖), (20)holds for all iterates k.Proof: First we have to set ε = ǫns, where ǫns is given in Lemma 3.2.Using (18), (3), (14), (17), (15), and (19) sequentially, it is easily derived the following boundfor the primal-dual step:
‖∆wk‖ = ‖F ′

µ(wk)
−1Fµ(wk)‖

≤ ‖F ′
µ(wk)

−1‖(‖F0(wk)‖ + µk‖e‖)

≤ ζ(γ‖wk − w∗‖ + µk‖e‖)

≤ ζ(γε + µk‖e‖).Thus, from the 
ondition (13) on the size of µk, and given a 
onstant η > 0, one 
an redu
e ε ifne
essary su
h that
‖∆wk‖ ≤ η. (21)6



In parti
ular, it is possible to 
hoose a su�
iently small ε su
h that
κ‖∆wk‖ ≤ τk, (22)where κ is de�ned by

κ
def
= max

{

κ2

1 − σ
, κ1 + κ1c1η + c1

}

.The 
onstants κ1 and κ2 are given by
κ1 = 2max

{

1

(z∗)i
: (z∗)i > 0, i ∈ {1, . . . ,mg}

}and
κ2 = 2M∇g max

{

−
1

gi(x∗)
: gi(x∗) < 0, i ∈ {1, . . . ,mg}

}

,where M∇g is an upper bound on the size of ∇g in B(x∗; ǫ).We divide the proof in two separate 
ases: the 
ase where the step length is de�ned by amultiplier and the 
ase where the step length is de�ned by an inequality.Case where step length is de�ned by a multiplier. In this �rst 
ase we assume that thereexists an index i ∈ {1, . . . ,mg} for whi
h (∆zk)i < 0 and
αk = −τk

(zk)i
(∆zk)i

.If i is su
h that (z∗)i > 0 then, from the de�nition of κ and from (22),
αk = τk

(zk)i
−(∆zk)i

≥
τk

κ‖∆wk‖
≥ 1.When (z∗)i = 0 (and gi(x∗) < 0), we make use of the primal-dual blo
k equation (see (5))

−Zk∇g(xk)
⊤∆xk − G(xk)∆zk = G(xk)zk + µke,to write

−(zk)i∇gi(xk)
⊤∆xk − gi(xk)(∆zk)i = gi(xk)(zk)i + µk,or equivalently,

−
(∆zk)i
(zk)i

= 1 +
µk

gi(xk)(zk)i
+ pi

kwith
pi

k =
∇gi(xk)

⊤∆xk

gi(xk)
≤

|∇gi(xk)
⊤∆xk|

−gi(xk)
≤ κ‖∆wk‖.Thus, sin
e µk/(gi(xk)(zk)i) < 0,

−
(∆zk)i
(zk)i

≤ 1 + κ‖∆wk‖and
αk = τk

(zk)i
−(∆zk)i

≥
τk

1 + κ‖∆wk‖
≥ τk(1 − κ‖∆wk‖).7



Case where step length is de�ned by an inequality. Now we are interested in the 
ase
αk = τkᾱ

i
k,for some index i ∈ {1, . . . ,mg}. By applying the mean value theorem, we have

ri
k − gi(xk) = gi(xk + ᾱi

k∆xk) − gi(xk) = ᾱi
k∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk,for some tik ∈ (0, 1), and the step length ᾱi
k 
an be written as

ᾱi
k =

ri
k − gi(xk)

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

. (23)Sin
e −ri
k ≤ σ(−gi(xk)), both the numerator and the denominator in this expression for ᾱi

k arepositive.If i is su
h that gi(x∗) < 0 then, from the de�nitions of κ2 and κ and from (22),
αk = τkᾱ

i
k ≥ τk

(1 − σ)(−gi(xk))

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

≥ τk

(1 − σ)(−gi(xk))

‖∇gi(xk + tikᾱ
i
k∆xk)‖ ‖∆xk‖

≥ τk

(1 − σ)

κ2‖∆wk‖

≥
τk

κ‖∆wk‖

≥ 1.When gi(x∗) = 0 (and (z∗)i > 0), we must �rst add and subtra
t
ri
k

(∆zk)i
(zk)i

+ ri
k + ri

k

µk

gi(xk)(zk)ito the right hand side in the primal-dual equation
−∇gi(xk)

⊤∆xk = gi(xk)
(∆zk)i
(zk)i

+ gi(xk) + gi(xk)
µk

gi(xk)(zk)i
.After division by gi(xk) − ri

k, this results in
−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

=
(∆zk)i
(zk)i

+ 1 +
µk

gi(xk)(zk)i

+
ri
k

gi(xk) − ri
k

(∆zk)i
(zk)i

+
ri
k

gi(xk) − ri
k

+
µkr

i
k

gi(xk)(zk)i(gi(xk) − ri
k)

.8



Sin
e the third and the sixth terms in the right hand side of this equality are negative and sin
e,from (11),
ri
k

gi(xk) − ri
k

≤ c1‖∆wk‖,we obtain, from (21),
−
∇gi(xk)

⊤∆xk

gi(xk)⊤ − ri
k

≤ 1 + κ1‖∆wk‖ + κ1c1‖∆wk‖
2 + c1‖∆wk‖

≤ 1 + (κ1 + κ1c1η + c1)‖∆wk‖ (24)
≤ 1 + κ‖∆wk‖.Now, from the 
on
avity of gi, we derive

−
∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk

gi(xk) − ri
k

= −
∇gi(xk + tikᾱi∆xk)

⊤∆xk

gi(xk) − ri
k

+
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

=
[∇gi(xk + tikᾱ

i
k∆xk) −∇gi(xk)]

⊤∆xk

ri
k − gi(xk)

−
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

≤ −
∇gi(xk)

⊤∆xk

gi(xk) − ri
k

(25)
≤ 1 + κ‖∆wk‖and

αk = τkᾱ
i
k = τk

ri
k − gi(xk)

∇gi(xk + tikᾱ
i
k∆xk)⊤∆xk

≥
τk

1 + κ‖∆wk‖
≥ τk(1 − κ‖∆wk‖).Con
lusion. Combining all the four bounds derived for αk (two in ea
h 
ase 
onsidered), oneobtains

αk ≥ min{1, τk(1 − κ‖∆wk‖)} = τk(1 − κ‖∆wk‖) ≥ τk − κ‖∆wk‖.The last inequality above is based on the fa
t that τk < 1 for all k provided ε is 
hosen small enough.Finally, from this lower bound on αk, we get
0 ≤ 1 − αk ≤ (1 − τk) + κ‖∆wk‖ ≤ (1 − τk) + κζ(‖F0(wk)‖ + µk‖e‖),whi
h 
on
ludes the proof of the lemma. ◦We 
an state now the q�quadrati
 rate of lo
al 
onvergen
e of Algorithm 2.1. The proof 
an befound in [14℄ and we des
ribe it brie�y for 
ompleteness.Theorem 3.1 Let x∗ be a point for whi
h Assumptions A1�A4 hold and w∗ = (x∗, y∗, z∗). Considera sequen
e {wk = (xk, yk, zk)} generated by the feasible primal-dual interior-point method des
ribed9



in Algorithm 2.1. If αk satis�es (8)-(9) and (11) and τk ∈ (0, 1) and µk > 0 satisfy (12) and (13),then there exists a positive 
onstant ε independent of k su
h that, when
w0 ∈ B(w∗; ε),the sequen
e {wk} is well de�ned and 
onverges to w∗. Moreover, we have

‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖
2, (26)for all iterates k, where ν is a positive 
onstant independent of k.Proof: Let us assume that ‖wk − w∗‖ < ε. By applying (7), (18), (3), and (14), we obtain

wk+1 − w∗ = (wk − w∗) + αk∆wk

= (1 − αk)(wk − w∗)

+ αkF
′
µk

(wk)
−1[F0(w∗) − F0(wk) − F ′

µk
(wk)(w∗ − wk) + µkē].Now, using (20), (16), (17), and αk ≤ 1, we have, for a su�
iently small ε,

‖wk+1 − w∗‖ ≤ (1 − αk)‖wk − w∗‖

+ αk‖F
′
µk

(wk)−1‖ ‖F0(w∗) − F0(wk) − F ′
µk

(wk)(w∗ − wk)‖

+ αkµk‖F
′
µk

(wk)
−1‖ ‖e‖

≤ [(1 − τk) + κζ‖F0(wk)‖ + κζ‖e‖µk] ‖wk − w∗‖

+
ζγ

2
‖wk − w∗‖

2 + ‖e‖ζµk.We also known that τk and µk satisfy (12) and (13). Thus, using the fa
t that ‖F0(wk)‖ =
‖F0(wk) − F0(w∗)‖ ≤ γ‖wk − w∗‖, we assure the existen
e of a 
onstant ν > 0 independent of theiterates su
h that (26) holds. It is possible to prove by indu
tion that {wk} 
onverges to w∗, if ε is
hosen su�
iently small. The inequality (26) shows that the lo
al 
onvergen
e rate is q�quadrati
. ◦4 The non
on
ave 
aseThe 
on
avity of the inequality 
onstraint fun
tions was required in (25) when the binding
onstraint fun
tion gi was responsible for the step size αk. However, one 
an see that the methodretains a q�quadrati
 rate in the non
on
ave 
ase as long as there exists a positive 
onstant β su
hthat

ri
k − gi(xk) = gi(xk + ᾱi

k∆xk) − gi(xk) ≥ βᾱi
k‖∆xk‖ (27)for all k and all indi
es i 
orresponding to gi(x∗) = 0. In fa
t, one would get

[∇gi(xk + tikᾱ
i
k∆xk) −∇gi(xk)]

⊤∆xk

ri
k − gi(xk)

≤
L∇gi

β
‖∆xk‖,10



where L∇gi
is the Lips
hitz 
onstant of the fun
tion ∇gi in B(x∗; ǫ). Then, from (23) and (24),

1

ᾱi
k

= −
∇gi(xk + tikᾱ

i
k∆xk)

⊤∆xk

gi(xk) − ri
k

≤ 1 + [(κ1 + κ1c1η + c1) + L∇gi
/β)] ‖∆wk‖

≤ 1 + κ‖∆wk‖,after an appropriate rede�nition of κ.The bound (27) is satis�ed for k su�
iently large as long as
lim inf
k−→+∞

∇gi(xk)
⊤ ∆xk

‖∆xk‖
= 4β > 0. (28)To see why this is true let us expand gi(xk + ᾱi

k∆xk) around xk:
gi(xk + ᾱi

k∆xk) − gi(xk) = ᾱi
k∇gi(xk)

⊤∆xk +
(ᾱi

k)
2

2
∆x⊤

k ∇
2gi(xk + si

kᾱ
i
k∆xk)∆xk,for some si

k ∈ (0, 1). Sin
e we are only looking at the 
ases where ᾱi
k ≤ 1, one 
an see that

gi(xk + ᾱi
k∆xk) − gi(xk)

ᾱi
k‖∆xk‖

≥ βholds for k su�
iently large as long as
‖∆xk‖ ≤ ‖∆wk‖ ≤

2β

M∇2gi

,where M∇2gi
is an upper bound on the size of the Hessian ∇2gi in B(x∗; ǫ), requiring again arede�nition of κ.Condition (28) has no in�uen
e if the 
onstraint is 
on
ave be
ause, even when this 
ondition isnot satis�ed, the 
on
avity of the fun
tion de�ning the 
onstraint allows a lo
ally full step (αk = 1)with respe
t to that 
onstraint.5 Implementation and numeri
al resultsWe have implemented Algorithm 2.1 (the feasible primal-dual interior point method) and testedit on a set of small CUTEr problems [8℄. Subse
tion 5.1 
ompletes the algorithm des
ription, namely,we explain there how to 
ompute, without too mu
h e�ort, a stepsize that satis�es 
ondition (11).As a baseline for 
omparison, we have also tested the infeasible primal-dual interior point method(details are explained in Subse
tion 5.2). Numeri
al results are reported in Subse
tion 5.3.5.1 Step size 
al
ulation for the feasible methodTo a
hieve a q�quadrati
 rate of 
onvergen
e, 
ondition (11) is imposed on the size of theresidual ri

k = gi(xk + ᾱi
k∆xk). A simple pro
edure to 
al
ulate ᾱi

k is Newton's method, fullydes
ribed in Algorithm 5.1 below. Obviously, the s
heme is to be applied only to the nonlinearinequality 
onstraints, as for the linear 
onstraints (in
luding bounds) one 
an easily determine theexa
t maximum allowed step length. 11



Algorithm 5.1 (Step size 
al
ulation for the feasible method.)Choose an initial step size α > 0 (for instan
e, α = 0.5 if k = 0 and α = ᾱi
k−1 for k ≥ 1). Choose

σ ∈ (0, 1) and c1 > 0 (for instan
e, σ = 10−2 and c1 = 0.5). Set also ∆α = 1.While |∆α| > 10−3 and −gi(xk + α∆xk) > min
{

σ(−gi(xk)),
−gi(xk)c1‖∆wk‖

1+c1‖∆wk‖

} do
ompute ∆α = −
gi(xk + α∆xk)

∇gi(xk + α∆xk)⊤∆xk

and repla
e α by α + ∆α.After termination set ᾱi
k = α.We in
orporated a safeguard for negative values of α. When α be
ame negative we proje
ted itba
k to the positive axis by setting it to 10−2. This safeguard a
ted only in two of the problemstested (leading then to a 
onvergent run).We also experimented an alternative s
heme where the 
al
ulation of the derivatives ∇gi(xk +

α∆xk)
⊤∆xk was approximated by ∇gi(xk)

⊤∆xk. While this alternative seemed not to a�e
t thee�
ien
y of the feasible method (in terms of number of iterations), it provided a less robust method(in the sense that less problems were solved).5.2 The infeasible primal-dual interior-point methodAs a baseline for 
omparison we also ran the infeasible primal-dual interior-point methodreported in Algorithm 5.2. This version of the infeasible method is the same as the feasiblemethod applied to a reformulated problem, where inequality 
onstraints are 
onverted into equal-ities with the introdu
tion of nonnegative sla
k variables. The feasible region 
an thus be writtenas {x̂ ∈ IRn̂ : ĥ(x̂) = 0, x̂ ≥ 0} and the Lagrangean fun
tion as ℓ̂(x̂, ŷ, ẑ) = f̂(x̂) + ĥ(x̂)⊤ŷ − x̂⊤ẑ.Algorithm 5.2 (Infeasible primal-dual interior-point method.)Choose an initial point w0 = (x̂0, ŷ0, ẑ0) with x̂0 > 0 and ẑ0 > 0.For k = 0, 1, 2, . . .Step 1. Choose the parameter µk > 0.Step 2. Compute the solution ∆wk = (∆x̂k,∆ŷk,∆ẑk) of the system




∇2
x̂x̂ℓ̂(x̂k, ŷk, ẑk) ∇ĥ(x̂k) −In̂×n̂

∇ĥ(x̂k)
⊤ 0 0

Ẑk 0 X̂k









∆x̂k

∆ŷk

∆ẑk



 = −





∇x̂ℓ̂(x̂k, ŷk, ẑk)

ĥ(x̂k)

X̂kẑk − µken̂



 ,where X̂k = diag(x̂k) and Ẑk = diag(ẑk).Step 3. Choose τk ∈ (0, 1). Compute a positive step length αk su
h that
αk = min

{

1, τk min
i=1,...,n̂

{

−
(x̂k)i

(∆x̂k)i
: (∆x̂k)i < 0

}

, τk min
i=1,...,n̂

{

−
(ẑk)i

(∆ẑk)i
: (∆ẑk)i < 0

}}

.Step 4. De�ne the next iterate wk+1 = (x̂k+1, ŷk+1, ẑk+1) a

ording to:
wk+1 = wk + αk∆wk.12



5.3 Numeri
al resultsWe tested both feasible and infeasible primal-dual interior point methods (Algorithms 2.1and 5.2) on a set of small CUTEr [8℄ problems. We restri
ted our attention to problems withnonlinear inequality 
onstraints and for whi
h the initial point x0, provided by CUTEr, satis�es
g(x0) < 0.The initial primal point given to the infeasible method was the point x0 provided by CUTEr.When the initial primal values are nonpositive we proje
ted them to the positive axis. In some
ases, not all variables are restri
ted in sign and the infeasible method was adapted to take 
are ofthis situation. The remaining 
omponents of the initial ve
tor for the infeasible method are de�nedas follows: ŷ0 = argminŷ‖∇ĥ(x̂0)ŷ + [−ẑin

0 + ∇f̂(x̂0)]‖ and ẑ0 = max{∇ĥ(x̂0)ŷ0 + ∇f̂(x̂0), ẑ
in
0 },where ẑin

0 is a ve
tor of ones of the appropriate size. For the feasible method, x0 is provided byCUTEr (satisfying g(x0) < 0). Then, we 
ompute y0 = argminy‖∇h(x0)y + [∇g(x0)z
in

0 +∇f(x0)]‖and z0 = max{argminz‖∇g(x0)z + [∇h(x0)y0 + ∇f(x0)]‖, z
in
0 }.The 
odes were implemented in Fortran 90 and ran on a Compaq Tru64 (operating system UnixV5.1, 2 GB RAM, Alpha 21264A 667 MHz). For both algorithms, we updated τk and µk as follows:

1 − τk = min
{

10−2, 10−2‖F0(wk)‖
} and µk = min

{

10−2, 10−1‖F0(wk)‖
2
}

.The stopping 
riterion was ‖F0(wk)‖ ≤ 10−8 for the feasible method and ‖(∇x̂ℓ̂(x̂k, ŷk, ẑk), ĥ(x̂k),
X̂kẑk)‖ ≤ 10−8 for the infeasible 
ase. The linear algebra was implemented in the dense form usingthe LAPACK [1℄ routines DGESV (for the primal-dual systems) and DGELSD (for the least-squaresmultiplier problems).The results are reported in Table 1. The legend of the table is as follows: infeasible method (var= number of variables, eq = number of equalities after sla
ks are in
orporated, bd = number ofbounds, it = number of iterations, evals = number of fun
tion evaluations); feasible method (var =number of variables, eq = number of equalities, linear g = number of linear inequality 
onstraintsin
luding bounds, nlinear g = number of nonlinear inequality 
onstraints, it = number of iterations,evals = number of fun
tion evaluations). The number of fun
tion evaluations 
ounts the asso
iatedderivative 
alls (and a

ommodates either 
alls to set the primal-dual data for the systems solvesor 
alls needed to apply S
heme 5.1). When 
onvergen
e was not a
hieved was either be
ausethe maximum number of iterations (200) was a
hieved, or be
ause the step size be
ame too small(α < 10−10), or be
ause the iterates start growing to in�nity (div).Both infeasible and feasible methods 
onverged only for a subset of the problems, given thatno globalization strategy was in
orporated. In the 
ases where both 
onverged, the number ofiterations was approximately the same. The infeasible method 
onverged for 11 problems whereasthe feasible method 
onverged for 15. A
tually, this gain in robustness was also observed by lookingat the size of the residuals for the problems where both methods did not 
onverge, whi
h showedthat the feasible method a
hieved, in average, smaller residuals.The pro
edure to determine the step size for the feasible method (Algorithm 5.1) took a lowaverage number of steps (roughly 2), as we 
an observe from the di�eren
e between the number offun
tion evaluations and the number of iterations taken by this method.The only problem of the form (1) that satis�es Assumption A4 (
on
ave binding inequalities)is, as far as we 
ould 
he
k, problem HS16. The feasible method took mu
h less iterations on thisproblem than the infeasible method. 13



infeasible method feasible methodproblems var n̂ eq bd it evals var n eq linear g nlinear g it evalsCHACONN1 6 3 3 10 11 3 0 0 3 10 25ERRINBAR 19 9 15 α < 10−10 18 8 14 1 α < 10−10EXPFITA 27 22 22 α < 10−10 5 0 0 22 α < 10−10EXPFITB 107 102 102 α < 10−10 5 0 0 102 α < 10−10HAIFAS 22 9 9 div 13 0 0 9 divHIMMELP2 3 1 5 α < 10−10 2 0 4 1 divHIMMELP3 4 2 6 α < 10−10 2 0 4 2 10 21HIMMELP4 5 3 7 α < 10−10 2 0 4 3 10 21HS13 3 1 3 it > 200 2 0 2 1 α < 10−10HS16 4 2 5 24 25 2 0 3 2 12 26HS20 5 3 5 α < 10−10 2 0 2 3 12 29HS24 5 3 5 α < 10−10 2 0 2 3 α < 10−10HS29 4 1 1 12 13 3 0 0 1 15 30HS30 4 1 7 α < 10−10 3 0 6 1 39 78HS32 4 2 7 14 15 3 1 3 1 α < 10−10HS33 5 2 6 it > 200 3 0 4 2 α < 10−10HS65 4 1 4 α < 10−10 3 0 6 1 α < 10−10HS67 17 14 20 α < 10−10 3 0 6 14 it > 200HS73 6 3 6 α < 10−10 4 1 5 1 α < 10−10HS84 8 3 16 α < 10−10 5 0 10 6 α < 10−10HS95 10 4 16 α < 10−10 6 0 12 4 α < 10−10HS96 10 4 16 α < 10−10 6 0 12 4 α < 10−10HS109 13 10 20 α < 10−10 9 6 18 2 α < 10−10HS113 18 8 8 it > 200 10 0 3 5 α < 10−10HS117 20 5 20 it > 200 15 0 15 5 α < 10−10HUBFIT 3 1 2 8 9 2 0 1 1 8 16KSIP 1021 1001 1001 12 13 20 0 0 1001 12 24LSQFIT 3 1 2 8 9 2 0 1 1 8 16MATRIX2 8 2 6 15 16 6 0 4 2 α < 10−10MIFFLIN1 5 2 2 10 11 3 0 0 2 6 20MINMAXBD 25 20 20 div 5 0 0 20 α < 10−10NGONE 13 8 14 div 5 0 8 6 α < 10−10OPTMASS 77 55 11 div 66 44 0 11 7 14PRODPL0 69 29 69 α < 10−10 60 20 60 9 α < 10−10PRODPL1 69 29 69 div 60 20 65 9 α < 10−10READING4 4 2 8 α < 10−10 2 0 4 4 α < 10−10ROSENMMX 9 4 4 18 19 5 0 0 4 15 46SVANBERG 20 10 30 α < 10−10 10 0 20 10 19 93SWOPF 107 102 34 α < 10−10 83 78 20 14 α < 10−10WOMFLET 6 3 3 div 3 0 0 3 it > 200ZECEVIC2 4 2 6 α < 10−10 2 0 4 2 12 29ZY2 5 2 6 7 8 3 0 4 2 α < 10−10Table 1: Numeri
al behavior of infeasible and feasible methods on a set of CUTEr problems.14



6 Con
luding remarksKeeping stri
t feasibility with respe
t to the inequality 
onstraints in the way required by thefeasible primal-dual interior-point method 
an be numeri
ally a�ordable. Although the exa
t 
om-putation of the step sizes requires the solution of a number of nonlinear equations per iteration, itis possible to 
ompute them satisfying inexa
t requirements in a relatively e�
ient way.Our numeri
al �ndings show that the proposed method 
an be parti
ularly e�
ient when thenumber of inequality 
onstraints is not very large or when the stru
ture of the fun
tions de�ningthe inequality 
onstraints eases the step size 
al
ulation 
onsiderably. Stri
t feasibility 
an beimposed only partially, with a subset of the problem inequalities being treated by sla
k variables.The inequalities imposed stri
tly may be those that restri
t the obje
tive fun
tion domain, or thedomain of some other 
onstraint fun
tions.The most restri
tive aspe
t of the proposed algorithm seems to be the initial point. However,the issue of �nding a primal stri
tly feasible point (g(x0) < 0) is out of the s
ope of this paper.See [4℄, and the referen
es therein, for the determination of feasible points of systems of (nonlinear)equalities and inequalities.Despite the numeri
al 
onsiderations, looking at the infeasible variant of the primal-dual interior-point method is of interest on itself. It is worth pointing out that the approa
h presented in thispaper 
overs the infeasible 
ase ([5, 14℄) sin
e simple bounds of the type −x ≤ 0 
orrespond to
on
ave inequalities. Linear inequality 
onstraints are also 
on
ave and 
an be treated withoutsla
k variables for a
hieving the purpose of fast lo
al 
onvergen
e. Finally, the observation that theq�quadrati
 rate is retained in the general non
on
ave 
ase provided the angle between the primalstep and the gradients of the binding 
onstraints is kept away from ninety degrees, see (28), �tswell into the theory of interior-point methods sin
e it 
orresponds to the notion of 
entrality.A
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