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Abstract

This thesis introduces and analyzes a family of trust-region interior—point (TRIP)
reduced sequential quadratic programming (SQP) algorithms for the solution of min-
imization problems with nonlinear equality constraints and simple bounds on some
of the variables. These nonlinear programming problems appear in applications in
control, design, parameter identification, and inversion. In particular they often arise
in the discretization of optimal control problems.

The TRIP reduced SQP algorithms treat states and controls as independent vari-
ables. They are designed to take advantage of the structure of the problem. In
particular they do not rely on matrix factorizations of the linearized constraints, but
use solutions of the linearized state and adjoint equations. These algorithms result
from a successful combination of a reduced SQP algorithm, a trust-region global-
ization, and a primal-dual affine scaling interior—point method. The TRIP reduced
SQP algorithms have very strong theoretical properties. It is shown in this thesis
that they converge globally to points satistying first and second order necessary opti-
mality conditions, and in a neighborhood of a local minimizer the rate of convergence
is quadratic. Our algorithms and convergence results reduce to those of Coleman
and Li for box—constrained optimization. An inexact analysis is presented to provide
a practical way of controlling residuals of linear systems and directional derivatives.
Complementing this theory, numerical experiments for two nonlinear optimal control
problems are included showing the robustness and effectiveness of these algorithms.

Another topic of this dissertation is a specialized analysis of these algorithms
for equality—constrained optimization problems. The important feature of the way
this family of algorithms specializes for these problems is that they do not require
the computation of normal components for the step and an orthogonal basis for

the null space of the Jacobian of the equality constraints. An extension of Moré



and Sorensen’s result for unconstrained optimization is presented, showing global
convergence for these algorithms to a point satisfying the second—order necessary

optimality conditions.
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Chapter 1

Introduction

Optimization, or mathematical programming, has developed enormously in the last
fifty years and has reached a point where researchers often concentrate on a specific
class of problems. Existing algorithmic ideas can be tailored to the characteristics of
the class. These problem classes usually come from an application in industry or sci-
ence. This is the case of the class of problems addressed in this thesis. Moreover, the
structure of the problems in the class considered here is fundamental in taking advan-
tage of recent advances in computer technology. The resulting algorithms are more
robust and efficient, and their implementations fit more conveniently the purposes of

the application.

1.1 The Class of Nonlinear Programming Problems

In this dissertation, we focus on a particular class of nonlinear programming problems
that have many applications in engineering and science. The formulation of these

problems is the following:

minimize  f(y,u)
subject to  C(y,u) =0, (1.1)

a <u<b,

where f: IR" — IR and C' : IR" — IR™ are smooth functions, y € R™, v € R"™™,
and m and n are positive integers satisfying m < n. In this class of problems the
variables  are split into two groups: state variables y, and control variables u. These
are coupled through a set of nonlinear equality constraints C(y,u) = 0, the so—called
(discretized) state equation. We also consider lower and upper bounds on the control
variables u. However, bounds on the state variables y are not considered in this
dissertation. The presence of such bounds would add another layer of difficulty to
problem (1.1) and would require possibly a different algorithmic approach.



These optimization problems often arise in the discretization of optimal control
problems that are governed by partial differential equations. We address the optimal
control problems in finite dimensions after the discretization has taken place, but we
do not neglect the physics and the structure that such problems have when posed
naturally in infinite dimensions. These nonlinear programming problems also appear
in parameter identification, inversion, and optimal design. This class of problems is
rich, and we continue to find new applications on a regular basis.

The linearization of the nonlinear state equation yields the (discretized) linearized
state equation and the corresponding adjoint equation. Efficient solutions of the linear
system corresponding to these equations exist for many applications [22], [75], [149],
and the optimization algorithm ought to take advantage of it. This linearization also
offers a tremendous amount of structure. In particular, we use it to obtain a matrix
whose columns form a nonorthogonal basis for the null space of the Jacobian matrix of
the nonlinear equality constraints. Matrix—vector products with this matrix involve
solutions of the linearized state and adjoint equations. Furthermore, a solution of
the linearized state equation is naturally decomposed into two components, a quasi—
normal component and a tangential component.

The algorithms that we propose and analyze in this thesis are based on an all-
at—once approach (see [31]), where states y and controls u are treated as independent

variables.

1.2 Algorithms and Convergence Theory

Although there are algorithms available for the solution of nonlinear programming
problems that are more general than (1.1), the family of algorithms presented in this
thesis is unique in the consequent use of structure inherent in many optimal control
problems, the use of optimization techniques successfully applied in other contexts of
nonlinear programming, and the rigorous theoretical justification.

We call our algorithms trust—region interior—point (TRIP) reduced sequential
quadratic programming (SQP) algorithms since they combine:

1. SQP techniques to approximate the nonlinear programming problem by a se-
quence of quadratic programming subproblems. (We chose a reduced SQP algo-
rithm because the reduction given by the null-space representation mentioned

above appears naturally from the linearization of the nonlinear equality con-



straints. Both the quasi-normal and the tangential components are associated

with solutions of unconstrained quadratic programming subproblems.)

2. Trust regions to guarantee global convergence, i.e. that convergence is attained
from any starting point. (A trust region is imposed appropriately on the quasi-
normal and tangential components constraining the respective quadratic pro-
gramming subproblems. The trust-region technique we use is similar to those
that Byrd and Omojokon [115], Dennis, El-Alem, and Maciel [35], and Dennis
and Vicente [42] proposed for equality—constrained optimization. Besides as-
suring global convergence, trust regions regularize ill-conditioned second—order
derivatives of the quadratic subproblems. This is very important since many

problems in this class are ill-conditioned.)

3. An interior—point strategy to handle the bounds on the control variables u. (We
adapt to our contex a primal-dual affine scaling algorithm proposed by Coleman
and Li [23] for optimization problems with simple bounds. We accomplish this
by taking advantage of the structure of our class of problems. The interior—
point scheme requires no more information than is needed for the solution of

these problems with no bounds on the control variables w.)

The TRIP reduced SQP algorithms have very powerful convergence properties as

we show in this thesis. We prove:

1. Global convergence to a point satisfying the first—order necessary optimality

conditions if first—order derivatives are used.

2. Global convergence to a point satisfying the second—order necessary optimality

conditions if second—order derivatives are used.

3. Boundedness of the sequence of penalty parameters and the boundedness away
from zero of the sequence of trust radii if second-order derivatives are used.
The g—quadratic rate of local convergence for these algorithms is a consequence
of the combination of this nice global-to-local behavior with a Newton—type

iteration.

The assumptions we use to prove these results reduce to the weakest assump-
tions used to establish similar results in the special cases of unconstrained, equality—

constrained, and box—constrained optimization. Our theoretical results, also reported



in Dennis, Heinkenschloss, and Vicente [36], generalize similar ones obtained for these

simpler problem classes. This is schematized in Figures 1.1 and 1.2.

1.3 Inexact Analysis and Implementation

Neither the analysis of the TRIP reduced SQP algorithms nor their implementation
would be complete without studying their behavior under the presence of inexactness.
In practice, a very large linear system is solved inexactly yielding a certain residual.
Depending on the iterative method chosen for its solution, there is the possibility of
measuring and controlling the size of the residual vector. If the solution of the linear
system is required at a given iteration of an optimization algorithm, the size of this
residual should tighten with a measure of how feasible and optimal the current point
is. An inexact analysis should provide a practical algorithmic way of accomplishing
this tightening.

We present an inexact analysis for the TRIP reduced SQP algorithms that relates
the size of the residual vectors of the linearized state and adjoint equations with the
trust radius and the size of the constraint residual, the latter being quantities at hand
at the beginning of each iteration. We provide practical rules of implementing this
relationship that assure global convergence. To our knowledge, inexactness for SQP
algorithms with trust-region globalizations has not been studied in the literature.

In practice the TRIP reduced SQP algorithms are robust and efficient techniques
for a variety of problems. The implementation of these algorithms is currently being
beta—tested with the intent of electronic distribution [76]. The current implemen-
tation provides the user with a number of alternatives to compute the steps and to
approximate second-order derivatives. There are two versions, one in Fortran 77 and
one in Matlab. The implementation addresses the problem scaling, the computation
of mass and stiffness matrices, and the setting of tolerances for inexact solvers. These
issues arise frequently in optimal control problems governed by partial differential
equations.

In this thesis, we present numerical results for two medium to large discretized
optimal control problems: a boundary nonlinear parabolic control problem and a
distributed nonlinear elliptic control problem. These numerical results are very sat-
isfactory and indicate the effectiveness of our algorithms. Our implementation has

been used successfully to solve control problems in fluid flow [22], [75].
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Figure 1.1 Global convergence to a point that satisfies the first-order
necessary optimality conditions: our result for problem (1.1) generalizes
those obtained by the indicated authors for simpler problem classes.

1.4 Other Contributions

We present a brief survey of trust regions for unconstrained optimization that covers
only the most important trust-region ideas used in our algorithms. In this framework,
we compare line searches and trust regions from the point of view of regularization
of ill-conditioned second—order approximations.

The ability to converge globally to points satisfying the second—order necessary
optimality conditions is natural for trust-regions, and it has been shown in the lit-
erature for different classes of problems and different trust-region algorithms. We
prove this property also for a family of general trust-region algorithms [35], [42] for
equality—constrained optimization that use nonorthogonal null-space basis and quasi—

normal components. This analysis, of value by itself, motivates all the convergence

theory for the TRIP reduced SQP algorithms.
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Figure 1.2 Global convergence to a point that satisfies the second—order
necessary optimality conditions: our result for problem (1.1) generalizes
those obtained by the indicated authors for simpler problem classes.

1.5 Organization of the Thesis

Chapters 2 and 3 review basic material on unconstrained and equality—constrained
optimization that is used in the other chapters. The reader familiar with these basic
concepts might want to skip many of the sections in these two chapters. In Chapter 2,
we discuss and compare the regularization of ill-conditioned second—order approxima-
tions for line searches and trust regions. In Chapter 3, we derive global convergence to
a point satisfying second—order necessary optimality conditions for a family of trust—
region reduced SQP algorithms for equality—constrained optimization, and present an
analysis of the trust-region subproblem for the linearized constraints.

The class of problems (1.1) is described in great detail in Chapter 4, where we

establish optimality conditions and comment on the use of structure.



Chapters 5 and 6 are the two main chapters of this thesis. They describe the
TRIP reduced SQP algorithms for our class of problems and prove their convergence
properties. Chapter 5 focuses on the exact version of these algorithms and includes
both global and local convergence results. In Chapter 6, we study the global behavior
of the TRIP reduced SQP algorithms under the presence of inexactness. Sections 5.8
and 6.5 contain numerical experiments.

The most important conclusions and open questions are summarized in Chapter 7.

A short introduction and a summary of contents are given at the beginning of

every chapter. There we cite related work and justify our algorithmic choices.

1.6 Notation

We list below some of the notation and abbreviations used in this thesis.

o ((z,\) = f(x)+AT'C(z) is the Lagrangian function associated with the problem

minimize f(x) subject to C'(x) =0, where X is the Lagrange multiplier vector.

o Vf(x)is the gradient of the real-valued function f(x) and J(x) is the Jacobian
T
of the vector—valued function C'(x) = (cl(:z;), cee cm(:zj)) :

o V2f(x), Vi¢(x), and V2 l(z,\) = V2f(z)+ X7, \iVi¢(x) are the Hessians

matrices with respect to  of f(x), ¢;(2), and {(x, X) respectively.
e N(A) represents the null space of the matrix A.

o W(x) (resp. Z(x)) is a matrix whose columns form a basis (resp. an orthogonal
basis) for the null space of J(x).

e Subscripted indices are used to represent the evaluation of a function at a par-
ticular point of the sequences {x;} and {A;}. For instance, fi represents f(xy)

and (, is the same as ((x, \g).
e The vector and matrix norms || - || are the {5 norms.

e The sequence {z.} is bounded if there exists @ > 0 independent of k£ such that
||zk|| < e for all k. In this case we say that the element x, of the sequence {x}

is uniformly bounded.

o [, represents the identity matrix of order p with columns eq, ... e,.



A1(A) denotes the smallest eigenvalue of the symmetric matrix A.

k(A) represents the (5 condition number of the matrix A with respect to inver-

sion. For nonsingular square matrices k(A) = ||A]| ||JA7Y||. In general, we have
k(A) = Zigﬁ;, where r is the rank of A, and o1(A) and o,(A) are the largest

and smallest singular values of A, respectively.

The element xj of the sequence {x4} is O(yy) if there exists a positive constant

k> 0 independent of k such that ||zx|| < &l|yx|| for all k.
SQP algorithms: sequential quadratic programming algorithms.

TRIP reduced SQP algorithms: trust-region interior—point reduced SQP algo-

rithms.



Chapter 2

Globalization Schemes for Nonlinear
Optimization

Consider the unconstrained optimization problem
minimize  f(z), (2.1)

where * € IR" and f : R" — IR is at least twice continuously differentiable. One
purpose of this chapter is to use this problem to provide necessary background for this
thesis of fundamental concepts of nonlinear optimization like line-search and trust—
region globalization schemes. We support the claim that the trust-region technique
has built—in a regularization of ill-conditioned second—order approximations. The
organization of this chapter is the following. The optimality conditions and other
basic concepts of unconstrained optimization are reviewed in Section 2.1. In Section
2.2, we give a very brief introduction to line searches. Trust regions are presented
with more detail in Section 2.3. In Section 2.4, we compare these two globalization

strategies focusing on their regularization properties.

2.1 Basics of Unconstrained Optimization

The optimality conditions for the unconstrained optimization problem (2.1) are given

in the following proposition.

Proposition 2.1.1 Let [ be continuously differentiable. If the point x.

is a local minimizer for problem (2.1) then
Vi(z,) =0.
In this case x, is called a stationary point or a point that satisfies the

first-order necessary optimality conditions.

Now let us assume that f is twice continuously differentiable. The second-

order necessary (resp. sufficient) optimality conditions for x. to be a local
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minimizer for (2.1) are

Vf(z,) =0 and

V?f(x.) is positive semi-definite (resp. definite).

The proofs of these basic results can be found in many textbooks like [39], [116].
A quasi-Newton method for the solution of (2.1) generates a sequence of iterates

{x1} and steps {si} such that 541 = @ + sg. At xy, a quadratic model of f(x) + s),

1
qe(s) = f(zr) +gps+ §5THk57

is formed, where g, = V f(x) and Hj is a symmetric matrix of order n that approx-
imates the Hessian V2 f(xz)) and introduces curvature into the model. The quasi—

Newton step s is computed using the quadratic model ¢ (s).

Algorithm 2.1.1 (Basic Quasi—Newton Algorithm)

1. Choose zg.
2. For k=0,1,2,... do

2.1 Stop if z satisfies the stopping criterion.

2.2 Compute s; as an approximate solution of
Lo T 1 T
minimize  f(xx) + g5 s + 55 Hys

2.3 Set xp11 = xp + s, and compute Hyyq possibly by updating Hy.

A possible stopping criterion is ||gx|| < €0 for some €, > 0.

If Hj is nonsingular, a typical quasi-Newton step s; is given by s, = —H; 'gs.
If in addition Hj is positive definite, then this quasi-Newton step s, = —H} 'g; is
the unconstrained minimizer of ¢x(s). In Newton’s method, we have H;, = V2 f(xy).
Newton’s method is credited to Newton (see [143]) in the 1660’s for finding a root of
a nonlinear equation with one variable using a technique similar to Newton’s method,
but where the calculations are organized differently. Raphson [124] plays an important
role in this discovery by rederiving Newton’s technique in a way that is very close to
what is used nowadays. The multidimensional version of Newton’s method is due to

Simpson [131] in 1740. See the survey paper by Ypma [150].
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It is well-known that the basic quasi-Newton algorithm is not globally convergent
to a stationary point [39][Figure 6.3.2]. If we want to start with any choice of g and
still guarantee convergence, then we need a globalization strategy. The most often
used globalization strategies for quasi—-Newton algorithms are line searches and trust
regions.

A line—search strategy requires a direction dj from which a step is obtained. The
step sy 1s of the form pdy, where the step length py is chosen in an appropriate way
and dj, is a descent direction, i.e. d{gk < 0. It Hy, is nonsingular, dj, = —Hk_lgk might
be a reasonable choice.

The trust-region technique does not necessarily choose a specific pattern of direc-
tions. Here a step sj is a sufficiently good approximate solution of the trust-region

subproblem
minimize qx(s)

(2.2)
subject to ||s|| < &y,

where 0; is the trust radius. We will be more precise later. More general forms of this
simple trust-region subproblem are considered in the papers [73], [100], [103], [105],
[136], [140], [153].

2.2 Line Searches

It a line search is used, one might ask the step s; = ppdy to satisfy the Armijo—
Goldstein—Wolfe conditions:

flag +s1) < flag) + 77191{%7 (2.3)
Vf(xr + 1) sk > n2g]l sk, (2.4)

where 1y and 7y are constants fixed for all & and satistying 0 <y < ny < 1. Let 6
denote the angle between dj, and —g; defined through

dTgk T
cos(y) = ——FT2 g, € [0, —] .
O = = eloel 2

We present now the basic line—search algorithm and its classical convergence result.

Algorithm 2.2.1 (Basic Line-Search Algorithm)

1. Choose xg, 11, and 5y such that 0 <7y < ny < 1.
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2. For k=0,1,2,... do

2.1 Stop if z satisfies the stopping criterion.
2.2 Compute a direction dj based on ¢x(s).
2.3 Compute s = prdy to satisfy (2.3) and (2.4), and set x4 =

Tl + Sk.

A possible stopping criterion is ||gx|| < €0 for some €, > 0.

Theorem 2.2.1 Let f be bounded below and V f be uniformly contin-
uous. If for all k, sy = pidy satisfies (2.3)—(2.4) and the direction dj, is
descent, then

lim  cos(0)||gx]| = 0.

k—4oc0

Some of the ground work that led to this result was provided by Armijo [2] and
Goldstein [65]. It was established by Wolfe [144], [145] and Zoutendijk [158], under the
assumption that the gradient is Lipschitz continuous. However this condition can be
relaxed and one can see that uniform continuity is enough (see Fletcher [53][Theorem
2.5.1]). Some practical line-search algorithms are described by Moré and Thuente
[107]. For more references see also the books [39], [112], [116] and the review papers
[40], [113].

From Theorem 2.2.1, a key ingredient to obtain global convergence to a stationary
point is to keep the angle 0; between —g; and d; uniformly bounded away from 7.

Now let us consider the case where Hj is nonsingular and d; = —Hk_lgk. If the
condition number x(Hy) of the matrix Hy is uniformly bounded, i.e. if there exists a

v > 0 such that
k(Hp) <wv

for every k, then we have

TH—l
cos() = kK Ik [:];_?k
gl H g gl

One way of assuring that the direction —Hj g is descent is to force Hy to be positive

> % (2.5)

definite. The following corollary of Theorem 2.2.1 is a result of these considerations.

Corollary 2.2.1 Let f be bounded below and Vf be uniformly con-

tinuous. If for all k, Hy is positive definite, s = —u,H; ‘g satisfies
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(2.3)—(2.4), and the condition number x(Hy) of Hy, is uniformly bounded,
then {x} satisfies

Jim lgil] = 0.

2.3 The Trust—Region Technique

The development of trust regions started with the work of Levenberg [93] (1944),
Marquardt [97] (1963), and Goldfeld, Quandt, and Trotter [64] (1966). A few years
later Powell [120], [121] (1970, 1975), Hebden [71] (1973), and Moré [102] (1978)
opened the field of research in this area. Trust-region algorithms are efficient and
robust techniques to solve unconstrained optimization problems. An excellent survey
in this area was written by Moré [103] in 1983.

Let us describe how the trust-region technique works. A step s; has to decrease
the quadratic model g(s) from s = 0 to s = s;. The way s is computed determines
the magnitude of the predicted decrease ¢x(0) — gi(si) and influences the type of
global convergence of the trust-region algorithm. One can ask s; to satisfy two
classical conditions, either fraction of Cauchy decrease (simple decrease) or fraction
of optimal decrease.

The first condition forces the predicted decrease to be at least as large as a fraction
of the decrease given for ¢i(s) by the Cauchy step ¢,. This step is defined as the

solution of the one-dimensional problem

minimize ¢x(c)
subject to ||¢|| < bk, ¢ € span{—gx},

and it 1s given by
_ lgsll? o losll®
= gnggkgk if gF Higy < Ok, (26)

—”Z—’;”gk otherwise.

The primitive form of a steepest—descent algorithm was discovered by Cauchy
[20] in 1847. The step ¢ is called the Cauchy step because the direction —g; is the
steepest—descent direction for ¢x(s) at s = 0 in the {5 norm, i.e. —”5—2” is the solution

of
minimize  g¢{d

subject to  ||d]| = 1.
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The step si is said to satisfy a fraction of Cauchy decrease for the trust-region
subproblem (2.2) if

06(0) — qe(sx) > Br (x(0) — qilcr)),

[sxl] < éx,

(2.7)
where (31 is positive and fixed across all iterations. The following lemma expresses

this decrease condition in a way that is very convenient to prove global convergence
to a stationary point.

Lemma 2.3.1 (Powell [121]) f s, satisfies the fraction of Cauchy de-
crease (2.7), then

q:(0) — qr(sg) > &Hng min{ gl 5k}.

[ H||”
Proof Define ¢ : IR" — IR as V() = qk (_tHZ—ZH) — qr(0). Then (t) = —|gx|[t +
542 where 7y, gnggk
2 (gl

. Let £ be the minimizer of ¢ in [0, éx]. If ¢ € (0, 6) then

) Hng) 1||gxll” 1lgxll”
If tf = 6 then either r, > 0 in which case H“Z:H >
r0s < |lgk||. In either event,

6 or r, < 0 in which case

V(1) = B(8) = —bullgell + 567 <

Ok
- . 2.
< =5 llgll (2.9)
We can combine (2.8) and (2.9) with

a1(0) = gi(st) = Br (g(0) — gilex)) = =preo(1)
to get the desired result.

O

The second condition is more stringent and relates the predicted decrease to the

decrease given on ¢x(s) by the optimal solution o of the trust—region subproblem

(2.2). The step sy is said to satisfy a fraction of optimal decrease for the trust-region
subproblem (2.2) if

06(0) = qe(sx) > Ba(x(0) — qilox))

(2.10)
[sk]l < Badr,
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where /3y and [J3 are positive and fixed across all iterations. The condition ||sx|| < 36k
replaces the condition ||sx|| < 8y in (2.7). There is no need to have a parameter like /35
in (2.7) since the algorithms that compute steps satisfying only a fraction of Cauchy
decrease do not cross the boundary of the trust region. An important point here is

that if one sets out in practice to exactly solve (2.2), one will satisfy (2.10).

2.3.1 How to Compute a Step

Several algorithms were proposed to compute a step s that satisfies the fraction of
Cauchy decrease (2.7). The first is due to Powell [120], and it is called the dogleg
algorithm. The idea behind this algorithm is very simple and is described below.

Algorithm 2.3.1 (Dogleg Algorithm (Hy Positive Definite))
Compute the Cauchy step cg. If ||ck|| = 6r then set s, = ¢4

Otherwise compute the quasi-Newton step —H} gz, and if it is in-
side the trust region, set s, = —H 'gx. If not, consider the convex
combination s(a) = (1 —a)e, — aH; ' gx, o € [0, 1], and pick a, such
that ||s(a.)|| = 6k. Set sp = s(aw).

A dogleg step is depicted in Figure 2.1 for a value of «, strictly between one and
zZ€ero.

The dogleg algorithm is well defined for Hj positive definite (see for instance [39])
and can be extended to the case where Hj, is indefinite. A possible way to accomplish
this is to generalize the use of the classical conjugate-gradient algorithm of Hestenes
and Stiefel [78] for the solution of the linear system Hys = —g; with Hjy positive
definite. Steihaug [134] and Toint [139] adapted this algorithm for the solution of
the trust-region subproblem (2.2). Here two new situations have to be considered.
First Hy might not be positive definite. This can be fixed by stopping the conjugate—
gradient loop when the first direction of nonpositive curvature is found and using this
direction to move to the boundary of the trust-region. The other situation happens
when an iterate of the conjugate—gradient algorithm passes the boundary of the trust
region. Here the dogleg idea can be used to stop at the boundary of the trust region.
This latter situation is illustrated in Figure 2.1. The conjugate—gradient algorithm is

given below.
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Figure 2.1 A dogleg (at the left) and a conjugate—gradient (at the right)
steps inside a trust region. To illustrate better the conjugate—gradient
algorithm, the number of iterations is set to three, which of course exceeds
the number of iterations for finite termination.

Algorithm 2.3.2 (Conjugate-Gradient Algorithm for Trust Regions)

1. Set s° =0, r’ = —g, and d° = r°; pick ¢ > 0.
2. For:=0,1,2,... do

2.1
2.2
2.3

2.4
2.5

2.6

. Ti T Ti
Compute 7" = 7(d(i)72H(;€(3i)'

‘Si + TdiH = 6.

Compute 7¢ such that
If v <0,o0rify* > 7¢, then set s, = s'+7'd" and stop; otherwise
set st = 5¢ 4 4idt.

Update the residual: 7! = ri — 4  Hyd'.

41 .
|||T|T0||” <e, set s = s'T! and stop.

Check truncation criterion: if
(Ti+1)T(Ti+1)

T

and the new direction d't! = it 4

Compute o'

atd

The following proposition characterizes the type of step computed by these two

algorithms.

Proposition 2.3.1 The Dogleg Algorithm 2.3.1 and the Conjugate—
Gradient Algorithm 2.3.2 compute steps s that satisfy the Cauchy de-
crease condition (2.7) with 8, = 1.
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For both algorithms the proof relies on the fact that they start by minimizing
the quadratic model ¢;(s) along the steepest—descent direction —gi. The proof for
the dogleg algorithm depends strongly on the positive definiteness of Hy and can be
found in [39]. The proof for conjugate gradients is given in [134] and uses the fact
that s'*1 is the optimal solution of the quadratic qx(s) in the Krylov subspace

ICZ(Hk, _gk) = span {—gk, —Hkgk, ceey —(Hk)i_lgk} .

Other generalizations of the dogleg idea were suggested in the literature. Dennis
and Mei [37] proposed the so-called double dogleg algorithm. Byrd, Schnabel, and
Shultz [18], [130] introduced indefinite dogleg algorithms using two dimensional sub-

spaces.

Now we turn our attention to algorithms for computing steps s; that satisfy the
fraction of optimal decrease (2.10). Typically these algorithms are based on Newton

type iterations and rely on the following propositions.

Proposition 2.3.2 The trust-region subproblem (2.2) has no solutions
at the boundary {s: ||s|| = 6} if and only if Hj is positive definite and
[ gl < 8.

A proof of this simple fact can be found in [106].

Proposition 2.3.3 (Gay [56] and Sorensen [132]) The step oy is an
optimal solution of the trust-region subproblem (2.2) if and only if ||ox|| <
0 and there exists v > 0 such that

Hy, + 1, is positive semi—definite, (2.11)
(Hy + vi1,) o = —gi, and (2.12)
3¢ (65— loul) = 0. (2.13)

The optimal solution oy is unique if Hy + vx1, is positive definite.

The necessary part of these conditions can be seen as an application of a powerful
tool of Lagrange multiplier theory, the so—called Karush-Kuhn—Tucker optimality
conditions, to the trust-region subproblem (2.2). These conditions are stated in

Propositions 4.4.1 and 4.4.2. The parameter v; is the Lagrange multiplier associated
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with the trust-region constraint ||s||? < 6. The gradient with respect to s of the
Lagrangian function {(s,7) = qx(s) — (67 — ||s]|?) is zero if and only if (2.12) holds.
Condition (2.13) is the complementarity condition. Conditions (2.12), (2.13), v > 0,
and ||og|| < 65 are the first—order necessary optimality conditions. If we add (2.11)
we get the second—order necessary optimality conditions. Of course Lemma 2.3.3
says that these conditions are also sufficient but this part does not follow from the
Karush-Kuhn-Tucker theory.

As a consequence of Proposition 2.3.3 we can write

1
0:(0) = ax(on) = 5 (|| Ruoe* + 367) .
where Hy, + 1, = R;{Rk. From this we have the following lemma.

Lemma 2.3.2 [f s;, satisfies the fraction of optimal decrease (2.10), then
06(0) = ae(s1) = 2t

One can compare Lemmas 2.3.1 and 2.3.2 and see how the two decrease conditions
(2.7) and (2.10) influence the accuracy of the predicted decrease ¢;(0) — qx(sx). Both
lemmas are critical for proving global convergence results.

It follows from Propositions 2.3.2 and 2.3.3 that finding the optimal solution of
the trust-region subproblem (2.2) is equivalent in all cases but one to finding v such

that v > 0, Hy + 71, is positive semi—definite and

91(7) = & = ls(v)l = 0, (2.14)

where s(v) satisfies
(Hi +710)s(7) = =g

The root finding problem (2.14) is usually solved by applying Newton’s method to

the equation:
1 1
$2(7) = — — =0
o fls()ll
It can be shown that both functions ¢; and ¢5 are convex and strictly decreasing in

(=M (Hy),+o0), where A (Hy) denotes the smallest eigenvalue of Hy. Reinsch [125]
and Hebden [71] were the first to observe that Newton’s method performs better when

(2.15)

applied to (2.15). The reason is that ¢; has a pole at —A;(H}) whereas ¢, is nearly
linear in (—Ay(Hy), +00).
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A Newton’s iteration for these root finding equations faces numerical problems if
vk is very close to —A;(Hy) or if the so called hard case occurs. The hard case is

characterized by the following two conditions:
(a) gx is orthogonal to the eigenspace of —A;(Hj) and
(b) | (Hx + 1) 7" gi]) < 6k, for all 5 > 0.

If the hard case occurs, the rightmost root 4 of (2.15) is such that Hy++1, is indefinite.
Hence Newton’s iteration has to be modified if one wants to compute a 4 such that
conditions (2.11)—(2.13) hold. In the hard case, a solution oy for the trust-region
subproblem (2.2) is given by

o =p+T74q (2.16)
where p solves (Hy — M (Hy)1,)p = —gi, the vector ¢ is a eigenvector corresponding
to A (Hy), and 7 is such that

1P+ Tl = &

Moré and Sorensen [106] proposed an algorithm that combines the application of
Newton’s method to (2.15) for the easy case with (2.16) for the hard case. They
showed that the algorithm computes a step s; satistying the optimal decrease condi-
tions (2.10). Their algorithm and corresponding Fortran implementation GQTPAR are
based on previous work done by Gay [56] and Sorensen [132].

To compute ¢o(7y) and ¢4(7), algorithms of the Moré and Sorensen type require
a Cholesky factorization R;FRW of Hy + ~ I, whenever this matrix is positive definite.

In fact if we solve R;FRWSW = —g; and R;qu = s, we have

L1 g1l
¢2(7) = — — and  ¢y(y) = — :
Ok ls4]] ’ 4117

In large problems the computation of the Cholesky factorization might not be prac-

tical.

Recent new algorithms to compute a step that satisfies a fraction of optimal
decrease that are very promising for large problems have been proposed by Rendl
and Wolkowicz [126], Sorensen [133], and Santos and Sorensen [129]. They rely on
different parametrizations of the trust-region subproblem (2.2). Instead of a Cholesky
factorization, these algorithms require only matrix—vector products. The material in

the following paragraph follows the exposition in [129], [133].
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The motivation for the new parametrization is that

%qu(s):%(i) (; }Z)(i) (2.17)

The new one-dimensional function depends on the parameter o and is defined as

P3(7;a) = a—7(a).

Let v(«) be the smallest eigenvalue of the bordered matrix given in (2.17). The hard
case occurs when the eigenvectors of the bordered matrix associated with v(«) have

zero in its first component. If this is not the case, i.e. if there exists an s such that
a gt 1 1
= y(a),
gr  Hy S S

Hy +~y(a)l, is positive semi—definite,

then we have

(H +v(a)l,)s = —gr,

¢3(v;a) = —gi s, and

d 2

@453(7;04) = |s]|*. (2.18)

From (2.18) we can see that solving the trust-region subproblem (2.2) is equivalent

to finding « such that

Toalria) = s]F = b,
If such a v(«) is nonnegative, then the corresponding s is the optimal solution of the
trust-region subproblem (2.2). The parameter « can be found by using interpolating
schemes. If the trust-region subproblem (2.2) has an unconstrained minimizer, then
during the process of choosing a a negative v(«) is found such that ||s|| < éx. In this
case Hy, is positive definite, —H 'gy, is inside the trust region, and the conjugate-

gradient algorithm can be used to solve Hyps = —gj.

2.3.2 The Trust—Region Algorithm

The predicted decrease pred(sy) given by sy is defined as ¢x(0) — gx(sx). The actual
decrease ared(sy) is given by f(ar) — f(axg + s;). The trust-region strategy relates
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the acceptance of s, with the ratio

d
ratio(sy) = m.
pred(sy)
We have the following basic trust-region algorithm.

Algorithm 2.3.3 (Basic Trust—Region Algorithm)

1. Choose xg, «, and 5 such that 0 < o, < 1.
2. For k=0,1,2,... do

2.1 Stop if z satisfies the stopping criterion.
2.2 Compute a step s based on the subproblem (2.2).
2.3 If ratio(s) < n reject sy, set dpp1 = a|sg|| and zp41 = .
If ratio(sy) > n accept si, choose 6p41 > O and set xp1q =

Tl + Sk.

Of course the rules to update the trust radius can be much more involved to en-
hance efficiency but the above suffices to prove convergence results and to understand
the trust-region mechanism.

Two reasonable stopping criteria are ||gi|| < € and ||gi|| + 76 < €t for a given
€01 > 0, where 74 is the Lagrange multiplier associated with the trust-region con-
straint ||sg|| < 6k as described in Proposition 2.3.3. The former criterion forces global
convergence to a stationary point (see Theorem 2.3.1), and the latter forces global

convergence to a point satisfying the second—order necessary optimality conditions

(see Theorem 2.3.3).

2.3.3 Global Convergence Results

Global convergence of trust-region algorithms to stationary points for unconstrained

optimization is summarized in Theorems 2.3.1 and 2.3.2.

Theorem 2.3.1 (Powell [121]) Let {1} be a sequence generated by the
Trust—Region Algorithm 2.3.3, where s; satisfies the fraction of Cauchy

decrease (2.7). Let f be continuously differentiable and bounded below in
L(xg) ={x € R": f(x) < f(xo)}. If {Hy} is bounded, then

lég_l_lglof llgx|| = 0. (2.19)
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Theorem 2.3.2 (Thomas [137]) If in addition to the assumptions of
Theorem 2.1, f is uniformly continuous in £(x) then
i g =0

The proofs of these theorems can be found in [103]. We remark that Powell in
[121] proved (2.19) for a slightly different update of the trust radius.

The assumption on the Hessian approximation Hj can be weakened. Powell [122]
proved a convergence result in the case where there is a bound on the second—order
approximation Hj that depends linearly on the iteration counter k. Carter [19] es-
tablished analogous results for the case where the gradients gx = V f(xy) are approx-
imated rather than computed exactly.

If He = V*f(xx) and s, satisfies the fraction of optimal decrease (2.10) for ev-
ery k, then it is also possible to analyze the global convergence of the Trust—Region
Algorithm 2.3.3 to a point satisfying the second—order necessary optimality condi-

tions.

Theorem 2.3.3 (Moré and Sorensen [106], [132]) Let {x} be a se-
quence generated by the Trust—Region Algorithm 2.3.3 with Hp =
V2f(zr) where s, satisfies the fraction of optimal decrease (2.10). Let

f be twice continuously differentiable and bounded below in the level set

L(xg). If the sequences {x;} and {H;} are bounded, then
lim inf (|[gell + ) = 0
and {z} has a limit point z. such that V?f(z.) is positive semi-definite.

Moré [103] showed how to generalize these theorems for trust-region constraints
of the form ||Sks|| < 6, where {Si} is a sequence of nonsingular scaling matrices.

Related results can be found in references [56], [106], [130], [132].

2.3.4 Tikhonov Regularization

In this section we show how the Tikhonov regularization [138] for ill-conditioned
linear least—squares is related to a particular trust-region subproblem. This is one of
many arguments that justify the use of trust regions as a regularization technique. A

different argument is given in the next section.
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In many applications like reconstruction and parameter identification problems
the objective function in (2.1) comes from the discretization of infinite dimensional

problems of the form
minimize  ||[Ax — b||3-, (2.20)

where € X, b€ Y, and A € L(X,Y) is a linear bounded operator mapping the
real Hilbert space X into the real Hilbert space Y. There are situations where, due
to the lack of an inverse or a continuous inverse for A, the solution to (2.20) does not
depend continuously on b (see for instance [69]). When a discretization is introduced
this type of problem leads to finite dimensional problems of the form (2.1) where
f(x) = ||Ax — b)|?* and A is ill-conditioned. (Here A € IR™" and b € IR™, with
m>n.)

A common technique to overcome this ill-posedness is the Tikhonov regulariza-

tion. This regularization consists of solving a perturbed problem of the form
minimize  |[Ax — b||3 + || Lz|/% (2.21)

where v is a positive regularization parameter and L is in L(X, X). To ensure the
existence and uniqueness of the solution for (2.21), it is assumed that L is such that
for every v > 0 there exists a ¢, > 0 that satisfies ||Az ||} +~||Lz||% > ¢ |||k for all
xin X. See [72].

One can see by looking at the gradient of | Az — b||3- + || Lz||% that the Tikhonov
regularization is strongly related to the trust-region subproblem in infinite dimen-

sions:
minimize | Ax — b||}
(2.22)
subject to || Lx||x <6,

where 6 > 0. In fact, if x. is the solution for (2.22) with ||La.|[x = ¢, then xz. is the
solution for (2.21) with v = 4., where 7. is the positive Lagrange multiplier for (2.22)
associated with .. On the other hand, if . is the solution for (2.21) with v = ~. > 0,
then wx. is the solution for (2.22) with 6 = ||Lx.||x and Lagrange multiplier ..

2.4 More about Line Searches and Trust Regions

We now point out interesting relationships between line searches and trust regions.
A major difference between the global convergence results given in Corollary 2.2.1

and Theorem 2.3.2 is that a uniform bound on H} ! is required for line searches but
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not for trust regions. The study by Vicente [142] shows that this is related with the
flexibility that trust-region algorithms have to choose the type of direction.

The criteria to accept a step in line searches and in trust regions are very similar.
Suppose that a line search only requires the Armijo—Goldstein—Wolfe condition (2.3)

to accept a step sp. This condition can be rewritten as

flar) — floe + si)

T
—9Gk Sk

and it becomes evident how similar this is to the condition

Flae) = flae + 1) o

T T =
—q; Sk — st Hysp,

used in the trust-region technique. One can see that trust regions use curvature to
accept or reject a step but line searches do not. However many practical implemen-
tations of line searches include second—order information in the sufficient decrease
condition (2.23), i.e. the Armijo—Goldstein—Wolfe condition (2.3).

One final comment about the regularization issue is in order. It is also possible
to regularize in a line search by adding to Hj a positive multiple v1,, of the identity
matrix. Of course one must choose 7, and this becomes a performance issue that does
not arise in trust-region algorithms. The solution oy of the trust-region subproblem
(2.2) satisfies the conditions given in Property 2.3.3 and the parameter v is implicitly
defined by the size of the trust-region radius 0.
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Chapter 3

Trust—Region SQP Algorithms for
Equality—Constrained Optimization

In this chapter, we address trust-region sequential quadratic programming (SQP)

algorithms for the equality—constrained optimization problem
minimize f(x) X
subject to C'(x) =0, 31)
where f: R" — R, ¢, : R" — R, e =1,...,m, C(x) = (cl(:zj)---cm(:zj))T, and
m < n. The functions f(x) and ¢;(x), ¢ =1,...,m, are assumed to be at least twice
continuously differentiable in the domain of interest.

The material given in this chapter is useful to introduce the new trust-region
interior—point reduced SQP algorithms in Chapters 5 and 6 and to understand the
analysis given in Chapter 4 for a specific class of nonlinear programming problems.
The organization of this chapter is the following. We start in Sections 3.1 and 3.2
by reviewing basic material for equality—constrained optimization, like the optimality
conditions, the application of Newton’s method, and SQP algorithms. The various
trust-region globalizations suggested in the literature for these algorithms are sur-
veyed in Section 3.3.

The algorithm that we focus on this chapter is very similar to the trust-region
globalizations of the reduced SQP algorithm suggested and analyzed by Byrd and
Omojokon [115] and Dennis, El-Alem, and Maciel [35]. It is described in great detail
in Section 3.4. Then Sections 3.5 and 3.6 present the global convergence for this
algorithm. The global convergence to a point satistying the first—order necessary
optimality conditions has been proved in [35]. Our contribution is to prove global
convergence to a point satisfying the second—order necessary optimality conditions.
See also Dennis and Vicente [42].

The conditions imposed to obtain this result are shown to be satisfied in Section
3.7 for the normal component and the least—squares multipliers. We point out that El-

Alem [48] has proved the same global convergence result for a trust-region algorithm
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that uses the normal component, the least-squares multipliers, and a nonmonotone
scheme to update the penalty parameter.
We finish this chapter in Section 3.8 with an analysis of the trust-region subprob-

lem for the linearized constraints.

3.1 Basics of Equality—Constrained Optimization

To state optimality conditions for problem (3.1) a constraint qualification typically is

required. We use a strong form of constraint qualification called regularity.

Definition 3.1.1 A point z, is regular for problem (3.1) if the rows of

the Jacobian matrix J(x.) are linearly independent.

In this chapter, we assume regularity. The Lagrangian function associated with
problem (3.1) is given by
Uz, A\) = f(z) + AT O ().

The matrix W(z) € IR (") denotes a matrix whose columns form a basis for the
null space N'(J(x)) of the Jacobian J(z) of C'(x). The next two propositions review
the optimality conditions for problem (3.1). For proofs and related material see the

books [53], [60], [96], [112].

Proposition 3.1.1 (First-Order Necessary Optimality Conditions) 1f
the regular point z. is a local minimizer of (3.1), then there exists a

A € IR™ such that
C(z,) =0 and

Vol M) = V() + J(2)T A = 0.

The vector A, is the vector of Lagrange multipliers. Although it is the name
of Lagrange [90] that is associated with the optimality conditions for optimization
problems with equality constraints, credit should be given also to Euler (see the
discussion in [112][Chapter 14, Section 9]). In the eighteen century the two math-
ematicians solved problems in calculus of variations using optimality conditions for
equality constraints.

A point z, that satisfies the first-order necessary optimality conditions is called

a stationary point.
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Proposition 3.1.2 (Second—Order Optimality Conditions) 1If x, is a reg-
ular point for (3.1), then second—order necessary (resp. sufficient) opti-

mality conditions for x, to be a local minimizer are the existence of a

A € IR™ such that

Vil(za, M) = V(e + J(J}*)T)\* =0, and

V2 U(z.,\.) is positive semi-definite (resp. definite) on N (J(z.)).

From a basic result of linear algebra we can restate these conditions as follows.

Proposition 3.1.3 (First-Order Necessary Optimality Conditions) 1f

the regular point @, is a local minimizer of (3.1), then

C(z,) =0 and
W(z)'Vf(z.) = 0.
Proposition 3.1.4 (Second—Order Optimality Conditions) If x, is a reg-

ular point for (3.1), then second—order necessary (resp. sufficient) opti-

mality conditions for x, to be a local minimizer are the existence of a

A € IR™ such that

W(z,)"V f(x.) =0, and

W(2,)TV2 (2., A\ )W (2,.) is positive semi-definite (resp. definite),
where A, satisfies V,0(2., \) = Vf(z.) + J(2)T A = 0.

The optimality conditions given in Propositions 3.1.3 and 3.1.4 use the matrix
W(x.) to reduce the gradient of f and the Hessian of the Lagrangian to the null
space of J(x.).
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3.2 SQP Algorithms

We describe now SQP and reduced* SQP algorithms for problem (3.1). SQP algo-
rithms are very successful for the solution of constrained optimization problems. See
e.g. [5], [39], [91], [108]. They are often quasi-Newton type algorithms in the sense
that they rely on a Newton iteration and approximate second—order derivatives.
The primary goal of these algorithms is to find a point that satisfies the first-order
necessary optimality conditions. So we proceed as in Chapter 2 and define at (x, A)

a quadratic model of ((z) + s, Ag),
1
qr(s) = lp + Vl[;‘:s + §5THk3,

where Hj, is a symmetric approximation to VZ_(;, and from our notation (; =
{(xg, Ar). This quadratic model is then minimized subject to the linearized con-
straints:

Jps+ CL =0, (32)
with J, = J(a) and Cf = C(ay). The basic SQP algorithm is described next.

Algorithm 3.2.1 (Basic SQP Algorithm)

1. Choose zg and Ag.
2. For k=0,1,2,... do
2.1 Stop if (xg, M) satisfies the stopping criterion.
2.2 Compute the step s; as an approximate solution of

minimize {5 + Vl[;‘fs + %STHkS

) (3.3)
subject to  Jrs+ C) = 0.

2.3 Set xp11 = v+ sk and Ay = A+ A\, where A\, are the mul-
tipliers associated with the quadratic programming subproblem

(3.3).

*We prefer to call these algorithms reduced SQP instead of reduced Hessian SQP. For us, reduced
SQP means that the step is decomposed into two components, and one of them is reduced to the
null space of the Jacobian matrix of the equality constraints.
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The stopping criterion might be |V 0i|| + ||Ck|| < €0 for a given €, > 0.

Suppose that the point xy, is regular, Hy, = V2 (. and V2 _(}. is positive definite on
N (Jg). Then the solution s; and the corresponding multipliers A\ of the quadratic
programming subproblem (3.3) are equal to the Newton step on the system of first—

order necessary optimality conditions

Vi) + J(z)"A =0,

given by the solution of the linear system

) e
Ji 0 AX —Cg

See Boggs [5] for an extensive survey on SQP algorithms.
In order to present the basic reduced SQP algorithm used here, we consider a

quasi-normal decomposition of the step s; of the form
S = 32 + 32. (3.5)

The component s is called the quasi-normal (or quasi-vertical) component, and it
is a solution for the linearized constraints (3.2). The component st is the tangential
(or horizontal) component, and it must satisfy Jyst = 0, i.e. it must lie in the null
space of J,. Hence this component is of the form st = W5t for some st € IR"™™,
Here Wy, = W (x}) represents a basis for the null space N'(.J;). Given the component
sp, the quadratic ¢x(s) depends uniquely on 5t in the following way:

1 ~

Ge(5") = gel(sf + Wis') = quls) + 955" + 5 (51 (")
with
H, = WIHW,,

g = W{Va(s])
= Wl (Hksz + ka) , and
gr(si) = G+ Valy'si + 5(s3)T Hils]).

The basic reduced SQP algorithm follows.
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Algorithm 3.2.2 (Basic Reduced SQP Algorithm)

1. Choose zg and Ag.
2. For k=0,1,2,... do

2.1 Stop if (xg, M) satisfies the stopping criterion.

2.2 Compute s; as an approximate solution of Jis9 + ), = 0.

2.3 Compute 5% as an approximate solution of

C T AU
minimize Qk(sz) + g;{st + §(St)THk(5t) )
24 Set w1y = v + s = xp + 32 + Wkéi and compute Apiq.

The algorithm is stopped if for instance ||gx|| + ||Ck|| < €ror for some €, > 0.

An advantage of reduced SQP algorithms over SQP algorithms is that they al-
low a secant update [}, of the reduced Hessian WI'V2 (,W). The dimension of
WgVﬁxﬁka is usually much smaller than the dimension of V2 {;. Furthermore,
W(:z;*)Tmeﬁ(x*, A )W () is positive definite at a point (., A.) satisfying the second—
order sufficient optimality conditions. This suggests that we can update H1 from H,
by using positive definite secant updates like the very effective BEGS secant updatel.
However, if an approximation Hj, of the full Hessian V2 /) is not computed then the
evaluation of the cross term WI'V? (s} becomes a serious issue. This cross term can
be approximated by finite differences, by secant updates, or by zero [4]. There has
been significant activity in studying the local rate of convergence of secant updates for
reduced SQP algorithms. See the papers [4], [114], [147] and the references therein.

TBFGS is an abbreviation for the names Broyden, Fletcher, Goldfarb, and Shanno who in 1970
independently discovered this secant update. In unconstrained optimization, for instance, BFGS
updates Hp41 by a rank two modification of Hy, of the form

T T
Y Y Hksks Hk
Hyy1= Hy + = Eo_ T k
Yi Sk s, Hysp

where s = 241 — 2 and yp = Vf(xpy1) — VF(xr). If Hy is positive definite and ygsk > 0, then
Hy 41 1s also positive definite. The fundamental material about secant updates can be found in the
classical references [38], [39].
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The Normal Decomposition

A popular step decomposition, which amounts to special choices for s} and Wy, is

the normal decomposition:
n t n St
Sp =8, + s, =5, + 25, (3.6)
s is the minimum norm solution of the linearized constraints, and

the columns of Zj form an orthogonal basis for N'(.J;).

The matrix Z; can be computed from the QR factorization of J{. This factorization

ﬁzh@m)(&), (37)

is of the form:

0

where ( Y. Z, ) is orthogonal and Ry upper triangular and nonsingular. The normal

component s} is then given by
sh= —JHJ D) O = =V RO (3.8)
Associated with the normal decomposition is the least—squares multiplier update.
These multipliers are the solution of the linear least-squares problem
minimize Hka + J,?)\H
and are given by
A= —(LJD)TVLNV fro = —RY IV i (3.9)
It is easy to show (see e.g. [114]) that the Newton step (sg, AA;) obtained by

solving (3.4) can be expressed as follows:

sk = sy 4+ Zyse, (3.10)
st = —JH (S SOy, (3.11)
si=— (2IV2,02) " 28 (Vi) + Vi) | (3.12)

Mgt = AN+ Ay = —(SeJD) 7 (V2 s + V i) -

The q-quadratic rate of convergencet here is for the pair (z, \x). However a q-

quadratic rate convergence in x; can be obtained also by using (3.10)—(3.12) with the

tWe say that the sequence of vectors {z;} converges q—quadratically to z. if there exists a positive
constant ¢, independent of k, such that ||zx41 — 2.|| < ¢||2r — 2]|? for all k. The letter q stands
for quotient and distinguishes the g—quadratic rate from the r-rate, where r stands for root. See

[116][Chapter 9].
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least—squares multipliers (3.9). An elegant proof of this latter result was provided by
Goodman [68]. He showed that the iterates generated by (3.10)—(3.12), (3.9) can be

seen as the result of applying Newton’s method to
Z(x)'V f(z) = 0,
C(z) =0,

where Z(x) is a smooth extension of the orthogonal matrix provided by the QR

factorization of J(:L')T.

3.3 Trust—Region Globalizations

Since the mid eighties a significant effort has been made to globalize SQP algorithms
with trust regions.

Globalizations of SQP algorithms were given by Celis, Dennis, and Tapia [21] (see
also Yuan [152] and Zhang [157]), Conn, Gould, and Toint [30], El-Alem [47], Fletcher
[52], Vardi [141] (see also El-Hallabi [51]), and Powell and Yuan [123].

The reduced SQP algorithm has been globalized with trust regions by Byrd and
Omojokon [115], Byrd, Schnabel, and Shultz [17], Coleman and Yuan [27], Dennis,
El-Alem, and Maciel [35], Dennis and Vicente [42], El-Alem [48], [49], Lalee, Nocedal,
and Plantenga [91], Plantenga [118], and Zhang and Zhu [156]. See also Alexandrov
[1].

We recommend the surveys given in [35] and [118] for an overview of these dif-
ferent trust-region globalizations. Trust-region algorithms have been applied also
to optimization problems with equality and inequality constraints. See the work by
Burke [13], Burke, Moré, and Toraldo [14], Conn, Gould, and Toint [29], [30], and
Yuan [154].

In this thesis we deal with a trust-region globalization of reduced SQP algorithms.
The fundamental questions associated with the application of trust regions to reduced
SQP algorithms are the form of trust-region subproblems, the type of decomposition
of the step, the choice of Lagrange multipliers, and the choice of the merit function.

We address these issues in the following points.

1. The choice of trust-region subproblems now seems a settled question. Most of
the references cited for trust—region reduced SQP algorithms [35], [42], [48], [49],
[91], [115], [118] consider essentially the same choice of trust—region subproblems
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that was introduced first by Byrd and Omojokon [115]%. We focus on this issue

in Section 3.4.

2. The decomposition of the step considered in references [17], [27], [48], [49], [91],
[115], [118], [156] is the normal decomposition (3.6).

In many application problems there are other reasonable decompositions of the
step. This is clearly the case for the class of problems introduced in Chapter
4. One important feature of these decompositions is that s% is not orthogonal
to V' (J(z)) and that W(z) does not have orthogonal columns. We called such
decompositions quasi-normal. In the context of trust regions this was addressed
first in Dennis, El-Alem, and Maciel [35] and later in Dennis and Vicente [42].

The algorithms we introduce in this thesis use a quasi—normal decomposition.
3. The choice of Lagrange multipliers is associated intimately with the type of step
decomposition. Most of the researchers [17], [27], [48], [49], [91], [115], [118],

[156] considered the least—squares multipliers (3.9) or variations thereof.

The work given in [35], [42] departs from the former references by assuming a
more general form for the multipliers. For example, in the class of problems
described in Chapter 4, the most reasonable choice of multipliers is not the

least—squares update but the so—called adjoint update.

4. The choice of merit function has been always an open question. The following

merit functions have been used in this context:
((, A) + ol C ()]
F(@) + X pilei(e)]
f(@)+ ol C )"
f(@) +pl|Cle)]l

(Augmented Lagrangian),

(¢4 Penalty function),

({3 Penalty function), and

({5 Penalty function without constraint term squared),

where the p’s denote weights or penalty parameters. The augmented Lagrangian
has been used in [35], [42], [48], [49], [156], the ¢; penalty function in [17], the
{5 penalty function in [27], and the {3 penalty function without constraint term

squared in [91], [115], [118].

$The Thesis [115] was directed by Professor R. H. Byrd. The trust-region algorithm proposed here
is usually referred as the Byrd and Omojokon algorithm.
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Let us describe briefly the trust-region globalization analyzed by Dennis, El-Alem,
and Maciel [35]. The components of the step s} and st are only required to satisfy
a fraction of Cauchy decrease (or simple decrease) on the corresponding trust—region
subproblem. A key assumption that is imposed on the quasi-normal component s
is that it has to be O(]|Ck||). In this globalization the augmented Lagrangian is used
as a merit function combined with the El-Alem’s scheme [47] to update the penalty
parameter. The main result proved in [35] is global convergence to a stationary point
(see Theorem 3.6.1). It is important to remark that this result is obtained under
very mild conditions on the components of the step, on the multipliers estimates,
and on the Hessian approximations. Thus, the Dennis, El-Alem, and Maciel [35]
result is similar to the result given by Powell [121] for unconstrained optimization
and described in Theorem 2.3.1 (see Figure 1.1).

One of the purposes of this chapter is to analyze under what modifications and
conditions this trust-region reduced SQP algorithm possesses global convergence to
a point that satisfies the second—order necessary optimality conditions. Our goal is
to generalize the result given by Moré and Sorensen [106], [132] for unconstrained
optimization and described in Theorem 2.3.3 (see Figure 1.2). We accomplish this
by imposing a fraction of optimal decrease on the tangential component st of the
step, by using exact second—order derivatives, and by imposing conditions on the
quasi-normal component sj and on the Lagrange multipliers. These conditions are

the following:
VolEs) is O(8:||Cell) and ||AXg|| = [|Argr — Ak|| is O(6r). (3.13)

In the case where ||C]| is small compared with 6, the first condition implies that any
increase of the quadratic model ¢ (s) of the Lagrangian from xy, to x5 + sp is O(63).
To see why this is relevant recall that a fraction of optimal decrease is being imposed
on the tangential component st and from Lemma 2.3.2 this yields a decrease of at
least O(67) on the quadratic model. The second condition is needed for the same
reasons because A\ also appears in the definition of the predicted decrease used in
the trust-region reduced SQP algorithm. See also [42].

Gill, Murray, and Wright [61] and El-Alem [46] considered in their analyses that
Vol is O(||sk||)- In the latter work this assumption is used to prove local convergence
results, and in the former to establish properties of an augmented Lagrangian merit
function. We point out that this assumption implies that YV, (%s? is O(6]|Cy|) since
sk 18 O(6x) and we assume that 32 is O(]|Ckl|)-
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We show that both conditions in (3.13) are satisfied when the normal component
and the least—squares multipliers are used. This is in agreement with the result
obtained by El-Alem [48]. We show in Chapter 5 that these conditions are satisfied
also for all reasonable choices of quasi-normal components and multipliers for the class
of nonlinear programming problems introduced in Chapter 4 (see Remark 5.2.1). This
class of problems arises in many applications, in particular from the discretization of

optimal control problems.

3.4 A General Trust—Region Globalization of the Reduced
SQP Algorithm

The trust-region globalization of the Reduced SQP Algorithm 3.2.2 that we consider
consists of computing the components 57 and 5t as approximate solutions of particular

trust-region subproblems.

3.4.1 The Quasi—Normal Component

The component s is computed as an approximate solution of the trust-region sub-

problem for the linearized constraints defined by

minimize %H]ksq + Cil]?

(3.14)
subject to ||| < 6y,
where 6, 1s the trust radius.
To guarantee global convergence we require s} to satisfy
Isill < &l Cll, (3.15)

where k1 is a positive constant independent of the iterate k of the algorithm. This
condition is saying that close to feasibility the quasi-normal component has to be
small.

As we described in Section 2.3, s} satisfies a fraction of Cauchy decrease (or simple

decrease) for the trust-region subproblem (3.14) if

ICHII? = ks + Crll? = BF (1Ol = 1Tk € + Cul?)

(3.16)
521l < 6.
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where 37 > 0 does not depend on k and ¢} is the so—called Cauchy step for this

trust-region subproblem, i.e. ¢} is the optimal solution of
C 1 9
minimize §ijcq + Ckl
subject to  ||c%|| < 6, @ € span{—JLCy},

and therefore

175 Cll® 175 Coll®

— e JECOy i SRR <6
A ) BTGP R R R G =
§ =
— b gT i
IIJkTCkII‘]k C otherwise.

If 57 satisfies the Cauchy decrease condition (3.16), then we can apply Lemma 2.3.1
and conclude that the decrease given by s} is such that
] ) Jro,
[P = 196t + G = Ftcumin{ 1L sl )
2 175 il
To prove global convergence of the general trust-region reduced SQP algorithm
to a stationary point we require s; to satisfy a simpler decrease condition. This
I

condition relates the decrease given by 32 on [[Jxs%+ Cy||* with the vector C} and not

with the gradient JI'C of this least-squares functional. It can be stated as follows

ICRlI> = N1 Tesi + Cull* = #a] | Cxl| min {s]| O], &}

(3.18)
Isi I < 6

where k3 and k3 are positive constants independent of k. It is not difficult to show
that if Jy, JIJg, and (JpJE)™! are uniformly bounded then the Cauchy decrease
condition (3.17) implies the decrease condition (3.18).

It global convergence to a point that satisfies second—order necessary optimality
conditions is the goal of the trust-region reduced SQP algorithm, then we need to

impose also on the component s} the condition
Vo lEsd < k]| Crl| 6k, (3.19)

where k4 is a positive constant independent of the iterates. The important conse-
quence of this condition is that if ||Cy]| is small compared with ¢y, then any increase

of the quadratic model ¢x(s) of the Lagrangian along the quasi-normal component

sp is of O(8?). See inequality (3.36).
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3.4.2 The Tangential Component

We suggest two approaches to compute the tangential component. They are called

decoupled and coupled and differ in the type of trust-region constraint.

The Decoupled Trust—Region Approach

In this case the tangential component is computed from the trust-region subproblem

. . . — 7t
minimize ¢g(s")
(3.20)
subject to ||st]| < 8.

To assure global convergence to a stationary point the component st is required
to satisfy a fraction of Cauchy decrease (or simple decrease) for the trust-region
subproblem (3.20). The Cauchy step cg for this trust-region subproblem is defined

as the solution of

minimize G (cd )

subject to HcdH < b, A e span{—gy}.
The fraction of Cauchy decrease condition that 5% has to satisfy is

Gx(0) — Gx(5%) = B2 (a(0) — () .

t (3.21)
1551l < %,

where ﬂfl is some positive constant independent of k.
To guarantee global convergence to a point that satisfies the second—order nec-
essary optimality conditions, the component 5% has to satisfy a fraction of optimal

decrease for the trust—region subproblem (3.20). This condition is as follows:

Ge(0) — Gx(5%) = Y (2(0) — @ulof))) .

) (3.22)
15k < B éx,

where 02 is the optimal solution of (3.20) and ﬂQd, 6;}' > (0 are positive constants

independent of k.
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The Coupled Trust—Region Approach

In this approach the tangential component is computed from the trust-region sub-
problem
C 4

minimize ¢g(s") (3.23)

subject to  ||[Wist|| < é.
This subproblem differs from (3.20) in the form of the trust-region constraint. In
the trust-region subproblem (3.20) the constraint is ||st|| < & and does not force
the whole tangential component W5t to lie inside the trust-region. The coupled
approach offers a better regularization of the tangential component in the cases where
Wy is ill-conditioned. This point is better explained in Section 5.2.2 by using a
particular form of W;. The components s} and st for this approach are depicted in
Figure 3.1. It is quite clear from the picture that s; might not lie inside the trust
region {s: ||s|| < 6x}. Of course the same thing happens in the decoupled approach
but here there is even no guarantee that the tangential component st is itself inside
the trust region.

It global convergence to a stationary point is the goal of the trust-region reduced
SQP algorithm, then st is required to satisfy a fraction of Cauchy decrease (or simple
decrease) for the trust-region subproblem (3.23). We discuss this point now.

The steepest-descent direction at st = 0 associated with g.(5) in the £, norm
is —gr. See Section 2.3. If we take into account the matrix Wy, then the steepest—
descent direction in the ||Wj - || norm is given by —(WIW,)"1g,. We consider the

steepest—descent direction —g; and require 5% to satisfy the Cauchy condition

Ge(0) — @u(sh) > A5 (q(0) — qul<f)).

) (3.24)
1551l < o,

where 37 is a positive constant independent of £ and ¢} is the Cauchy step that solves
minimize  g(c%)
subject to ||Wict|| < bk, ¢ € span{—gi}.

The results given in this chapter hold also if c§ is defined along — (W W) 1gy
provided the sequence {||(WIW;)~!||} is bounded.
In order to establish global convergence to a point that satisfies the second—order

necessary optimality conditions, we need st to satisfy a fraction of optimal decrease
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S3

s = —Ch

51

Figure 3.1 The quasi-normal and tangential
components of the step for the coupled approach.

for the trust-region subproblem (3.23). This condition is as follows:

(0) = a1(51) 2 55 (a(0) — 3u(05). (3.25)
IWistl < A,

where of is the optimal solution of (3.23) and 35, 35 > 0 are positive constants
independent of k.

3.4.3 Outline of the Algorithm

We introduce now the merit function and the corresponding actual and predicted

decreases. The merit function used is the augmented Lagrangian
L(z, X p) = f(x) + A C(x) + pC(a) C(x),

where p is the penalty parameter. The actual decrease ared(sy; pi) at the iteration k
is given by

ared(sy; pr) = L(xp, Aps pr) — L(Thtrs Apa; pr)-
The predicted decrease (see [35]) is the following:

pred(si; pr) = L(ze, M o) — (an(sk) + AN (Jisi + Ci) + pellJis + Cel?) -
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Other forms of predicted decrease were proposed in the literature that use the aug-
mented Lagrangian as a merit function. See El-Alem [49] and the references therein.

To update the penalty parameter p; we use the scheme proposed by El-Alem
[47]. This scheme is Step 2.4 of Algorithm 3.4.1 below. Other schemes to update
the penalty parameter were suggested in the literature. El-Alem [48], [49] proposed
a nonmonotone scheme to update the penalty parameter for which he proved many
convergence results, including global convergence to points satisfying the second—
order necessary optimality conditions. Lalee, Nocedal, and Plantenga [91] proposed
and tested another nonmonotone scheme for the penalty parameter, but they did not
provide any convergence analysis.

The general reduced trust—region SQP algorithm is given below.

Algorithm 3.4.1 (Trust-Region Reduced SQP Algorithm)

1 Choose zg, dg, and Ag. Set p_y > 1. Choose ay, 71, dmin, Omaz, and
p such that 0 < aq, ;1 <1, 0 < din < Opmas, and p > 0.

2 For k=0,1,2,... do
2.1 Stop if (xg, M) satisfies the stopping criterion.

2.2 Compute s; based on the subproblem (3.14).
Compute 5% based on the subproblem (3.20) (or subproblem
(3.23) in the coupled case).
Set s = sy + Wyat.

2.3 Compute Agyq and set Adp = Ay — Ak

2.4 Compute pred(si; pr-1):

gx(0) = gil(sk) — AN (ki + Cr) + pror (ICRlI? = [ Jiese + Cxl[?).

If pred(sg; pr—1) > 252 (HCkHQ — |[Jesk + CkHz) then set p, =

2

pr—1. Otherwise set

e =2 (Qk(Sk) — q1(0) + AN (Jisp + Ck)) 43
|Crl1? = [[Jesk + Ckl|? '

2.5 If wredlonine) o gef

pred(sg;pk)

Op41 = maX{HszH, H(Sk)uH} in the decoupled case or

Opy1 = maX{HSEH, HWk(Sk)uH} in the coupled case,
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and reject sy.

Otherwise accept sp and choose 6y such that
maX{5min7 5k} S 5k—|—1 S 5max-

2.6 If s, was rejected set xpy1 = z and Ay = Ap. Otherwise set
Th41 = Tk + Sk and )‘k-l-l = )\k + A)\k

A reasonable stopping criterion for global convergence to a stationary point is
llgrll + ||Ckl| < €or for a given e, > 0. If global convergence to a point satisfying
the second—order necessary optimality conditions is the goal of the algorithm, then
the stopping criterion should look like ||gk|| + ||Ckl| + v < €1, where 74 is the
Lagrange multiplier associated with the trust-region constraint in (3.20) and (3.23)
(see equations (3.29) and (3.31)).

It is important to understand that the role of é,,;, is just to reset 6, after a step
si has been accepted. During the course of finding such a step the trust radius can
be decreased below 6,,;,. To our knowledge Zhang, Kim, and Lasdon [155] were the
first to suggest this modification. We remark that the rules to update the trust radius
in the previous algorithm can be much more complicated but these suffice to prove

convergence results and to understand the trust-region mechanism.

3.4.4 General Assumptions

In order to establish global convergence results, we use the general assumptions given
in [35]. Let © be an open subset of IR" such that for all iterations k, xy and ) + sy

are in {).

Assumptions 3.1-3.5

3.1 The functions f, ¢;, e = 1,...,m are twice continuously differentiable functions

in Q.
3.2 The Jacobian matrix J(z) has full row rank in Q.

3.3 The functions f, V£, V2f, C, J, and V¢, i = 1,...,m, are bounded in Q.
3.4 The sequences {W;}, {H;}, and {\;} are bounded.

3.5 The matrix (J(x)J(z)T)~! is uniformly bounded in Q.
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Assumptions 3.3 and 3.4 are equivalent to the existence of positive constants

Vo . .., vs such that
f(@)] < v, (V@) <wm, V()] S vay [|C(@)] < s,
1T (@) < va, and IV2i(z)|| <ws, 1=1,...,m,

for all # € Q, and

Wil < s, || Hell < v, and [ Ae]] < s,

for all k.
It Algorithm 3.4.1 is particularized to satisfy the following conditions on the steps,

on the quadratic model, and on the Lagrange multipliers, then we can prove global

convergence to a point satisfying the second—order necessary optimality conditions.

Conditions 3.1-3.2

3.1 The quasi-normal component s} satisfies the feasibility condition (3.15) and
the decrease condition (3.18).

The tangential component 5t satisfies the fraction of Cauchy decrease condition
(3.21) (or (3.24) in the coupled case).
3.2 The quasi-normal component s satisfies condition (3.19).

The tangential component satisfies the fraction of optimal decrease condition

(3.22) (or (3.25) in the coupled case).

The Lagrange multipliers \; satisty

[AX]l = [[Aks1 = Al < K568, (3.26)

The Hessian approximation Hj is exact, i.e. Hy = V2_{} for all k.

The Hessians V2f and V?¢;, i = 1,...,m are Lipschitz continuous.

Condition 3.1 is required for global convergence to a stationary point. Conditions
3.1-3.2 are imposed to achieve global convergence to a point that satisfies the second—

order necessary optimality conditions.
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3.5 Intermediate Results

In this section we list some technical results that are needed for the global convergence
theory.

We start by pointing out that the decrease condition (3.18) and the fact that st
is in V' (Jg) imply

ICHI* = Nl Tesi + Cill* = kol Crll min {xs]|Crll, 64} (3.27)

As a direct consequence of the way the penalty parameter is updated, we have

the following result.
Lemma 3.5.1 The sequence {p;} satisfies

pr = pr—1 > 1 and

pred(siipn) = S (17 = s+ ClP). (3.28)

We now analyze the fraction of Cauchy and optimal decrease conditions for the
tangential component. For the optimal decrease it is important to write down what

necessary conditions the optimal solutions 02 and of, of the trust-region subproblems
(3.20) and (3.23) satisfy.

In the case of the decoupled approach these conditions are:
Hy, + v,1,_,, is positive semi-definite, (3.29)
(Hy + elem) off = —gr and (3.30)
7 (6 = [lofll) =0,

where v, > 0 is the Lagrange multiplier associated with the trust—region constraint
|5t|| < 6. (See Proposition 2.3.3.)

For the coupled approach such necessary conditions are as follows:
Hy + ’yngWk is positive semi—definite, (3.31)
(Hk + ’ykW,;‘FWk) ol = —gx, and (3.32)
(0 = llofll) = 0,

where v, > 0 is the Lagrange multiplier associated with the trust—region constraint
|Wi3t| < 6x. (This result also is derived from Proposition 2.3.3. In fact, the change
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of variables 3t = (Wng)%Et, reduces the trust-region subproblem (3.23) to a trust—

region subproblem of the form (2.2).)

Lemma 3.5.2 Let Assumptions 3.1-3.4 hold. If st satisfies Condition
3.1, then
ar(s7) = @x(s1) = | gel| min {rce|| i, msdi | (3.33)

and, moreover, if 5t satisfies Condition 3.2, then
ar(s3) = qr(sk) > rod}, (3.34)
where kg, ..., kg are positive constants independent of the iterate k.

Proof The condition (3.33) is an application of Powell’s Lemma 2.3.1. The condi-
tion (3.34) is a direct application of Lemma 2.3.2 for the necessary conditions given
after Lemma 3.5.1. (]

The following inequality is needed in many forthcoming lemmas.
Lemma 3.5.3 Under Assumptions 3.1-3.4 and Conditions 3.1-3.2,
45(0) = gi(s}) = AN (Jpsy + Cr) = —riaol [ Cl 6, (3.35)
where 19 is a positive constant independent of k.

Proof The proof follows the arguments in [35][Lemma 7.3]. The term qx(0)—qx(s})
can be bounded using (3.15), (3.19), and Assumption 3.4, in the following way:

1
@(0) — qr(s}) = —V.0is} — 5(52)Tﬂk(52)
1
= —ha]| Cyllér — 5[ Hll ek
1
Z —/<;4]\CkH5k — §V7fleckH5k- (336)
On the other hand, it follows from (3.26) and ||.Jisk + Ci|| < ||Ck|| that

If we combine these two bounds we get (3.35) with k19 = k4 + %1/7/431 + Ks. ]
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The convergence theory is based on the following actual versus predicted estimates.

These are minor modifications of the estimates given in [47].

Lemma 3.5.4 Let Assumptions 3.1-3.4 hold. There exists a positive

constant k11 independent of &, such that

jared(sis pi) — pred(siip)| < wn (sl + AN 5] )
+ ou (lsel® + 1l 1sk12) )-

It Hj, satisfies Condition 3.2, then

jared(sy: pr) — pred(sis p)l < waa (AN il )
+ ox (lsell? + Gl sel12) ).

where 15 is a positive constant independent of k.

Proof If we add and subtract {(xg11, Ax) to ared(sy; pr) — pred(sy; pr) and expand
((-, A) around xj we get
ared(sy; pr) — pred(sg; pp) = %5;‘5 (Hk — V2 U(xg + t15k, )\k))sk
+ AN (=Chqq + Ck + Jisy)
—pr (1411 = | Tw51 + Ci]1?)

for some t; € (0,1). Again using the Taylor expansion we can write

%S{ (Hk - V?m,g(l'k —|— tisk, )\k))sk
—% ZZ 1(A)‘k) {Vzci(:pk —|— tzsk)sk
—pi (S cilwn + 1) (s1) T VE3ei(wp + 1) (s4)

ared(Sk; Pk) - pred(sk; Pk) =

—I-(Sk)TJ(l'k —|— tkSk)TJ(l'k —|— t%Sk)(Sk)
— ()" ()T T (1) (s)) -

where 7, t} € (0,1). Now we expand ¢;(x) + ¢3s;) around c¢;(x). This and
Assumptions 3.1-3.4 give us the estimate (3.37) for some positive constant 1.

Inequality (3.38) is derived as inequality (3.37), using the Lipschitz continuity of

the second derivatives and the fact that pp > 1. ]

We terminate this section with the following lemma.
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Lemma 3.5.5 Let Assumptions 3.1-3.4 hold. Every step s; satisfies
|58l < K130k (3.39)
It sy is rejected in Step 2.6 of Algorithm 3.4.1, then
Okt1 > Kial|sk]|- (3.40)
The constants k13 and k14 are positive and do not depend on k.

Proof In the coupled trust-region approach we have ||sg|| < 20y, and x4 > %G||sk].
See Step 2.5 of Algorithm 3.4.1. In the decoupled approach, |[sy|| = |[s} + Wist|| <
(1 + v6)or and similarly ép41 > % min{l, :—6} ||sk||, where vg is a uniform bound for

||W||, see Assumption 3.4. We can combine these bounds to obtain
sl < max2 14 v} 8
Sy = min{L L |lsill.

In the case where fraction of optimal decrease conditions (3.22) or (3.25) are imposed

on 5t the constants x13 and x4 depend also on ﬂg and 5. (]

3.6 Global Convergence Results

The global convergence of the Trust-Region Reduced SQP Algorithm 3.4.1 to a sta-

tionary point is given in the following theorem.

Theorem 3.6.1 (Dennis, El-Alem, and Maciel [35]) 1f Assumptions
3.1-3.4 hold and the components of the step satisfy Condition 3.1, then

lim inf (|| WV £l + [1Cx]) = 0. (3.41)

In this section we assume that the components of the step, the quadratic model,
and the multiplier estimates are computed to satisty Conditions 3.1-3.2, and we prove
the following result from which we can establish the existence of a limit point of the

sequence of iterates that satisfies the second—order necessary optimality conditions.

Theorem 3.6.2 If Assumptions 3.1-3.4 hold and the components of the
step, the quadratic model, and the multiplier estimates satisfy Conditions

3.1-3.2, then
lim inf (|W{VSll + 1 Cell +7¢) = 0. (3.42)
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We defer the proof of this theorem to establish its major consequence.

Theorem 3.6.3 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold.
Assume that W (z) and A(z) are continuous functions and A\, = A(xy) for

all k.
If {z}} is a bounded sequence generated by Algorithm 3.4.1, then there
exists a limit point x, such that
o C(x.) =0,
° W(:z;*)TVf(x*) =0, and
° W(:z;*)TVixﬁ(x*, Az, ))W () is positive semi—definite.
Moreover, if A(x.) is such that V,l(x,., A(x.)) = 0 then z. satisfies the

second—order necessary optimality conditions.

Proof Let {k;} be the index subsequence considered in (3.42). Since {xy,} is

bounded, it has a subsequence {x,} that converges to a point z, and for which

Lim (WL fi ||+ 1O || + 7, ) = 0. (3.43)

71—+

Now from this and the continuity of C(z), we get C(x.) = 0. Then we use the
continuity of W(z) and V f(x) to obtain

W(z )"V f(z.) = 0.

Since Ai(+) is a continuous function, we can use (3.29), (or (3.31) for the cou-
pled approach), lim;_ 4. 7%, = 0, the continuity of W(z), A(z), and of the second

derivatives of f(x) and ¢;(x), ¢ =1,...,m, to obtain
M (W ()T V2 (e, o)W (2,)) > 0.
This shows that W(:z;*)TVixﬁ(x*, Az, ))W () is positive semi—definite. ]

The continuity of an orthogonal null-space basis Z(z) for A'(J(z)) has been dis-
cussed in [16], [26], [78]. A straightforward implementation of the QR factorization
of J(z)T might produce a discontinuous null-space orthogonal basis Z(z). However,
Coleman and Sorensen [26] showed how to modify the QR factorization in such a way
that Z(x) inherits the smoothness of J(z)T. A class of nonorthogonal continuous

null-space basis W(x) is described in Chapter 4.
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The equation V,l(x., A(x.)) = 0 is satisfied for consistent updates of the Lagrange
multipliers like the least—squares update (3.9) or the adjoint update (4.14).

Now we prove Theorem 3.6.2. The proof of (3.42), although simpler, has the same
structure as the proof of (3.41) given in [35].

Proof of Theorem 3.6.2
We prove by contradiction that
lim inf (|lgi | + | Cell + ) = 0.
We show that the supposed existence of a ¢;,; > 0 such that
gkl + [[Ckll + 7% > €rar, (3.44)

for all %, leads to a contradiction.
The proof requires the lower bounds for the predicted decrease given by the fol-

lowing three lemmas.

Lemma 3.6.1 Under Assumptions 3.1-3.4 and Conditions 3.1-3.2, the

predicted decrease in the merit function satisfies
pred(si;p) > rel|gill min {wz[|gill, 558 |} — r10l| Cill 6 )
5 :
o (ICHI” = 1 kse + Cil)

and also
2
pred(si;p) > womdt — wol| Cilln + p(IChll* = [ Jesi + Cxll)
(3.46)

for any p > 0.

Proof The two conditions (3.45) and (3.46) follow from a direct application of
(3.35) and from the two different lower bounds (3.33) and (3.34) on qk(sz) — qr(sk)-
O

Lemma 3.6.2 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold
and assume that ||gi|| + [|Ckll + v > €. If ||Cil| < 06, where 0 is a

constant satistying

0 < min{ €10l K6 €0l min{metoz K} 5961501}7 (3.47)

35maav7 65105max 35maav7 o 6510
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then the predicted decrease in the merit function satisfies either

pred(sg;p) > 5G| min{mHQkH, KS(S’“} (3.48)
+p(|Cxll* = I Tesi + Cxl|?) |

or
pred(si;p) = 2u8i+ p(I|Cull? = 1 Tesi + Ci1?). (3.49)

for any p > 0.

Proof From ||gk|| + ||Ck|| + v& > €t and the first bound on 8 given by (3.47), we
get
B 2
lgxll + % > 3 Ctol-
Thus either ||gx|| > %qol or Y > %qol. Let us first assume that ||gx| > %qol. Using

this, (3.45), éx < 6z, and the second bound on 6 given by (3.47), we obtain
pred(si;p) > || gll min {kegell. msdi |
+50%al min {5186 gy | — A108man | Cil
+o(ICHI® = 1Tkt + Cill?)

%\ ge | min {rczgell, s }
+o(IICEl2 = I ksi + Cill?).

Y

Now suppose that v > %qol. To establish (3.49), we combine (3.46) and the last
bound on 6 given by (3.47) and get

pred(sg; p) > 2] + (%etol5k - /<J1OHCkH) ok
+o(ICKI* = [l Jksi + Cill?)
> wdt + p(I Ol = s + Cull?).

O

We can set p to pg_q in Lemma 3.6.2 and conclude that, if ||gx|| + ||[Ck|| + 76 > €tar
and ||Cl| < 865, then the penalty parameter at the current iterate does not need to
be increased. See Step 2.4 of Algorithm 3.4.1.

The proof of the next lemma follows the argument given in the proof of Lemma

3.6.2 to show that either ||gx| > %qol or Y > %qol holds.
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Lemma 3.6.3 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold
and assume that ||gi|| + [|Ckll + 7% > €01 If ||Ck|| < 065, where 8 satisfies
(3.47), then there exists a constant k15 > 0 such that

pred(sg; pr) > /43155;3- (3.50)

Proof By Lemma 3.6.2 we know that either (3.48) or (3.49) holds. Now we set

p = pr. In the first case we use ||gx|| > %qol and get

pred(sy; pr) > fege min{ Sl kb))

Y

K6 €iol ] R7€tol
et min{ STk kg }oy

Ke€tol
66 max

Y

in d Bitol 2
min{ F4L, kg 7.

In the second case we use 5, > %qol, to obtaln

R9€ol

52.

pred(sg; pr) >

Hence (3.50) holds with

e — min { Reol o { Rrtol } ﬁgetoz}
15 — s V8 (1 :
657)’“11’ 357)’“11’ 6

O

Next we prove that under the supposition ||gx|| + [|Ck|| + ¥& > €tor, the penalty

parameter pj is uniformly bounded.

Lemma 3.6.4 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold
and assume that ||gk|| + ||Ck|| + 7% > €0 for all k. Then

Pr < Pss

where p, does not depend on k, and thus {px} and {L;} are bounded

sequences.

Proof If p; is increased at iteration k, then it is updated according to the rule

pr =2 (q’“(s’“) = qu(0) + AN (Jise + Ck)) +p
|Cell* = (| Jrsk + Cil[? '
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We can write
SO = ks + Cull?) = Valf'sd + 3(sHT Hils)
= (an(s) = arls0)) + AN (Jpsi + C)
+5 (IOl = 1Tk + Cill?)
By applying (3.27) to the left hand side and (3.33) and (3.35) to the right hand side,
we obtaln
% gl |Cull min{ms|[Cull. 6} < maodi | Crll + (= 2077 Ci) st — || Jusi )
< (K10 + pr1sva) k]| Crl|-

It pp is increased at iteration k, then from Lemma 3.6.2 we certainly know that
|Ck|| > 06x. Now we use this fact to establish that

Ky . _
(; min{x30, 1}) pr < Kio + pr13V4.

We proved that {p;} is bounded. From this and Assumptions 3.1-3.4 we conclude
that {L;} is also bounded. O

We can prove also under the supposition (3.44) that the trust radius is bounded

away from zero.

Lemma 3.6.5 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold. If
llgrll + |Ckll + vk > €1 for all k, then

Op > 6, >0,
where 0, does not depend on .

Proof If s;,_; was an acceptable step, then 8 > 6,5, If n0t then 6 > K14l[sk—1]],
and we consider the cases ||Cy|| < 06, and ||Ck|| > 06k, where 6 satisfies (3.47). In

both cases we use the fact

ared(Sk—1; pr—1)

pred(si_1;pr-1)
Case 1. ||Ci_1|| < 06j—1. From Lemma 3.6.3, inequality (3.50) holds for k = k£ — 1.

Thus we can use |[sg_1]| < K130k-1, (3.26) and (3.38) with k = k — 1, to obtain

L—m < —1].

ared(Sk—1; pr-1)

512(55513513—1 + P*’f%:a‘sz—l + 9*95135z—1)"5k—1"
pred(Sg—1; pr—1) '

2
K150

_1‘<
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1-n1)K1aK15 _
> > (1=m = K16.
Thus 5k — KMHSk_lH — H12(H5H13+0*H§3+p*9ﬁ13) R1e

Case II. ||C—1]] > 06k—1. In this case from (3.27) and (3.28) with k = k — 1 we
get

pred(si—1;pe—1) = Z5Hwol|Cr|| min{rs||Cro |, o511}
> Pk-1 /43175k—1HCk—1 H
> pp_10r1767_4,

where k17 = %2 min{xsf, 1}. Again we use pp_y > 1, (3.26) and (3.38) with & = k—1,

and this time the last two lower bounds on pred(si_1; pr-1), and write

ared(sp—_1;0k—1) . 1‘ <k Pk—l(H5H13+H§3)5i_1||5k_1|| 4 pk—18138k—1||Cr—1| |5k —1]|
pred(sg_1;pk—1) - 12 pr—10k175% pr—1#178%_1||Cr_1||

<y (B g

(1=n1)0K14 k17
(k5 K13+K2, +0K1a

The result follows by setting 6, = min{d,.in, K16, K18 }- O

Hence 65 > K1a|$p-1]] > o ;= Kis

The next result is needed also for the proof of Theorem 3.6.2.

Lemma 3.6.6 Let Assumptions 3.1-3.4 and Conditions 3.1-3.2 hold. If
llgrll + 1|Ckl| + v& > €t for all k, then an acceptable step always is found

in finitely many trial steps.

Proof Let us prove the assertion by contradiction. Assume that for a given k,
x, = o7, for all & > k. This means that limg_ 1o, 6 = 0 and all steps are rejected
after iteration k. See Steps 2.5 and 2.6 of Algorithm 3.4.1. We can consider the cases
|Ck|| < 06k and ||Cy|| > 06, where 0 satisfies (3.47), and appeal to arguments similar
to those used in Lemma 3.6.5 to conclude that in any case

ared(sy; pr)
pred(sk; pr)

where k19 is a positive constant independent of the iterates. Since we are assuming

ared(sg;pr)
pred(sg;pk)

that update the trust radius in Step 2.5 of Algorithm 3.4.1. (]

—1 §/<3195k7 kzlé,

that limy_ 1., 6 = 0, we have limg_ 1, = 1 and this contradicts the rules

Now we can finally prove Theorem 3.6.2.

Theorem 3.6.2 If Assumptions 3.1-3.4 hold and the components of the
step, the quadratic model, and the multiplier estimates satisfy Conditions
3.1-3.2, then

lim inf (|W{VSll + 1 Cell +7¢) = 0. (3.51)
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Proof Suppose that there exists an €, > 0 such that ||gi|| + ||[Ck|| + 7% > €0 for
all k.

At each iteration k either ||Cy|| < 065 or |C|| > 06k, where 0 satisfies (3.47). In
the first case we appeal to Lemmas 3.6.3 and 3.6.5 and obtain

pred(sy; pr) > K156
If ||Ck|| > 06k, we have from p, > 1, (3.27), (3.28), and Lemma 3.6.5, that
pred(sg; pr) > %0 min{xsf, 1}62.

Hence there exists a positive constant x99 not depending on k such that pred(sy; pr) >
K90. From Lemma 3.6.6, we can ignore the rejected steps and work only with successful

iterates. So, without loss of generality, we have
Ly — Liy1 = ared(sg; pr) > mpred(sg; pr) > m1 k20

Now, if we let k& go to infinity, this contradicts the boundedness of {L;}. Thus we

proved that there exists an index subsequence say {k;} such that

+ Hckz

The proof is completed by showing that the limit above implies the limit (3.51).

From lim,_ 4 ||Ck, || = 0 and Hsle < £1||Cy, | for all ¢, we obtain lim,_ 4. Hsle = 0.

But gi, = W (Hkiszi + kal) and {Hy} and {W;} are bounded sequences; so we
finally get (3.51). U

The local convergence of these trust-region reduced SQP algorithms is studied
in [42] under tighter conditions on the multiplier estimates and the quasi-normal

components.

3.7 The Use of the Normal Decomposition with the Least—
Squares Multipliers

The normal component has been defined in (3.8). We now redefine s} as

—JIJ.JnH-c it |[JE(J IO < 6,
32: k(kk) k Hk(kk) kH k (3'52)
—&JE(I ) 7IC),  otherwise,
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inside the trust region (see condition (3.18)).

where &, = This redefinition forces the normal component to stay
The results in the rest of this chapter use Assumption 3.5. This assumption implies
the existence of a constant vy > 0 satisfying ||(J(z)J(z)T)7|| < v for all z in Q and
I(JxJE) 7| < vg for all nonnegative integers k.
We prove in Lemma 3.7.1 that the normal component (3.52) always gives a fraction

of optimal decrease for the trust-region subproblem for the linearized constraints
(3.14). This condition is as follows:

ICHII? = [Tkt + Cull? = 85 (ICHl1? = [ Tkef + Cill?)

(3.53)
12| < 6y,

where By, B4 are positive constants independent of k, and of, is the optimal solution
of the trust-region subproblem for the linearized constraints (3.14). As a result
the normal component (3.52) satisfies the fraction of Cauchy decrease (3.16) for the
trust-region subproblem for the linearized constraints (3.14). Since {(JyJI)7'} is a
bounded sequence this implies the decrease condition (3.18) used in our convergence

theory.

Lemma 3.7.1 Let Assumptions 3.1-3.5 hold. The normal component
(3.52) satisfies a fraction of optimal decrease (3.53) for the trust—region

subproblem for the linearized constraints.

Proof From the definition in (3.52) it is obvious that ||s]|| < 3465 holds with
S =1.
If ||JE(JpJE)~LCh|| < &y, then s solves (3.14), and the result holds for any value
of 33 in (0,1]. If this is not the case, then

§
ICRN® = 1 Tesi + Cull* = €2 = EICRll* = &lICkI* = ?;HCM\, (3.54)

since || JE(JeJE) 1Ok < vawg]|Crl| and & < 1.
We also have

ICKIZ = Nl Teoy, + Cull* = =2(JCx) o), = (o) (J Jk)(0})

< 2ua||Crl| |0k |l + vZlog |
< 2048k ||Cl| 4 vi6k]| o]
< (2va + viwve)or||Cill,
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since || JE (Jx JE)THICx]| > 6 > |lo]|. Combining this last inequality with (3.54) we

get
1

vive(2 + vivg)

and this completes the proof. (]

ICHI* = [l Trsi + Cill* =

(ICKI” = [1Tk0k + Cl*) ,

In the next lemma we show that the normal component (3.52) and the least—
squares multipliers (3.9) satisfy the requirements in Condition 3.2 needed to prove
global convergence to a point satisfying the second—order necessary optimality con-

ditions.

Lemma 3.7.2 Let Assumptions 3.1-3.5 hold. The normal component
(3.52) and the least—squares multipliers (3.9) satisfy conditions (3.19) and
(3.26).

Proof It can be easily confirmed that V(1 s? = 0. Thus, V(1 s? < k4||Cy||6%. The
condition (3.26) holds since from Assumptions 3.1-3.3 and 3.5, the function A(z) =
—(J(2)J(x)T)"LJ(2)V f(z) has bounded derivatives in  and hence is Lipschitz con-

tinuous in the domain (2. ]

3.8 Analysis of the Trust—Region Subproblem for the Li-

nearized Constraints

In this section we investigate the trust-region subproblem for the linearized con-
straints (3.14). We saw in Section 3.7 that the normal component gives a fraction of
optimal decrease for the trust-region subproblem for the linearized constraints. To
compute a step s; that satisfies this property, we can also use the techniques proposed
in [106], [126], [133] and described in Section 2.3.1.

In the next theorem we show that the trust—region subproblem (3.14), due to its
particular structure, tends to fall in the hard case in the latest stages of Algorithm
3.4.1. This result is relevant in our opinion since the algorithms proposed in [106],
[126], [133] for the solution of trust—region subproblems deal with the hard case.

The trust—region subproblem (3.14) can be rewritten as

minimize $CTCy + (JECp) s + LT (ST i) (s9)

(3.55)
subject to [|s9|| < ép.
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The matrix JIJy is always positive semi-definite and, under Assumption 3.2, has rank
m. Let E(0) denote the eigenspace associated with the eigenvalue 0, i.e. Fy(0) =
{v, € R": JIJyvr = 0}. The hard case, as we saw in Section 2.3.1, is defined by

the two following conditions:
(a) (vp)T(JECE) = 0 for all v in Ex(0) and

(b) NI T+ v1,) " IECh|| < 65 for all 4 > 0.

Theorem 3.8.1 Under Assumptions 3.1-3.5, if limg_ 4 ”g:” = 0 then

there exists a kj, such that, for all £ > kj,, the trust-region subproblem
(3.55) falls in the hard case as defined above by (a) and (b).

Proof First we show that (a) holds at every iteration of the algorithm. If v €
Ex(0),
J,?kak = 0.

Multiplying both sides by (JyJI)~1J, gives us
kak = 0.

Thus (vg)T(JEC) = 0 for all vy, in E,(0).

Now we prove that there exists a kj such that (b) holds for every k > k. Since
hi(v) = ||(JET + v1,) "t JECy|| is a monotone strictly decreasing function of v for
v >0,

lim hy(y) < ok

'y—>0+
is equivalent to hg(y) < 6, for all v > 0. But from the singular value decomposition
of JI' [66][Page 71] we obtain

lim hy(y) = !\Wlif(gg(J;?Jk L) e Crll = 15 (ki )Tl

'y—>0+

Hence hi(y) < 6 holds for all v > 0 if and only if ||JI (JpJI)LCk|| < 6%

Now since limg_ 1. % = 0, there exists a kp such that ||Cy| < y41y9 oy, for all
k> ky. Thus [|[JE(JJE) 7 O < vawe||Ch|| < &k, for all k > kj,, and this completes
the proot of the theorem. (]

We complete this section with the following corollary.
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Corollary 3.8.1 Under Assumptions 3.1-3.5, if limy_ 4. ||Ck|| = 0 and
the trust radius is uniformly bounded away from zero, then there exists
a kj, such that, for all k > k;, the trust—region subproblem (3.55) falls in
the hard case as defined above by (a) and (b).

Proof If limy_ 4o ||Ck|| = 0 and the trust radius is uniformly bounded away from

zero then limg_ 4 % = 0 and Theorem 3.8.1 can be applied. (]
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Chapter 4

A Class of Nonlinear Programming Problems

In this chapter, we introduce and analyze the following important class of nonlinear

programming problems:

minimize  f(y,u)

subject to  C(y,u) =0, (4.1)

with

yeR", ue R ae (RU{-00})""", and b € (IRU{400})""". The functions
f:IR" — IR and C : R" — IR™, m < n, are assumed to be at least twice
continuously differentiable. The Jacobian matrix of C'(x) is denoted by J(x). The
notation used for this class of problems is such that vectors (s), and (s), represent
the subvectors of s € IR" corresponding to the y and u components, respectively.

Minimization problems of the form (4.1) often arise from the discretization of
optimal control problems. In this case y is the vector of state variables, u is the
vector of control variables, and C(y,u) = 0 is the (discretized) state equation. The
state equation can be nonlinear in the state variables y, in the control variables u,
or in both. In Section 4.5, we provide two examples of optimal control problems for
which the discretization is of the form (4.1): a boundary nonlinear parabolic control
problem and a distributed nonlinear elliptic control problem. There are optimal
control problems arising in fluid flow for which a discretization also is of the form
(4.1) (see e.g. Cliff, Heinkenschloss, and Shenoy [22] and Heinkenschloss [75]). Other
applications include optimal design and parameter identification problems.

In Chapters 5 and 6, we propose, analyze, and test a family of trust-region

interior—point reduced SQP algorithms for the solution of problem (4.1).
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One of the goals of this chapter is to present some properties of problem (4.1). In
Section 4.1, we introduce the basic structure of the problem. The first and second
order optimality conditions for (4.1) are stated in Section 4.4. We state them in a
nonstandard form that leads in Chapter 5 to the diagonal matrix used in the affine
scaling interior—point approach. In Section 4.2, we study the relationship between
the all-at—once approach followed in this thesis and the black box approach based on
a equivalent reduced formulation. These connections are known for problems with
no bound constraints but they motivate the all-at—once approach based on (4.1) and
reveal useful information for problems with bound constraints on w. In Section 4.3,
we present properties of the projection associated with problem (4.1). Two nonlinear
optimal control example problems for which the discretization is of the form (4.1) are
described in Section 4.5. In the last section we comment on the important issue of

the problem scaling inherent in optimal control problems.

4.1 Structure of the Minimization Problem

The Lagrange function £ : IR"*™ — IR" associated with minimizing f(z) subject to
T
the equality constraint C'(x) = (cl(:z;), cee cm(:zj)) = 0 is given by
e, ) = () + M Cla),

where A € IR™ are the Lagrange multipliers.

The linearized constraints are given by J(x)s = —C(x). If we take
( Sy ) m n—m
s = , sy €R™, s, € R"™,
S

and J(x) = ( Cy(x) Cux) ), we can write this linearization as

Uuwcm@)(%)z—m@- (4.2)

We say that s satisfies the (discretized) linearized state equation if it is a solution to
(4.2). If Cy(x) is invertible, the solutions of the linearized state equation are of the

form

s =89+ W(x)s,, (4.3)

59 = ( —Cy(l’z)_lC(l') ) (44)

where
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is a particular solution and

W (o) = ( Oy ()" O a) ) (45)

]n—m

is a matrix whose columns form a basis for the null space N'(J(z)) of J(z). This
quasi-normal decomposition of s is of the type (3.5) defined in Section 3.2 since in
general the columns of W(x) are not orthogonal and s9 is not the minimum norm
solution of the linearized constraints (see Figure 4.1). The role of the quasi-normal
component s9 is to move towards feasibility. Furthermore, the y component of the
quasi-normal component s9 is just the step that one would compute if one would
apply Newton’s method for the solution of the nonlinear equation C(y,u) = 0 for
fixed u. The tangential component W (x)s, is in the null space of J(x) and its role
as we can see in Chapter 5 is to move towards optimality.

We assume that C,(x) is nonsingular. In many applications this is a reasonable
assumption that can be shown for appropriate choices of the discretization parameters.
However ill-conditioning can occur and we take this into account in the development
of our algorithms in Chapters 5 and 6.

One can see that matrix-—vector multiplications of the form W (z)Ts and W(z)s,

involve only the solution of linear systems with the matrices C,(x) and C,(x)T. In

W(r)s = ( Oy () )5, )

Su

fact we have

for which we need to solve the form of the (discretized) linearized state equation:
Cy(2)v, = Cyx)s,.

Moreover,

Wiz)'s = —Cu(2)TCy(z) Ts, + su

and this requires the solution of the adjoint equation of the (discretized) linearized

state equation given above, i.e. it requires the solution of:

Cy(:zj)Tvy = 5. (4.6)

4.2 All-At—Once rather than Black Box

The point we want to convey in this section has nothing to do with the presence or

absence of the bound constraints ¢ < u < b. Therefore we consider the simpler case
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where there are no bounds, i.e. where B = IR"™™. The purpose of this section is to

discuss some of the basic relationships between the problem

minimize f(y,u)

4.7
subject to C(y,u) =0, (4.7)

and a reduced formulation of this problem that can be obtained by applying the
implicit function theorem. In fact, suppose there exists an open set U such that for
all u € U there exists a solution y of C(y,u) = 0 and such that the matrix C,(x)
is invertible for all z = (y*,u")T with v € & and C(y,u) = 0. Then the implicit

function theorem guarantees the existence of a differentiable function

y(-): U — IR™
defined by
Cly(u),u) =
and problem (4.7) is equivalent to
minimize f(u) = fly(u),u). (4.8)

This leads to the so-called black box approach in which the nonlinear constraint
C(y,u) = 0 is not visible to the optimizer. Its solution is part of the evaluation of
the objective function f(u) The reduced problem can be solved by a Newton-like
method. For optimal control problems, many algorithms follow this approach and
use projection techniques [70], [119] to handle the bounds on the variables w.

The reduced problem (4.8) is important since it leads us to the use of reduced
SQP algorithms. The relation between problem (4.7) and the reduced problem (4.8)
gives important insight into the structure of (4.7) and allows us to extend techniques
successfully applied to problems of the form (4.8). To see why this is true we need to
study the derivatives of the function f

Since y(+) is differentiable, the function f is differentiable and its gradient is given

by

V() = Vuy Vol (y(w), u) + Vo f(y(u), v), (4.9)
where V,y = j—ZT. The derivative of y(u) with respect to u can be obtained from
taking derivatives on both sides of C'(y(u),u) = 0:

dy
Cy(y(u),u)==+ Culy(u),u) = 0. (4.10)

du
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Thus, from (4.9) and (4.10) we see that
V) = Wy(u),u)"V f(y(u), u). (4.11)
Moreover, it can be shown that the Hessian of f is equal to the reduced Hessian
V2 f(u) = Wy (u),u) V20 (u), u, A) W(y(u), ),

provided that the Lagrange multipliers are computed by (4.14) given below.

The so—called all-at-once approach treats both y and u as independent variables.
All-at—once approaches were proposed to solve optimal control problems among many
others in [74], [79], [82], [83], [85], [86], [87], [89]. For the optimal control problems
that we consider in this thesis, the all-at-once approach is based on the formulation
(4.7) (actually (4.1) if we include the bound constraints on the controls). The goal is to
move towards optimality and feasibility at the same time, and this offers significant
advantages. SQP algorithms are of particular interest since they allow use of the
structure of optimal control problems, see e.g. [87], [88]. As we saw in Chapter 3 for
equality—constrained optimization they do not require the (possibly very expensive)
solution of the nonlinear state equation C'(y,u) = 0 at every iteration.

If we solve (4.7) by the SQP Algorithm 3.2.1, then the quadratic programming
subproblem we have to solve at every iteration is of the form

minimize V f(z)ls + $sTVZ l(z,\) s (4.12)
subject to Oy (x)s, + Cyu(x)s, + C(x) = 0. ‘
If the reduced Hessian W (z)TV2_((x, \) W(z) is nonsingular, the solution s of (4.12)
is given by (4.3) and (4.4) with

su=—(W(2)"V2, 0z, ) W(x))_IW(x)T(Vixﬁ(x, \)s?+ Vf(x)). (4.13)

Such s, is also the solution of the quadratic programming subproblem of the Reduced
SQP Algorithm 3.2.2.

In practice the Hessian V2_{(z, \) or the reduced Hessian W (z)TV?2_((z,\) W(z)
are often approximated using secant updates. In the latter case, when an approxima-
tion to V2 _((x,\) is not available, then the cross—term W (z)TV2 ((x,))s9 has also
to be approximated. This term can be approximated by zero, by finite differences,
or by secant updates. In the case where this cross term is approximated by zero, the

right hand side of the linear system (4.13) defining s, can be written as

W(2)'Vf(x) = =Cu(x)"Cy(a) 7V, f() + Vi f(x).
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Thus, if the Lagrange multipliers are computed by the adjoint formula
A= —C,() TV, f(2), (L14)

then
W(2)'Vf(x) = Cu(x)' A+ Vo f(zx) = Vil(z,N). (4.15)

One can see that the gradient and the Hessian information in the SQP algorithm
for (4.7) and in the Newton method for (4.8) are the same if y and u solve C'(y,u) = 0.
Thus, if Newton-like methods are applied to the solution of (4.8), then one has all
the ingredients available necessary to implement an SQP algorithm for the solution
of (4.7). The important difference, of course, is that in the SQP algorithm we do
not have to solve the nonlinear constraints C'(y,u) = 0 at every iteration. Thus we
combine the possible implementational advantages of a black—box approach with the
generally more efficient all-at—once approach.

Specifically, our consequent use of the structure of the optimal control prob-
lems leads to our family of trust—region interior—point reduced SQP algorithms (see
Chapter 5). These algorithms only require information that the user has to provide
anyway if a black—box approach is used with a Newton-like method for the solution
of the nonlinear state equation C(y,u) = 0 and adjoint equations of the form (4.6)
for the computation of the reduced gradient (4.11). Furthermore, the inexact analysis
for these algorithms presented in Chapter 6 provides practical rules to solve inexactly
the linearized state and adjoint equations that guarantee global convergence.

In these considerations we neglected the bound constraints ¢ < u < b. We have
already pointed out that these relationships between (4.7) and (4.8) are basically
the same with or without the bound constraints on the control variables. (See also
Section 5.1.)

4.3 The Oblique Projection

In this section we show how the quasi-normal decomposition (4.3) differs from the
normal decomposition (3.6) for problem (4.1). The normal decomposition applied to
problem (4.1) has the form

s=s"+ Z(:L')Et,
where Z(z) is a matrix whose columns form an orthogonal basis for V' (J(z)). We

showed in Section 3.2 how to compute this decomposition from the QR factorization

of J(x)T.
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A major difference between the decompositions (3.6) and (4.3) lies in the form
of the basis of the null space N'(J(z)). It is reasonable in this class of problems to
access to the basis W () given in (4.5) since it exploits the structure of the problem
and allows the use of linear solvers available from the application. The use of the
QR factorization for this class of problems is problematic: it depends strongly on
the sparsity pattern of J(x), it might cause unnecessary fill-in, and it requires the
user to do an involved computation of no value except in the optimization algorithm.
Furthermore, the normal component s" has a nonzero u component (see Figure 4.1)
and this means that the bounds on the variables v would have to interfere somehow in
the computation of s". These problems do not arise if the quasi-normal component
(4.4) is used.

One other major difference is the type of projection associated with both decom-
positions. The quasi-normal decomposition (4.3) offers an oblique projector onto
N(J(z)):

Poyi(z) = W(x)W(x)T, (4.16)

where W (x) is given by (4.5). The normal decomposition (3.6) when applied to the

equality constraints of our problem (4.1) provides an orthogonal projector
P,i(x) = Z(x)Z(x)". (4.17)

It can be easily proved that
Poi(z) = Z(2)Z(2)" = W(x) (W(:z;)TW(:z;))_l W (z)T. (4.18)

In Figure 4.1 we depict the action of the projectors P, () and P,..(x) on a given
vector v. The following proposition provides an explanation for the form of P (x)v

given in Figure 4.1.

Proposition 4.3.1 Given a vector v in IR",

Poi(x)v = Po(x) ( 0 ) ) (4.19)

o 0 . . .
In addition, T is the unique vector in the vector space {x =
Wi(x)'v

(yT,uT)T € R": y = 0} for which (4.19) holds.
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\ s9 ™~ v
S J(x)s = =C(x)
Port(w)'t \\
\\
N (J(z))

Figure 4.1 The normal and the quasi-normal components and
the action of the orthogonal and oblique projectors.

Proof The proof of the first part is the following:

Poi(x)v,
where we used (4.5) and the form of P,.;(x) given in (4.18). To prove the unique-

0 0
ness suppose that x; = ( ) and 7o = ( ) satisfy Poi(2)ry = Po(x)xs.
U1 Usg

From P,.(z)(z1 — x2) = 0 we conclude that x; — x5 is orthogonal to N(J(z)), i.e.
W(z)T(x1 — z5) = 0. But this is just

( Oy ()1 Co(a) )T ( 0 ) i
I,_m Uy — U
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and u; = us. ]

From this proposition we know how to depict W(z)Tv along the u axis. Note that

lies in the null space N (J(z)).

4.4 Optimality Conditions

In this section we apply the first—order necessary and the second-order necessary and
sufficient optimality conditions to problem (4.1). These conditions provide a powerful
characterization of local minimizers in nonlinear programming and are used in many
different fields of mathematics and science. They were discovered independently by
Karush [80] in 1939 and by Kuhn and Tucker [84] in 1951. One can see these con-
ditions as an extension of the Lagrange multiplier theory for problems with equality
constraints (see Propositions 3.1.1 and 3.1.2) to problems with both equality and
inequality constraints. By a general nonlinear programming problem we mean the
problem

minimize f(x)

subject to hi(x)=0,i=1,...,p, (4.20)

gi(®)>0,i=1,...,1,

where it is assumed that f, h;, and ¢; are twice continuously differentiable functions
defined from IR" to IR. In order to describe the form of the optimality conditions
that we use, we need to introduce the notion of regularity for both equalities and

inequalities.

Definition 4.4.1 A point z. is regular for problem (4.20) if the the set

of vectors

{Vhi(x*), 1= 1,...,p} U

(4.21)
{Vgi(x*), for all ¢ € {1,...,{} such that g;(x.) = 0}

is linearly independent.

The inequality constraints ¢;(x) > 0, for all ¢ € {1,...,l} such that

gi(x.) = 0, are said to be active or binding at ..
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The optimality conditions for nonlinear programming are stated in the two fol-

lowing propositions using regularity as a constraint qualification.

Proposition 4.4.1 (Karush-Kuhn—Tucker) If the regular point x, is a
local minimizer of problem (4.20), then there exist A, € IR and u, € IR’

such that

gl(x*)z()? =1, 717
p l

V() + D (A)iVhi(za) + 3 (12)iVgi(.) = 0,
=1 =1

gz(w*) (,U*)z =0,:=1, ,1, and

s 2> 0.

These conditions are called the first—order necessary optimality conditions.

The vectors A, and pu, are the Lagrange multipliers. The Lagrangian function

associated with problem (4.20) is f(x) 4+ >0_y Aihi(x) + Sy pigi(x).

Proposition 4.4.2 (Karush—Kuhn—Tucker) If x. is a regular point for
problem (4.20), then the second—order necessary optimality conditions for
x, to be a local minimizer are the existence of A\, € IR” and pu. € IR! such
that the first-order necessary optimality conditions hold and

p l

VA () + YOV hi(e) + Y (0 )i Vi) (122)

=1 =1
is positive semi—definite on the null space of the set of vectors in (4.21).

The second-order sufficient optimality conditions include the first-order
necessary optimality conditions and require the matrix (4.22) to be posi-

tive definite for every nonzero vector z € IR" that satisfies
T —0 5=
2 Vhi(z)=0,1=1,...,p,
2IVgi(x.) =0, for i € {1,...,1} such that (y.); > 0,

AVgi(x.) >0, fori € {1,...,1} such that (p.); = 0.
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We can apply Propositions 4.4.1 and 4.4.2 to problem (4.1) and simplify the result
by using the structure of (4.1). This is what we actually do in the rest of this section.
The resulting optimality conditions for problem (4.1) are stated in Propositions 4.4.3
and 4.4.4.

A point x, satisfies the first-order necessary optimality conditions for problem
(4.1) if there exist A. € IR™ and p?, 1 € IR*™™ such that

Vyf(as) Cy(z)T A 0 0\
( Vif(as) ) " ( Cu(2.)T A ) - ( o ) + ( . ) =0, (4.23)

((w)i = as) (p2)s = (bi = (ua)i) (u2)i =0, i=1,....,n—m, and

These conditions are necessary for . to be a local solution of (4.1) since the invert-
ibility of C,(x.) and the form of the bound constraints on the controls v imply the
linear independence of the equality and active inequality constraints (see Definition
4.4.1). We can use the structure of the problem to rewrite the first-order necessary

optimality conditions:

a; < (u*)z <b = (Vué(:z;*, )\*))Z = 0,
(ui); = a; = (Vul(24, X)), >0, and

One can obtain a useful form of these conditions by noting that
Vol M) = W(x )TV f(2.).

(See equations (4.14) and (4.15).) In other words, V,l(x., A.) is just the reduced
gradient corresponding to the u variables. Hence z, satisfies the first—order necessary

optimality conditions if

Clze) =0, a<u,<b,
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@i < (u)i < b = (W(@.)Vf(z.)) =0,
(ui); = a; — (W(:I;*)TVf(x*))ZZO, and
(w)i=b = (W) V() <0.

Furthermore, x. satisfies the second-order necessary optimality conditions for
problem (4.1) if it satisfies the first-order necessary optimality conditions, and if
the principal submatrix of the reduced Hessian W(:z;*)Tmeﬁ(x*,)\*)W(x*) corre-
sponding to indices ¢ such that a; < (u.); < b; is positive semi—definite, where
Ac = =Cyla) IV, f(a.).

Now we adapt the idea of Coleman and Li [24] to this context and define D(x) €

R(V™)X("=m) {5 be the diagonal matrix with diagonal elements given by

(b—u)i% if ( :I;TVf:L') < 0 and b; < +o0,

(z)"V f(z)
L it (W(@)'Vf(z)), < 0and b = +o0,
(D(x))ii = . (4.24)
(u—a)? if (W(:z;)TVf(:I;)) >0 and a; > —o0,
1 if ( (:lﬁ)TVf(:I;)) >0 and a; = —o0,
fore=1,...,n — m. In the following proposition we give the form of the first—order

and the second—order necessary optimality conditions that we use in Chapters 5 and
6. To us, they indicate the suitability of (4.24) as an affine scaling for (4.1).

Proposition 4.4.3 A point z, satisfies the first—order necessary opti-
mality conditions for problem (4.1) if

Cley) =0, a<u.<b, and
D(a )W (2.)'V f(ax) =
A point x, satisfies the second-order necessary optimality conditions for

problem (4.1) if it satisfies the first—order necessary optimality conditions

and
D)W () TV, e AW () D)
is positive semi—definite. The corresponding Lagrange multipliers are

given by A, = —Cy(x*)_TVyf(x*).

Proposition 4.4.3 remains valid for a larger class of diagonal matrices D(x). The

scalar 1 in the definition (4.24) of D(x) can be replaced by any other positive scalar
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and Proposition 4.4.3 also remains valid with D(x) replaced by D(x)?, p > 0. Most
of our convergence results in Chapters 5 and 6 still hold if D(z) is replaced by D(x)?,
p > 1. See also Remark 5.5.1. However, the square roots in the definition of D(x) are
necessary for the proof of local q—quadratic convergence of our trust-region interior—
point reduced SQP algorithms.

The form of the sufficient optimality conditions that we use requires the definition

of nondegeneracy or strict complementarity.

Definition 4.4.2 A point z in B is said to be nondegenerate if

(W(@)'Vf@) =0 = a <u <bforallie{l,....n—m}.

We now define a diagonal (n —m) x (n —m) matrix F(z) with diagonal elements

given by
(W) ro) | it (W) f(), #0,
(E(x))i = | : . i (4.25)
0 otherwise,
for 2 = 1,...,n — m. The significance of this matrix becomes clear in Section 5.1

when we apply Newton’s method to the system of nonlinear equations arising from
the first—order necessary optimality conditions. From the definitions of D(x) and

E(x) we have the following property. The proof is simple and we omit it.

Proposition 4.4.4 A nondegenerate point x, satisfies the second-order
sufficient optimality conditions for problem (4.1) if it satisfies the first—

order necessary optimality conditions and
D(z )W (2.)TV2 (20, M)W (2.) D () + E(x.)

is positive definite, where \, = —C\(z.) TV, f(z.).

4.5 Optimal Control Examples

The two examples that we describe in this section are used in Chapters 5 and 6 to

test our trust-region interior—point reduced SQP algorithms.
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4.5.1 Boundary Control of a Nonlinear Heat Equation

An application that has the structure described in this chapter is the control of a
heating process. In this section we introduce a simplified model for the heating of a
probe in a kiln discussed by Burger and Pogu [12]. The temperature y(x,t) inside the
probe is governed by a nonlinear parabolic partial differential equation. The spatial
domain is given by (0,1). The boundary # = 1 is the inside of the probe and x = 0
is the boundary of the probef.

The goal is to control the heating process in such a way that the temperature
inside the probe follows a certain desired temperature profile y4(t). The control u(t)

acts on the boundary « = 0. The problem can be formulated as follows [12]:

S LT
minimize 5/0 ((y(l, t) —ya(t))* + ’yuz(t))dt (4.26)
subject to

) = q(xvt)v (xvt) S (071) X (O,T),
) = g(y(0,1)—u(r)), te(,T),
R(y(L1)0y(1,1) = 0, te(0,T),

y(z,0) = wolz), 2z €(0,1),

Ulow S U S Uyppy
where y € L*(0,T; H'(0,1)), and v € L*(0,T). The functions 7, x € C*(IR) denote
the specific heat capacity and the heat conduction, respectively. yo € H'(0,1) is the
initial temperature distribution, ¢ € L*(0,T; H'(0,1)) is the source term, ¢ is a given

scalar, and v is a positive regularization parameter. Here wyy, tyy, € L°(0,T) are

given functions. It is shown in [12] that if the functions 7 and & satisfy

0<m <7(t) <7, |7(1)] <73,

0 <k <k(t)<kg, ()] <ks, foral t>0,

then the state equation has a unique solution in the state space

{v: vy e L=0,1;H(0,1)), y € L*0,T; H'(0,1))}

I The notation & used here for the spatial variables should not be confused with the n dimensional
vector & formed by the y and u components.
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and there exists a solution for the control problem with no bound constraints.

It the partial differential equation and the integral are discretized, we obtain an
optimization problem of the form (4.1). The discretization uses finite elements and
was introduced in [12] (see also [74], [89]). The spatial domain (0,1) is divided into
N, subintervals of equidistant length, and the spatial discretization is done using
piecewise linear finite elements. The time discretization is performed by partitioning
the interval [0, 7] into N; equidistant subintervals. Then the backward Euler method
is used to approximate the state space in time, and piecewise constant functions are
used to approximate the control space. With this discretization scheme, Cy(x) is
a block bidiagonal matrix with tridiagonal blocks resulting from stiffness and mass
matrices. Hence linear systems with C,(x) and Cy(2)T can be solved efficiently. It is
shown in [89][Lemma 3.1] that if

At < 1 <T2 1 )_1
h? 6 K1 %) ’
where At = % and h = NLE, then these tridiagonal blocks are nonsingular. Thus

Cy(x) is also nonsingular.

4.5.2 Distributed Control of a Semi—Linear Elliptic Equation

The second example is the distributed control of a semi-linear elliptic equation dis-

cussed by Heinkenschloss and Vicente [77]. The control problem is given by

o 1 2 2
minimize 5/9 ((y —y4)* + yu )d:z; (4.27)
over all y and u satisfying the state equation

—Ay+gly) = u, in Q,

(4.28)
y = d, on 0%,

and the control constraints
Ulow < U < Uypp, (4.29)

where y € HY(Q), u € L*(Q), wpw, Uupp, € L() are given functions, and Q is a
bounded domain of IR™, N = 1,2, 3, with boundary 9.

The state equation (4.27) is related to the time dependent problem g—i{ = Ay +
eV, t > 0, that arises in thermal self-ignition of a chemically active mixture of gases

in a vessel as described in Gel’fand [57].
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For g(y) = —Xe¥, u = 0, and d = 0, the state equation (4.27) reduces to the Bratu
problem:

—Ay = AeY, in €,

(4.30)
y = 0, on Jf).

This problem models diffusion phenomena in combustion and semiconductors and
has become a standard test problem for solvers of systems of nonlinear equations (see
the description by Glowinski and Keller in the collection of nonlinear model problems
assembled by Moré [104].) The numerical treatment by finite element methods and
the solvability of the Bratu problem is discussed in [62, Section IV.2], [63].

For the discretization of this optimal control problem one can use piecewise linear
finite elements for both the states and the controls. This leads to a discretized optimal

control problem of the form (4.1).

4.6 Problem Scaling

An important numerical issue, that is addressed in our implementation of the al-
gorithms presented in Chapter 5 is the problem scaling inherent in optimal control
problems. As we pointed out, the problems we are primarily interested in are dis-
cretizations of optimal control problems governed by partial differential equations.
The infinite dimensional problem structure greatly influences the finite dimensional
problem. In our implementation, we take this into account by allowing the scalar
products for the states y, the controls u, and the duality pairing needed to represent
M C(y,u) to be chosen so that they are discretizations of proper infinite dimensional
ones. It is beyond the scope of this thesis to give a comprehensive theoretical study
of these issues, but it is important to notice that the formulation of the algorithms in
Chapters 5 and 6 fully support the use of such scalar products without any changes.
This is a great advantage. In some of the numerical experiments reported in [22],
[75], this improved the performance of our algorithms significantly, it avoided artifi-
cial ill-conditioning, and it enhanced the quality of the solution computed for a given

stopping tolerance.
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Chapter 5

Trust—Region Interior—Point Reduced SQP
Algorithms for a Class of Nonlinear
Programming Problems

Nonlinear programming problems of the form (4.1) originating from optimal control
problems governed by large systems of differential equations are the targets of the
algorithms introduced in this chapter.

Our algorithms are reduced SQP algorithms that use trust—region interior—point
(TRIP) techniques to guarantee global convergence and to handle the bound con-
straints on the controls (see also Dennis, Heinkenschloss, and Vicente [36]). As we
described in Chapter 4, the structure of optimal control problems given in Section 4.1
can be used to implement and analyze SQP algorithms. In particular, to implement
reduced SQP algorithms, it is sufficient to compute quantities of the form C,(x)v,,
Cy(z)vy,, Cyu(z)vy, Cyu(x)Tv,, and to compute solutions of the linearized state equa-
tion C,(z)v, = r, and of the adjoint equation C,(z)Tv, = r. This is an important
observation, because these are tasks that arise naturally in the context of optimal
control problems. In fact, all of the early SQP algorithms, and many of the recent
ones rely on matrix factorizations, like the QR, of the Jacobian J(x) of C(x). For
the applications we have in mind this is not feasible. As we discussed in Section
4.3, the involved matrices are too large to perform such computations and very often
these matrices are not even available in explicit form. On the other hand, matrix—
vector multiplications Cy(z)v,, Cy () v,, Cu(x)vy, Cu(z)Tv, can be performed and
efficient solvers for the linearized state equation Cy(x)v, = r, and the adjoint equation
Cy(x)Tv, = r often are available.

A purely local analysis for the case with no bounds constraints has being given
in [83], [86], [87], [89]. However, we consider here the much more difficult issue of
incorporating all this structure into an algorithm that converges globally and handles

bound constraints on the control variables w.
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The global convergence of our algorithms is guaranteed by a trust-region strategy.
In our framework the trust region serves a dual purpose. Besides ensuring global
convergence, trust regions also introduce a regularization of the subproblems which
is related to the Tikhonov regularization [138] as we saw in Section 2.3.4. For the
solution of optimal control problems, the partitioning of the variables into states
y and controls u motivates a partial decoupling of step components that leads to
interesting alternatives for the choice of the trust regions. In Section 5.2.2, we use
the structure of problem (4.1) and adapt to this case the decoupled and coupled trust—
region approaches introduced in Section 3.4.2 for equality—constrained optimization.
As indicated by the names, in the decoupled approach the trust region acts on step
components separately. This allows a more efficient implementation of algorithms
for the computation of these steps. However, for problems with ill-conditioned state
equations, this decoupling does not give an accurate estimate of the size of the steps
and might lead to poor performance. In this situation the coupled approach is better,
and so we include both.

For the treatment of the bound constraints on u we use a primal-dual affine
scaling interior—point algorithm introduced by Coleman and Li [23] for problems
with simple bounds. Interior-point approaches are attractive for problems with a
large number of bounds. In our context, the affine scaling interior—point algorithm
is also of interest, because it does not interfere with the structure of the problem.
To apply this algorithm, no additional information is required from the user. This
or similar interior—point approaches have recently also been used e.g. in [7], [25],
[94], [95], [118]. The advantage of the approach in [23] is that the scaling matrix is
determined by the distance of the iterates to the bounds and by the direction of the
gradient. This dependence on the direction of the gradient is important for global
convergence and its good effect can be seen in numerical examples, see e.g. Figures
5.5 and 5.6.

We believe that the features and strong theoretical properties of these algorithms
make them very attractive and powerful tools for the solution of optimal control
problems. We applied them to a boundary nonlinear parabolic control problem, see
Section 5.8, and a distributed nonlinear elliptic control problem, see Section 6.5.
The numerical results are quite satisfactory. Our algorithms have also been applied
successfully to optimal control problems arising in fluid flow [22], [75].

This chapter is organized as follows. In Section 5.1, we discuss the application of

Newton’s method to the system of nonlinear equations arising from the first—order
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necessary optimality conditions. This is important for the derivation of our TRIP
reduced SQP algorithms. We describe these algorithms in Section 5.2. Sections 5.2.1
and 5.2.2 contain a description of the quasi—normal component and of the tangential
component. As noticed previously, the partial decoupling of the step components
motivated by the partitioning of the variables into states y and controls u and the
roles of the decoupled and coupled trust-region approaches are exposed in Section
5.2.2. A complete statement of the TRIP reduced SQP algorithms is given in Section
5.2.4.

The convergence theory for these algorithms is given in Sections 5.3, 5.4, 5.5, and
5.6. Section 5.3 contains some technical results. In Section 5.4, Theorem 5.4.1, we
establish global convergence of the iterates to solutions of the first-order necessary
optimality conditions. This result is established under very mild assumptions on the
steps, the quadratic models, and the Lagrange multipliers. It simultaneously extends
the results presented recently by Coleman and Li [23] for simple bounds and those
of Dennis, El-Alem, and Maciel [35] (see Theorem 3.6.1 in this thesis) for equality
constraints. Under additional conditions, we show convergence of the iterates to non-
degenerate solutions of the second—order necessary optimality conditions in Theorem
5.5.2, Section 5.5. This latter result simultaneously extends those by Coleman and
Li [23] for simple bounds and those by Dennis and Vicente [42] (see Theorem 3.6.3
in this thesis) for equality constraints. See Figures 1.1 and 1.2. A gq—quadratic rate
of convergence is proven in Section 5.6. Our analysis allows the application of a va-
riety of methods for the computation of the step components s and st = W(z)s,.
In Section 5.7, we discuss practical algorithms for the computation of steps and the
Lagrange multipliers that are currently used in our implementation. Numerical results

are reported in Section 5.8.

5.1 Application of Newton’s Method

One way to motivate the algorithms described in this chapter is to apply Newton’s

method to the system of nonlinear equations

C(z) =0,

(5.1)
D(@ W (2)TV f(z) = 0,
T7uT)T

where @ = (y is strictly feasible with respect to the bounds on the variables

u, i.e. a < u < b. This is related to Goodman’s approach [68] for an orthogonal
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null-space basis and equality constraints (see the discussion at the end of Section
3.2). Although D(z)? is usually discontinuous at points where (VV(:J(;)TVf(:Jc))Z =0,
the function D(2)*W (z)TV f(z) is continuous (but not differentiable) at such points.
This can be observed in Figures 5.1 and 5.2. The application of Newton’s method
to this type of systems of nondifferentiable equations has first been suggested by
Coleman and Li [24] in the context of nonlinear optimization problems with simple
bounds. They showed that this type of nondifferentiability still allows the Newton
process to achieve local q—quadratic convergence. In order to apply Newton’s method
we first need to compute some derivatives.
To calculate the Jacobian of the reduced gradient W (x)TV f(x), we write

W (2)'V f(x) = Vuf(2) + Cula) ",
where X is given by C,(z)TA = =V, f(x) and has derivatives

oA

5 = —Cyla)" (2?11V2 Ci(fl?))\rl-vf,yf(f))
= —Cy(x) TV, ),
D= —Cyla) T (D V22N + V2, ()
= —Cy(x) TV, ((x,\).
This implies the equalities
Z(W(@)Vf(z)) = Cul@)TB+ V2 f(x) + T, Vie(@)h

_ v Vil A)
2 (W(@)'Vf(@) = Cule)'L+ V2 f(2) + T VEa(o)A
= W(z)" ( zz’“i(x’A) ) )
wl(@, A)

and we can conclude that

W)V ) = W) V()
where A = —C,(z)7TV, f(z).

A linearization of (5.1) gives

Cy(x)s, + Culx)s, = —C(a), (5.2)

Su

(D(:z;)ZW(:z;)Tmeﬁ(x,)\) + ( 0 E(z) )) ( % ) = —D(2)*W(2)"'Vf(z),(5.3)
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Nondifferentiability at x = 1

Discontinuity at x = 1

Figure 5.1 Plots of D(z)?
and W(2)IV f(z) for
W(:I;)TVf(:I;) =—x+ 1 and
x € [0,4].

Figure 5.2 Plot of
D(z)*W (2)TV f(z) for
W(z)IVf(x)= —z + 1 and
x € [0,4].

where 0 denotes the (n — m) x m matrix with zero entries. Equation (5.2) is the
linearized state equation. The matrix E(x) was defined in (4.25), Section 4.4. The
diagonal elements of F(x) are the product of the derivative of the diagonal elements
of D(z)? and the components of the reduced gradient W(z)TV f(z). The derivative of
(D(x)?);; does not exist if (VV(:J(;)TVf(:Jc))Z = 0. In this case we set the corresponding

quantities in the Jacobian to zero (see references [23], [24]). This gives the equation

(5.3).
By using (4.3) we can rewrite the linear system (5.2)—(5.3) as

s = s+ W(x)s,,
(D()?W (2)" V2,2, W (2) + B(x)) 5,
= —D(x)*W(2)" (VZ,l(x,\)s% + V[(2)).
We define our Newton-like step as the solution of

s =894+ W(x)s,,

(D)W (2)"V2 (2, WW (2) + E(x)) 5,

— —D(@)*W ()T (V2,0 \)s? + V().
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where D(z) € ROV™)X(=m) g the diagonal matrix defined by

(b—w)? it (W) (V2,02 \)s + Vf(x))) < 0and b; < +oc,
(B(@) 1 it (W) (V20(x, A)s% + V() < 0and b; = +oo,
D(x 9w — 1 !
(w—a)? it (W(x)" (V2 \)s9+ Vf(x))) > 0anda; > —oo,
1 if (W(:L')T (V2. 0(z, \)s + Vf(:z;))) > 0 and a; = —o0,
(5.7)
forz =1,...,n —m. This change of the diagonal scaling matrix is based on the form

of the right hand side of (5.4).
It = is close to a nondegenerate point z. satisfying the second—order sufficient
optimality conditions and if W (x)TV?2_((x, A)s9 is sufficiently small, a step s defined

in this way is a Newton step on the following system of nonlinear equations

C(z) =0,

(5.8)
D(x)iW (2)"V f(x) = 0,

where D(x), depends on x. as follows:

lor —1lor(b— u)? or (u — a)i% if (W(:z;*)TVf(x*)) =0,

7

(D(2)a)i; = (b—u)? if (W(2.)TV f(2.)), <0,

K3

(u - a)? it (W) f(2.), >0,

fore=1,...,n—m. If (W(J}*)TVJC(J}*))Z = 0, the +-th principal diagonal element
of D(x), has to be chosen so that D(x), and D(x) are the same matrices. Of course,
this depends on the sign of (W(:z;)T(Vigcﬁ(x, A)si —I—Vf(:Jc)))Z As Coleman and Li [24]
pointed out, D(x), is just of theoretical use since x. is unknown. One can see that
D(z)2W (2)TV f(z) is continuously differentiable with Lipschitz continuous deriva-
tives in an open neighborhood of ., that D(x.):W (z.)TV f(z.) = 0, and that the
Jacobian of D(z)*W (z)IV f(x) at . is nonsingular, for all choices of D(x),. These
conditions are those typically required to get q—quadratic convergence for the Newton
iteration (see [39][Theorem 5.2.1]). The interior—point process damps the Newton step
so that it stays strictly feasible but this does affect the rate of convergence. The details
are provided in Corollary 5.6.1.



80

5.2 Trust—Region Interior—Point Reduced SQP Algorithms

The algorithms that we propose generate a sequence of iterates {z} where

Yk
xk: ( )7
up,

and wuy is strictly feasible with respect to the bounds, i.e. @ < u, < b. At iteration
k we are given zj, and we need to compute a step s;. If s; is accepted, we set
Tpr1 = Tp + Sg. Otherwise, we set xry1 to zy, reduce the trust-region radius, and
compute a new step.

Following the application of Newton’s method (5.5), each step s is decomposed
as

sp =57+ st =57 4+ Wilsp)u,

where s} is called the quasi-normal component and st is the tangential component.
The role of s is to move towards feasibility whereas the role of st is to move towards
optimality. The definition of the quasi-normal component, the tangential component,

as well as the complete formulation of our algorithms is the content of this section.

5.2.1 The Quasi—Normal Component

Let 6; be the trust radius at iteration k. The quasi-normal component s; is related

to the trust-region subproblem for the linearized constraints
1
minimize §HJksq + Cr|?
subject to  ||s%|| < b,

and it is required to have the form

9 = ( (Sg)y ) . (5.9)

Thus the displacement along s} is made only in the y variables, and as a consequence,
xp and zp 4 s) have the same u components. The calculation of the quasi-normal
component is illustrated in Figures 5.3 and 5.4. Since (s}), = 0, the trust-region

subproblem introduced above can be rewritten as
1
minimize 5]\Cy(:1;k)(5q)y + Cr|? (5.10)

subject to 1(s9)y ]| < 6. (5.11)
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Thus, the quasi-normal component s} is a trust-region globalization of the compo-
nent s9 given in (4.4) of the Newton step (5.5). We do not have to solve (5.10)—(5.11)
exactly, we only have to assume that the quasi-normal component satisfies the con-
ditions

sl < wallCxll (5.12)

and

OR[> = 1Cy(xa)(5)y + Cull* = 2| Cill min{rs||Cell, 64}

()l < 8k,

where k1, k9, and k3 are positive constants independent of k. In Section 6.3, we

(5.13)

describe several ways of computing a quasi-normal component that satisfies the re-
quirements (5.9), (5.12), and (5.13). Condition (5.12) tells us that the quasi-normal
component is small close to feasible points. The decrease condition (5.13) is a form
of Cauchy decrease or simple decrease for the trust-region subproblem (5.10)—(5.11).

See Section 3.4.1 for more details.

5.2.2 The Tangential Component

The computation of the tangential component (si), follows a trust-region globaliza-
tion of the Newton step (5.6). Following Coleman and Li [23] we symmetrize (5.6)
and get

(DyWE H,Wi Dy + 1) Ditsy = —DyW)E (His + Vi)

where Dy, = D(x}), By = E(x}), and Hj, denotes a symmetric approximation to the
Hessian matrix V2 ;. This suggests the change of variables §, = Dj's, and the

consideration in the scaled space §, of the trust-region subproblem:
_ T 1 _ _
minimize  (DyW{ (Hisp + Vi) 8u + S (DWW HyWi Dy + ) 3,
subject to I|5.]] < k.
Now we can rewrite the previous subproblem in the unscaled space s, as

minimize (W7 (Hys? + V1)) o+ LT (WEHW, + EDR?) s,

) (5.14)
subject to || D;'s,|| < 6.

Of course, we also have to require that the new iterate is in the interior of the

box constraints. To ensure that uy + s; is strictly feasible with respect to the box
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constraints we choose oy, € [0,1), 0 € (0,1), and compute s, with op(a — uy) < s, <
or(b — uy). However, one of the strength of this trust-region approach is that we
can allow for approximate solutions of this subproblem with or without the bound
constraints. In particular, it is not necessary to solve the full trust-region subproblem
including the box constraints. For example, one can compute the solution of the trust—
region subproblem without the box constraints and then scale the computed solution
back so that the resulting damped s, obeys op(a—uy) < s, < op(b—uy). We show that
under suitable assumptions this strategy guarantees global convergence and local q—
quadratic convergence. Another way to compute an approximate u component of the
step is to use a modification of the Conjugate—Gradient Algorithm 2.3.2 for the trust—
region subproblem that is truncated if one of the bounds oy (a —uy) < s, < op(b— uy)
is violated. See Section 5.7.1. More ways to compute the tangential component are
possible. The conditions on the tangential component necessary to guarantee global
convergence are stated later in this section.

We now introduce a quadratic model

1 ~
i) = qelsi + Wasa) + 35, (ExDR?) s, (5.15)
where, as in Section 3.2,
1
ar(s)+ Wisy) = qu(s]) + gl sy + §3uTWngWk5u (5.16)

is a quadratic model of {(xy + s, \g) about (xx, Ag), and

Gr = WEVar(s) = W (His + V).

The Decoupled Trust—Region Approach

We can restate the trust-region subproblem (5.14) as
minimize  Wi(s,) (5.17)
subject to || Dy sy < 8. (5.18)

We refer to the approach based on this subproblem as the decoupled approach. In
this decoupled approach the trust-region constraint is of the form || Dy's,| < &
corresponding to the constraint ||3,]| < 6y in the scaled space. One can see from
(5.11) and (5.18) that we are imposing the trust region separately on the y part of the

quasi-normal component and on the u part of the tangential component. (In Figure
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5.3, the tangential component is depicted for the decoupled approach.) Moreover,
if the cross—term W[ Hys] is set to zero, then the trust-region subproblems for the

quasi—normal component and for the tangential component are completely separated.

The Coupled Trust—Region Approach

The approach we now present forces both the y and the u components of the tangential
component 32 = Wi(sk)y to lie inside a trust region of radius dy. See Figure 5.4. The

reference trust-region subproblem is given by
minimize  Wi(s,) (5.19)

_ -1
subject to H( Cy(l'k) ICu(:L’k)su )
D]; Su

Recall from Section 3.4.2 that in the case where there are no bounds on w this trust—

< 6p (5.20)

region constraint is of the form
-1

As opposed to the decoupled case, one can see that the term Cy(x)  Cy(xy)s,
is present in the trust-region constraint (5.20). If W, denotes the Moore-Penrose
pseudo inverse of Wy (see [66][Section 5.5.4]), then

el < IWasel) < Wl s
Thus, if the condition number x(Wy) = ||[WF||||W]| is small, then the decoupled and
the coupled approach generate similar iterates. In this case, the decoupled approach
is more efficient since it uses fewer linear system solves with the system matrix Cy(xy).
See Section 5.7.1. However, if k(W) is large, e.g. if Cy(xy) is ill-conditioned, then the
coupled approach uses the size of the tangential component st, whereas the decoupled
approach may underestimate vastly the size of this step component. This can lead
to poor performance of the decoupled approach when steps are rejected and the
trust-region radius is reduced based on the incorrect estimate ||s,|| of the norm of

= Wys,. This indicates that when C,(x) is ill-conditioned the coupled approach

offers a better regularization of the step.
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Figure 5.3 The quasi-normal and tangential components of the step for
the decoupled approach. We assume for simplicity that Dy = (1).

Cauchy Decrease for the Tangential Component

To assure global convergence to a point satisfying the first—order necessary optimality
conditions, we consider analogs for the subproblems (5.17)—(5.18) and (5.19)—(5.20)
of the fraction of Cauchy decrease condition (2.7) for the unconstrained optimization

problem.
First we consider the decoupled trust-region subproblem (5.17)-(5.18). The Cau—
chy step cg for this case is defined as the solution of

minimize \I/k(cd)
subject to HD;lcdH < o, e span{—Djgx},
orla—u) < e < op(b—wp),

where —D,ﬁgk is the steepest—descent direction for Wy(s,) at s, = 0 in the norm
|D7"-||. (See Section 2.3 for general definitions of Cauchy steps and steepest—descent
directions.) Here oy € [0,1) ensures that the Cauchy step cg remains strictly feasible
with respect to the box constraints. The parameter o € (0,1) is fixed for all k. We

require the tangential component (sg), with ox(a —ug) < (sp)u < ok(b — uy) to give
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Figure 5.4 The quasi-normal and tangential components of the step for
the coupled approach. We assume for simplicity that D = (1).

a decrease on Wy(s,) smaller than a uniform fraction of the decrease given by cg for
the same function Wy(s,). This fraction of Cauchy decrease condition can be stated
as

Wi(0) = Wi((s1)u) = B¢ (Wa(0) — We(c))

(s )ull < 6k, (5.21)

where ﬂfl is positive and fixed across all iterations. It is not difficult to see that dogleg
or conjugate—gradient algorithms of the type 2.3.1 and 2.3.2 can compute components
(sk)u conveniently that satisfy condition (5.21) with ﬂfl = 1. We leave these issues to
Section 5.7.1.

In a similar way, the component (s;), with og(a—uy) < (sg)y < ok(b—uy) satisfies
a fraction of Cauchy decrease for the coupled trust-region subproblem (5.19)—(5.20)
if

(5.22)
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for some 37 independent of k, where the Cauchy step cf. is the solution of
minimize — Wg(c°)

—%@M%me)

C N2~
iy <6, € span{-Dig}

subject to H (

or(a —uy) < ¢ < op(b—uy).

In Section 5.7.1, we show how to use conjugate—gradient type algorithms to compute
components (sg), satisfying the condition (5.22).

One final comment is in order. In the coupled approach, the Cauchy step cf
was defined along the direction —D3?g,. To simplify this discussion, suppose that
there are no bounds on u. In this case the trust-region constraint is of the form
|Wisu|| < 6k. The presence of Wy gives the trust region an ellipsoidal shape. The
steepest—descent direction for the quadratic (5.15) in the norm |W} || at s, = 0 is
given by —(WIW;)~'gy. Our analysis still holds for this case since {||[(WI W)~}
is a bounded sequence. See the discussion in Section 3.4.2 for the coupled approach.
The reason why we avoid the term (WIW})~! is that in many applications there is
no reasonable way to solve systems with W W,. We show in Section 5.7.1 how this
affects the use of conjugate gradients (see Remark 5.7.1). Finally, we point out that

this problem does not arise if the decoupled approach is used.

Optimal Decrease for the Tangential Component

The conditions in the previous subsection are sufficient to guarantee global conver-
gence to a point satisfying first—order necessary optimality conditions, but they are
too weak to guarantee global convergence to a point satisfying second—order necessary
optimality conditions. To accomplish this, just as in the unconstrained case [106],
[132], in the box—constrained case [23], and in the equality—constrained case [42], [48],
we need to make sure that s, satisfies an appropriate fraction of optimal decrease
condition.

First we consider the decoupled approach and let og be an optimal solution of the
trust-region subproblem (5.17)—(5.18). It follows from the application of Proposition
2.3.3 that there exists v, > 0 such that

W,;[Hka + By D% + D% is positive semi-definite, (5.23)

(WkTHka + EkD;Q + ’}/kD;Q)Og == —gk, and (524)
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(6 = 1D efll]) = 0.

Since uy + og might not be strictly feasible, we consider TkOg, where 74 is given by

b; — i i—a |
T = O min{l, maX{ (ue)i (ue)i —a }, 1= 1,...,n—m}. (5.25)

(o) 7 (o)

With this choice of 71, uy + TkOg is strictly inside the box constraints B.

The tangential component (si), then is required to satisfy the following fraction

of optimal decrease condition

W4 (0) = Wil(sk)u) = 85 (W4(0) = Wi(reof))) |

o ; (5.26)
1D;" (si)ull < B50%

where ﬂQd, ﬂg are positive constants independent of &.

From conditions (5.24), (5.26), and 7, < 1, we can write

Wa(0) = Un((sn)) 2 58 (—maalof — S (WE WL+ BuDT) (o))

_ 1 .
> B (—9?02 - 5(02)T (W) 1 W, + B DR?) (02))
L 4 d
= 5087 (I Beof | + 7:07)
1
> By (5.27)

where W,;‘FHka + EkD;Z + ’ykD;Q = R{Rk.
Now let us focus on the coupled approach and let of be the optimal solution of

the trust-region subproblem (5.19)—(5.20). In this case of satisfies
W H Wy + B D + v (D2 + WEW = 1)
is positive semi-definite, (5.28)

(W HyWi + E D + 3 (DF2 + W Wy = Li_ ) )of = —gi. and (5.29)

(o))

Now we damp of with 7, given as in (5.25) but with og replaced by of. Thus, the

resulting step uy+ 7 of, is strictly feasible. We impose the following fraction of optimal
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decrease condition on the tangential component (s),:

W4 (0) = Wil(sk)u) = B5(Wr(0) — Wa(70f))

(—@kaQmem)
D (sk)u

(5.30)
S ﬂ:(%:&k )

where (5, 35 are positive and independent of k. In this case it can be shown in a way
similar to (5.27) that

W4(0) — V() 2 5 F5mied? (5.31)

5.2.3 Reduced and Full Hessians

In the previous section we considered an approximation Hj to the full Hessian V?2_{y.
The algorithms and theory presented in this and in the following chapters are also

valid if we use an approximation Hj, to the reduced Hessian WI'VZ2 (,W;. In this
0 0

Hy, = N . (5.32)
0 Hy

WIHW, = H,.

case we set

Due to the form of Wy, we have

This allows us to obtain the expansion (5.16) in the context of a reduced Hessian
approximation.

For the algorithms with reduced Hessian approximation the following observations

ma = [ .0 )
Hyd,

d'Hyd = dYHpd,, (5.33)

are useful:

WIHd = Hd,,

U

d
where d = ( dy ) c IR"™.
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5.2.4 Outline of the Algorithms

We need to introduce the merit function and the corresponding actual and predicted

decreases. The merit function used is the augmented Lagrangian
Lz, X p) = f(2) + X C(2) + pC(2)"C(2).
The actual decrease at iteration k is defined as
ared(sg; pr) = L(xg, Ax; pp) — L(xk + Sk, A1 pr),
and the predicted decrease as
pred(si pr) = L{ze, A pr) — (ax(s1) + AN (Jise + Ci) + pall Jusk + Cill?)

with AX, = A1 — Ak

These choices of actual and predicted decreases are the same as in Section 3.4.3
for equality—constrained optimization. A possible redefinition of the actual and pre-
dicted decreases is obtained by subtracting the term %(Sk)g (EkD;Q) (8k)y from both
ared(sy; pr) and pred(sg; pr). This type of modification was suggested in [23] for
optimization with simple bounds, and it does not affect the global and local results
given in this and in the following chapters.

To decide whether to accept or reject a step s, we evaluate the ratio

ared(sg; pr)
pred(si; p)
To update the penalty parameter pg we use the scheme proposed in [47] and already
used in Algorithm 3.4.1 for equality constraints.
We now can outline the main steps of the trust-region interior—point (TRIP)
reduced sequential quadratic programming (SQP) algorithms. We leave the practical

computation of s7, (s1)y, and Ay to Section 5.7.

Algorithm 5.2.1 (TRIP Reduced SQP Algorithms)

1 Choose x¢ such that a < ug < b, pick 69 > 0, and calculate Ag.
Choose a1, 11, 0, dmins Omaz, p, and p_y such that 0 < aq,m1,0 < 1,
0 < dmin < bmaz, p>0,and p_4 > 1.

2 For k=0,1,2,... do



2.1
2.2

2.3
2.4

2.5

2.6

Stop if (g, A\i) satisfies the stopping criterion.
Compute s) based on the subproblem (5.10)—(5.11).
Compute (sg), based on the subproblem (5.17)—(5.18) (or (5.19)-
(5.20) for the coupled approach) satisfying
op(a —ug) < (sp)u < (b — ug),
with o € [0,1). Set s = 32 + st = 32 + Wi (5k)u-
Compute Ap1q and set Ay = Apyq — A
Compute pred(sg; pr—1):
gx(0) = gilsk) — AN (Jksi + Cr) + pror (ICRl* = [ Jiese + Cxl[?).

(ICkI* = [l Jksi + Cel?) then set py =

If pred(sy; pr—1) > 25

pr—1. Otherwise set
B 2 (Qk(Sk) — qx(0) + AN (Jpsp + Ck))
. [Cl = T1Jise + ClP

I ared(sg;pr)
pred(sk;pr)

+ p.

< 1, set

01 = o maX{HSEH, HD,;l(Sk)uH} in the decoupled case or

( ~Cfa) M Cufan) el ) } i the
Dlzl(Sk)u

I max{uszu,

coupled case, and reject sg.
Otherwise accept sp and choose 6y such that
maX{5min7 5k} S 5k—|—1 S 5max-

It s was rejected set xpy1 =  and Mgy = Ap. Otherwise set
Th41 = Tk + Sk and )‘k-l-l = )\k + A)\k
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A reasonable stopping criterion for global convergence to a stationary point is

| Dgrl] + |Cx|| < €ror for a given e, > 0. If global convergence to a point satisfying

the second—order necessary optimality conditions is the goal of the algorithms, then

the stopping criterion should look like || Dxgrl| + ||Cxll + v& < €101, Where 4 is the
Lagrange multiplier associated with the trust—region constraint in (5.18) (or (5.20))

that satisfies equation (5.23) (or (5.28)).

Once again we point out that the rules to update the trust radius in the previous

algorithm can be much more involved to enhance efficiency, but the above suffices for

our presentation.
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5.2.5 General Assumptions

In order to establish local and global convergence results we need some general as-
sumptions. We list these assumptions below. They extend for our problem (4.1) the
assumptions in Chapter 3 for equality—constrained optimization. Let ) be an open

subset of IR" such that for all iterations k, x; and x; + s, are in €.

Assumptions 5.1-5.6

5.1 The same as Assumption 3.1.
(The functions f, ¢;, ¢ = 1,...,m are twice continuously differentiable functions

in €.)

5.2 The partial Jacobian C,(z) is nonsingular for all & € €.
(This implies Assumption 3.2.)

5.3 The same as Assumption 3.3.
(The functions f, Vf, V2f, C, J, and V?¢;, i = 1,...,m, are bounded in Q.)

5.4 The same as Assumption 3.4.
(The sequences {Wy}, {Hy}, and {\;} are bounded.)

5.5 The matrix C;'(z) is uniformly bounded in Q.
(This implies Assumption 3.5.)

5.6 The sequence {u} is bounded.

It is not difficult to see that when the equality constraints of problem (3.1) reduce
to the equality constraints of problem (4.1), Assumptions 5.1-5.5 given above imply
Assumptions 3.1-3.5 given in Chapter 3. Assumption 5.6 is used by Coleman and Li
[23] for optimization problems with simple bounds.

It is equivalent to Assumptions 5.3-5.6, that there exist positive constants

Vg, ..., Vs independent of k such that
|[f(z)| < wo, V@ Svi, (V)| Svey [IC@) S vs, ()] < v,
|Vici(z)|| <ws, 1=1,....m, and |Cy(2)7| < v

for all x € 2, and

IWill < ve, [[Hill < vry [l Svs, and [ Di]] < e,
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for all k.

For the rest of this chapter we suppose that Assumptions 5.1-5.6 are always sat-
isfied.

As we pointed out earlier, our approach is related to the Newton method presented
in Section 5.1. The u component (sN), of the Newton step sN = s 4+ Wi(sN),,
whenever it is defined, is given by

_ -1 _
(sM)u = — (D}WIHW, 4+ Ey) Dige -
_ _ _ -1 _ .
= Dy (D WEHW Dy + Ey) ™ Digi

9 = ( —Cy(wg)_lck ) (5.35)

where

and g, = W,;‘F(Hksz + ka) From (5.34) we see that that the Newton step is
well defined in a neighborhood of a nondegenerate point that satisfies the second—
order sufficient optimality conditions and for which W[ Hys} is sufficiently small. To

guarantee strict feasibility of this step we consider a damped Newton step given by
0+ WM (s (5.36)

where (Sy)u and s} are given by (5.34) and (5.35) respectively, and

R e o R A

If Algorithms 5.2.1 are particularized to satisty the following conditions on the

steps, on the quadratic model, and on the Lagrange multipliers, then we can prove

global and local convergence.

Conditions 5.1-5.4

5.1 The quasi-normal component s satisfies conditions (5.9), (5.12), and (5.13).
The tangential component (sy), satisfies the fraction of Cauchy decrease con-

dition (5.21) ((5.22) for the coupled approach).

The parameter oy, is chosen in [0, 1), where o € (0, 1) is fixed for all k.

5.2 The tangential component (s;), satisfies the fraction of optimal decrease con-

dition (5.26) ((5.30) for the coupled approach).



93

5.3 The second derivatives of f and ¢;, ¢ = 1,...,m are Lipschitz continuous in ().
The approximation to the Hessian matrix is exact, i.e. Hy = V2 _{(xy, \¢) with

Lagrange multiplier A\ = —C,(2)" 1V, fx.

5.4 The step s is given by (5.36) provided (Sy)u exists, (s7), lies inside the trust
region (5.11), and 7N(sN), lies inside the trust region (5.18) ((5.20) for the
coupled approach).

The parameter oy is chosen such that op > o and |op — 1] is O (HDkaH)

Condition 5.1 assures global convergence to a point satisfying the first—order neces-
sary optimality conditions. Global convergence to a nondegenerate point that satisfies
second—order necessary optimality conditions requires Conditions 5.1-5.3. To prove

local g—quadratic convergence, we need Conditions 5.1, 5.3, and 5.4.

Remark 5.2.1 A very important point here is that there is no need to
add to Conditions 5.1-5.3 the condition (3.19) on the quasi-normal com-
ponent s7. We recall that this latter condition was required in Chapter
3 to prove global convergence to a point satisfying the second—order nec-
essary optimality conditions. In fact, given the form (5.9) of 57 imposed
in Condition 5.1 and the adjoint update of A described in Condition 5.3,

we have V,(1s] = 0 (see expression (5.54)).

5.3 Intermediate Results

We start by pointing out that, as in Section 3.5, (5.13) with the fact that the tangential

component lies in the null space of J; together imply that
ICH® = 1 Tkse + Cell* 2 kol | Crll min{ss]|Cll, 8- (5.38)

We calculated the first derivatives of A(z) = —C\(z)~TV, f(z) in Section 5.1. Tt is
clear that under Assumptions 5.3 and 5.5 these derivatives are bounded in €. Thus,
if A; is computed as stated in Condition 5.3, then there exists a positive constant g
independent of & such that

[AN] < mollsill (539)

From HSZH < bpae and Assumptions 5.3-5.4 we also have

gl = W (His? + V£i) || < v, (5.40)
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where 111 = vs(Vr0mar + 11).
The following result is a direct consequence of the scheme that updates p; in Step
2.4 of Algorithms 5.2.1. This result is exactly the same as in Lemma 3.5.1 and we

just state it for completeness.
Lemma 5.3.1 The sequence {p;} satisfies

pr = pr—1 > 1 and
pred(sip) = T(ICUP ~ s+ CulP). (5.4

The following lemma relating the sizes of ||s|| and 65 is required also for the

convergence theory.
Lemma 5.3.2 Let Assumptions 5.1-5.6 hold. Every step satisfies
skl < Kad (5.42)
and, if s is rejected in Step 2.5 of Algorithms 5.2.1, then
Okt1 > Ksl|skl, (5.43)
where x4 and k5 are positive constants independent of k.

Proof In the coupled trust-region approach we bound st as follows:

( —Cy(21) " Cu(21) 50 ) ( In 0 ) ( —Cy (1) O (1) 50 )H
0 Dy

Sy D;lsu
S (1 —I'VQ) 5k7

where vy is a uniform bound for ||Dg||, see Assumption 5.6. Since HSZH < b, we
obtain [[sk]| < (2 4 vg) 6. It is not difficult to see now that in Step 2.5 we have
S = 2 min {1, 2} lsill.

In the decoupled approach, ||sk|| = Hsz + Wi(sk)ul| < (1 4 vere)dr and similarly

Opg1 > min{l, 1,611,9} ||sk||, where v is a uniform bound for ||Wj||, see Assumption
5.4.

We can combine these bounds to obtain
skl < max{2 4 vg, 1 + vero} O,

S > Zmin {1, 2 b sl

- 2 1-|—l/9 ? Vg Vg

In the case where fraction of optimal decrease (5.26) or (5.30) is imposed on (s ).,

the constants k4 and k5 depend also on ﬂg and 5. (]
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In the following lemma we rewrite the fraction of Cauchy decrease conditions

(5.21) and (5.22) in a more useful form for the analysis.

Lemma5.3.3 Let Assumptions 5.1-5.6 hold. If (s), satisfies Condition
5.1 then

e(s)) — (s 4+ Wilsk)u) > kel Digell miH{MHDk%H, /€85k}7 (5.44)

where kg, k7, and kg are positive constants independent of the iteration

k.
Proof From the definition (5.15) of U} we find
es) — anlsf + Walsi)e) > auls) = ae(sd + Wilsn)) — s (BDF?) (su)e
= Uu(0) — Wr((sk)u)- (5.45)

Let &, be the maximum | D7t - || norm of a step, say (3 )., along —Dk”g—zn allowed
inside the trust region. Here g, = Dy gy.

If the trust region is given by (5.18), then
b = by (5.46)

If the trust region is given by (5.20), then we can use Assumptions 5.4-5.6 to
deduce the inequality

| = Cylar) ' Cular) De Dy (3k)ul)?

+ 1D (55)|?
< (3vd + DD (Gr)u)?
(viv2 +1)67,

or, equivalently,
N 1

o > ——

NIz Iz

Define ¥ : RT — IR as ¥ (t) = ¥, (—tDk”g—Z”) — W (0). Then ¢(t) = —||gx||t +

% and j-]\k = Dy (WngWk + EkD;Q) Di. Now we need to
minimize ¢ in [0, T;] where T}, is given by

N Dyg Dyg
T, = min{(Sk, o min{ 1D 2 (gr)i > 0}, oy, min{— 1D 2 (gr)i < 0}}

(Gr)s (Gr)s

Y

8. (5.47)

Tk 42 —
1%, where r, =




96

Let ¢} be the minimizer of ¥ in [0, T}]. As in the proof of Lemma 2.3.1 (see equations
(2.8) and (2.9)), it easily can be proved that

G

min{ ——= ,Tk} : (5.48)
{ | H|

A

o(15) < — 3l

We can combine (5.45) and (5.48) with

W(0) = Wil(si)u) = B8 (Wi(0) — Wi(ed)) =~ (17)

to get

Lodiia e ) 19k
D) = T+ Wilon)) = gl min{ 2L 731}
I

The facts that o > o and ||gk|| < va1 (see (5.40)) imply that

W(0) = Wi((sk)u) (5.49)

Lodii - : [ [ 05
> =B || Drgr|| min { — — — 7m1ﬂ{5k7— Dygr } -

To complete the proof, we use (5.46), (5.47), Assumptions 5.1-5.6, and 6, < 6pax
to establish (5.44) with k¢ = %min{ﬂf,ﬂf}, K7 = min{é z }, and kg =

1/21/71/34—1/1 ve ) 111

; 1
min {1, m} (]
Now we state the convenient form of the fraction of optimal decrease conditions

(5.26) and (5.30).

Lemmab5.3.4 Let Assumptions 5.1-5.6 hold. If (sy), satisfies Condition
5.2 then

gr(57) = qr(s] + Wilse)u) > komii6}, (5.50)

where kg 1s a positive constant independent of the iteration k.

Proof The proof follows immediately from observation (5.45) and conditions (5.27)
and (5.31). (]

We also need the following two inequalities. (See Lemma 3.5.3 for a similar result.)

Lemma5.3.5 Let Assumptions 5.1-5.6 hold. Under Condition 5.1 there

exists a positive constant k1o such that

0(0) = aqr(s) — AN, (Jisy, + Ci) = —rrol|Ci]|- (5.51)
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Moreover, if we assume Condition 5.3, then
0+(0) = gr(s}) = AN (Jwsic+ Ci) = —wnl|Cull (sF + llsell) - (5.52)

Proof The term ¢4(0) — qk(sz) can be bounded using (5.12) and HSEH < 4; in the

following way:

g (0) — qe(s]) = —Vullsl = L(sHTHy(s})
> —rr (IValell + L8cll Hill) |l

On the other hand, it follows from ||Jysx + Ci|| < ||Ck|| that

Combining these two bounds with Assumptions 5.3-5.4 we get (5.51).
To prove (5.52) we first observe that, due to the definition of Ay in Condition 5.3

and to the form (5.9) of the quasi-normal component sj,

T
Vo (Ts9 = 0 (s ) _ (5.54)
TR Voufr + Culzp)T Ax 0 ' '

1 1
06(0) = ax(s) = = ril Hell IICell l1sEll = —5rawm IChll sl (5.55)

Thus

Also, by appealing to (5.39) and (5.53),
The proof of (5.52) is complete by combining (5.55) and (5.56). ]

The convergence theory for trust-region algorithms traditionally requires consis-

tency of actual and predicted decreases. This is given in the following lemma.

Lemma5.3.6 Let Assumptions 5.1-5.6 hold. Under Condition 5.1 there

exists a positive constant k1, such that

lared(sis pr) — pred(sk pi)l < w2 (Isell? + pe (Isell® + 1CEN 1s01%)) -
(5.57)

Moreover, assume also Condition 5.3, and then

jared(sy: pi) — pred(ses pi)l < wuspr (s ” + 1Cell l1se]?) - (5.58)
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Proof The bulk of the proof is the same as the proof of Lemma 3.5.4. The estimate
(5.57) is a direct consequence of (3.37) and of the boundedness of {||AX;z||} (see

Assumption 5.4) whereas estimate (5.58) comes from (3.38) and inequality (5.39).
O

5.4 Global Convergence to a First—Order Point

The proof of global convergence to a point satisfying the first-order necessary op-
timality conditions (Theorem 5.4.1) established in this section follows the structure
of the convergence theory presented in [35] for the equality—constrained optimization
problem. This proof is by contradiction and is based on Condition 5.1. We show that
the supposition

HDkaH + |Ckl| > €tors
for all %, leads to a contradiction.

The following three lemmas are necessary to bound the predicted decrease.

Lemma 5.4.1 Let Assumptions 5.1-5.6 hold. Under Condition 5.1 the
predicted decrease in the merit function satisfies

pred(si;p) > #l| Digil| min {7 ]| Degll, ws6i } (5.59)
—k10l[Crll + pUICkII* = 1 ksk + Cell*),

for every p > 0.

Proof The inequality (5.59) follows from a direct application of (5.51) and from
the lower bound (5.44). O

Lemma 5.4.2 Let Assumptions 5.1-5.6 hold. Assume that Condition
5.1 and || Digr|| + ||Ckll > €1 are satisfied. If ||Ck|| < 06y, where 8 is a
positive constant satisfying

o ol . [2K7€
o< min{ Ctol  i6Ctol mm{ Rl /438}} , (5.60)

5maav7 3510 35maac 7

then
K ~ . = _
pred(siip) = 2| Dagell min {nr|| Digi wsi}

+p (HCkHZ — | Jksk + CkHz) , (5.61)

for every p > 0.
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Proof From || Dygx|| + ||Ck|l > €1 and the first bound on # given by (5.60), we get

_ 2
1Dkgell > 5 erot: (5.62)

If we use this, (5.59), and the second bound on 6 given by (5.60), we obtain

pred(sp;p) > %GHDkaHmiﬂ{’f7HDk§kH7/€85k}+ ragtal min{ 2L kg }
— k10l Crll + p(IICKII? = [[ sk + Cil?)
> 52| Dygi || min {7 || Digill. mséi b + p(I1CK]I = | Jusk + Cl?).
]
We can use Lemma 5.4.2 with p = py_; and conclude that if HDkaH +|Ck||l > €t

and ||Cy|| < 6k, then the penalty parameter at the current iteration does not need
to be increased. See Step 2.4 of Algorithms 5.2.1.

Lemma 5.4.3 Let Assumptions 5.1-5.6 hold. Assume that Condition
5.1 and || Drgr|| +|Cr|l > €1 ave satisfied. If [|Ck|| < 06y, where 0 satisfies
(5.60), then there exists a positive constant x14 > 0 such that

pred(sg; pr) > K140. (5.63)

Proof From (5.61) with p = p;, and || Dygx|| > %qol, cf. (5.62), we obtain

. Kg€ . 2K7€
pred(sg;pr) > g min{ Fe | kgoy )
B6Etol i S 2E7€Lol
> gt min{ STl kg }oy.

Hence (5.63) holds with

o feCtol min{Zmetoz . }
14 — y V8 (.
3 36 maz

The following lemma is also required.

Lemma 5.4.4 Let Assumptions 5.1-5.6 hold. Under Condition 5.1, if
| Drgrll + ||Ckll > €ror for all k then the sequences {pp} and {L;} are

bounded and é; is uniformly bounded away from zero.
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Proof See Lemmas 7.9-7.13, 8.2 in [35]. 0
Our first global convergence result follows.

Theorem 5.4.1 Under Assumptions 5.1-5.6 and Condition 5.1 the se-
quences of iterates generated by the TRIP Reduced SQP Algorithms 5.2.1

satisfy
lim inf (DLW fell +11C3l) = 0. (5.64)

Proof The proof is by contradiction. Suppose that for all &
1 Drgill + |Cxll > €ror- (5.65)

At each iteration k either ||Cy|| < 065 or ||Cy|| > 06y, where 6 satisfies (5.60). In the

first case, we appeal to Lemmas 5.4.3 and 5.4.4 and obtain

pred(sk; pr) > K140x,

where 6, is the lower bound on ¢ given by Lemma 5.4.4. If ||Cy|| > 6065, we have
from pr > 1, (5.38), (5.41), and Lemma 5.4.4, that

pred(sg; pr) > %0 min{ksf, 1}6..

Hence pred(sy; pr) > k15 for all k, where the positive constant k15 does not depend
on k. From this and (5.57) we establish

ared(Sk; Pk) - pred(sk; Pk)
pred(sk; pr)

R12
< 2 (el o (sl +0CkHsl)) < mao

where p, is the upper bound on p; guaranteed by Lemma 5.4.4. From the rules that
update 0 in Step 2.5 of Algorithms 5.2.1 this inequality tells us that an acceptable
step always is found after a finite number of unsuccessful iterations. Using this fact,
we can ignore the rejected steps and work only with successtul iterates. So, without

loss of generality, we have
Ly — Liy1 = ared(sg; pr) > mpred(sg; pr) > mK1s.

Now, if we let k£ go to infinity, this contradicts the boundedness of {L;} guaranteed
by Lemma 5.4.4. Hence the supposition (5.65) is false, and we must have that

lim inf (|| Dsgal + [ Cell) = 0. (5.66)
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To establish the desired result, we note that D(x)W (z)TV f(x) is a continuous
function of x. For a given bounded H(x, ), let us consider D(:z;)W(:z;)T(H(:I;, A)s9 +
Vf(:z;)), where D(z) is defined with the reduced gradient W(:z;)T(H(:I;, A)si —I—Vf(:zj))
It is then clear that D(:z;)W(:z:)T(H(:I;,)\)Sq + Vf(:z;)) is a continuous function on
the pair (z,s9) at (z,0). From this observation, and since |[s}|| < #1||Cy|| and
liminfy— 1o [|Ck|| = 0, we see that the limit (5.66) implies the limit (5.64). U]

If {1} is a bounded sequence we conclude from Theorem 5.4.1 and the continuity
of C(z) and D(z)W (2)TV f(z), that {x;} has a limit point satisfying the first-order

necessary optimality conditions.

5.5 Global Convergence to a Second—Order Point

In this section we establish global convergence to a point that satisfies the second—

order necessary optimality conditions.

Theorem 5.5.1 Under Assumptions 5.1-5.6 and Conditions 5.1-5.3, the
sequences of iterates generated by the TRIP Reduced SQP Algorithms
5.2.1 satisty

timinf (|1 Dxgiell + 1Cell + mie) = 0. (5.67)

where ~ is the Lagrange multiplier corresponding to the trust-region
constraint, see (5.23) and (5.28), and 7y is the damping parameter defined
in (5.25).

Proof The proof is again by contradiction. Suppose that for all k,

= 3
| Drgell + 1 Crll + Trve > 3 Ctol- (5.68)

(i) Suppose that ||Cy|| < 66y, where

0/ _ . 0 R9€ol ‘
mm{ , —3/111(1 oy (5.69)

and 0 satisfies (5.60). From the first bound on 8 in (5.60) we get

_ 4
| Drgr|| + meve > 3 oot
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Thus, either HDkaH > etol or TpYr > etol In the first case, we proceed exactly as
in Lemmas 5.4.2 and 5.4.3 and obtain

K — . = _
pred(siip) = 2| Dugellmin {nz|| Digl w51}

+ 0 (ICHII* = [ Tese + Cill?) (5.70)
> (;314 52
for any p > 1. If 7y > %qol then from (5.42), (5.50), (5.52), HSZH < 6, and the

second bound on ¢ given in (5.69), we can write
pred(sisp) = au(sf) = ar(sf + Wilse)u) + ae(0) = ae(sy) — AN (Jisi + )

+ p (1CkII? = 1 Jksi + Cxl|?)

Y

1 1
5597%%52 + (§K96tol5k — k1 ||Cr|[(1 + /434)) Ok

+ p (1CkII? = 1 Jksi + Cxl|?)

Y

1
SR IROL + (ICKII? = 1| s + CxlI?) (5.71)

R9€ol
> =63

for any p > 1. From the two bounds (5.70) and (5.71) we conclude that if ||Cy|| < €6y,
then the penalty parameter does not increase. See Step 2.4 of Algorithms 5.2.1.
Moreover, these two bounds on pred(sg; pr) show the existence of a positive constant

k17 independent of & such that
pred(sy; pr) > k1767, (5.72)

provided ||Cy|| < 66y
(ii) Now we prove that {px} is bounded. If py is increased at iteration k, then it
is updated according to the rule

e =2 (qk(Sk) — qi(0) + AN (Jysp + ck)) i)
1Ck]12 = | Jksk + Chl|? '

We can write

2 (| Cll? = 1T+ Cell?) = qulsi) — ge(s])
—(@4(0) = gi(s)) + AN (Jesi + Ci)
+§(H0kH2 — || Jksi + Cull?).
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By applying (5.38) to the left hand side and (5.42), (5.50), (5.52), and ||s7|| < 6 to
the right hand side, we obtain

Eral|Cull mingral| Cell, 83 < (L + m)én|Cull + 5 (= 2077 )T sx = [ Jusil )

S (/4311(1 —|— /€4) —|— /31/4/434)5k”0k” (573)

If py is increased at iteration k, then, because of part (i), ||Ck|| > 0'6x. Now we use
this fact to establish that

Ky . _
(;2 min{ k36’ 1}) pr < K11(1 + Kq) + praka.

This and Assumptions 5.1-5.6 prove that {p;} and {L;} are bounded sequences.
(iii) The next step is to prove that ¢ is bounded away from zero.
It sp_1 was an acceptable step, then 65 > 0,,:,, see Step 2.5 in Algorithm 5.2.1.
If sy_1 was rejected, then 6p > k5|[sk_1]|, see (5.43). We consider two cases. In

both cases we use the fact that

ared(Sk—1; pr—1)

1—m <
"= pred(ss; prr)

—1].

In the first case, we assume that ||C_1|| < 0'65_1. From (5.72) we have

pred(sg_1; pr_1) > K1764_,.

Thus we can use |[sg_1]| < K16k-1, see (5.42), and (5.58) with k = k — 1 to obtain

ared(Sk—1§ pk—l) 1‘ - K13 Px (/@21513_1 + 0’/{4513—1) HSk H
— ~ —1i

pred(sk—l; Pk—l) /43175;3_1

This gives 6x > K5|[sk-1] > _rs(l=m)riz

K13 P (Hi+€lﬁ4)

The other case is ||Cg_1]| > 0'6x—1. In this case we get from (5.38) and (5.41) with
k=k—1 that

= K18

pred(sp—1;pr—1) > #5HRo||Croa|| min{kal|Cr_y]], 041}
> Pk-1 /43195k—1HCk—1 H
> Pk—10/51952_17
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where k19 = Z min{ssf’,1}. Again we use p_y > 1 and (5.42) and (5.58) with

k =k —1, this time with the last two lower bounds on pred(s;—_1; px—1), and we write

ared(Sk—l; Pk—l) 1] < 513Pk—1H5k—1H3 513Pk—1H0k—1H HSk—1H2
pred(si-1; pr-1) = |pred(si-1; pe-1))] pred(si-1; pr-1))|
< (513%—1/@215;3_1 n /4313Pk—1/<345k—1HCk—1H) HSk—lH-

Pk-1 9'/1195;3_1 Pk-1 K190k—1 Hck—l H

ws(1=1)0'k19 —
Hence 65, > k5|[sp-1] > () = R0

Combining the two cases yields
5k > 0n = min{5min7 K18, /4320}

for all k.

(iv) The rest of the proof consists of proving that an acceptable step always is
found after a finite number of iterations and then from this concluding that the
supposition (5.68) is false. The proof of these facts is exactly the proof of Theorem
5.4.1 where 6 is now 0’ and k146, is replaced by 1762, ]

It is worthwhile to compare the limit (5.67) given by this theorem with the limit
(3.42) given in Theorem 3.6.2 for equality—constrained optimization. In the former,
we have liminf_ ., 7x7x = 0 whereas in the latter we just have liminf,_ . v = 0.
The presence of 74 in (5.67) is due to the presence of the bound constraints on the
variables u. One other difference is that in (5.67) the reduced gradient is scaled by
the matrix Dy reflecting the first—order necessary optimality conditions.

The following result finally establishes global convergence to a nondegenerate point
satisfying the second—order necessary optimality conditions. If no equality constraints

are considered, the proof reduces to the proof of Lemma 3.8 of Coleman and Li [23].

Theorem 5.5.2 Let {x;} be a bounded sequence of iterates generated
by the TRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1-5.6
and Conditions 5.1-5.3. Then {x;} has a limit point x, satisfying the
first-order necessary optimality conditions. Furthermore, if x, is nonde-
generate, then x, satisfies the second—order necessary optimality condi-

tions.

Proof Consider the subsequence of {x;} for which the limit in (5.67) is zero.

Since this subsequence is bounded we can use the same arguments as in the proof of
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Theorem 5.4.1 to show that it has a convergent subsequence indexed by {k;} such
that

i Dug |+ G = Jim DLWV 0] =0, (5.74)
Moreover,
dim 7, =0, (5.75)
71—+

where 75, is given by (5.25). Let z. denote the limit of {z},}. It follows from (5.74)
and the continuity of C'(x) and D(z)W (z)TV f(z) that z. satisfies the first-order

necessary optimality conditions.

Now we assume that z. is nondegenerate, and we prove that lim;_ . v, = 0.
First we consider the decoupled trust-region approach.

From (5.12), Assumptions 5.3-5.4, and the limit lim;_ 4 ||Cy,|| = 0, we get the
limit

: T 9 —
i W H 5 = 0.

Since ., is nondegenerate and lim;_ 4., HW,;‘Cijszj || = 0, there exists ¢y € (0, 1) such
that

min{(ukj)i—ai, bi—(ukj)z}—l— ‘(gk])z‘ > 2o, t=1,....n—m (5.76)
for large enough 7, and
2¢g < min{b; —a;, 1=1,...,n —m}.

Without loss of generality, we only consider the cases where 7, < oy, < 1. In
the following the index 7 is the index defining 73, in (5.25). (The index ¢ is really i
but we drop the j from ¢; to simplify the notation.) We also assume that j is large

enough such that
(D2,9,) | < . (5.77)
Multiplying both sides of (5.24) by D,%] gives

(Ekﬂ T ]n_m) OSJ - Dzj (_gkﬂ B ij;ij Wkﬂ OSJ) ’
which in turn yields

| (o, = Wi Wit ) (5.73)
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Also, Assumption 5.6 implies HOSJH < vgdr, < V9dmae. From this, (5.40), and

Assumptions 5.3-5.4, we can write

> b (5.79)

(0% )i 521(ij )%

for some k9 independent of k. Now we distinguish between two cases.
In the first case, we consider ‘(gk]) ‘ < ¢g and appeal to (5.76) to get min{(us,); —
ai, by — (ug, )i} > €o. Thus from (5.79) and the definition (5.25) of 7;; we obtain

Ok, Yk, €0

—2 7 5.80
7T k(D)) (5.80)

Tk
Now we analyze the case ‘(gk]) ‘ > €p. Two possibilities can occur.
(i) The first possibility is that the value of the numerator defining 73, in (5.25) is
equal to (Dy,)?. In this situation (5.79) immediately implies

Tk; Tk,

K21

Tk>

R

(5.81)

(ii) The other possibility is that the value of the numerator defining 7, is not equal
to (ij)i In this case we have from (5.77) that (Dk])i < € and since b; — a; > 2¢,
the nominator in the definition (5.25) of 7, is bigger than ¢. Thus

Ok, Yk, €0

—_— 5.82
~ ko (Di, )7 (5.82)

Tk]
Using (5.75), (5.80), (5.81), (5.82), o, > o, and the boundedness of Dk] this
proves that
dim 4, = 0.

71—+

By (5.23) we know that
Dy, WkTJHkJ Wi, Dy, + Ex, + v, Luem

is positive semi—definite. Hence condition (5.74) and the limits lim;_ 4 HW,;‘Cijszj I
= 0 and lim;_; v, = 0 imply that the principal submatrix of W,;‘CHkJ Wy, corre-
sponding to indices [ such that a; < (u.); < b is positive semi—definite for j large
enough. Since W(x)TV2_((x, \)W(z) is continuous, the second-order necessary op-
timality conditions are satisfied at x,. This completes the proof for the decoupled

approach.
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The proof for the coupled trust-region approach differs only from the proof for
the decoupled approach in the use of equations (5.28) and (5.29) and in the use of
| W, oij || < (1 4 v9)dmaz to bound the right hand side of inequality (5.78). O

Remark 5.5.1 The global convergence results of Sections 5.4 and 5.5
hold if the quadratic W(s,) is redefined as Wy(s,) = qk(sz + Wisy) (see
the definitions (5.15) and (5.16)) without the Newton augmentation term
%55 (EkD;Q) sy. They are valid also if the matrices Dy and Dj, are rede-
fined respectively as D} and D} with p > 1. In [41], different forms for

this affine scaling matrices are discussed.

5.6 Local Rate of Convergence

We now analyze the local behavior of Algorithms 5.2.1 under Conditions 5.1, 5.3, and
5.4. We start by looking at the behavior of the trust radius close to a nondegenerate
point that satisfies the second-order sufficient optimality conditions. For this purpose

we require the following lemma.

Lemma 5.6.1 Let Assumptions 5.1-5.6 hold. Under Condition 5.1 the

quasi-normal component satisfies
sl < maallsiell, (5.83)
where k45 is positive and independent of the iteration counter k.
Proof From s, = sj + Wi (sk)u, we obtain
Il < el + 1IWll 11 Cse)ull-
But since ||sk||* = ||(sk)y]|* + |(8k)u]]?;s we use Assumption 5.4 to obtain
sl < (1 +we) llsill

and (5.83) holds with k92 = 1 + vs. O

Theorem 5.6.1 Let {2} be a sequence of iterates generated by the
TRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1-5.6 and
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Conditions 5.1 and 5.3. If x; converges to a nondegenerate point . sat-
isfying the second-order sufficient optimality conditions, then {pz} is a
bounded sequence, ¢, is uniformly bounded away from zero, and eventu-

ally all the iterations are successful.

Proof It follows from limg_ 4o x = x. and C(z.) = 0 that limy_ 4o ||Ck]| =
0. This fact, condition (5.12), and Assumptions 5.3-5.4, together imply the limit
limg 4 o0 HW,;‘FHkSEH = 0. Since xy converges to a nondegenerate point that satisfies
the second-order sufficient optimality conditions and limg_ o ||W[I Hys?|| = 0, there
exists a ¥ > 0 such that the smallest eigenvalue of DngHkaDk + Fj, 1s greater
than 4 for k sufficiently large.

First we prove that {p;} is a bounded sequence. Since Wy (0) — Wy ((sk),) > 0, we

obtain
LD (sk)u) T (DeWEHW Dy + By ) (D' (si)u) < —(

D% (sk)u) " (Drg)
|D;*!

(st )ull 1 Dxgill.

IA

which, by using the upper bounds on W, and D; given by Assumptions 5.4-5.6,

implies
21/6 Vg

|| Dxgi |- 5.84
7 | | (5.84)

skl = [IWi(se)ll <

Using (5.44) and (5.84), we find that

gr(s8) — qu(sf + Wilsi)w) = nsll Digell min { ez | Digill, wsbi}

> kasl|sp]|?

(5.85)

Ky : K77 Kg Kg
2vg g 2uglg ) vgrg ) 14w

Next, we prove that if [|Cy| < 6”||sk||, where 6" satisfies (5.87) below, then the

penalty parameter does not need to be increased. From (5.12) and ||Cy|| < 0”||sk]|,

where k93 = 9} accounts for the decoupled and coupled cases.

we get
2
skl < (12l + IsE) ™ < 2013112 + 2lfs)f?
< 20"K2|| Oyl [lsall + 2]|sE )1

This estimate, (5.12), (5.42), (5.52), (5.85), and ||Ck|| < 6”|sk|| yield

pred(seip) = au(sd) — qe(si+ Wilse)u) + @e(0) — qil(si) — AN, (Jesk + Cr)

+ o (ICkI? = 1 Jesi + Cxll?)
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1 1
> eallsell? + (rasllsell = (0w + waa (0 + D)ICH ) e

+p (ICKI” = [ Tese + Cel?) » (5.86)
for all p > 1. If ||Ck|| < 8”||skl||, where 8" satisfies
(4k11) 0" + (4/@21/4323 + 4/€1/€11) ((9”)2 < Koz, (5.87)

then we set p = py_1 in (5.86) and deduce that the penalty parameter does not need
to be increased. See Step 2.4 of Algorithms 5.2.1. Hence if pj is increased then
the inequality ||Ck|| > 6”||sx|| must hold, and we can proceed as in Theorem 5.5.1,

equation (5.73), and write

1

B wallCullmin {wallCell, —llell | < (s (22 + 1) + o) el Gl
4

(here we used inequality (5.83)) which in turn implies

1
(% min {/433(9", K—}) pr < K11(ka2 + 1) + pra.

4

This gives the uniform boundedness of the penalty parameter:

for all k.

Given the boundedness of {pz} we can complete the proof of the theorem. If
|ICkll > 0"||sk|l, where §” satisfies (5.87), then from (5.38), (5.41), and (5.42) we find
that

pred(sy; pr) = Pk%HCkH min{rs||Crll, 6k} = prraallsil®, (5.88)

where kg4 = @29” min{ 30", ;—4} In this case it follows from (5.58) and (5.88) that

ared(sg; pr)

1
pred(sk; pr)

K
< —/:3 sl +1ICKID - (5.89)
24

Now, suppose that [|Cy|| < 6”||sg]|. From (5.86) with p = pi, we obtain pred(sy; px) >
22|15, ||2. Now we use (5.58) and pj, < p. to get

4r13px

K23

ared(sy; pr)

1
pred(sk; pr)

<

(lsxll + 1K) - (5.90)
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Finally from (5.89), (5.90), limp— o T = @, and limy_ 4o ||Ck|| = 0, we get

ared(sy; pr)

—1
pred(sk; pr)

lim

k—4oc0 ’

which by the rules for updating the trust radius given in Step 2.5 of Algorithms 5.2.1,

shows that 65 is uniformly bounded away from zero. (]

We use the following straightforward globalization of the quasi-normal component

sp of the Newton step given in (5.35). The new quasi-normal component is given by:

82 _ ( _fkcy(xk)_lck ) : (591)

0
where
I if || Cy(ar) 1O < bk,
= Sk _ (5.97)
TCo o Otherwise.

Before we state the q—quadratic rate of convergence we prove the following im-

portant result.

Lemma 5.6.2 Let Assumptions 5.1-5.6 hold. The quasi-normal com-
ponent (5.91) satisfies conditions (5.9), (5.12), and (5.13) for some positive

K1, k2, and k3 independent of £.

Proof It is obvious that (5.9) holds. Condition (5.12) is a direct consequence of
the condition (5.13). In fact, using HCy(:Jck)(sz)y + Ci|l < ||Ck|| and the boundedness
of {Cy(x1)~"} we find that

Isdl = s+ Cyl2) ™ Ch = Cylar) i 503
< NG =) (I @) (D), + Call + ) < 261Gk

So, let us prove (5.13). A simple manipulation shows that
ICHIZ = NCy(xk)(s7)y + Cll®
> Cll* = Il = &Cy(xk)Cylan) ™ Ci + Cil®
2
= G’ = (1 = &I Cl)
= &2 = &ICHI* = & IICxl*
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We need to consider two cases. If £ = 1, then
ICHIZ = ICy () (s7)y + Crll® = [|Crll min{ [|Cx]], 6k}

Otherwise, &, = m. In this case we get

1 1 .
ICKII* = ICy (i) (s)y + Crll* = oo NC[1 6 = = Ol ming[[Cll, &3

Thus the result holds with £ = min{1, 1}—6} and k3 = 1. O

Corollary 5.6.1 Let {x;} be a sequence of iterates generated by the
TRIP Reduced SQP Algorithms 5.2.1 under Assumptions 5.1-5.6 and
Conditions 5.1, 5.3, and 5.4. If z; converges to a nondegenerate point
x, satisfying the second-order sufficient optimality conditions, then xj

converges q—quadratically.

Proof We start by showing that |7N — 1] is O (|| — z.]|), where 7V is given by
TN .

(5.37). Since limy— 4o HW,;‘FHkSEH = 0, we have that 2 —1]is O(H(Sy)u") (see [24,

Equation (6.4) and Lemma 12]). Also since by Condition 5.4 |0}, — 1| is O (HDkgk‘ ),

and Dygp is O (H(Sy)uH) (see (5.34)), we can see that |op — 1| is also O (H(Sy)uH)

Furthermore,

N
N <o |
op

—1‘—|—|0‘k—1|

Hence |7',L\I — 1] is O (H(Sy)uH) But (Sy)u is O (Hl‘k + 32 — :zj*H) and 32 is
O (||zx — =) and this shows that |7\ — 1| is O (||zx — z.)).

We need to prove that Condition 5.4 does not conflict with Condition 5.1 so that
Theorem 5.6.1 can be applied. In other words, we need to show that the decrease
conditions given in Condition 5.1 hold for the Newton damped step (5.36) whenever
it is taken. In Lemma 5.6.2 we showed that the quasi-normal component s} given
in (5.91) satisfies (5.9), (5.12), and (5.13). From Condition 5.4, s} given by (5.35) is
used when it coincides with the s given by (5.91). Thus s} given by (5.35) satisfies
also (5.9), (5.12), and (5.13). It remains to prove that TIL\I(SkN)u satisfies the Cauchy
decrease condition (5.21) ((5.22) for the coupled approach). This is indeed the case

since

U (0) — Ti(r (s))u)
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> gl (M — SN (W HWe + B (1))

=2

> o (~af (o) - 5(Gs

> 7l (W(0) = Wu(ef))

)t (WE Wi+ D) (5M))

and |7 — 1] is O (|2 — z.]]).
Now we need to show that eventually s is given by (5.36). Since {x}} converges

to a nondegenerate point satistying the second—order sufficient optimality conditions,

(Sy)u exists for &k sufficiently large. Furthermore (Sg)y = —Cy(x)7'Cy for k large
enough because limy_ 1, ||Cy(2) " Ck|| = 0, and from Theorem 5.6.1, &y, is eventually

bounded away from zero. Using a similar argument we see that T,i\l(sy)u is inside the

trust region (5.18) for the decoupled approach or (5.20) for the coupled approach. So,
from Condition 5.4 we conclude that there exists a positive integer k such that sy is
given by (5.36) for k > k.

Using the fact that (sN), is O (||lzx — 2.||), we conclude that 7N (sN), — (sN), is
O (||xx — :1;*]\2) Thus

N (ﬁ—@mrwmww#»)_(ﬁ—@mrﬂmm#»)

S — 8 =
k ZaCo" (s}

is O (|| — x.]|*). This completes the proof since SkN can be seen as a Newton step
on a given vector function of the type (5.8). This function vanishes at x. and is
continuously differentiable with Lipschitz continuous derivatives and a nonsingular
Jacobian matrix in an open neighborhood of x.. See the discussion at the end of

Section 5.1. Thus the g—quadratic rate of convergence follows from [39][Theorem
5.2.1] and from the fact that s, — sN is O (|| — z.]|*). O

5.7 Computation of Steps and Multiplier Estimates

When we described the TRIP reduced SQP algorithms in Section 5.2, we deferred
the practical computation of the quasi-normal and tangential components and of the
Lagrange multipliers. In this section we address these issues.

The quasi-normal component s is an approximate solution of the trust-region
subproblem (5.10)—(5.11). To guarantee global convergence to a point that satisfies

the necessary optimality conditions, the component s} is required to satisfy (5.9),
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(5.12), and (5.13). As we saw in equation (5.93) of the proof of Lemma 5.6.2, property
(5.12) is a consequence of (5.13). Whether property (5.13) holds depends on the way
in which the quasi—normal component is computed. We showed in Lemma 5.6.2 that
the quasi-normal component given by (5.91) satisfies conditions (5.9), (5.12), and
(5.13). We show in Section 6.3 that these conditions are satisfied for many other

reasonable ways to compute s;.

5.7.1 Computation of the Tangential Component

In this section we show how to derive conjugate—gradient algorithms to compute
(S$g)u. In [8], Branch, Coleman, and Li propose other practical algorithms to com-
pute steps for trust-region subproblems that come from optimization problems with
simple bounds. They use three dimensional subspace approximations and conjugate
gradients.

Let us consider first the decoupled trust-region approach given in Section 5.2.2.
It we ignore the bound constraints for the moment, we can apply the Conjugate—
Gradient Algorithm 2.3.2 proposed by Steihaug [134] and Toint [139] to solve the

problem
minimize  Wi(s,)
subject to | D sy < 6
However we also need to incorporate the constraints
opla —u) < sy < op(b—uy).

This leads to the following algorithm:

Algorithm 5.7.1 (Computation of s, = sp+ Wi(sk)u (Decoupled Case))

1 Set 32 = 07 ro = _gk = —WkTVQk(Sz), qO = Dzro, dO = qo, and
e > 0.
2 For:=0,1,2,... do

‘ ()" (") ‘
(dYT (W] HyWy+Ex D) (dP)

2.1 Compute ' =

2.2 Compute
i =max{r >0 : |[D;' (s} +7d)| < 6,
opla —up) < s’ +7d < op(b—uy)}.
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2.3 If v <0, or if v > 7, then set (s), = s\ + 7'd', where 7! is
given as in 2.2 and go to 3; otherwise set s't! = s¢ + ~4id".
2.4 Update the residuals: ri+t = v — /(WL H Wy + E,D;?)d' and
i+l _ P2yt
gt = Dirtl,

(ri+1)T (gi+1)

()" (a°)

2.5 Check truncation criteria: if < ¢, set (sp), = st

and go to 3.

()T g )

2.6 Compute o' = T and set dit! = ¢t 4+ o' d'.

3 Compute s = 32 + Wi(sk), and stop.

Step 2 of Algorithm 5.7.1 iterates entirely in the vector space of the u variables.
After the u component of the step s; has been computed, Step 3 finds its y component.
The decoupled approach allows an efficient use of an approximation I}, to the reduced
Hessian WIV2 (,W,. In this case, only two linear system solves are required, one
with C,(z1)T to compute g, in Step 1, and the other with C,(z) to compute Wi (st ).
in Step 3. If it is the Hessian Hj that is being approximated, then the total number of
linear systems is 21(k)+2, where I(k) is the number of conjugate—gradient iterations.
See Table 5.1.

One can transform this algorithm to work in the whole space rather then in the
reduced space by considering the coupled trust—region approach given in Section 5.2.2.

This alternative is presented below.

Algorithm 5.7.2 (Computation of s, = sp + Wi(sg)u (Coupled Case))

1 Set s° =0, = —g, = —WIVaq(s}), ¢° = D3P, d° = Wiq®, and
e > 0.
2 For:=0,1,2,... do

‘ ()
()7 Hy (d)+(d' ) Ex D" (d)u”

2.1 Compute ' =
2.2 Compute

Ti:maX{T>0 < ¢y,

( —C, () Cula)(d), )
Ditr(d),
op(a —uy) < s' 4+ 7(d), < op(b— uk)}

2.3 If v <0, or if 4' > 7%, then st = s' + 7id, where 7! is given as

in 2.2 and go to 3; otherwise set s't! = s' + ~'d".
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2.4 Update the residuals: rt! = ri — 41 (Wgﬂkdi + EkD;Z(di)u)
and ¢'t' = Dttt

2.5 Check truncation criteria: if /2l @) < ¢, set st = st and

(r9)"(a%)
go to 3.
(Ti+1)T qi+1

2.6 Compute o' = W and set d'tt = Wy (¢! + o'd").

3 Compute s = sp + st and stop.

Note that in Step 2 of Algorithm 5.7.2 both the y and the u components of the
tangential component are being computed. The coupled approach is suitable partic-
ularly when an approximation to the full Hessian Hy is used. The coupled approach
can be used also with an approximation Hy to the reduced Hessian W' V2 6, W;. In
this case, we consider Hj, that is given by (5.32) and use equalities (5.33) to compute
the terms involving Hy in Algorithm 5.7.2. If the Hessian Hj is approximated, the
total number of linear system solves is 2/ (k) + 2. If the reduced Hessian W,;‘FHka is
approximated, this number is [(k)+2, where [(k) is the number of conjugate—gradient
iterations. See Table 5.1.

Linear Decoupled Coupled

solver | Reduced H | Full H; | Reduced H | Full Hy
Cy(ag) 1 I(k)+1 I(k)+1 I(k)+1
Cy(zp)t 1 I(k)+1 1 I(k)+1

Table 5.1 Number of linearized state and adjoint solvers to compute the
tangential component. (I(k) denotes the number of conjugate—gradient
iterations.)

Since Conjugate-Gradient Algorithms 5.7.1 and 5.7.2 start by minimizing the
quadratic function W (s, ) along the direction — D3gy, it is quite clear from Proposition
2.3.1 that they produce reduced tangential components (si), that satisfy (5.21) and
(5.22), respectively, with ﬂfl =47 =1.

We end this section with the following remark.

Remark 5.7.1 For simplicity let us consider the case B = IR"™™. If
WIW, was included as a preconditioner in the Algorithm 5.7.2 derived



116

for the coupled approach, then the conjugate—gradient iterates would
monotonically increase in the norm ||Wj-||. Dropping this precondi-
tioner means that the conjugate—gradient iterates do not necessarily in-
crease in this norm (see [134]). As a result, if the quasi-Newton step
- (WngWk) - gr. exists and is inside the trust region, Algorithm 5.7.2
can terminate prematurely by stopping at the boundary of the trust re-
gion. This problem does not arise using Algorithm 5.7.1 for the decoupled
approach.

5.7.2 Computation of Multiplier Estimates
A convenient estimate for the Lagrange multipliers is the adjoint update
A= —Cy(xx) TV fi, (5.94)

which we use after each successful step. However we also consider the following

update:
Mepr = —Cy ()T Vyquls]) = —Cyan) ™ (His), + Vo fi). (5.95)

Here the use of (5.95) instead of
Ao = —Cy(xp + 51) "IV f(@r + s1), (5.96)

might be justified since we obtain (5.95) without any further cost from the first
iteration of any of the conjugate—gradient algorithms described above. The updates
(5.94), (5.95), and (5.96) satisfy the requirement given by Assumption 5.4 needed
to prove global convergence to a point satisfying the first—order necessary optimality

conditions.

5.8 Numerical Example

We implemented the TRIP Reduced SQP Algorithms 5.2.1 in Fortran 77. This
implementation is described in [76]. In this section we report numerical results for
the boundary control problem introduced in Section 4.5.1. These results demon-
strate the effectiveness of the algorithms. We use the formula (5.91) to compute the
quasi-normal component, and Algorithms 5.7.1 and 5.7.2 to calculate the tangential
component. The numerical test computations were done on a Sun Sparcstation 10 in

double precision.
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With the discretization scheme discussed in Section 4.5.1, Cy(x) is a block bidi-
agonal matrix with tridiagonal blocks. Hence linear systems with C,(z) and C,(z)T
can be solved efficiently. In the implementation, the LINPACK subroutine DGTSL was
used to solve the tridiagonal systems. As we pointed out in Section 4.6, the inner
products and norms used in the TRIP reduced SQP algorithms are not necessarily
the Euclidean ones. In our implementation [76], we call subroutines to calculate the
inner products (y*,y?) and (u',u?) with y',y* € IR™ and u',u? € IR*™™. The user
may supply these subroutines to incorporate a specific scaling. If the inner product
(x',2?) is required, then it is calculated as (y',y?) + (u',u?). In this example, we
used discretizations of the L?(0,7) and L*(0,T; H'(0,1)) norms for the control and
the state spaces respectively. This is important for the correct computation of the

adjoint and the appropriate scaling of the problem.

In our numerical example we use the functions

Ty)=¢a+qy, yeR, kly)=ri+ry yel,

with parameters ri = ¢; =4, r;, = —1, and g3 = 1. The desired and initial tempera-

tures, and the right hand side are given by
ya(t) = 2—¢",
Yo(r) = 2+ coswx, and
q(z,t) = [n(q +2q2) + 7°(r1 + 2r3)]e" cos T
2

—romle® T 4 (2rym? + nga) e cos® ma,

with n = —1. The final temperature is chosen to be T' = 0.5 and the scalar ¢ = 1 is
used in the boundary condition. The functions in this example are those used in [89,
Example 4.1]. The size of the problem tested is n = 2100, m = 2000 corresponding
to the values N; = 100, N, = 20.

The scheme used to update the trust radius is the following fairly standard one:
o If ratio(sg; pr) < 1074, reject s and set 811 = 0.5 norm(sy);

o If 107" < ratio(sk; pr) < 0.1, accept s; and set 811 = 0.5 norm(sg);

o If 0.1 < ratio(sg; pr) < 0.75, accept s, and set dpp1 = Oy;

o If ratio(sg; pr) > 0.75, accept sj and set x4y = min{28;, 10*°};



118

ared(sg;pr)

where ratio(sg; pr) = redGor)?

norm(sy) = max {|[s3|l. | Dy (sk)ull}

—Cy(xk) 7 Culwe) (55 )u
Dyt (si)u
in the coupled approach. The algorithms are stopped it the trust radius gets below
1078,

We used o, = o = 0.99995 for all k; 69 = 1 as initial trust radius; p_; = 1

and p = 1072 in the penalty scheme. The tolerance used in the conjugate—gradient

in the decoupled approach, and

norm(sy) = max { 5211,

iteration was ¢ = 107*. The upper and lower bounds were b; = 1072, a; = —1000,
t=1,...,n —m. The starting vector was zo = 0.

For both the decoupled and the coupled approaches, we did tests using approx-
imations to reduced and to full Hessians. We approximate these matrices with the
limited memory BFGS representations given in [15] with a memory size of 5 pairs of
vectors. For the reduced Hessian we use a null-space secant update (see [114], [147]).
The initial approximation chosen was v/,_,, for the reduced Hessian and ~1, for the
full Hessian, where ~ is the user specified regularization parameter in the objective

function (4.26).

In our implementation we use the following form of the diagonal matrix Dy,
, min{l, (b—w)i} if (gx); <0,

Bl — 5.97
(Ds) min{l, (ux —a);} if (gr), >0, 40

for i = 1,...,n —m. This form of D}, gives a better transition between the infinite
and finite bound and is less sensitive to the introduction of meaningless bounds. See

also Remark 5.5.1.
The algorithms were stopped when

DWWV fill + O3] < 1075 (5.98)

The results are shown in Tables 5.2 and 5.3 corresponding to the values v = 1072
and v = 1072, respectively. There were no rejected steps. The different alterna-

tives tested performed quite similarly. The decoupled approach with reduced Hessian
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approximation seems to be the best for this example. Note that in this case the com-
putation of each step costs only three linear system solves with C,(x;) and C,(x;)7,
one to compute the quasi-normal component and two for the computation of the

tangential component.

Decoupled Coupled
Reduced [:]k Full Hy, Reduced [:]k Full Hy,
number of iterations k* 14 20 17 18

|| Cix DHO82K — 11 | 1370F — 10 | .7T122F — 12 | .8804F — 11

| Dix WEN frox A033F — 08 | (1389 — 08 | .6365F — 10 | .2641FK — 08

|| $ks—1| A230K — 04 | 1461F — 04 | .3546F — 05 | .1445F — 04

Opx_1 A638F +05 | .1049K 4+ 07 | .1311FE + 06 | .2621FE + 06

Pr*—1 .1000£ + 01 | .1000F£ 4 01 | .1000F 4 01 | .1000F + 01

Table 5.2 Numerical results for the
boundary control problem. Case v = 1072,

We made an experiment to compare the use of the Coleman—Li affine scaling
with the Dikin—Karmarkar affine scaling. When applied to our class of problems,
the Coleman-Li affine scaling is given by the matrices Dy and Dj. A study of the
Dikin—Karmarkar affine scaling for steepest descent is given in [128]. For our class of

problems, this scaling is given by

([X’k)“ = min{l, (uk — a)i, (b —

and has no dual information built in. We ran the TRIP reduced SQP algorithm with
the decoupled and reduced Hessian approximation and (5.97) replaced by (5.99). The
algorithm took only 11 iterations to reduce ||K;W[IV fi]| + ||Ck|| to 1078, However,

as we can see from the plots of the controls in Figures 5.5 and 5.6, the algorithm did

(5.99)

ug)it, t=1,...,n—m,

not find the correct solution when it used the Dikin—Karmarkar affine scaling (5.99).

Some of the variables are at the wrong bound corresponding to negative multipliers.
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Decoupled Coupled
Reduced H,, Full Hy, Reduced H, Full Hy,
number of iterations k* 16 18 17 19

|| Cix 6233FK — 11 | J1115E — 10 | .6487F — 11 | .1246F — 09

| Dix WEN frox DHI61E — 08 | 2539 — 08 | .7282F — 09 | 4696 — 08

|| $ks—1| 1626 — 04 | 1703E — 04 | .1530F — 04 | .4659F — 04

Opx_1 6554 F + 05 | 2621 K 406 | .1311F + 06 | .5243F + 06

Pr*—1 .1000£ + 01 | .1000F£ 4 01 | .1000F 4 01 | .1000F + 01

Table 5.3 Numerical results for the
boundary control problem. Case v = 1073,

x10° Computed Control
T T T

L L L
0 0.05 0.1 0.15

L L L L L L
0.2 0.25 03 0.35 0.4 0.45 05
t

Figure 5.5 Control plot
using the Coleman—Li

affine scaling.

X
10

Computed Control

-2

—

L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03
t

L L L
0.35 0.4 0.45 0.5

Figure 5.6 Control plot
using the
Dikin-Karmarkar affine

scaling.
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Chapter 6

Analysis of Inexact Trust—Region Interior—Point
Reduced SQP Algorithms

In Chapter 5, we assumed that exact derivative information for f and ' is available,

and that linear systems like the linearized state and adjoint equations

A

Cy(zx)s = by and Cy(xk)Ts = by (6.1)

can be solved exactly for different right hand sides b, and be. In many applications
these assumptions are unrealistic. Derivative information may be approximated, for
example, by finite differences. Moreover, the linearized state and adjoint equations
are often discretizations of partial differential equations and iterative methods are
used for their solution. The purpose of this chapter is to extend the TRIP reduced
SQP algorithms proposed and analyzed in Chapter 5 to allow inexact calculations
in tasks involving first derivatives of . See also the paper by Heinkenschloss and
Vicente [77]. Inexactness in derivatives of the objective function f also can be allowed,
but it is not done here to keep the presentation simpler. Since we treat states and
controls as independent variables (see Section 4.2), and since the objective functions
are often rather simple, e.g. least squares functionals, this does not present a severe
restriction. One goal for our analysis is to derive measures of inexactness and forms
of controlling the inexactness that are simple to implement.

In the TRIP reduced SQP algorithms, we have to compute quantities of the form
Cu(xy)d, and CI(z})d,, and we have to solve linear systems of the form (6.1). Since

these systems are solved inexactly, what is computed are s, and 8 such that
Cy(xk)gk = Ek + 7, and Cy(l'k)Ték = zk + fka

where 7, and 7 are residual vectors. In many iterative methods, like for instance
Krylov subspace methods (see the books [72], [81]), the norms ||7|| and ||| can be
computed efficiently with few extra operations. These are some of the quantities that

are used to measure inexactness.
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We give conditions on the amount of inexactness allowed in the TRIP reduced
SQP algorithms that guarantee global convergence to a point satisfying the first—
order necessary optimality conditions. In the case of the linear systems (6.1), these

conditions are the following:

A

Tk

7]l = O (min{6,. ||Cy]l}) and

| = OUIC), (6.2)

where ¢y is the trust radius and ||Cy]| is the norm of the residual of the constraints.
Thus as the iterates approach feasibility the accuracy with which the linear systems
are solved has to increase. Moreover, the accuracy of the linear systems solves has
to increase if the region where the quadratic model is trusted becomes small. This
also is reasonable since the trust radius should not be reduced unnecessarily. Similar
results can be derived for the inexactness that arises in the computation of directional
derivatives of C.

We applied the TRIP reduced SQP algorithms with inexact solutions of linearized
state and adjoint equations to the solution of the two optimal control problems de-
scribed in Section 4.5. The numerical results reported in Section 6.5 confirm our
analysis.

It should be pointed out that by inexactness we mean inexact derivative informa-
tion and inexact solution of linear systems. Trust-region algorithms allow another
level of inexactness that is also treated here and in most other papers on trust-region
algorithms: the trust-region subproblems do not have to be solved exactly. As we
saw for instance in Section 2.3 for unconstrained optimization, it is sufficient to com-
pute steps that predict either a fraction of Cauchy decrease or a fraction of optimal
decrease for the trust-region subproblem.

In the context of systems of nonlinear equations, inexact or truncated Newton
methods have been proposed and analyzed by many authors. Some of the pioneering
work in this area can be found in [32], [135]. More recent references are [9], [10],
[43], [44], [45]. Most of the recent papers investigate the use of Krylov subspace
methods for the solution of linear systems, like GMRES [127], in inexact Newton
methods. These Krylov subspace methods are attractive because they monitor the
residual norm of the linear system in an efficient way and only require Jacobian times
a vector, not the Jacobian in explicit form. The results for the solution of systems
of nonlinear equations have been extended to analyze inexact Newton methods for
the solution of unconstrained optimization problems, e.g. [33], [109], [111], inexact

Gauss—Newton methods [99], and complementarity problems [117]. In a recent paper
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[149], the impact of inexactness in reduced-gradient methods for design optimization
has been analyzed.

In nonlinear programming, inexactness has been studied by [6], [28], [34], [74],
[92], [110], [146] among others. The papers [34], [54], [92], [110] investigating SQP
algorithms mostly study the influence of inexactness on the local convergence rate.
In [110] conditions on the inexactness are given that guarantee descent in the merit
function. In the papers mentioned previously, the inexactness is often measured using
the residual of the linearization of the system of nonlinear equations arising from the
first—order necessary optimality conditions, or some variation thereof. If globaliza-
tions are included in the investigations, then line—search strategies are used. To our
knowledge, inexactness for SQP algorithms with trust-region globalizations has not
been studied in the literature. Due to the computation of the step in two stages, the
computation of the quasi-normal component and of the tangential component, the
analysis of inexactness in reduced SQP algorithms with trust-region globalizations
requires techniques different from those that can be used for line—search globaliza-
tions.

This chapter is organized as follows. In Section 6.1, we identify the sources of
inexactness in the TRIP reduced SQP algorithms and derive a useful representational
form. In Section 6.2, we present our inexact analysis showing under what assumptions
on the amount of inexactness do the TRIP reduced SQP algorithms remain globally
convergent to a point satisfying the first—order necessary optimality conditions. The
remainder of the chapter deals with practical issues concerning the step components
and multipliers calculations. As we saw in Section 5.2, each step is decomposed in two
components: a quasi-normal component and a tangential component. In Section 6.3,
we present several techniques to compute quasi-normal components and show how
they fit into the theoretical framework given in Section 6.2. In Section 6.4, we discuss
conjugate—gradient algorithms to compute the tangential component and analyze the
influence of the inexactness. The inexact calculation of the reduced gradient, null-
space vectors, and multipliers is covered also in detail in Section 6.4. We present our

numerical experiments in Section 6.5.

6.1 Sources and Representation of Inexactness

In this chapter we assume that the linear systems with C,(zy) and C,(z)T are solved

inexactly.



124

The inexact analysis for the quasi-normal component is presented in Section 6.3
and does not interfere with the analysis developed in this section. In fact, we assume
that the quasi-normal component s, no matter how is computed, satisfies conditions
(5.9), (5.12), and (5.13) given in Section 5.2.1. We see in Section 6.3 that this can be
accomplished by a variety of techniques to compute quasi-normal components.

The computation of the tangential component requires the calculation of matrix—
vector products of the form Wyd, and Wld. Thus we need to compute quantities
like

—Cy(zp) ' Cu(zr)dy and  — Cy(xx) Cy(xr) "1 d,.

As we pointed out earlier, often these computations cannot be done exactly. Therefore
we have to incorporate errors originating perhaps from finite difference approxima-
tions of Cy(xx)d, or from the iterative solution of the linear systems C,(xy)d, =
—Cy(xg)d,.

In practice, the computation of the y component z, of = = Wy d, is done as follows:

Compute v, = —Cylxr)d, + ey
! (=) (6.3)
Solve Cylap)zy = vy +ey.

The u component of Wyd, is equal to d,. In (6.3) e, and e, are the error terms
accounting for the inexactness in the computation of —C(x)d, and the inexactness
in the solution of the linear system Cy(xx)z, = v,. Since the u component of W

is the identity, we only have an error in the y component z, of Wyd, computed via

(6.3). It holds that
zy = —Cy(xk)_lcu(xk)du + Cy(xk)_l (ey +€y). (6.4)

Of course, the errors e, and e, depend in general on d,,.
Similarly, for a given d the matrix—vector product z = Wld is computed succes-

sively by the following procedure:

Solve Cy(xk)Tvy = —d, +e,.
Compute v, = Cu(zp)Tv, + e (6.5)
Compute z = v, +d,.

Again, e, and ¢, are error terms accounting for the inexactness in the computation of

Cu(71)Tv, and the inexactness in the solution of the linear system C,(z;) v, = —d,.
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For simplicity we use the same notation, but the error terms in (6.5) are different
from those in (6.3). The errors e, and e, depend in general on d,. The computed

result can be related to the exact result via the equation
2= —Cy () Cylar) ™ d, + dy + Cuxp)T Cylzr) Ty, + e (6.6)

These two sources of inexactness influence the computation of the following im-

portant quantities:

e = Wi Va(sy) = =Cular) " Cyla) ™ Vyar(sf) + Vagr(sy), (6.7)
and
sp=s5p + Wi(sp)u = sp + ( _Cy(xk)(sc;u(wk)(sk)u ) . (6.8)

As we saw in Section 5.2.2, these two calculations are the only ones that appear in
the decoupled approach for the computation of the tangential component involving
derivatives of (' if an approximation H, to the reduced Hessian WgVﬁxﬁka 1s used.
This is not the case in all the other situations (see for instance Table 5.1). If an
approximation Hy to the full Hessian V2 _(} is used, then we have to account for the
inexactness in the calculation of W,;[Hk Wy. Thus, there is no guarantee of monotonic-
ity in the quadratic Wy(s,) in the conjugate—gradient algorithm, and therefore there
is no guarantee that the result expressed in (5.44) for a fraction of Cauchy decrease
condition would be satisfied. This raises some interesting problems related to the
computation of the tangential component that are addressed in Section 6.4. There
we show that, instead of (6.7) and (6.8), the inexact operations with derivatives of '

lead to quantities in the form
PIVar(s) = = AV yai(si) + Vaau(s)), (6.9)
and

(Sk)u
where Ay ~ C, ()T Cy(2)7T, B, =~ Cy(x) 1 Culy),

— AT —B
Pk:(]k),anko:(] ’“) (6.11)

In these expressions, A and Bj, represent the inexactness. A detailed derivation and

Sk = 52 + Qk(sk)u = 52 + ( _Bk(Sk)u ) s (610)

analysis of the linear operators A; and Bj are given in Section 6.4 together with



126

an extension of Algorithms 5.7.1 and 5.7.2 for the computation of the tangential

component.

As a consequence of assuming this inexactness, we no longer have condition (5.44).

Instead, we have the following condition:

ae(si) = qe(sg + Qulsi)u)

-p ) —p (6.12)
> || DE PIVa(s]) | min {:|| D PV qi(s]ll, sabif — sall Cill
where ¢1,...,¢; are positive constants independent from k&, and D,E) is a diagonal
matrix of order n — m with diagonal elements given by
(b—ux)? if (PTVa(s)) <0andb; < +oo,
) 1 if (PIVaq(s})) <0andb; = +oo,
(DF)is = . ( ). (6.13)
(up —a)? if (P,?qu(sg))' >0 and a; > —o0,
1 if (P,?qu(sz))' >0 and a; = —o0,
fore=1,...,n—m. The matrix D,E) is the inexact version of D). We show in Section

6.4 how this can be satisfied. Of course we still require the tangential component to
be feasible with respect to the trust region and bound constraints. See (5.21), (5.22),
and Step 2.2 of Algorithms 5.2.1.

6.2 Inexact Analysis

The assumptions on the inexact calculations required for global convergence to a

point satisfying the first-order necessary optimality conditions are the following.

Assumptions 6.1-6.3

6.1 The sequences {A;} and {By} are bounded.

6.2 || (=Cy(wx) B + Cular)) (se)ull < min{L, 5} min{ra||Cul, o).

H372

6.3 lim;_ 4 H(—A;‘; + Cu(:zjk])TCy(xk])_T)quk](szj)H = 0 for all index subsequen—
ces {k;} such that lim;_ . |[Cy,]| = 0.

The constants ky and ks are used in (5.13) to define the decrease condition for

the quasi—normal component. Assumption 6.2 imposes a bound on the distance of
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Qr(sk)u to the null space of the Jacobian Ji. It is obvious that Assumption 6.2
is satisfied when By = C,(z)"'Cy(x)). Assumption 6.3 is only needed to derive
Theorem 6.2.1 and restricts the accuracy of the reduced—gradient calculation. We
will be more precise later. This assumption is satisfied if Ay = C,(2x)TC,(z)7T.

For the rest of this Chapter we suppose that Assumptions 5.1-5.6 given in Section
5.2.5 and Assumptions 6.1-6.3 presented above are always satisfied.

For the global convergence of the inexact TRIP reduced SQP algorithms we still
need the step components to satisfy the requirements given in Condition 5.1, Section

5.2.5, but with (5.21) or (5.22) replaced by (6.12). The new condition is given below.

Condition 6.1

6.1 The quasi-normal component s satisfies conditions (5.9), (5.12), and (5.13).
The tangential component (sg), satisfies the decrease condition (6.12).

The parameter oy, is chosen in [0, 1), where o € (0, 1) is fixed for all k.

6.2.1 Global Convergence to a First—Order Point

In this section we prove global convergence to a point satisfying the first—order neces-
sary optimality conditions for the TRIP reduced SQP algorithms with inexact solu-
tions of linearized state and adjoint equations of the form (6.1). The proof is virtually
the same as the one given in Sections 5.3 and 5.4 for exact solutions of these linear
systems. Our job consists of pointing out the few places in the proof where inexact-
ness affects the estimates and how are these situations fixed by using Assumptions
6.1-6.3.

The following lemma states a lower bound on the decrease given by s on the
linearized residual of the equality constraints. The need for this lemma is that, due
to the inexactness assumption, the tangential component st = Wj(sy), might not lie

in the null space of Jj.

Lemma 6.2.1 The step s, satisfies

ICKI* = Ml Tesw + Cill* = %HCkH min{ || Cy[], 64} (6.14)



128

Proof From Assumption 6.2 we get
1 K )
1 (=Cylas) B + Cules)) (s1)ull* < —#a| Cell 5 min{rsl|Ci], &5}
3

Using this inequality, (5.9), (5.13), sx = 57 + Q(sk)u, and the form (6.11) of Qy, we

have

CRlI> = Nl Tesi + Crll* = Cll* = [ICy(ze) (i) + Cxll?
— [ (=Cy(wr) B + Culwr)) (sk)ull?
FNCrll min{es|| Crl, o5

Y

O

The inequality (6.14) is of the form (5.38). The other estimates given in Section
5.3 and required for global convergence to a point satisfying the first—order necessary
optimality conditions remain valid. They consist of inequalities (5.40), (5.41), (5.42),
(5.43), (5.51), and (5.57).

The following lemma bounds the predicted decrease in a way similar to Lemma

5.4.1.

Lemma 6.2.2 If (s;), satisfies (6.12), then the predicted decrease in

the merit function satisfies
pred(sip) = <l DEPEau(sHll min { | DF PTVau(s9)l, 61
~ (k10 + SONICKll + p(ICHII = 1 Tesk + Cil?),

(6.15)
for any p > 0.

Proof The inequality (6.15) follows from a direct application of (5.51) and (6.12).
O

Given this result, Lemmas 5.4.2, 5.4.3, and 5.4.4 follow as if the calculations were
exact. Thus we are able to state the global convergence result that the TRIP reduced
SQP algorithms satisfy when the linear systems (6.1) are solved inexactly. This result
is the same as in Theorem 5.4.1 and shows that for a subsequence of the iterates, the
first—order necessary optimality conditions given in Proposition 4.4.3 for problem (4.1)

are satisfied in the limit.
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Theorem 6.2.1 Let {2} be a sequence of iterates generated by the
TRIP Reduced SQP Algorithms 5.2.1 for which the steps satisfy Condition
6.1, and assume Assumptions 5.1-5.6 and 6.1-6.3 hold. Then

lim inf (DLW fell +11C3l) = 0. (6.16)

Proof From (5.66) we obtain
liminf (| DF PIVau(sf)ll + [|Chl) = 0.
k—+o00

Thus there exists an index subsequence {k;} such that

lim (|1 DF PEV i (s3Il + 105,

1—400

)=0.

Now we apply Assumption 6.3 and the forms (4.5) and (6.11) of Wy = W (ay) and
Py, to obtain
T
lim (P — Wy,) V() =0.

1—+oo

Using this and the continuity of D(x)W (2)TV f(z) we get

Jim (1D WEV e (SN 1CxN) = Jim (1Degs ]l + 1 Cill) = 0.

The rest of the proof is given in the last paragraph of the proot of Theorem 5.4.1.

O
The condition in Assumption 6.3, that
im (= Ay, + Culr,) Cyar,) ™) Vg, (5] = 0
for all index subsequences {k;} such that lim;_. . |[C,|| = 0, is related to the com-

putation of the reduced gradient. If the adjoint update A\, = —C,(2)" TV, fi, or an
inexact version, is used for the multipliers, then this condition can be interpreted as
a restriction on how accurate these multipliers have to be computed. We comment

on this again in Section 6.4.

6.2.2 Inexact Directional Derivatives

The result proved in Theorem 6.2.1 covers also the inexact calculation of directional

derivatives necessary to compute quantities of the form Wyd, and Wld. However
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these are not the only places in the TRIP Reduced SQP Algorithms 5.2.1 where
directional derivatives of (' need to be evaluated. In fact, in the computation of
the actual and predicted decreases, we need to evaluate Jys; after the step s is
computed. Since we allow the derivatives of (' to be approximated, we do not have
Jis, but rather

Jisk + €, (6.17)

where ¢y, is an error term. The predicted decrease pred(sy; py) is affected by this error
and has to be redefined as:

pred(sy; pesex) = L(xk, A pr)
— (qul(skien) + AN (Jisi + ex + C) + pell Jisi + ex + Cil|?) .

where now the quadratic term qx(sg; ex) is given by

ar(spien) = o+ Vfilsp+ M (Jesk + ex) + 2sf Hysy (6.15)
== qk(sk) + )\zek

It can be proved that the global convergence result (6.16) given in Theorem 6.2.1
holds if e, is (’)(min{HCkH, HSkHQ}) This extension of Theorem 6.2.1 is not difficult
to show. In fact, by imposing this condition on ||ex|| the actual versus predicted
estimate (5.57) is valid for pred(sg; px; ex). Inequalities (5.38) and (5.51) hold also if
we replace Jisp by Jipsp + ¢

6.3 Inexact Calculation of the Quasi—-Normal Component

The quasi-normal component s} is an approximate solution of the trust-region sub-

problem

minimize 2[|C,(zx)(s9), + Ci||?
Y ! (6.19)
subject to  [[(s%),]] < &,

and it is required to satisfy the conditions (5.9), (5.12), and (5.13). The property
(5.12) is a consequence of (5.13) (see Lemma 5.6.2, equation (5.93)). Whether the
property (5.13) holds depends on the way in which the quasi-normal component
is computed. We show below that (5.13) is satisfied for a variety of techniques to
compute 32.

We concentrate on methods that are suitable for the large—scale case and do not

require the matrix Cy(xx) in explicit form. The first two groups of methods tackle
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the trust-region subproblem (6.19) directly. The first group of methods are Krylov
subspace methods that require the computation of matrix—vector products C,(x)d,
and C,(xx)"d,, while the second group of methods only require C\(x3)d,. The third
group of methods compute steps by solving the linear system C,(xzx)(s%), = —C)

approximately. The trust-region constraint is enforced by scaling the solution.

6.3.1 Methods that Use the Transpose

There are various ways to compute the quasi-normal component s; for large-scale
problems. For example, one can use the Conjugate-Gradient Algorithm 2.3.2, or one
can use the Lanczos bidiagonalization as described in [67]. Both methods compute
an approximate solution of (6.19) from a subspace that contains the negative gra-
dient —C\(x1,)TCy of the least squares functional %HCy(:Jck)(sq)y + Cy||*. Thus, the
components s generated by these algorithms satisfy |[s}|| < é6; and

1
SIC @) (sh)y + Cull”

(1
< min {SICy(x0)s + Cell* + [l < 8, 5 € span{—Cy(2) Ci}} - (6:20)

We can appeal to Lemma 2.3.1 to show that

N e
1€sz) C’“Hmm{HCy(waCy(wk)H’&k}'

ICKlI* = NCy(2a) () + Crl* =

[N

Now one can use the fact that {C,(x;)TCy(xx)} and {C,(zx)~T} are bounded se-

quences (see Assumptions 5.3-5.5 in Section 5.2.5) to prove the following lemma.

Lemma6.3.1 If (s})), satisfies (6.20), then there exist positive constants

k9 and k3, independent of k, such that

ICKI* = 1Cy () (5{)y + Crll* = wal| il mindra ]| Cill, 85}

Another family of methods to solve large—scale trust-region subproblems is pro-
posed and analyzed in [129], [133]. We described briefly these algorithms in Section
2.3.1 and mentioned that they compute steps satisfying a fraction of optimal decrease
condition of the type (2.10). Hence, when applied to the trust-region subproblem
(6.19), they produce quasi-normal components that verify (6.20) and Lemma 6.3.1
can be applied to obtain (5.13). In Theorem 3.8.1, Section 3.8, we pointed out the
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numerical difficulties that these trust-region subproblems are likely to offer to algo-
rithms that compute steps satisfying a fraction of optimal decrease condition. The
Lanczos bidiagonalization algorithm in [67] is another algorithm that computes steps

satisfying this property when applied to the trust-region subproblem (6.19).

6.3.2 Methods that Are Transpose Free

The Conjugate-Gradient Algorithm 2.3.2, the Lanczos bidiagonalization algorithm
[67], and the algorithms in [129], [133] require the computation of matrix—vector prod-
ucts of the form C,(x1,)d, and C,(x1)Td, for a given d, in IR™. For some applications,
the evaluation of C,(zx)7d, is more expensive than the application of C(x})d,, and
therefore it may be more efficient to use methods that avoid the use of C,(zx)Td,. In
this case one can apply nonsymmetric transpose—free Krylov subspace methods based
on minimum residual approximations, such as GMRES [127] or TFQMR [55]. In the
context of nonlinear system solving the use of such methods is described by Brown

and Saad [10], [11]. GMRES and TFQMR generate matrices!!
Ve R Wiy e R and  Hy € IRUADX
such that
Cylar)Vi = Wigr Hy and Oy, = ||Crl| Wigrer = ||Cr| Vies. (6.21)
The columns of the matrices V; and W41 have norm one, and it holds that
range(Vi) = Ki(Cy(2x), Ci) = span {Ci, Cy(w)Cr, .. (Cylan)) ' Crf . (6.22)

i.e. the columns of the matrix V; form a basis of the Krylov subspace K;(Cy(xy), Ci).
If GMRES is used then V; is orthogonal and W41 = Vi41. Using the identities (6.21),
the trust-region subproblem (6.19) can be approximated by

P . 1 ?
minimize §HVVI—I—1(HZZ + HC’“HGI)H (6 23)
subject to ||Viz|| < éx.

IFor the presentation of this approach, we follow the notation used for Krylov subspace methods.
Here the matrices W; and H; are generated by GMRES or TFQMR and are not the matrices
representing the null space of Ji or the approximation to the Hessian of the Lagrangian V2 _{j,
respectively.
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The quasi—-normal component is given by
(s})y = Viz, (6.24)

where z € IR' is the solution of (6.23).
If V; and W4y are orthogonal, i.e. if GMRES is used, then (6.23) is equivalent to

2
minimize %HHJZ + HCkHQIH (6.25)
subject to  ||z]| < 6.

Thus, if V; and W11 are orthogonal, then (6.22), (6.24), and (6.25) imply that the

quasi-normal component satisfies

1 .ol
LIC )0, + Gl < min { L1, ()3 + Gl + sl < b s € span{~C}}.
(6.26)
In this case we can use slight modifications of Lemma 2.3.1 to establish the fol-

lowing result:

Lemma 6.3.2 Suppose that W1 € IRmx(H'l), W, =V, € R™*! are the
orthogonal matrices generated by GMRES satisfying (6.21) and (6.22). If
(s7), is given by (6.24) and (6.25) and if

%c{ (Cyan)” + ) C = vial| el (6.27)
holds with vy > 0, then
ICHI* = NCy (@) (s7)y + Cull* = w2l Cillmin{ s | Crll, 81},
where x5 and k3 are positive constants that do not depend on k.

Proof We consider the function
t2

T T

Y1) = —vaat || Cell +

on the interval [0, 6;]. Using the arguments given in the proof of Lemma 2.3.1, we

can show that

V12 . V12 HCkH }
otz vi2 e
o0 < =1 min{ G et
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With the estimate (6.26) and assumption (6.27) this inequality implies

1€y (x)(s%)y + Cull* = [ICx I

o 2
e - e
10 e

< H—tcym)

HC " Hc 2"
_ b T 2
- zuckuck (Colen)” + Cylan) Cr + e HQC Cy(ze)" Cy(@r)C

< ().

Using the boundedness of {C,(zx)"C,(x1)}, from Assumption 5.3 in Section 5.2.5,
this gives the desired result. (]

The condition (6.27) is implied by the positive definiteness of the symmetric part
of Cy(xk), a condition also important for the convergence of nonsymmetric Krylov
subspace methods [72].

If V; and Wiy are not orthogonal, e.g. if TFQMR [55] is used, then (6.25) is not
equivalent to (6.23). However, as in the context of linear system solving, one can solve
(6.25) for z and use (6.24) as a quasi-normal component. Due to the nonorthogonality

of V; and Wi, one cannot guarantee that (6.26) holds anymore.

6.3.3 Scaled Approximate Solutions

An alternative to the previous procedures is to compute a solution of the linear system
Cy(xr)s = —C}, and to scale this component back into the trust region. The resulting
quasi-normal component is given in (5.91).
In this section, we assume that the computed solution (s7), of the linear system
Cy(xp)s = —C} satisfies
Cy(xk)(sg)y = —Cy + ey,

where the error e, can be bounded as
lexll < el Ckll- (6.28)

This gives
1(si)ull < (14 N Cy () Il (6.29)
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Lemma 6.3.3 If the approximate solution (s}), of the linear system

Cy(xp)s = —C}, satisfies ]\Cy(xk)(sz)y—l—CkH < €||Ck|| with € < 1, then the

quasi-normal component (5.91) using this inexact solution is such that:
ICHI* = NCy (@) (s7)y + Cull* = w2l Cillmin{ s | Crll, 81},
where x5 and k3 are positive constants independent of k.

Proof A simple manipulation shows that

ICHP = 1Oy (e (s8)y + Cell?
> |Cull” = [1€xCy(@r)(sp)y + Ckll?
> (|1 = (1= EOIICHI+ ElIC, (@) (sD), + Cill)

Now we use HCy(:Jck)(sz)y + Cll < €||Ck|| and & < 1, to obtain

ICHIZ = 11C, () (D), + Cull2 = G = ((1 = EDIICK] + &l Cill)
& (200 — ) = (1 = 2 )| C?

> G201 =+ (11— )?) | Cull”

> (1= G|

We need to consider two cases. If £ = 1 then
ICHIZ = NCy (i) (s)y + Cell* = (1 = )| Crll min{ | Cil, 6}

Otherwise, it follows from (6.29) that

8 8 8
I = =z :
syl = (L O Cy (o) THHNCH ™ (1 + e [|Cl]

k=

In this case we get

1_2

&
1Cell? = |Cy(zr)(s)y + Crl|* = m’\ck”‘sk
1 — €2 )
> m!\@!\mm{!\@!\ﬁk}-

Thus the result holds with ry = (1 — €*) min{l, m} and k3 = 1. ]
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6.4 Inexact Calculation of the Tangential Component

Ideally, the tangential component minimizes the quadratic model Wy(s,) in the null
space N(J;) subject to the trust region and the bound constraints. Since the null
space of Ji is characterized by Wy, the exact tangential component has the form
st = Wi(sg)u. If the u component of the tangential component is computed by a
conjugate—gradient algorithm, its computation requires the calculation of matrix—
vector products Wy.d, and W,;‘Fd. We assume that these calculations are inexact.

6.4.1 Reduced Gradient

For the computation of the tangential component, we first have to compute the re-
duced gradient W' Vgi(s]) of the quadratic model Wy(s,). If this is done using (6.5),

then we have an approximation to W,;[qu(sz) of the form
WEVai(s?) + e, (6.30)

where the error term e4 depends on WIVgi(s}). By bounding the error term in

(6.6), we find that
leall < NCuler)" Cylar) T I I (ea)yll + lI(ea)ull- (6.31)

We can interpret the inexact computation of W' Vgi(s]) as the exact solution of

a perturbed equation. If we set

1
EA H2 €A (quk(sz))T7

V(s

then
(= Culan)"Cylan)™ + Ea) Vyqu(s)) = =Culan) ' Coan) " Vyqu(s)) + ea.

Thus we can define A, = C,(zx) " Cy(xx) — % and

o ( — AT ) _ ( Oy () Culan) + ET ) | (6.32)
L Lo

With this definition we can write

WiVa(s) +ea = P Va(s)).
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The linear operator Ay satisfies
= Ar + Culz)TCylar)™ T = 1ES < [leall/IIVyan(sH
< (G Cylan) I I ea)ll + ea)ul ) IV yar(sHI (6.33)

and
[(= A+ Culan)" Cylar) )Vyai(sP| = 1LV ,gi(sHIl = leall
< (@) Cylae) T ey | + l(ea)ull)- (6.34)

If for a given V,qx(s]) the error terms in the computation of the reduced gradient
via (6.5) obey
max {[l(ea)y |l eakll} < €llCxll (6.35)

with € > 0, then (6.34) and Assumptions 5.3-5.5 in Section 5.2.5 imply Assumption
6.3. Moreover, if

max {[(ea)yll, l(ea)ull} < el Vyar(sPll, (6.36)

then (6.33) and Assumptions 5.3-5.5 in Section 5.2.5 imply the boundedness of {A}.
This gives the first part of Assumption 6.1.

6.4.2 Use of Conjugate Gradients to Compute the Tangential Component

In the following, we formulate extensions of the Conjugate—Gradient Algorithms 5.7.1
and 5.7.2 for the computation of the tangential component. To keep the presentation
simple, we continue to use the notation Wj and W!. However, whenever matrix—
vector products with Wy or W[ are computed, we assume that this is done using
(6.3), or (6.5). The degree of inexactness, i.e. the size of the error terms e, and e,,
is specified later. The reduced gradient W' Vg, (s]) of the quadratic model Wy(s,) is
assumed to be computed by (6.30) with errors (e4), and (e4), satisfying (6.35) and
(6.36).

In the case where an approximation Hj to the reduced Hessian WI'V2 (W} is

used, the quadratic

T 1 1

_ (Pquk(SZ)) Sy — §3qu5u QSuEk(DE)_QSu
is reduced at every iteration of the conjugate—gradient algorithm. If we use an ap-
proximation Hj, to the full Hessian V2 () we have to compute matrix—vector mul-

tiplications with W7I HyW}. One of the consequences of the inexactness is that the
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quadratic evaluated at the iterates of the conjugate—gradient algorithms is not guar-
anteed to decrease. For instance, the inexact application of W), and W}l may cause
WL H, W to be nonsymmetric. Hence we need to measure the Cauchy decrease after
the final iteration of the conjugate—gradient algorithm.

The extension of the Conjugate—Gradient Algorithm 5.7.1 is given below.

Algorithm 6.4.1 (Inexact Computation of s, = 32 + Wi(sg)u (Decoupled
Case))

1 Set 82 =0, "= —PI'Vaq(s]), ¢° = (D,f)zro, d® = ¢° and ¢ > 0.
2 For:=0,1,2,... do

2.1 Compute
—— (Ti)T(qj%) : (reduced Hessian),
N = (@) T (Ht+Ex(Dy ) 72)(d)
. ) () - —  (full Hessian).
(d’)T(WngWk—I—Ek(Dk )=2)(dY)
2.2 Compute

7' = max {T >0 : (DD Ys + 7d)|| < 6,
opla —uy) <s' 4+ 7d < op(b— uk)}
2.3 If 4 <0, orif 4* > 7¢, then set s* = s' + 7'd’, where 7 is given
as in 2.2 and go to 3; otherwise set s't! = s' +~4'd".
2.4 Update the residuals: ! =
r— yl(fsz + Ek(DE)_z)di (reduced Hessian),
rt— A (W H W), + Ek(D,E))_Q)di (full Hessian),

and ¢t = (DP)2pit1,

2.5 Check truncation criteria: if % < ¢, set 5% = st and

go to 3.
2.6 Compute o' = % and set dit! = ¢t 4+ o' d'.
3 Compute Wysr.
If a reduced Hessian approximation is used, set (si), = s& and s, =
32 + Wis?.

If a full Hessian approximation is used and if
T
~(PIVa(sh) st = 5West)T Hi(Wis?)
T
< = (Wquk(sg)) st L T W Ty oWs!

w2
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then set (sx), = s. and s, = 32 + Wysl. Otherwise (sg), = s* and

Sp = 32 + Wis?.
The extension for the coupled approach is analogous and is omitted.

6.4.3 Distance to the Null Space of the Linearized Constraints

Let (st), and (st), = (s1). be the quantities computed by Algorithm 6.4.1. Since
Wi(sk)u is not computed exactly in Step 3, it holds that

(sh)y = —Cy(ar) " Cular)(si)u + Cy(i) ™" ((eB)u + (€B)y)
= —Cy(zp) T Culr)(sk)u + B,

where the error term ep depends on (s;), and satisfies

leall < 1y (e) M (I1Cen)ull + ll(en)y]l). (6.37)

cf. (6.4). As before, we can interpret the inexact computation (st), of st = Wi(sp),

as the exact solution of a perturbed equation. If

1
Ep = es (sk),
(58 )ul[?

then

(= Cylan) " Culan) + Eg) (s)u = —Cy ()" Culan)(sk)u + €5 = (55),-

We define By, = C,(z¢)"'Cy(z1) — Ep and

o =B\ [ —Cylar) M Culxr) + Ep
Qr = ( [ ) = ( i ) : (6.38)

With this definition, we can write
t
s, = Qr(Sk)u-

The linear operator By satisfies

I = Bi+ Cy(a) ™ Cula) |

IEB] < llesl[/1[(sk)ull

(ICy(xe) M Ll em)all + Cer)yl) ) /(s )l
(6.39)

IA



140

and

| (= Cyer)Br+ Culzr)) (1)

= [[Cy(zr) Ep(se)ull = [|Cy(zr)es|
< [ler)ull + lI(en)y]l- (6.40)

If the error terms in the computation of (st), using (6.3) obey

1 . 1 .
max {|[(en), Il l(ep)ull} < 5 mind —, 24 min {s]|Cull 8} , (6.41)
2 K3 2

where k2 and k3 are defined in (5.13), then one can see from (6.40) that Bj satisfies

Assumption 6.2. Moreover, if

max {|le, |, leull} < ell(si)ull, (6.42)

then (6.39) and the boundedness of {C,(zx)™'} assured by Assumption 5.5 in Section
5.2.5, imply the boundedness of {By} required in Assumption 6.1.

6.4.4 Fraction of Cauchy Decrease Condition

Now we establish the decrease condition (6.12). We analyze reduced and full Hessians

approximations separately.

Reduced Hessian Approximation

In this case an approximation Hj for WI'V?2 (W} is used and all the calculations of
Step 2 of Algorithm 6.4.1 are performed exactly. Hence (si), satisfies the following

condition

~ (PIVas) (s = Moo,
> ol DF P au(s)l| min {sel| DF PE Vil s }-
(6.43)
for some positive constants kg, k7, and kg independent of k. This is just an application
of Lemma 5.3.3.
Now recall that we need to establish (6.12), where the left hand side is given by

- (Q;{qu(sz))T ($k)u — %(Sk)ZQ;QFHka(Sk)u-

However, in (6.43) the left hand side is

~ (PEVai(s9) (s — 5T B
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First we use the expression (5.32) for Hy, and the form (6.38) of Q) to write

1 1

§(Sk)fgk(5k)u = §(Sk)ZQ£Hka(Sk)u-

Then we relate the inexactness represented by P, and )} with the constraint residual

I|ICk]|. First,
~ (FIVadsD) (s = —qu<sz>Tc2k<sk>u—vmszf(]f;‘)<sk>u

+ Va(sh' ( ]f) ) (5k)u

T
= —(QIVarls)) (s8) = hlsi)u + EVyanls).
The error bounds (6.31), (6.35), (6.37), (6.41), and Assumptions 5.3-5.5 in Section
5.2.5 give
chlsn)e = eEVyar(sy) = lleall (sk)ull + leall IVyar(s)Il < <lICH,  (6.44)

where ¢} is a positive constant independent of k. Hence we proved (6.12) with ¢4 = ¢j.

Full Hessian Approximation

The Cauchy step s. computed in the first iteration of Algorithm 6.4.1 satisfies

— (PkTVQk(Sz))TS}L - %SiTWEHkaSi
> #el D PEV qi(s)|| min { || DE PTV qu(sP), w56},
(6.45)
where the operators Wk and Wk represent the inexact calculation W,?Hkﬁ/kdo of
WIH,W.d°. Again, this is just an application of Lemma 5.3.3.
Let us assume first that (sg), = s.. We deal with —(Sk)fﬁ/gﬂkﬁ/k(sk)u using

arguments similar to those used to obtain (6.44). We can show that

SRTQEHQelse) — sl W HWise),
L EL\\ " fo
= Slsul (W;Hr( 0 )) Hy, (Wk+( 0 ))(Sk)u
1. EATV ! Bz
= 58k, (W;Hr( ; )) Hy, (Wk+( 0 ))(Sk)u

=i [1C]l- (6.46)

Y
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An explanation is in order. 3 and Fg are constructed as 4 and Ep, respectively.
The operator g is the error matrix that is involved in computing Wyid®. The operator
E 5 accounts for the error in computing W,;‘F (Hkﬁ\/kdo). We can force the residuals
of these computations to depend on ||Ck|| as in (6.35) and (6.41). From this and
Assumptions 5.3-5.5 in Section 5.2.5, we get (6.46) with ¢f positive and independent
of k. So, in the case (sg), = s., we combine (6.44) and (6.46) to obtain (6.12) with
Sa =<+ ¢4
If (sg), # sk, then from Step 3 of Algorithm 6.4.1 we see that (sg), satisfies

T _ _
— (PIVa(s)) (si)u — 2(Wilsk)u)" He(Wilsi)u)
_(PgVWk@znTSi—'lITWffﬁmﬁs
> ol DE PV gi(s) || min { || DF PT V(). rsbi}-

Y

Now we follow the same arguments used to establish (6.44) and (6.46). If the
residual in Wp(sy), is bounded by ||Cy]|, we obtain

ST QEHQu(0). — (W50 He(Wilsi)) 2 —si' [l

n

with ¢} a positive constant independent of k. Finally, if we use this and (6.44), w
obtain (6.12) with ¢4 = ¢§ + ¢}
6.4.5 Inexact Calculation of Lagrange Multipliers

Note that the only assumption on A; required to prove the global convergence result
(6.2.1) is the boundedness of the sequence {A;} (see Assumption 5.4 in Section 5.2.5).

A choice of Ay that is available from the reduced—gradient calculation of ¢x(s) is
Ae = =Cylar) T Vyqu(s)). (6.47)
Due to inexactness \; actually satisfies
—Cy(z) M = Vygi(s]) + ex,

where ey is the corresponding residual vector. From Assumptions 5.3-5.5 in Section
5.2.5, if {er} is bounded then {\;} is also bounded.

Another choice for Ay is
A = —Cy(zr) IV, fr. (6.48)

See Section 5.7.2 for a discussion on the choices (6.47) and (6.48) of Aj.
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6.5 Numerical Experiments

We tested the TRIP Reduced SQP Algorithms 5.2.1 with inexact solutions of lin-
earized state and adjoint equations. The implementation is described in [76]. The
numerical test computations were done on a Sun Sparcstation 10 in double precision
Fortran 77. We solved the two examples described in Section 4.5 with a regular-
ization parameter v = 1072, The numerical results are satisfactory and revealed
interesting properties of these algorithms.

We used the formula (5.91) to compute the quasi-normal component, and conju-
gate gradients with a tolerance ¢ = 10™* to calculate the tangential component. In
both cases all the linear systems of the form (6.1) are solved inexactly with the tol-
erances given below. The Hessian and reduced Hessian approximations, the scheme
used to update the trust radius and the penalty parameter, and the inexact form D,E)
and D,E) of the affine scaling matrices Dy and Dj, are the same as in Section 5.8. We
used also o = 0 = 0.99995 for all k. The stopping criterion we used is (5.98), where
WIV f;. is calculated inexactly with the tolerance (6.50) given below.

The tolerance for inexact solvers with Cy(x) was set to

min {1072