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TRUST{REGION INTERIOR{POINT ALGORITHMS FORMINIMIZATION PROBLEMS WITH SIMPLE BOUNDS �J. E. DENNIS y AND LU��S N. VICENTE yAbstract. Two trust{region interior{point algorithms for the solution of minimization problemswith simple bounds are analyzed and tested. The algorithms scale the local model in a way similar toColeman and Li [1]. The �rst algorithm is more usual in that the trust region and the local quadraticmodel are consistently scaled. The second algorithm proposed here uses an unscaled trust region. Aglobal convergence result for these algorithms is given and dogleg and conjugate{gradient algorithmsto compute trial steps are introduced. Some numerical examples that show the advantages of thesecond algorithm are presented.Keywords. trust{region methods, interior{point algorithms, Dikin{Karmarkar ellipsoid, Cole-man and Li a�ne scaling, simple bounds.AMS subject classi�cation. 49M37, 90C20, 90C301. Introduction. In this note we consider the box{constrained minimizationproblem minimize f(x)subject to a � x � b;(1)where x 2 IRn, a 2 (IR [ f�1g)n, b 2 (IR [ f+1g)n and f maps IRn into IR. Weassume that f is continuously di�erentiable in the box B = fx 2 IRn : a � x � bg.Coleman and Li [1] give an elegant diagonal a�ne scaling for this problem. Ithas the avor of the Dikin{Karmarkar a�ne scaling, but it has a direct connectionto the dual information of the �rst{order necessary optimality conditions. A diagonalelement corresponding to what appears to be a constraining bound is the same asin the Dikin{Karmarkar a�ne scaling. In their algorithms, they allow the ellipticaltrust region thus de�ned to have trust radius greater than one, so that some infeasiblepoints are inside the trust region. As is usual, in their algorithms the trust region andthe quadratic model are consistently scaled.We adopt a version of the Coleman and Li scaling for the local quadratic model inboth our algorithms. The �rst algorithm that we propose here uses the same scalingfor the trust region, and so it is similar to the Coleman and Li algorithms. However,the trial steps are computed completely di�erently. The second algorithm that wesuggest maintains the trust region in the unscaled variables. In both algorithms, thetrial step computation is very simple and convenient with respect to staying strictlyinside B. We present some numerical examples to illustrate the advantages of thesecond algorithm.There are three points of novelty here:1. An improved interior{point algorithm for the solution of (1).2. A trust{region convergence analysis for a fraction of Cauchy decrease condi-tion in which the scaling of the direction that de�nes the Cauchy step doesnot come from the ellipsoidal norm that de�nes the trust region.� Support of this work has been provided by INVOTAN, CCLA and FLAD (Portugal) and by DOEDE{FG03{93ER25178, CRPC CCR{9120008 and AFOSR{F49620{9310212.y Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005{1892, USA. 1



2 J. E. DENNIS AND L. N. VICENTE3. A new way of extending dogleg and conjugate{gradient algorithms for thesolution of trust{region subproblems that arise in unconstrained optimization,to trust{region subproblems that appear when the simple bounds are included.A point x� in B is said to be a �rst{order Karush{Kuhn{Tucker (KKT) point ifai < (x�)i < bi =) (rf(x�))i = 0;(x�)i = ai =) (rf(x�))i � 0; and(x�)i = bi =) (rf(x�))i � 0;or equivalently if, D(x�)prf(x�) = 0;where p > 0 is arbitrary and D(x) is a diagonal matrix whose diagonal elements aregiven by (D(x))ii = 8>>>>>>>>>>>><>>>>>>>>>>>>: (b� x)i if (rf(x))i < 0 and bi < +1;1 if (rf(x))i < 0 and bi = +1;(x� a)i if (rf(x))i � 0 and ai > �1;1 if (rf(x))i � 0 and ai = �1;for i = 1; : : : ; n.We show that a sequence fxkg generated by either of our algorithms satis�eslimk kD(xk)prf(xk)k = 0;for any p � 12 . It is important to note that these results are obtained under verymild assumptions on the trial steps, and that the sequence of approximations to theHessian matrix of f is assumed only to be bounded.This paper is organized as follows. In Section 2 we introduce the conditions thatwe need to impose on the trial steps for the algorithms mentioned before. These aredescribed in Section 3. In Section 4 we give a uni�ed global convergence result for thetrust{region interior{point algorithms. In Section 5 we describe dogleg and conjugate{gradient algorithms to compute the trial steps. Finally, in Section 6 we present somenumerical examples and some �nal conclusions. In this paper k � k represents the `2norm, and Il the identity matrix of order l.2. Trust{region subproblems and trial steps. In this section we motivatethe computation of the trial steps and present the conditions that these trial steps haveto satisfy. The algorithms generate a sequence of iterates fxkg where xk is strictlyfeasible, in other words where a < xk < b. Given xk we compute a trial step sk , anddecide whether to accept it or not. If sk is accepted then xk+1 = xk + sk , otherwisexk+1 = xk.



TRIP ALGORITHMS FOR SIMPLE BOUNDS 32.1. Motivation. Our approach begins like sequential quadratic programming(SQP). Before we think about globalization of SQP, we look at the local quadraticprogramming (QP) subproblemminimize 	k(s)subject to �k(a� xk) � s � �k(b� xk);gotten by building a quadratic model 	k(s) = f(xk)+gTk s+ 12sTHks, of f(xk+s) aboutxk, where gk = rf(xk), and Hk is an approximation to the Hessian matrix r2f(xk)of f evaluated at xk. Here �k 2 [�; 1) and � 2 (0; 1) is �xed for all k. Enforcingthese bounds at every iteration ensures that the solutions to the subproblems remainstrictly feasible for the original problem.For this quadratic problem, we like the idea of the a�ne scaling algorithm, i.e.,we rewrite the quadratic problem in a basis ŝ = D�1k s, for which the distances to theconstraints of the current iterate xk are the same in order that all directions be equallyfree for use in decreasing the objective function from xk. Here we follow the conceptof Coleman and Li [1] and choose Dk as D(xk). They actually use Dk = D(xk) 12 .However, either choice has the e�ect of only rescaling those components that appear,from the sign of the gradient, to threaten to restrict the step. This gives the local QPsubproblem: minimize 	k(Dkŝ)subject to �kD�1k (a� xk) � ŝ � �kD�1k (b� xk);gotten by building a quadratic model 	k(Dkŝ) = f(xk) + (Dkgk)T ŝ + 12 ŝTDkHkDkŝ.In this subproblem there is an explicit scaling given by Dk in the ŝ basis. For instance,the ŝ steepest{descent direction in the `2 norm is given by �Dkgk.Thus, we would like to minimize this quadratic function over a trust region withthe requirement that xk + sk = Dk(x̂k + ŝk) has to be strictly feasible. Although wedo this in the original basis s so that we can work always with the same variables, webring the scaling that is used in the basis ŝ. The reference trust{region subproblemthat we consider, written in the original basis, is the following:minimize 	k(s)(2) subject to kS�1k sk � �k ;(3) �k(a� xk) � s � �k(b� xk);(4)where �k is the trust radius, and Sk is a n�n nonsingular matrix. This subproblem isimplicitly scaled by D2k so that the direction �Dkgk de�ned in the ŝ variables is nowgiven by �Dk(Dkgk) = �D2kgk in the s variables.The two algorithms suggested here di�er mainly in their choice of Sk. We discussthat issue now.If we continue to follow the a�ne scaling idea, then we use the ellipse de�ned ateach iterate in the original s coordinates by the `2 norm on these new coordinates ŝ tohelp to enforce the bounds. In other words, we would choose Sk = Dk, and the shapeof the trust region (3) would be ellipsoidal in the original basis.This substitution of one ellipsoidal constraints for all the bound constraints wasa prime motivation for interior{point methods. However from the beginning of thecomputational study of interior{point methods, it was found to be important to allow



4 J. E. DENNIS AND L. N. VICENTEsteps past the boundary of this ellipsoid, as long as they still satisfy the subproblembound constraints. This translates here to saying that if the trust region is to havethe ellipsoidal shape, then the trust radius should be allowed to exceed one, and sothe trust region really is not used to enforce the bound constraints. Sometimes, thesubproblem is further biased away from the bounds by adding a barrier term to themodel (2).The motivation for the second algorithm is that there is no reason to use theellipsoid to de�ne the shape of the trust region if it is not useful for enforcing thebounds. In fact, there are even more good reasons not to use it here than in the linearprogramming problem. One of the most important is that for nonlinear programs x�may lie strictly inside B. This happens in problems where the bounds are really tode�ne the region of interest. If xk is near a bound which is not active at x�, thenmany iterations may be required to move o� that bound.Hence we choose Sk to be the identity in the second algorithm.It is important to point out that Coleman and Li [1] present a di�erent motivationto their algorithms. They see their algorithms as applying Newton's method to thesystem of nonlinear equations D(x)rf(x) = 0. The vector function D(x)rf(x) iscontinuous, but nondi�erentiable if (rf(x))i = 0. As result of applying Newton'smethod, they add to Hk a diagonal matrix Ck of the formCk = D� 12k diag(gk)JkD� 12k ;(5)where diag(gk) is a diagonal matrix with diagonal elements given by (diag(gk))ii =(gk)i, i = 1; : : : ; n, and where Jk is de�ned as the \Jacobian" of D(x) at x = xk . Wenote that the choice made by Coleman and Li [1] is Sk = D 12k . See their paper formore details.The global convergence result given in Section 4 holds for any Dk of the form Dpkwith p � 12 . We motivated the algorithms by using p = 1 but for the rest of this paperwe assume that p is any number greater or equal than 12 .2.2. What to impose on the trial steps. We need to de�ne the Cauchy stepassociated with the trust{region subproblem (2){(4). This Cauchy step ck is de�nedas the solution of minimize 	k(s)subject to kS�1k sk � �k ; s 2 spanf�D2pk gkg;�k(a� xk) � s � �k(b� xk):(6)As in many trust{region algorithms, sk is required to give a decrease on 	k(s) smallerthan a uniform fraction of the decrease given by ck for the same function 	k(s). Thiscondition is often called fraction of Cauchy decrease, and in this case is	k(0)�	k(sk) � � (	k(0)�	k(ck)) ;(7)where � is positive and �xed across all the iterations.Coleman and Li [1] de�ne the fraction of Cauchy decrease condition in a di�erentway by using �k = 1 in (6) although they suggest �k 2 (0; 1) in the computation ofthe trial step sk. Our de�nition leads naturally to the condition (7) holding for anytrial step generated by the algorithms that we propose in Section 5.



TRIP ALGORITHMS FOR SIMPLE BOUNDS 53. TRIP algorithms. To decide whether to accept or reject a trial step sk , however it is computed, we need to evaluate the ratio rk = ared(sk)=pred(sk); whereared(sk) = f(xk) � f(xk+1) is the actual decrease and pred(sk) = 	k(0) � 	k(sk)is the predicted decrease. We describe next the steps of the algorithms leaving thecomputation of the trial steps for Section 5.Algorithm 3.1 (Trust{region interior{point (TRIP) algorithms).1. Choose �0 > 0, x0 such that a < x0 < b, and p, �, �, �, and � such that p � 12 ,� > 0 and 0 < �; �; � < 1.2. For k = 0; 1; 2; : : : do2.1. If kDpkgkk � �, stop and return xk as a solution for (1).2.2. Compute a trial step sk satisfying (7), kS�1k skk � �k and �k(a� xk) �sk � �k(b� xk), where �k 2 [�; 1).2.3. If rk < � reject sk , set �k+1 = �kskk, xk+1 = xk.If rk � � accept sk, choose �k+1 � �k, set xk+1 = xk + sk.Of course the rules to update the trust radius can be much more involved butthe above su�ces to prove convergence results and to understand the trust{regionmechanism.The choices Sk = Dpk and Sk = In correspond respectively to the �rst and secondalgorithms.4. Global convergence result. To analyze the convergence properties of theTRIP algorithms, all we need to do is to express (7) in a more useful form. We dothis in the following technical lemma, and it is not a surprise to see that the prooffollows the proof given by Powell (see [5, Theorem 4] and [3, Lemma 4.8]) for theunconstrained minimization case.Lemma 4.1. If sk satis�es (7) then	k(0)�	k(sk) � 12�kĝkkmin( kĝkkkĤkk ;min( kĝkkkS�1k Dpkĝkk�k; � kĝkkkhkk1)) ;where ĝk = Dpkgk, Ĥk = DpkHkDpk and hk is a vector in IRn de�ned by(hk)i = j(gk)ijminf(xk � a)i(1�2p); (b� xk)i(1�2p)g ;for i = 1; : : : ; n.Proof. De�ne  : IR+ �! IR as  (t) = 	k(�tDpk ĝkkĝkk) � 	k(0). Then  (t) =�kĝkkt + vk2 t2 where vk = ĝTk Ĥk ĝkkĝkk2 . Now we need to minimize  in [0; Tk] where Tk isgiven byTk = min� kĝkkkS�1k Dpk ĝkk�k; �kkĝkkmin� (xk�a)i(1�2p)(gk)i : (gk)i > 0� ;�kkĝkkmin�� (b�xk)i(1�2p)(gk)i : (gk)i < 0�� :Let t�k be the minimizer of  in [0; Tk]. If t�k 2 (0; Tk) then (t�k) = �12 kĝkk2vk � �12 kĝkk2kĤkk :(8)



6 J. E. DENNIS AND L. N. VICENTEIf t�k = Tk then either vk > 0 in which case kĝkkvk � Tk or vk � 0 in which casevkTk � kĝkk. In either event, (t�k) =  (Tk) = �Tkkĝkk+ vk2 T 2k � �Tk2 kĝkk:(9) Now we can combine (8) and (9) and get	k(0)�	k(sk) � � (	k(0)�	k(ck)) = �� (t�k)� 12�kĝkkmin� kĝkkkĤkk ; Tk�� 12�kĝkkmin� kĝkkkĤkk ;min� kĝkkkS�1k Dpk ĝkk�k ; � kĝkkkhkk1�� :Now the following theorem is a consequence of Lemma 4.1. We can see that underits assumptions, the sequences fkĤkkg, fkS�1k Dpkĝkkg, and fkhkk1g are bounded.Thus, Lemma 4.1 implies	k(0)�	k(sk) � �1kĝkkmin f�2kĝkk; �3�kg ;where the constants �1, �2, and �3 are positive and independent of k. Hence the proofof Theorem 4.1 follows the same steps as the proof of Theorem 3.5 of Coleman and Li[1]. Theorem 4.1. Let f be continuously di�erentiable and bounded below on L(x0) =fx 2 B : f(x) � f(x0)g, where fxkg is a sequence generated by the TRIP algorithms.If Hk and S�1k Dpk are uniformly bounded and L(x0) is compact thenlimk kDpkgkk = 0:The choices Sk = Dpk and Sk = In produce bounded sequences fS�1k Dpkg, underthe assumption that L(x0) is compact. They correspond to the algorithms that wepropose.5. Algorithms to compute trial steps. As in unconstrained minimization wehave dogleg and conjugate{gradient algorithms to compute a trial step sk that satis�esthe fraction of Cauchy decrease condition (7).The conjugate{gradient algorithm to compute a trial step sk is very similar to theconjugate{gradient algorithm proposed by Steihaug [6] and Toint [7] for unconstrainedminimization. The only di�erence is caused by the fact that xk + sk has to be strictlyfeasible.Algorithm 5.1 (Conjugate{gradient algorithm for the computationof sk).1 Set s0 = 0, r0 = �gk, q0 = D2pk r0, and d0 = q0. Choose a small positivetolerance �1.2 For i = 0; 1; 2; : : : do2.1 Compute i = rTi qidTi Hkdi .



TRIP ALGORITHMS FOR SIMPLE BOUNDS 72.2 Compute� = maxf� > 0 : kS�1k (si + �di)k � �k ;�k(a� xk) � si + �di � �k(b� xk)g:2.3 If i � 0, or if i > � , then set sk = si + �di, where � is given as in 2.2and stop; otherwise set si+1 = si + idi.2.4 Update the residuals ri+1 = ri � iHkdi and qi+1 = D2pk ri+1.2.5 Check truncation criteria: If rrTi+1qi+1rT0 q0 � �1 then stop and set sk = si+1.2.6 Compute �i = rTi+1qi+1rTi qi and update the direction di+1 = qi+1 + �idi.As before we have the choices Sk = Dpk and Sk = In.A dogleg algorithm to compute a trial step sk similar to the dogleg algorithmproposed by Powell [4] for unconstrained minimization can also be applied. Sinceboth dogleg and the conjugate{gradient algorithms start by minimizing the quadraticfunction 	k(s) along the direction �D2pk gk, it is a simple matter to see that any trialstep sk computed by using these algorithms satis�es the fraction of Cauchy decrease(7) with � = 1.Now we briey describe how Coleman and Li [1] compute the trial steps. Theyde�ne pk as the solution of the trust{region subproblemminimize 	k(s) + 12sTCkssubject to kD� 12k sk � �k;where Ck is given by (5), and compute the Cauchy point ck for some �k 2 (0; 1). Theypropose two algorithms. In the �rst, called double trust{region method, they scale pkinto the interior of B and accept or reject sk based on a fraction of Cauchy decreaseand on the following ratio between actual and predicted decreases:f(xk)� f(xk+1)� 12sTk Cksk	k(0)�	k(sk)� 12sTk Cksk :(10)In the second, called practical trust{region algorithm, they choose sk to be either ckor the scaled pk according to a fraction of Cauchy decrease condition. Then theyaccept or reject sk based on the ratio (10). Their algorithms are, under appropriateassumptions, globally convergent to a nondegenerate point satisfying the second{orderKKT conditions with a q{quadratic local rate of convergence.6. Numerical examples and conclusions. We have implemented the TRIPalgorithms using MATLAB 4.2a in a Sun (Sparc) workstation. We have used �0 = 1,p = 1, �k = � = 0:99995 for all k, �1 = 10�4, and � = 10�5. We have tested thealgorithms in a set of problems given in Conn, Gould and Toint [2]. This set ofproblems is divided in two groups, labeled by U and C (see Table 1). In problems U,the solution lies in the interior of B and therefore these problems correspond to thesituation described in Section 2.1. In the cases where the initial point given in [2] isnot strictly feasible, we scale it back into the interior of B according to the rules usedin [1]. The scheme 2.3 (see Section 3) used to update the trust radius is the following:� If rk < 10�4, reject sk and set �k+1 = 0:5kS�1k skk.� If 10�4 � rk < 0:1, reject sk and set �k+1 = 0:5kS�1k skk.



8 J. E. DENNIS AND L. N. VICENTESk = Dk Sk = InProblem n geval feval geval fevalGENROSE U 8 24 35 28 36GENROSE C 8 9 9 8 8CHAINROSE U 25 15 17 16 20CHAINROSE C 25 22 29 22 26DEGENROSE U 25 31 39 28 29DEGENROSE C 25 33 42 27 32GENSING U 20 25 25 25 25GENSING C 20 17 17 17 17CHAINSING U 20 25 25 25 25CHAINSING C 20 28 28 29 29DEGENSING U 20 33 33 34 34DEGENSING C 20 33 33 32 32GENWOOD U 8 38 58 39 51GENWOOD C 8 9 9 8 8CHAINWOOD U 8 38 57 37 50CHAINWOOD C 8 9 9 10 10HOSC45 U 10 11 11 12 12HOSC45 C 10 11 11 13 13BROYDEN1A U 30 14 14 14 14BROYDEN1A C 30 21 21 22 22BROYDEN1B U 30 7 7 7 7BROYDEN1B C 30 20 20 17 17BROYDEN2A U 30 16 24 15 15BROYDEN2A C 30 22 22 23 23BROYDEN2B U 30 9 9 8 8BROYDEN2B C 30 24 24 23 23TOINTBROY U 30 8 8 �9 �37TOINTBROY C 30 21 21 21 21TRIG U 10 11 22 10 15TRIG C 10 13 13 12 12TOINTTRIG U 10 �6 �27 6 6TOINTTRIG C 10 22 28 12 12CRAGGLEVY U 8 25 25 25 25CRAGGLEVY C 8 22 27 21 21PENALTY U 15 23 23 24 25PENALTY C 15 27 27 30 30AUGMLAGN U 15 19 23 20 24AUGMLAGN C 15 26 27 27 29BROWN1 U 10 18 18 18 18BROWN1 C 10 28 28 28 28BROWN3 U 10 8 8 8 8BROWN3 C 10 10 10 9 9BVP U 10 9 9 9 9BVP C 10 9 9 10 10VAR U 20 9 9 9 9VAR C 20 8 8 8 8Table 1Numerical solution of small test problems. n { number of variables, geval { number of gradientevaluations, feval { number of function evaluations.



TRIP ALGORITHMS FOR SIMPLE BOUNDS 9Sk = Dk Sk = Ingeval feval geval fevalProblems U 422 526 426 502Problems C 444 472 429 440Total 866 998 855 942Table 2Comparation of the two algorithms. geval { number of gradient evaluations, feval { number offunction evaluations.� If 0:1 � rk < 0:75, accept sk and set �k+1 = �k.� If rk � 0:75, accept sk and set �k+1 = 2�k .We also stopped the algorithms when the trust radius was reduced below 10�16.These failures are indicated by � in Table 1. Our stopping criteria is di�erent from thestopping criteria used by Coleman and Li. We stop if either kDkrf(xk)k � 10�5 orthe trust radius is reduced below 10�16. They stop when D 12kHkD 12k is positive de�niteand 	k(sk)�	k(0)+ 12sTk Cksk < 0:5�10�12. Our stopping criteria is of the type givenin [2].The results are given in Table 1. In Table 2 we list the total number of functionand gradient evaluations taken by both approaches to solve problems U and C. Fromthis table we observe that the second algorithm (Sk = In) performed better. Webelieve that this will be more clearly the case in larger problems.Acknowledgments. We are grateful to Matthias Heinkenschloss, Virginia Poly-technic Institute and State University, for his many suggestions that have improvedthe presentation of this paper. REFERENCES[1] T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subjectto bounds, Tech. Rep. TR93{1342, Department of Computer Science, Cornell University, 1993.To appear in SIAM J. Optim.[2] A. R. Conn, N. I. M. Gould, and P. L. Toint, Testing a class of methods for solving mini-mization problems with simple bounds on the variables, Math. Comp., 50 (1988), pp. 399{340.[3] J. J. Mor�e, Recent developments in algorithms and software for trust regions methods, in Mathe-matical programming. The state of art, A. Bachem, M. Grotschel, and B. Korte, eds., SpringerVerlag, New York, 1983, pp. 258{287.[4] M. J. D. Powell, A new algorithm for unconstrained optimization, in Nonlinear Programming,J. B. Rosen, O. L. Mangasarian, and K. Ritter, eds., Academic Press, New York, 1970.[5] , Convergence properties of a class of minimization algorithms, in Nonlinear Programming2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York,1975, pp. 1{27.[6] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAMJ. Numer. Anal., 20 (1983), pp. 626{637.[7] P. L. Toint, Towards an e�cient sparsity exploiting Newton method for minimization, in SparseMatrices and Their Uses, I. S. Du�, ed., Academic Press, New York, 1981, pp. 57{87.


