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TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OFNONLINEAR PROGRAMMING PROBLEMS�J. E. DENNIS y , MATTHIAS HEINKENSCHLOSS z AND LU��S N. VICENTE xAbstract. In this paper a family of trust{region interior{point SQP algorithms for the solution of a class ofminimization problems with nonlinear equality constraints and simple bounds on some of the variables is described andanalyzed. Such nonlinear programs arise e.g. from the discretization of optimal control problems. The algorithmstreat states and controls as independent variables. They are designed to take advantage of the structure of theproblem. In particular they do not rely on matrix factorizations of the linearized constraints, but use solutions of thelinearized state equation and the adjoint equation. They are well suited for large scale problems arising from optimalcontrol problems governed by partial di�erential equations.The algorithms keep strict feasibility with respect to the bound constraints by using an a�ne scaling methodproposed for a di�erent class of problems by Coleman and Li and they exploit trust{region techniques for equality{constrained optimization. Thus, they allow the computation of the steps using a variety of methods, including manyiterative techniques.Global convergence of these algorithms to a �rst{order KKT limit point is proved under very mild conditions onthe trial steps. Under reasonable, but more stringent conditions on the quadratic model and on the trial steps, thesequence of iterates generated by the algorithms is shown to have a limit point satisfying the second{order necessaryKKT conditions. The local rate of convergence to a nondegenerate strict local minimizer is q{quadratic. The resultsgiven here include as special cases current results for only equality constraints and for only simple bounds.Numerical results for the solution of an optimal control problem governed by a nonlinear heat equation arereported.Keywords. Nonlinear programming, SQP methods, trust{region methods, interior{point algorithms, Dikin{Karmarkar ellipsoid, Coleman{Li a�ne scaling, simple bounds, optimal control problems.AMS subject classi�cations. 49M37, 90C06, 90C301. Introduction. In this paper we introduce and analyze a family of algorithms for the so-lution of an important class of minimization problems which often arise from the discretization ofoptimal control problems. These problems are specially structured nonlinear programming prob-lems of the following form: minimize f(y; u)subject to C(y; u) = 0;(1.1) u 2 B = fu : a � u � bg;where y 2 IRm, u 2 IRn�m , a 2 (IR [ f�1g)n�m, and b 2 (IR [ f+1g)n�m. The functionsf : IRn �! IR and C : IRn �! IRm, m < n, are assumed to be at least continuously di�erentiable.� This document was generated September 17, 1997.y Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005{1892, USA, E-Mail: dennis@rice.edu. Support of this author has been provided by DoE{FG03{93ER25178, CRPC CCR{9120008,and AFOSR{F49620{9310212.z Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005{1892, USA,E-Mail: heinken@rice.edu. This author was supported by the NSF under Grant DMS{9403699, by the DoE underGrant DE-FG03-95ER25257 and in part by the AFOSR under Grant F49620{93{1{0280.x Departamento de Matem�atica, Universidade de Coimbra, 3000 Coimbra, Portugal. E-Mail:lvicente@mat.uc.pt. This work was developed while the author was a graduate student at the Department ofComputational and Applied Mathematics of Rice University. Support has been provided by INVOTAN (NATOscholarship), CCLA (Fulbright scholarship), FLAD, (Portugal) and by DoE{FG03{93ER25178.1



2 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEAs indicated above, minimization problems of the form (1.1) often arise from the discretization ofoptimal control problems. In this case y is the vector of state variables, u is the vector of controlvariables, and C(y; u) = 0 is the discretized state equation. Other applications, which might beviewed as special optimal control problems include optimal design and parameter identi�cationproblems. Minimization problems (1.1) originating from optimal control problems governed bylarge systems of ordinary di�erential equations, or partial di�erential equations are the targets ofthe algorithms in this paper.Although there are algorithms available for the solution of nonlinear programming problemsthat are more general than (1.1), the family of algorithms presented in this paper is unique inthe consequent use of structure inherent in many optimal control problems, the use of optimiza-tion techniques successfully applied in other contexts of nonlinear programming, and the rigoroustheoretical justi�cation.Our algorithms are based on sequential quadratic programming (SQP) methods and use trust{region interior{point techniques to guarantee global convergence and to handle the bound con-straints on the controls. SQP methods �nd a solution of the nonlinear programming problem(1.1) by solving a sequence of quadratic programming problems. It is known, see e.g. [37], [38],that the structure of optimal control problems can be used to implement and analyze SQP meth-ods. In particular, to implement SQP methods, it is su�cient to compute quantities of the formCy(y; u)vy, Cy(y; u)Tvy , Cu(y; u)vu, Cu(y; u)Tvy , and to compute solutions of the linearized stateequation Cy(y; u)vy = r, and of the \adjoint equation" Cy(y; u)Tvy = r. Here Cy and Cu denotesthe derivatives of C with respect to y and u. This is an important observation, because these aretasks that arise naturally in the context of optimal control problems. All of the early SQP algo-rithms, and many of the recent ones rely on matrix factorizations, like sparse LU decompositions,of the Jacobian J(x) of C(x). For the applications we have in mind this is not feasible. Often,the involved matrices are too large to perform such computations and very often these matricesare not even available in explicit form. On the other hand, matrix{vector multiplications Cy(x)vy,Cy(x)Tvy , Cu(x)vu, Cu(x)Tvy can be performed and e�cient solvers for the linearized state equa-tion Cy(x)vy = r, and the adjoint equation Cy(x)Tvy = r often are available. For example, thepartial Jacobian Cy(x) in the application treated in Section 11 has a block bidiagonal structurewith diagonal matrices being tridiagonal. Thus, while the Jacobian is large, the solution of thelinearized state equation or the adjoint equation can be done by block forward substitution orblock backward substitution, respectively. In each substitution step, only a relatively small systemwith tridiagonal system has to be solved. This is typical for many applications, in particular thosein dynamical systems. Many SQP based codes for optimal control problems governed by ODEsor DAEs exploit this structure e�ciently in their numerical linear algebra. See, e.g., [1], [2], [42],[58], [62] and the references therein. For many applications, in particular those governed by PDEs,such factorizations of the Jacobian J(x) of C(x) are not feasible from a practical point of view,but solution techniques for Cy(y; u)vy = r and Cy(y; u)Tvy = r are available. This has motivatedus to require only this information and to design a practicable algorithm that disjoins the partic-ular equation solver from the optimization algorithm. In the presence of bound constraints, thistask goes well beyond the mere replacement of matrix factorizations by black-box solvers. Theimplementation of our algorithm is given in [16].A purely local analysis for the case with no bounds constraints has being given in [34], [36],[37], [39]. However, we consider here the much more di�cult issue of incorporating all this structureinto an algorithm that converges globally and handles bound constraints on the control variables



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 3u. The global convergence of our algorithms is guaranteed by a trust{region strategy. In ourframework the trust region serves a dual purpose. Besides ensuring global convergence, trust regionsalso introduce a regularization of the subproblems which is related to the Tikhonov regularization.For the solution of optimal control problems, the partitioning of the variables into states y andcontrols u motivates a partial decoupling of step components that leads to interesting alternativesfor the choice of the trust region. In Sections 5.2.1 and 5.2.2 we will introduce a decoupled and acoupled trust{region approach. As indicated by the names, in the decoupled approach the trustregion will act on step components separately. This allows a more e�cient implementation ofalgorithms for the computation of these steps. However, for problems with ill{conditioned stateequations, this decoupling does not give an accurate estimate of the size of the steps and mightlead to poor performance. In this situation the coupled approach is better, and so we include both.For the treatment of the bound constraints on u we use an a�ne scaling interior{point methodintroduced by Coleman and Li [13] for problems with simple bounds. Interior{point approaches areattractive for many optimization problems with a large number of bounds, including the structuredproblem (1.1). In our context, the a�ne scaling interior{point method is also of interest, becauseit does not interfere with the structure of the problem (1.1). To apply this method, no informationin addition to that needed for the case without bound constraints is required from the user. Thisor similar interior{point approaches have recently also been used e.g. in [6], [14], [43], [44], [50].The advantage of the approach in [13] is that the scaling matrix is determined by the distance ofthe iterates to the bounds and by the direction of the gradient. This dependence on the directionof the gradient is important for global convergence and its good e�ect can be seen in numericalexamples, see e.g. Figures 11.1 and 11.2.Another important issue, that is addressed in the implementations of the algorithms presentedin this paper is the problem scaling inherent in optimal control problems. As we have pointed out,the problems we are primarily interested in are discretizations of optimal control problems governedby partial di�erential equations. The in�nite dimensional problem structure greatly inuences the�nite dimensional problem. In our implementation, we take this into account by choosing scalarproducts for the states y, the controls u, and the duality pairing needed to represent �TC(y; u)that are discretizations of proper in�nite dimensional ones. It is beyond the scope of this paperto give a comprehensive theoretical study of these issues, but it is important to notice that theformulation of the algorithms discussed here fully support the use of such scalar products withoutany changes. This is a great advantage. In some of our numerical experiments [11], [30] thisimproved the performance of our algorithms signi�cantly, it avoided arti�cial ill{conditioning, andit enhanced the quality of the solution computed for a given stopping tolerance. Moreover, ournumerical experiments also indicate the mesh independent behavior of our algorithms when thistype of scaling is used.We believe that the features and strong theoretical properties of these algorithms make themvery attractive and powerful tools for the solution of optimal control problems. They have beensuccessfully applied to a boundary control problem, see Section 11, a distributed nonlinear ellipticcontrol problem [31], and optimal control problems arising in uid ow [11], [30]. The software thatproduced these results currently is being beta{tested with the intent of electronic distribution [16].Before we give an outline of this paper, it is worth discussing the relationship between theconstrained minimization problem (1.1) and an equivalent reduced problem. Under the assumptionsof the Implicit Function Theorem it is possible to solve C(y; u) = 0 for y. This de�nes a smooth



4 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEfunction y(u) and allows us to reduce the minimization problem (1.1). The reduced problem isgiven by minimize f̂(u) � f(y(u); u)subject to u 2 B = fu : a � u � bg:(1.2)This leads to the so{called black box approach in which the nonlinear constraint C(y; u) = 0 isnot visible to the optimizer. Its solution is part of the evaluation of the objective function f̂(u).The reduced problem can be solved by a gradient or a Newton{like method. For optimal controlproblems, many algorithms follow this approach. Often, projection techniques are used to handlethe box constraints, see e.g. [28], [51].Recently, so{called all{at{once approaches that treat both y and u as independent variableshave been proposed to solve optimal control problems, see e.g. [1], [2], [4], [29], [32], [33], [34], [35],[36], [37], [39]. [41], [42], [57], [58], [62].Since they move towards optimality and feasibility at the same time, they o�er signi�cant ad-vantages. SQP methods are of particular interest. They do not require the possibly very expensivesolution of the nonlinear state equation in every step, but as indicated above allow use of the struc-ture of optimal control problems. In addition, SQP methods have proven to be very successful forthe solution of other nonlinear programming problems. See e.g. [5], [9], [23], [24], [40], [47], [48],[50], [56].As outlined before, we use SQP based methods for the solution of (1.1), i.e., the all{at{onceapproach. However, the reduced problem (1.2) is important to us for two reasons. Firstly, therelation between the full problem (1.1) and the reduced problem (1.2) gives important insightinto the structure of (1.1) and allows us to extend techniques successfully applied to problemsof the form (1.2). Secondly, black box approaches are used very often to solve the problems wehave in mind. We want to use this expertise in designing more e�cient codes. Speci�cally, ourconsequent use of the structure of the optimal control problems leads to our family of trust{regioninterior{point SQP algorithms. These algorithms only require information that the user has toprovide anyway if a black{box approach is used with a Newton{like method for the solution of thenonlinear state equation and adjoint equations techniques for the computation of gradients. Thuswe combine the possible implementational advantages of a black{box approach with the generallymore e�cient all{at{once approach. It will be seen that in our algorithms the step s is decomposedinto two components: s = sn + st, where sn is called the quasi{normal component and st is calledthe tangential component. The role of quasi{normal component sn is to move towards feasibility.It is of the form sn = ((sny )T 0T )T , where sny is essentially a Newton step for the solution ofthe nonlinear state equation C(y; u) = 0 for given u. For most problems of interest here, thecomputation of a \true" normal component is not practical. The tangential component st movestowards optimality. This component is in the null{space of the linearized constraints and it is ofthe form st = ((�Cy(y; u)�1Cu(y; u)su)T sTu )T , where su is essentially a Newton{like step for thereduced problem (1.2).This paper is organized as follows: In Section 2 we discuss the structure of the problem andmotivate our SQP approach. We study the relationship between the all{at{once approach based on(1.1) and the black box approach for (1.2) and the relationship between SQP methods for (1.1) andNewton methods for (1.2). For problems without box{constraints, these connections are known,but for problems with box{constraints this will reveal useful new information. The �rst and secondorder Karush{Kuhn{Tucker (KKT) conditions for (1.1) are stated in Section 3. We will state them



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 5in a nonstandard form that will lead to the scaling matrix used in the a�ne scaling interior{pointapproach. In Section 4 we will discuss the application of Newton's method to the system of nonlinearequations arising from the �rst{order KKT conditions. This will be important for the derivationof our SQP method. In Section 5 we describe our trust{region interior{point SQP algorithms.Sections 5.1 and 5.2 contain a description of the quasi{normal component and of the tangentialcomponent. Using the derivations in Sections 2 and 4 the connections between the quasi{normalcomponent sn and the Newton step for the solution of the nonlinear state equation C(y; u) = 0for given u and the relations between the tangential component st and Newton{like steps for thereduced problem (1.2) will be made precise. As noticed previously, the partial decoupling of thestep components motivated by the partitioning of the variables into states y and controls u and theroles of the decoupled and coupled trust{region approaches will be exposed in Sections 5.2.1 and5.2.2. A complete statement of the trust{region interior{point SQP algorithms is given in Section5.4. The convergence theory for these algorithms is given in Sections 6, 7, 8, and 9. Section 6contains some technical results. In Section 7 we establish the existence of an accumulation pointof the iterates which satis�es the �rst{order Karush{Kuhn{Tucker (KKT) conditions (Corollary7.1). This result is established under very mild assumptions on the steps and on the Lagrangemultipliers. It simultaneously extends the results presented recently by Coleman and Li [13] forsimple bounds and those by Dennis, El{Alem, and Maciel [15] for equality constraints. Underadditional conditions on the steps and on the quadratic model, we show that the accumulationpoint satisfying the �rst{order necessary KKT conditions also solves the second{order necessaryKKT conditions (Theorem 8.2). This latter result simultaneously extends those by Coleman andLi [13] for simple bounds and those by Dennis and Vicente [19] for equality constraints. (See also[65].) Finally, we prove that if the sequence converges to a nondegenerate point satisfying thesu�cient second{order KKT conditions, then the rate of convergence is q{quadratic (Corollary9.1). Our analysis allows the application of a variety of methods for the computation of the stepcomponents sn and st. In Section 10 we discuss practical algorithms for the computation of trialsteps and the multiplier estimates that are currently used in our implementation. Numerical resultsobtained with our implementation of these algorithms, called TRICE (trust{region interior{pointSQP algorithms for optimal control and engineering design problems) [16], are reported in Section11. Section 12 contains conclusions and a discussion of future work.We review the notation used in this paper. The vector x is given byx =  yu ! :The Jacobian matrix of C(x) is denoted by J(x). We use subscripted indices to represent theevaluation of a function at a particular point of the sequences fxkg and f�kg. For instance, fkrepresents f(xk), and `k is the same as `(xk; �k). The vector and matrix norms used are the `2norms, and Il represents the identity matrix of order l. Also (z)y and (z)u represent the subvectorsof z 2 IRn corresponding to the y and u components, respectively.2. The structure of the minimization problem. The purpose of this section is to discusssome of the basic relationships between the problem (1.1) and its reduction (1.2). This will introducefundamental quantities that are needed subsequently and it will support our claim that the basicquantities needed to implement our SQP approach are already available if one uses a gradient orNewton{like method for the solution of the reduced problem (1.2).



6 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEThe Lagrange function ` : IRn+m �! IRn associated with the objective function f(x) and theequality constraint C(x) = (c1(x); : : : ; cm(x))T = 0 is given by`(x; �) = f(x) + �TC(x);where � 2 IRm are the Lagrange multipliers.The linearized constraints are given by J(x)s = �C(x) or equivalently by� Cy(x) Cu(x) � sysu ! = �C(x):(2.1)We say that s =  sysu ! ; sy 2 IRm; su 2 IRn�m ;satis�es the linearized state equation if it is a solution to (2.1). If Cy(x) is invertible, the solutionsof the linearized state equation are of the forms = sn +W (x)su;(2.2)where sn =  �Cy(x)�1C(x)0 !(2.3)is a particular solution and W (x) =  �Cy(x)�1Cu(x)In�m !is a matrix whose columns form a basis for the null space N (J(x)) of J(x). One can see thatmatrix{vector multiplications of the form W (x)Ts and W (x)su involve only the solution of linearsystems with the matrices Cy(x) and Cy(x)T . Moreover, the y component of the particular solutionsn is just the step that one would compute if one would apply Newton's method for the solution ofthe nonlinear equation C(y; u) = 0 for given u.The point we want to convey in this section has nothing to do with the presence or absenceof the bound constraints a � u � b. Therefore, for the remainder of this section, we consider thesimpler case where there are no bound constraints, i.e., where B = IRn�m. If we solve (1.1) withB = IRn�m by an SQP method, then the quadratic programming subproblem we have to solve atevery iteration is of the formminimize rf(x)Ts + 12sTr2xx`(x; �) ssubject to Cy(x)sy + Cu(x)su + C(x) = 0:(2.4)If the reduced Hessian W (x)Tr2xx`(x; �)W (x) is nonsingular, the solution of (2.4) is given by (2.2)with su = ��W (x)Tr2xx`(x; �)W (x)��1W (x)T�rf(x) +r2xx`(x; �)sn�:(2.5)



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 7In practice the Hessian r2xx`(x; �) or the reduced Hessian W (x)Tr2xx`(x; �)W (x) are often approx-imated using quasi{Newton updates. In the latter case, when an approximation to r2xx`(x; �) isnot available, then the \cross{term" W (x)Tr2xx`(x; �)sn has also to be approximated. This termcan be approximated by zero, by �nite di�erences, or by other quasi{Newton approximations, seee.g. [3]. In the case where this cross term is approximated by zero, the right hand side of the linearsystem (2.5) de�ning su can be written asW (x)Trf(x) = �Cu(x)TCy(x)�Tryf(x) +ruf(x):Thus, if the Lagrange multiplier is computed by the adjoint formula� = �Cy(x)�Tryf(x);(2.6)then W (x)Trf(x) = Cu(x)T�+ruf(x) = ru`(x; �):Now we turn to the reduced problem with B = IRn�m. Suppose there exists an open set Usuch that for all u 2 U there exists a solution y of C(y; u) = 0 and such that the matrix Cy(x)is invertible for all x = (y; u) with u 2 U and C(y; u) = 0. Then the Implicit Function Theoremguarantees the existence of a di�erentiable functiony : U ! IRmde�ned by C(y(u); u) = 0and the problem (1.1) can be reduced to (1.2). Since y(�) is di�erentiable, the function f̂ isdi�erentiable and its gradient is given byrf̂(u) = W (y(u); u)Trf(y(u); u);cf. [29]. Moreover, it can be shown that the Hessian of f̂ is equal to the reduced Hessianr2f̂(u) = W (y(u); u)Tr2xx`(y(u); u; �)W (y(u); u);provided that the Lagrange multiplier is computed from (2.6).One can see that the gradient and the Hessian information in the SQP method for (1.1) andin the Newton method for (1.2) are the same if (y; u) solves C(y; u) = 0. Thus, if Newton{likemethods are applied for the solution of (1.2), then one has all the ingredients available necessary toimplement an SQP method for the solution of (1.1). The important di�erence, of course, is that inthe SQP method we do not have to solve the nonlinear constraints C(y; u) = 0 at every iteration.In these considerations we neglected the bound constraints a � u � b. These will be analyzedin the following sections. We already point out that these relationships between (1.1) and (1.2) arebasically the same with or without the bound constraints.



8 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTE3. Optimality conditions. A point x� satis�es the �rst{order Karush{Kuhn{Tucker (KKT)conditions if there exist �� 2 IRm and �a�; �b� 2 IRn�m such thatC(x�) = 0;a � u� � b; ryf(x�)ruf(x�) !+  Cy(x�)T��Cu(x�)T�� !�  0�a� !+  0�b� ! = 0;((u�)i � ai) (�a�)i = (bi � (u�)i) (�b�)i = 0; i = 1; : : : ; n�m; and�a� � 0; �b� � 0:These KKT conditions are necessary conditions for x� to be a local solution of (1.1). Note that theconstraint quali�cations are satis�ed since the invertibility of Cy(x�) and the form of the boundconstraints imply the linear independence of the active constraints. Under the assumption of theinvertibility of Cy(x�), we can rewrite the �rst{order KKT conditions:C(x�) = 0;a � u� � b;�� = �Cy(x�)�Tryf(x�);ai < (u�)i < bi =) (ru`(x�; ��))i = 0;(u�)i = ai =) (ru`(x�; ��))i � 0; and(u�)i = bi =) (ru`(x�; ��))i � 0:One can obtain a useful form of the �rst{order KKT conditions by noting thatru`(x�; ��) = ruf(x�) + Cu(x�)T��= ruf(x�)� Cu(x�)TCy(x�)�Tryf(x�)= W (x�)Trf(x�):In other words, ru`(x�; ��) is just the reduced gradient corresponding to the u variables. Hencex� is a �rst{order KKT point ifC(x�) = 0;a � u� � b;ai < (u�)i < bi =) �W (x�)Trf(x�)�i = 0;(u�)i = ai =) �W (x�)Trf(x�)�i � 0; and(u�)i = bi =) �W (x�)Trf(x�)�i � 0:Furthermore, x� satis�es the second{order necessary KKT conditions if it satis�es the �rst{order KKT conditions and if the principal submatrix of the reduced HessianW (x�)Tr2xx`(x�; ��)W (x�)corresponding to indices i such that ai < (u�)i < bi is positive semi{de�nite, where the multipliers�� are given by �� = �Cy(x�)�Tryf(x�).



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 9Now we adapt the idea of Coleman and Li [12] to this context and de�ne D(x) 2 IR(n�m)�(n�m)to be the diagonal matrix with diagonal elements given by�D(x)�ii = 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: (b� u) 12i if �W (x)Trf(x)�i < 0 and bi < +1;1 if �W (x)Trf(x)�i < 0 and bi = +1;(u� a) 12i if �W (x)Trf(x)�i � 0 and ai > �1;1 if �W (x)Trf(x)�i � 0 and ai = �1;(3.1)for i = 1; : : : ; n �m. In the following proposition we give the form of the �rst{order and second{order necessary KKT conditions that we use in this paper. To us, they indicate the suitability of(3.1) as a scaling for (1.1). See also [13], [18], [64] and the remark below for further discussions onthe choice of D as a scaling matrix.Proposition 3.1. The point x� satis�es the �rst{order KKT conditions if and only ifC(x�) = 0; a � u� � b; andD(x�)W (x�)Trf(x�) = 0:The point x� satis�es the second{order necessary KKT conditions if and only if it satis�es the�rst{order KKT conditions andD(x�)W (x�)Tr2xx`(x�; ��)W (x�)D(x�)is positive semi{de�nite. The corresponding multiplier is given by �� = �Cy(x�)�Tryf(x�).Remark 3.1. Proposition 3.1 remains valid for a larger class of diagonal matrices D(x). Thescalar 1 in the De�nition (3.1) of D can be replaced by any other positive scalar and Proposition 3.1also remains valid with D(x) replaced by D(x)p, p > 0. Most of our convergence results still holdtrue if D(x) is replaced by D(x)p, p � 1. See also Remark 8.1. and, for the case of simple boundconstraints, [18], [64]. However, the square roots in the de�nition of D(x) will be necessary for theproof of local q{quadratic convergence of our algorithms.The form of the su�cient optimality conditions used in this paper requires the de�nition ofnondegeneracy or strict complementarity.Definition 3.1. A point x in B is said to be nondegenerate if �W (x)Trf(x)�i = 0 impliesai < ui < bi for all i 2 f1; : : : ; n�mg.We now de�ne a diagonal (n �m)� (n�m) matrix E(x) with diagonal elements given by�E(x)�ii = 8>>><>>>: ����W (x)Trf(x)�i��� if �W (x)Trf(x)�i < 0 and bi < +1; orif �W (x)Trf(x)�i > 0 and ai > �1;0 in all other cases,for i = 1; : : : ; n �m. The signi�cance of this matrix will become clear in the next section whenwe apply Newton's method to the system of nonlinear equations arising from the �rst{order KKTconditions. From the de�nitions of D(x) and E(x) we have the following property.



10 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEProposition 3.2. A nondegenerate point x� satis�es the second{order su�cient KKT condi-tions if and only if it is a �rst{order KKT point andD(x�)W (x�)Tr2xx`(x�; ��)W (x�)D(x�) +E(x�)is positive de�nite, where �� = �Cy(x�)�Tryf(x�).4. Newton's method. One way to motivate the algorithms described in this paper is toapply Newton's method to the system of nonlinear equationsC(x) = 0;D(x)2W (x)Trf(x) = 0;(4.1)where x is strictly feasible with respect to the bounds on the variables u, i.e., a < u < b. This is re-lated to Goodman's approach [27] for an orthogonal null{space basis and equality constraints.Although D(x)2 is usually discontinuous at points where �W (x)Trf(x)�i = 0, the functionD(x)2W (x)Trf(x) is continuous (but not di�erentiable) at such points. The application of New-ton's method to this type of nonlinear systems has �rst been suggested by Coleman and Li [12] inthe context of nonlinear minimization problems with simple bounds. They have shown that thistype of nondi�erentiability still allows the Newton process to achieve local q{quadratic convergence.In order to apply Newton's method we �rst need to compute some derivatives.To calculate the Jacobian of the reduced gradient W (x)Trf(x), we writeW (x)Trf(x) = ruf(x) + Cu(x)T�;where � is given by Cy(x)T� = �ryf(x) and has derivatives@�@y = �Cy(x)�T �Pmi=1r2yyci(x)�i +r2yyf(x)�= �Cy(x)�Tr2yy`(x; �);@�@u = �Cy(x)�T �Pmi=1r2yuci(x)�i +r2yuf(x)�= �Cy(x)�Tr2yu`(x; �):This implies the equalities@@y �W (x)Trf(x)� = Cu(x)T @�@y +r2uyf(x) +Pmi=1r2uyci(x)�i= W (x)T  r2yy`(x; �)r2uy`(x; �) ! ;@@u �W (x)Trf(x)� = Cu(x)T @�@u +r2uuf(x) +Pmi=1r2uuci(x)�i= W (x)T  r2yu`(x; �)r2uu`(x; �) ! ;



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 11and we can conclude that @@x �W (x)Trf(x)� = W (x)Tr2xx`(x; �);where � = �Cy(x)�Tryf(x).A linearization of (4.1) gives Cy(x)sy + Cu(x)su = �C(x);(4.2) �D(x)2W (x)Tr2xx`(x; �) + [0 j E(x)]� sysu ! = �D(x)2W (x)Trf(x);(4.3)where 0 denotes the (n �m)�m matrix with zero entries. Equation (4.2) is the linearized stateequation. The diagonal elements of E(x) are the product of the derivative of the diagonal elementsof D(x)2 and the components of the reduced gradient W (x)Trf(x). The derivative of (D(x)2)iidoes not exist if �W (x)Trf(x)�i = 0. In this case we set the corresponding quantities in theJacobian to zero (see references [12], [13]). This gives the equation (4.3).By using (2.2) we can rewrite the linear system (4.2){(4.3) ass = sn +W (x)su;�D(x)2W (x)Tr2xx`(x; �)W (x)+ E(x)�su = �D(x)2W (x)T�r2xx`(x; �)sn +rf(x)�:(4.4)We de�ne our Newton{like step as the solution ofs = sn +W (x)su;(4.5) � �D(x)2W (x)Tr2xx`(x; �)W (x)+ E(x)�su = � �D(x)2W (x)T�r2xx`(x; �)sn +rf(x)�;(4.6)where �D(x) 2 IR(n�m)�(n�m) is the diagonal matrix de�ned by� �D(x))�ii = 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: (b� u) 12i if �W (x)T �r2xx`(x; �)sn +rf(x)��i < 0 and bi < +1;1 if �W (x)T �r2xx`(x; �)sn +rf(x)��i < 0 and bi = +1;(u� a) 12i if �W (x)T �r2xx`(x; �)sn +rf(x)��i � 0 and ai > �1;1 if �W (x)T �r2xx`(x; �)sn +rf(x)��i � 0 and ai = �1;(4.7)for i = 1; : : : ; n � m. This change of the diagonal scaling matrix is based on the form of theright hand side of (4.4). Unlike D, the scaling matrix �D includes information from the cross termr2xx`(x; �)sn and is therefore used as the scaling matrix for the computation of su in our algorithm,cf. (5.6). In the subsequent sections we will allow the replacement of the Hessian r2xx`(x; �) be asuitable matrix H .



12 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEIf x is close to a nondegenerate point x� satisfying the second{order su�cient KKT conditionsand if W (x)Tr2xx`(x; �)sn is su�ciently small, a step s de�ned in this way is a Newton step on thefollowing system of nonlinear equationsC(x) = 0;D(x)2uW (x)Trf(x) = 0;(4.8)where D(x)u depends on x� as follows:(D(x)u)ii = 8>>>>>>>>><>>>>>>>>>: 1 or (b� u) 12i or (u� a) 12i if �W (x�)Trf(x�)�i = 0;(b� u) 12i if �W (x�)Trf(x�)�i < 0;(u� a) 12i if �W (x�)Trf(x�)�i > 0;for i = 1; : : : ; n � m. If �W (x�)Trf(x�)�i = 0, the i{th diagonal element of D(x)u has to bechosen so that �D(x) and D(x)u are the same matrix. Of course, this depends on the sign of�W (x)T (r2xx`(x; �)sn+rf(x))�i. As Coleman and Li [12] pointed out, D(x)u is just of theoreticaluse since x� is unknown. One can see that D(x)2uW (x)Trf(x) is continuously di�erentiable withLipschitz continuous derivatives in an open neighborhood of x�, that D(x�)2uW (x�)Trf(x�) = 0,and that the Jacobian of D(x)2uW (x)Trf(x) at x� is nonsingular, for all choices of D(x)u. Theseconditions are those typically required to get q{quadratic convergence for the Newton iteration(see [17, Thm. 5.2.1]). Thus the sequence of iterates generated by the Newton step (4.5){(4.6)will converge q{quadratically to a nondegenerate point that satis�es the su�cient KKT conditions.The interior{point process damps the Newton step so that it stays strictly feasible but this doesnot a�ect the rate of convergence. The details are provided in Corollary 9.1.5. Trust{region interior{point SQP algorithms. The algorithms that we propose gen-erate a sequence of iterates fxkg where xk =  ykuk ! ;and uk is strictly feasible with respect to the bounds, i.e., a < uk < b. At iteration k we are givenxk, and we need to compute a trial step sk. If sk is accepted, we set xk+1 = xk + sk . Otherwise weset xk+1 to xk, reduce the trust{region radius, and compute a new trial step.Following the application of Newton's method (4.5), each trial step sk is decomposed assk = snk + stk = snk +Wk(sk)u;where snk is called the quasi{normal component and stk is the tangential component.The role of snk is to move towards feasibility. It will be seen that snk is related to the Newtonstep for the solution of C(y; uk) = 0 for �xed uk. The role of stk is to move towards optimality. Theu component of stk is related to the Newton step for the reduced problem (1.2). However, as madeclear previously, we do not require feasibility with respect to the nonlinear equality constraints.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 13The global convergence is guaranteed by imposing an appropriate trust region on the stepand monitoring the progress by a suitable merit function. The de�nition of the quasi{normalcomponent, the tangential component, and the merit function as well as the complete formulationof our algorithms is the content of this section.5.1. The quasi{normal component. Let �k be the trust radius at iteration k. The quasi{normal component snk is related to the trust{region subproblem for the linearized constraintsminimize 12kJksn + Ckk2subject to ksnk � �k ;and it is required to have the form snk =  (snk )y0 ! :(5.1)Thus the displacement along snk is made only in the y variables, and as a consequence, xk andxk + snk have the same u components. Since (snk)u = 0, the trust{region subproblem introducedabove can be rewritten as minimize 12kCy(xk)(sn)y + Ckk2(5.2) subject to k(sn)yk � �k:(5.3)Thus, the quasi{normal component snk is a trust{region globalization of the component sn given in(2.3) of the Newton step (4.5). We do not have to solve (5.2){(5.3) exactly, we only have to assumethat the quasi{normal component satis�es the conditionsksnkk � �1kCkk(5.4)and kCkk2 � kCy(xk)(snk)y + Ckk2 � �2kCkkminf�3kCkk; �kg;(5.5)where �1, �2, and �3 are positive constants independent of k. In Section 10.1, we describe severalways of computing a quasi{normal component that satis�es the requirements (5.1), (5.4), and (5.5).Condition (5.4) tell us that the quasi{normal component is small close to feasible points. Condition(5.5) is just a weaker form of Cauchy decrease or simple decrease for the trust{region subproblem(5.2), (5.3).5.2. The tangential component. The computation of the tangential component (sk)u fol-lows a trust{region globalization of the Newton step (4.6). Following Coleman and Li [13] wesymmetrize (4.6) and get� �DkWTk HkWk �Dk +Ek� �D�1k su = � �DkWTk �Hksnk +rfk�;where Ek = E(xk) and Hk denotes a symmetric approximation to the Hessian matrix r2xx`k . Thescaling matrix �Dk is equal to �D(xk) de�ned by (4.7) with r2xx`k replaced by Hk. This suggests the



14 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEchange of variables ŝu = �D�1k su and the consideration in the scaled space ŝu of the trust{regionsubproblem minimize � �DkWTk �Hksnk +rfk��T ŝu + 12 ŝTu � �DkWTk HkWk �Dk +Ek� ŝusubject to kŝuk � �k :Now we can rewrite the previous subproblem in the unscaled space su asminimize �WTk (Hksnk +rfk)�T su + 12sTu �WTk HkWk +Ek �D�2k � susubject to k �D�1k suk � �k:(5.6)Of course, we also have to require that the new iterate is in the interior of the box constraints. Toensure that uk+sk is strictly feasible with respect to the box constraints we choose �k 2 [�; 1), � 2(0; 1), and compute su with �k(a�uk) � su � �k(b�uk). However, one of the strength of this trust{region approach is that we can allow for approximate solutions of this subproblem. In particular,it is not necessary to solve the full trust{region subproblem including the box constraints. Forexample, one can compute the solution of the trust{region subproblem without the box constraintsand then scale the computed solution back so that the resulting damped su obeys �k(a � uk) �su � �k(b� uk), see e.g. Section 5.2.4. We will show that under suitable assumptions this strategyguarantees global convergence and local q{quadratic convergence. Another way to compute anapproximate u component of the step is to use a modi�ed conjugate{gradient algorithm appliedto the trust{region subproblem without the box constraints that is truncated if one of the bounds�k(a � uk) � su � �k(b� uk) is violated. See Section 10.2. More ways to compute the tangentialcomponent are possible. The conditions on the tangential component necessary to guarantee globalconvergence are stated in Section 5.2.3.We now introduce a quadratic modelqk(s) = `k +rx`kT s+ 12sTHksof `(xk + s; �k) about (xk; �k). A trivial manipulation shows thatqk(snk +Wksu) = qk(snk) + �gTk su + 12suTWTk HkWksu;(5.7)with �gk = WTk rqk(snk) = WTk �Hksnk +rfk�:For convenience we de�ne 	k(su) = qk(snk +Wksu) + 12sTu �Ek �D�2k � su:(5.8)5.2.1. The decoupled trust{region approach. We can restate the trust{region subprob-lem (5.6) as minimize 	k(su)(5.9) subject to k �D�1k suk � �k:(5.10)



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 15We refer to the approach based on this subproblem as the decoupled approach. In this decoupledapproach the trust{region constraint is of the form k �D�1k suk � �k corresponding to the constraintkŝuk � �k in the scaled space. One can see from (5.3) and (5.10) that we are imposing the trustregion separately on the y part of the quasi{normal component and on the u part of the tangentialcomponent. Moreover, if the cross{term WTk Hksnk is set to zero, then the trust{region subproblemsfor the quasi{normal component and for the tangential component are completely separated.5.2.2. The coupled trust{region approach. The approach we present now forces the yand u parts of the tangential component stk = Wk(sk)u to lie inside the trust region of radius �k.The reference trust{region subproblem is given byminimize 	k(su)(5.11) subject to  �Cy(xk)�1Cu(xk)su�D�1k su ! � �k:(5.12)In the case where there are no bounds on u this trust{region constraint is of the form �Cy(xk)�1Cu(xk)susu ! = kWksuk � �k :As opposed to the decoupled case, one can see that the term Cy(xk)�1Cu(xk)su is present inthe trust{region constraint (5.12). If W+k denotes the Moore{Penrose pseudo inverse of Wk (see[25, [Sec. 5.5.4]), then 1kW+k kksuk � kWksuk � kWkkksuk:Thus, if the condition number �(Wk) = kW+k k kWkk is small, then the decoupled and the coupledapproach will generate similar iterates. In this case, the decoupled approach will be more e�cientsince it uses fewer linear system solves with the system matrix Cy(xk). See Section 10.2. However,if �(Wk) is large, e.g. if Cy(xk) is ill{conditioned, then the coupled approach will use the true sizeof the tangential component, whereas the decoupled approach may underestimate vastly the size ofthis step component. This can lead to poor performance of the decoupled approach when steps arerejected and the trust{region radius is reduced based on the incorrect estimate ksuk of the norm ofst = Wksu. This indicates that when Cy(x) is ill{conditioned the coupled approach o�ers a betterregularization of the step.5.2.3. Cauchy decrease for the tangential component. To assure global convergence toa �rst{order KKT point, we consider analogs for the subproblems (5.9){(5.10) and (5.11){(5.12) ofthe fraction of Cauchy decrease or simple decrease conditions for the unconstrained minimizationproblem.First we consider the decoupled trust{region subproblem (5.9){(5.10). The Cauchy step cdk isde�ned for this case as the solution ofminimize 	k(su)subject to k �D�1k suk � �k ; su 2 spanf� �D2k�gkg;�k(a� uk) � su � �k(b� uk);



16 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEwhere � �D2k�gk is the steepest{descent direction for 	k(su) at su = 0 in the norm k �D�1k � k. Here�k 2 [�; 1) ensures that the Cauchy step cdk remains strictly feasible with respect to the boxconstraints. The parameter � 2 (0; 1) is �xed for all k. As in many trust{region algorithms, werequire the tangential component (sk)u with �k(a� uk) � (sk)u � �k(b� uk) to give a decrease on	k(su) smaller than a uniform fraction of the decrease given by cdk for the same function 	k(su).This condition is often called fraction of Cauchy decrease, and in this case is	k(0)� 	k((sk)u) � �d1 �	k(0)�	k(cdk)� ;(5.13)where �d1 is positive and �xed across all iterations. It is not di�cult to see that dogleg or conjugate{gradient algorithms can compute components (sk)u conveniently that satisfy condition (5.13) with�d1 = 1. We leave these issues to Section 10.2.In a similar way, the component (sk)u with �k(a� uk) � (sk)u � �k(b� uk) satis�es a fractionof Cauchy decrease for the coupled trust{region subproblem (5.11){(5.12) if	k(0)� 	k((sk)u) � �c1�	k(0)� 	k(cck)�;(5.14)for some �c1 independent of k, where the Cauchy step cck is the solution ofminimize 	k(su)subject to  �Cy(xk)�1Cu(xk)su�D�1k su ! � �k; su 2 spanf� �D2k�gkg;�k(a� uk) � su � �k(b� uk):In Section 10.2 we show how to use conjugate{gradients to compute components (sk)u satisfyingthe condition (5.14).One �nal comment is in order. In the coupled approach, the Cauchy step cck was de�nedalong the direction � �D2k�gk. To simplify this discussion, suppose that there are no bounds on u.In this case the trust{region constraint is of the form kWksuk � �k . The presence of Wk givesthe trust region an ellipsoidal shape. The steepest{descent direction for the quadratic (5.8) in thenorm kWk � k at su = 0 is given by �(WTk Wk)�1�gk. Our analysis still holds for this case sincefk(WTk Wk)�1kg is a bounded sequence. The reason why we avoid the term (WTk Wk)�1 is thatin many applications there is no reasonable way to solve systems with WTk Wk. We will show inSection 10.2 how this a�ects the use of conjugate gradients (see Remark 10.2). Finally, we pointout that this problem does not arise if the decoupled approach is used.5.2.4. Optimal decrease for the tangential component. The conditions in the previoussubsection are su�cient to guarantee global convergence to a point satisfying �rst{order necessaryKKT conditions, but they are too weak to guarantee global convergence to a point satisfyingsecond{order necessary KKT conditions. To accomplish this, just as in the unconstrained case [46],[59], in the box{constrained case [13], and in the equality{constrained case [19], we need to makesure that su satis�es an appropriate fraction of optimal decrease condition.First we consider the decoupled approach and let odk be an optimal solution of the trust{regionsubproblem (5.9){(5.10). It follows from the KKT conditions for this trust{region subproblem thatthere exists k � 0 such thatWTk HkWk +Ek �D�2k + k �D�2k is positive semi{de�nite,(5.15)



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 17�WTk HkWk + Ek �D�2k + k �D�2k �odk = ��gk ; and(5.16) k(�k � k �D�1k odkk) = 0:(For practical algorithms to compute odk see references [53], [46], [55], [60]. These conditions are alsosu�cient for odk to be an optimal solution [22], [59].) Since uk + odk might not be strictly feasible,we consider �kodk , where �k is given by�k = �k mini=1;:::;n�m(1; max(bi � (uk)i(odk )i ; ai � (uk)i(odk )i ) ) :(5.17)The tangential component (sk)u then is required to satisfy the following fraction of optimaldecrease condition 	k(0)�	k((sk)u) � �d2 �	k(0)� 	k(�kodk )� andk �D�1k (sk)uk � �d3 �k ;(5.18)where �d2 ; �d3 are positive parameters.From conditions (5.15), (5.16), and (5.18), and �k < 1, we can write	k(0)� 	k((sk)u) � �d2 ���k�gTk odk � 12�2k (odk)T �WTk HkWk + Ek �D�2k � (odk)�� �d2 �k ���gTk odk � 12(odk )T �WTk HkWk + Ek �D�2k + k �D�2k � (odk)�+ 12�d2 �2kk(odk)T �D�2k (odk)� 12�d2 �kkRkodkk2 + 12�d2 �2kk�2k� 12�d2 �2kk�2k ;(5.19)where WTk HkWk +Ek �D�2k + k �D�2k = RTkRk.Now let us focus on the coupled approach and let ock be the optimal solution of the trust{regionsubproblem (5.11){(5.12). It follows from the KKT conditions for this trust{region subproblemand the equality �Cy(xk)�1Cu(xk)�T Cy(xk)�1Cu(xk) = WTk Wk � In�m;that there exists k � 0 such thatWTk HkWk + Ek �D�2k + k � �D�2k +WTk Wk � In�m� is positive semi{de�nite,(5.20) �WTk HkWk +Ek �D�2k + k � �D�2k +WTk Wk � In�m�� ock = ��gk ; and(5.21) k  �k �  �Cy(xk)�1Cu(xk)ock�D�1k ock !! = 0:



18 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTENow we damp ock with �k given as in (5.17) but with odk replaced by ock. Thus, the resulting stepuk+ �kock is strictly feasible. We impose the following fraction of optimal decrease condition on thetangential component (sk)u:	k(0)�	k((sk)u) � �c2�	k(0)�	k(�kock)� and �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u ! � �c3�k :(5.22)In this case it can be shown in a way similar to (5.19) that	k(0)� 	((sk)u) � 12�c2�2kk�2k :(5.23)5.3. Reduced and full Hessians. In the previous section we considered an approximationHk to the full Hessian. The algorithms and theory presented in this paper are also valid if we usean approximation bHk to the reduced Hessian WTk r2xx`kWk . In this case we setHk =  0 00 bHk ! :(5.24)Due to the form of Wk , we have WTk HkWk = bHk:This allows us to obtain the expansion (5.7) in the context of a reduced Hessian approximation.For the algorithms with reduced Hessian approximation the following observations are useful:Hkd =  0bHkdu ! ;dTHkd = dTu bHkdu;(5.25) WTk Hkd = bHkdu:5.4. Outline of the algorithms. We need to introduce a merit function and the correspond-ing actual and predicted reductions. The merit function used is the augmented LagrangianL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x):We follow [15] and de�ne the actual decrease at iteration k asared(sk; �k) = L(xk; �k; �k)� L(xk + sk ; �k+1; �k);and the predicted decrease aspred(sk; �k) = L(xk; �k; �k)� �qk(sk) + ��Tk (Jksk + Ck) + �kkJksk + Ckk2� ;with ��k = �k+1 � �k.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 19Remark 5.1. A possible rede�nition of the actual and predicted decreases is obtained bysubtracting the term 12(sk)Tu �Ek �D�2k � (sk)u from both ared(sk; �k) and pred(sk; �k). This type ofmodi�cation has been suggested in [13] for minimization with simple bounds, and it does not a�ectthe global and local results given in this paper.To decide whether to accept or reject a trial step sk , we evaluate the ratioared(sk; �k)pred(sk; �k) :To update the penalty parameter �k we use the scheme proposed by El{Alem [20]. Other schemesto update the penalty parameter have been suggested in [21] and [40].We can now outline the main procedures of the trust{region interior{point SQP algorithmsand leave the practical computation of snk , (sk)u, and �k to Section 10.Algorithm 5.1 (Trust{region interior{point SQP algorithms).1 Choose x0 such that a < u0 < b, pick �0 > 0, and calculate �0. Choose �1, �1, �, �min,�max, ��, and ��1 such that 0 < �1; �1; � < 1, 0 < �min � �max, �� > 0, and ��1 � 1.2 For k = 0; 1; 2; : : : do2.1 Compute snk such that ksnkk � �k.Compute (sk)u based on the subproblem (5.9){(5.10) (or (5.11){(5.12) for the coupledapproach) satisfying �k(a� uk) � (sk)u � �k(b� uk);with �k 2 [�; 1). Set sk = snk + stk = snk +Wk(sk)u.2.2 Compute �k+1 and set ��k = �k+1 � �k.2.3 Compute pred(sk; �k�1):pred(sk; �k�1) = qk(0)� qk(sk)���Tk (Jksk + Ck) + �k�1 �kCkk2 � kJksk + Ckk2� :If pred(sk; �k�1) � �k�12 �kCkk2 � kJksk + Ckk2� then set �k = �k�1. Otherwise set�k = 2 �qk(sk)� qk(0) + ��Tk (Jksk + Ck)�kCkk2 � kJksk + Ckk2 + ��:2.4 If ared(sk ;�k)pred(sk ;�k) < �1, set�k+1 = �1maxnksnkk; k �D�1k (sk)uko in the decoupled case or�k+1 = �1max(ksnkk;  �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u !) in thecoupled case, and reject sk .Otherwise accept sk and choose �k+1 such thatmaxf�min; �kg � �k+1 � �max:2.5 If sk was rejected set xk+1 = xk and �k+1 = �k. Otherwise set xk+1 = xk + sk and�k+1 = �k + ��k.Of course the rules to update the trust radius in the previous algorithm can be much moreinvolved but the above su�ces to prove convergence results and to understand the trust{regionmechanism.



20 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTE5.5. Assumptions. In order to establish local and global convergence results we need somegeneral assumptions. We list these assumptions below. Let 
 be an open subset of IRn such thatfor all iterations k, xk and xk + sk are in 
.A.1 The functions f(x), ci(x), i = 1; : : : ; m, are twice continuously di�erentiable in 
.A.2 The partial Jacobian Cy(x) is nonsingular for all x 2 
.A.3 The functions f(x), rf(x), r2f(x), C(x), J(x), r2ci(x), i = 1; : : : ; m are bounded in 
.A.4 The sequences fWkg, fHkg, and f�kg are bounded.A.5 The matrix C�1y (x) is uniformly bounded in 
.A.6 The sequence fukg is bounded.It is equivalent to Assumptions A.3{A.6, that there exist positive constants �0; : : : ; �9 indepen-dent of k such thatjf(x)j � �0; krf(x)k � �1; kr2f(x)k � �2; kC(x)k � �3; kJ(x)k � �4;kr2ci(x)k � �5; i = 1; : : : ; m; and kCy(x)�1k � �6for all x 2 
, and kWkk � �6; kHkk � �7; k�kk � �8; and k �Dkk � �9;for all k.For the rest of this paper we suppose that Assumptions A.1{A.6 are always satis�ed.As we have pointed out earlier, our approach is related to the Newton method presented inSection 4. The u component (sNk )u of the Newton step sNk = snk +Wk(sNk )u, whenever it is de�ned,is given by (sNk )u = � � �D2kWTk HkWk +Ek��1 �D2k�gk= � �Dk � �DkWTk HkWk �Dk + Ek��1 �Dk�gk;(5.26)where snk =  �Cy(xk)�1Ck0 ! ;(5.27)and �gk = WTk �Hksnk + rfk�. From (5.26) we see that the Newton step is well de�ned in aneighborhood of a nondegenerate point that satis�es the second{order su�cient KKT conditionsand for which WTk Hksnk is su�ciently small. To guarantee strict feasibility of this step we considera damped Newton step given by snk +Wk�Nk (sNk )u;(5.28)where (sNk )u and snk are given by (5.26) and (5.27), and�Nk = �k mini=1;:::;n�m(1; max(bi � (uk)i((sNk )u)i ; ai � (uk)i((sNk )u)i ) ) :(5.29)If Algorithms 5.1 are particularized to satisfy the following conditions on the steps, on thequadratic model, and on the Lagrange multipliers, then we can prove global and local convergence.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 21C.1 The quasi{normal component snk satis�es conditions (5.1), (5.4), and (5.5).The tangential component (sk)u satis�es the fraction of Cauchy decrease condition (5.13)((5.14) for the coupled approach).The parameter �k is chosen in [�; 1), where � 2 (0; 1) is �xed for all k.C.2 The tangential component (sk)u satis�es the fraction of optimal decrease condition (5.18)((5.22) for the coupled approach).C.3 The second derivatives of f and ci, i = 1; : : : ; m are Lipschitz continuous in 
.The approximation to the Hessian matrix is exact, i.e., Hk = r2xx`(xk; �k) with Lagrangemultiplier �k = �Cy(xk)�Tryf(xk).C.4 The step sk is given by (5.28) provided (sNk )u exists, (snk)y lies inside the trust region (5.3),and �Nk (sNk )u lies inside the trust region (5.10) ((5.12) for the coupled approach).The parameter �k is chosen such that �k � � and j�k � 1j is O � �Dk�gk�.Condition C.1 assures global convergence to a �rst{order KKT point. Global convergence toa point that satis�es the second{order necessary KKT conditions requires Conditions C.1{C.3. Toprove local q{quadratic convergence, we need Conditions C.1, C.3, and C.4. It should be pointedout that the satisfaction of C.2 or C.4 does not necessarily imply the satisfaction of C.1.6. Intermediate results. We start by pointing out that (5.5) with the fact that the tangentialcomponent lies in the null space of Jk , together implykCkk2 � kJksk + Ckk2 � �2kCkkminf�3kCkk; �kg:(6.1)We calculated the �rst derivatives of �(x) = �Cy(x)�Tryf(x) in Section 4. It is clear thatunder Assumptions A.3 and A.5 these derivatives are bounded in 
. Thus, if �k is computed asstated in Condition C.3, then there exists a positive constant �10 independent of k such thatk��kk � �10kskk:(6.2)From ksqkk � �max and Assumptions A.3{A.4 we also havek�gkk = WTk �Hksqk +rfk� � �11;(6.3)where �11 = �6(�7�max + �1).The following lemma is required for the convergence theory.Lemma 6.1. Every trial step satis�es kskk � �4�k(6.4)and, if sk is rejected in Step 2.4 of Algorithms 5.1, then�k+1 � �5kskk;(6.5)where �4 and �5 are positive constants independent of k.Proof. In the coupled trust{region approach we bound stk as follows: �Cy(xk)�1Cu(xk)susu ! �  Im 00 �Dk !  �Cy(xk)�1Cu(xk)su�D�1k su !� (1 + �9) �k ;



22 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEwhere �9 is a uniform bound for k �Dkk, see Assumption A.6. Since ksnkk � �k , we obtain kskk �(2 + �9) �k. It is not di�cult to see now that in Step 2.4 we have �k+1 � �12 minn1; 11+�9o kskk.In the decoupled approach, kskk = ksnk + Wk(sk)uk � (1 + �6�9)�k and similarly �k+1 ��12 min n1; 1�6�9o kskk, where �6 is a uniform bound for kWkk, see Assumption A.4.We can combine these bounds to obtainkskk � maxf2 + �9; 1 + �6�9g �k;�k+1 � �12 minn1; 11+�9 ; 1�6�9o kskk:In the case where fraction of optimal decrease (5.18) or (5.22) is imposed on (sk)u, the constants�4 and �5 depend also on �d3 and �c3 .In the following lemma we rewrite the fraction of Cauchy decrease conditions (5.13) and (5.14)in a more useful form for the analysis.Lemma 6.2. If (sk)u satis�es Condition C.1 thenqk(snk )� qk(snk +Wk(sk)u) � �6k �Dk�gkkminn�7k �Dk�gkk; �8�ko;(6.6)where �6, �7, and �8 are positive constants independent of the iteration k.Proof. From the de�nition (5.8) of 	k we �ndqk(snk)� qk(snk +Wk(sk)u) � qk(snk)� qk(snk +Wk(sk)u)� 12(sk)Tu �Ek �D�2k � (sk)u= 	k(0)� 	k((sk)u):(6.7)Let ~�k be the maximum k �D�1k � k norm of a step, say (~sk)u, along � �Dk ~gkk~gkk allowed inside thetrust region. Here ~gk = �Dk�gk.If the trust region is given by (5.10), then�k = ~�k :(6.8)If the trust region is given by (5.12), then we can use Assumptions A.4{A.6 to deduce theinequality�2k =  �Cy(xk)�1Cu(xk)(~sk)u�D�1k (~sk)u !2 = k � Cy(xk)�1Cu(xk) �Dk �D�1k (~sk)uk2 + k �D�1k (~sk)uk2� (�26�29 + 1)k �D�1k (~sk)uk2= (�26�29 + 1) ~�2kor, equivalently, ~�k � 1q�26�29 + 1 �k :(6.9)



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 23De�ne  : IR+ �! IR as  (t) = 	k ��t �Dk ~gkk~gkk� � 	k(0). Then  (t) = �k~gkkt + rk2 t2, whererk = ~gTk ~Hk~gkk~gkk2 and ~Hk = �Dk �WTk HkWk +Ek �D�2k � �Dk. Now we need to minimize  in [0; Tk] whereTk is given byTk = min(~�k; �kmin(k �Dk�gkk(�gk)i : (�gk)i > 0) ; �kmin(�k �Dk�gkk(�gk)i : (�gk)i < 0)) :Let t�k be the minimizer of  in [0; Tk]. If t�k 2 (0; Tk) then (t�k) = �12 k~gkk2rk � �12 k~gkk2k ~Hkk :(6.10)If t�k = Tk then either rk > 0 in which case k~gkkrk � Tk or rk � 0 in which case rkTk � k~gkk. In eitherevent,  (t�k) =  (Tk) = �Tkk~gkk+ rk2 T 2k � �Tk2 k~gkk:(6.11)We can combine (6.7), (6.10), and (6.11) with	k(0)�	k((sk)u) � �d1 �	k(0)� 	k(cdk)� = ��d1 (t�k)to get qk(snk)� qk(snk +Wk(sk)u) � 12�d1 k~gkkmin( k~gkkk ~Hkk ; Tk) :The facts that �k � � and k�gkk � �11 (see (6.3)) imply that	k(0)�	k((sk)u)� 12�d1 k �Dk�gkkmin8<: k �Dk�gkkk �DTk �WTk HkWk +Ek �D�2k � �Dkk ;min�~�k; ��11k �Dk�gkk�9=; :To complete the proof, we use (6.8), (6.9), the Assumptions A.1{A.6, and the fact that�k � �max to establish (6.6) with �6 = 12 min n�d1 ; �c1o, �7 = min n 1�7�26�29+�1�6 ; ��11o, and �8 =min�1; 1p�26�29+1�.Now we state the convenient form of the fraction of optimal decrease conditions (5.18) and(5.22).Lemma 6.3. If (sk)u satis�es Condition C.2 thenqk(snk)� qk(snk +Wk(sk)u) � �9�2kk�2k ;(6.12)where �9 is a positive constant independent of the iteration k.Proof. The proof follows immediately from observation (6.7) and conditions (5.19) and (5.23).We also need the following two inequalities.



24 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTELemma 6.4. Under Condition C.1 there exists a positive constant �10 such thatqk(0)� qk(snk)���Tk (Jksk + Ck) � ��10kCkk:(6.13)Moreover if we assume Condition C.3, thenqk(0)� qk(snk )���Tk (Jksk + Ck) � ��11kCkk �ksnkk+ kskk� :(6.14)Proof. The term qk(0)�qk(snk ) can be bounded using (5.4) and ksnkk � �k in the following way:qk(0)� qk(snk) = �rx`Tk snk � 12(snk)THk(snk)� ��1 �krx`kk+ 12�kkHkk� kCkk:On the other hand, it follows from kJksk + Ckk � kCkk that���Tk (Jksk + Ck) � �k��kk kCkk:(6.15)Combining these two bounds with Assumptions A.3 and A.4 we get (6.13).To prove (6.14) we �rst observe that, due to the de�nition of �k in Condition C.3 and to theform (5.1) of the quasi{normal component snk ,rx`Tk snk =  0rufk + Cu(xk)T�k !T  (snk)y0 ! = 0:(6.16)Thus qk(0)� qk(snk ) � �12�1kHkk kCkk ksnkk � �12�1�7 kCkk ksnkk:(6.17)Also, by appealing to (6.2) and (6.15),���Tk (Jksk + Ck) � ��10kskk kCkk:(6.18)The proof of (6.14) is complete by combining (6.17) and (6.18).The convergence theory for trust regions traditionally requires consistency of actual and pre-dicted decreases. This is given in the following lemma.Lemma 6.5. Under Condition C.1 there exists a positive constant �12 such thatjared(sk; �k)� pred(sk; �k)j � �12 �kskk2 + �k �kskk3 + kCkk kskk2�� :(6.19)Moreover, if Condition C.3 is also valid, thenjared(sk; �k)� pred(sk; �k)j � �13�k �kskk3 + kCkk kskk2� :(6.20)



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 25Proof. Adding and subtracting `(xk+1; �k) to ared(sk; �k) � pred(sk; �k) and using Taylorexpansion we obtainared(sk; �k)� pred(sk; �k) = 12sTk �Hk � r2xx`(xk + t1ksk; �k)� sk�12Pmi=1(��k)isTkr2ci(xk + t2ksk)sk��k �Pmi=1 ci(xk + t3ksk)(sk)Tr2ci(xk + t3ksk)(sk)+(sk)TJ(xk + t3ksk)TJ(xk + t3ksk)(sk)�(sk)TJ(xk)TJ(xk)(sk)� ;where t1k , t2k , and t3k are in (0; 1). By expanding ci(xk + t3ksk) around ci(xk) and using AssumptionsA.3 and A.4 we get (6.19).The estimate (6.20) follows from (6.2), �k � 1, and the Lipschitz continuity of the secondderivatives.The last result in this section is a direct consequence of the scheme that updates �k in Step 2.3of Algorithms 5.1.Lemma 6.6. The sequence f�kg satis�es�k � �k�1 � 1 andpred(sk; �k) � �k2 �kCkk2 � kJksk + Ckk2�:(6.21)7. Global convergence to a �rst{order KKT point. The proof of the global convergenceto a �rst{order KKT point (Theorem 7.1) established in this section follows the structure of theconvergence theory presented in [15] for the equality{constrained optimization problem. This proofis by contradiction and is based on Condition C.1. We show that the suppositionk �Dk�gkk+ kCkk > �tol;for all k, leads to a contradiction.The following three lemmas are necessary to bound the predicted decrease.Lemma 7.1. Under Condition C.1 the predicted decrease in the merit function satis�espred(sk; �) � �6k �Dk�gkkminn�7k �Dk�gkk; �8�ko��10kCkk+ ��kCkk2 � kJksk + Ckk2�;(7.1)for every � > 0.Proof. The inequality (7.1) follows from a direct application of (6.13) and from the lower bound(6.6).



26 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTELemma 7.2. Assume Condition C.1 and k �Dk�gkk + kCkk > �tol are satis�ed. If kCkk � ��k,where � is a positive constant satisfying� � min� �tol3�max ; �6�tol3�10 min�2�7�tol3�max ; �8�� ;(7.2)then pred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ � �kCkk2 � kJksk + Ckk2� ;(7.3)for every � > 0.Proof. From k �Dk�gkk+ kCkk > �tol and the �rst bound on � given by (7.2), we getk �Dk�gkk > 23�tol:(7.4)If we use this, (7.1), and the second bound on � given by (7.2), we obtainpred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ �6�tol3 min n2�7�tol3 ; �8�ko��10kCkk+ ��kCkk2 � kJksk + Ckk2�� �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ ��kCkk2 � kJksk + Ckk2�:We can use Lemma 7.2 with � = �k�1 and conclude that if k �Dk�gkk+ kCkk > �tol and kCkk ���k , then the penalty parameter at the current iteration does not need to be increased. See Step2.3 of Algorithms 5.1. This is equivalent to Lemma 7.7 in [15]. The next lemma states the sameresult as Lemma 7.8 in [15] but with a di�erent choice of �.Lemma 7.3. Assume Condition C.1 and k �Dk�gkk + kCkk > �tol. If kCkk � ��k, where �satis�es (7.2), then there exists a positive constant �14 > 0 such thatpred(sk; �k) � �14�k :(7.5)Proof. From (7.3) with � = �k and k �Dk�gkk � 23�tol, cf. (7.4), we obtainpred(sk; �k) � �6�tol3 minf2�7�tol3 ; �8�kg� �6�tol3 minf2�7�tol3�max ; �8g�k:Hence (7.5) holds with �14 = �6�tol3 min�2�7�tol3�max ; �8� :The following lemma is also required.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 27Lemma 7.4. Under Condition C.1, if k �Dk�gkk+ kCkk > �tol for all k then the sequences f�kgand fLkg are bounded and �k is uniformly bounded away from zero.Proof. See Lemmas 7.9{7.13, 8.2 in [15].Our �rst global convergence result follows.Theorem 7.1. Under Condition C.1 the sequences of iterates generated by the trust{regioninterior{point SQP Algorithms 5.1 satisfylim infk �kDkWTk rfkk+ kCkk� = 0:(7.6)Proof. The proof is by contradiction. Suppose that for all kk �Dk�gkk+ kCkk > �tol:(7.7)At each iteration k either kCkk � ��k or kCkk > ��k , where � satis�es (7.2). In the �rst case weappeal to Lemmas 7.3 and 7.4 and obtainpred(sk; �k) � �14��;where �� is the lower bound on �k given by Lemma 7.4. If kCkk > ��k, we have from �k � 1, (6.1),(6.21), and Lemma 7.4, that pred(sk; �k) � �22 �minf�3�; 1g��:Hence pred(sk; �k) � �15 for all k, where the positive constant �15 does not depend on k. Fromthis and (6.19) we establish����ared(sk; �k)� pred(sk; �k)pred(sk; �k) ���� � �12�15 �kskk2 + �� �kskk3 + kCkk kskk2�� � �16�2k ;where �� is the upper bound on �k guaranteed by Lemma 7.4. From the rules that update �k inStep 2.4 of Algorithms 5.1 this inequality tells us that an acceptable step always is found after a�nite number of unsuccessful iterations. Using this fact, we can ignore the rejected steps and workonly with successful iterates. So, without loss of generality, we haveLk � Lk+1 = ared(sk; �k) � �1pred(sk; �k) � �1�15:Now, if we let k go to in�nity, this contradicts the boundedness of fLkg guaranteed by Lemma 7.4.Hence the supposition (7.7) is false, and we must have thatlim infk �k �Dk�gkk+ kCkk� = 0:(7.8)Let fkjg be a subsequence with limj (k �Dkj �gkjk + kCkjk) = 0. Together with (5.4) and theboundedness of fHkg this implies limj �k �DkjWTkjrfkjk+kCkjk� = 0. To establish (7.6), it remainsto show that �Dkj , which is the scaling matrix de�ned with the reduced gradientWTkj(Hkjsnkj+rfkj ),can be replaced by Dkj . This can be shown by standard arguments. Let i 2 f1; : : : ; n �mg be



28 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEarbitrary. Assume there exists �1 > 0 and a subsequence of fkjg, for simplicity again denoted byfkjg, such that j(( �Dkj �Dkj)WTkjrfkj )ij > �1:(7.9)If (WTkjrfkj )i ! 0, then the boundedness of �Dkj andDkj yields a contradiction to (7.9). Thus, theremust exist �2 > 0 and a subsequence of fkjg, again denoted by fkjg, such that j(WTkjrfkj )ij > �2.Since limj Hkjsnkj = 0, the de�nitions of �D and D imply that j( �Dkj �Dkj)ij ! 0, which again leadsto a contradiction of (7.9). Consequently, the previous assumption can not be satis�ed and (7.6) isproven.Using the continuity of C(x),D(x)W (x)Trf(x), and Theorem 7.1, we can deduce the followingresult.Corollary 7.1. Let the conditions of Theorem 7.1 be valid. If fxkg is a bounded sequence,then fxkg has a limit point satisfying the �rst{order KKT conditions.8. Global convergence to a second{order KKT point. In this section we establish globalconvergence to a point that satis�es the second{order necessary KKT conditions.Theorem 8.1. Under Conditions C.1{C.3, the sequences of iterates generated by the trust{region interior{point SQP Algorithms 5.1 satisfylim infk �k �Dk�gkk+ kCkk+ �2kk� = 0;(8.1)where k is the Lagrange multiplier corresponding to the trust{region constraint, see (5.15), (5.20),and �k is the damping parameter de�ned in (5.17).Proof. The proof is again by contradiction. Suppose that for all k,k �Dk�gkk+ kCkk+ �2kk > 53�tol:(8.2)(i) Suppose that kCkk � �0�k , where�0 = min��; �9�tol3�11(1 + �4)�(8.3)and � satis�es (7.2). From the �rst bound on � in (7.2) we getk �Dk�gkk+ �2kk > 43�tol:Thus, either k �Dk�gkk > 23�tol or �2kk > 23�tol. In the �rst case we proceed exactly as in Lemmas 7.2,7.3 and obtainpred(sk; �) � �62 k �Dk�gkkminn�7k �Dk�gkk; �8�ko+ � �kCkk2 � kJksk + Ckk2�(8.4) � �14�max �2k



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 29for every � > 0. If �2kk > 23�tol then from (6.4), (6.12), (6.14), ksnkk � �k, and the second boundon �0 given in (8.3), we can writepred(sk; �) = qk(snk)� qk(snk +Wk(sk)u) + qk(0)� qk(snk )���Tk (Jksk + Ck)+� �kCkk2 � kJksk + Ckk2�� 12�9�2kk�2k + �13�9�tol�k � �11kCkk(1 + �4)� �k + � �kCkk2 � kJksk + Ckk2�� 12�9�2kk�2k + � �kCkk2 � kJksk + Ckk2�(8.5) � �9�tol3 �2kfor every � > 0. From the two bounds (8.4), (8.5), we conclude that if kCkk � �0�k then thepenalty parameter does not increase. See Step 2.3 of Algorithms 5.1. Moreover, these two boundson pred(sk; �k) show the existence of a positive constant �17 independent of k such thatpred(sk; �k) � �17�2k ;(8.6)provided kCkk � �0�k.(ii) Now we prove that f�kg is bounded. If �k is increased at iteration k, then it is updatedaccording to the rule �k = 2 qk(sk)� qk(0) + ��Tk (Jksk + Ck)kCkk2 � kJksk + Ckk2 !+ ��:We can write �k2 �kCkk2 � kJksk + Ckk2� = qk(sk)� qk(snk)��qk(0)� qk(snk )�+ ��Tk (Jksk + Ck)+ ��2�kCkk2 � kJksk + Ckk2�:By applying (6.1) to the left hand side and (6.4), (6.12), (6.14), and ksnkk � �k to the right handside, we obtain�k2 �2kCkkminf�3kCkk; �kg � �11(1 + �4)�kkCkk+ ��2 ��2(JTk Ck)Tsk � kJkskk2�� (�11(1 + �4) + ���4�4)�kkCkk:(8.7)If �k is increased at iteration k, then, because of part (i), kCkk > �0�k. Now we use this fact toestablish that ��22 minf�3�0; 1g��k � �11(1 + �4) + ���4�4:This proves that f�kg and fLkg are bounded sequences.(iii) The next step is to prove that �k is bounded away from zero.If sk�1 was an acceptable step, then �k � �min, see Step 2.4 in Algorithms 5.1.



30 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEIf sk�1 was a rejected, then �k � �5ksk�1k, see (6.5). We consider two cases. In both cases wewill use the fact that 1� �1 � ����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1���� :In the �rst case we will assume that kCk�1k � �0�k�1. From (8.6) we have pred(sk�1; �k�1) ��17�2k�1. Thus we can use ksk�1k � �4�k�1, see (6.4), and (6.20) with k replaced by k� 1 to obtain����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1���� � �13�� ��24�2k�1 + �4�0�2k�1��17�2k�1 ksk�1k:This gives �k � �5ksk�1k � �5(1��1)�17�13��(�24+�0�4) � �18.The other case is kCk�1k > �0�k�1. In this case we get from (6.1) and (6.21) with k replacedby k � 1 that pred(sk�1; �k�1) � �k�12 �2kCk�1kminf�3kCk�1k; �k�1g� �k�1�19�k�1kCk�1k� �k�1�0�19�2k�1;where �19 = �22 minf�3�0; 1g. Again we use �k�1 � 1 and (6.20) with k replaced by k� 1, this timewith the last two lower bounds on pred(sk�1; �k�1), and we write����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1���� � �13�k�1ksk�1k3jpred(sk�1; �k�1)j + �13�k�1kCk�1k ksk�1k2jpred(sk�1; �k�1)j�  �13�k�1�24�2k�1�k�1�0�19�2k�1 + �13�k�1�4�k�1kCk�1k�k�1�19�k�1kCk�1k ! ksk�1k:Hence �k � �5ksk�1k � �5(1��1)�0�19�13(�24+�0�4) � �20.Combining the two cases yields�k � �� = minf�min; �18; �20gfor all k.(iv) The rest of the proof consists of proving that an acceptable trial step is always found aftera �nite number of iterations and then from this concluding that the supposition (8.2) is false. Theproof of these facts is exactly the proof of Theorem 7.1 where � is now �0 and �14�� is replaced by�17�2�.The following result �nally establishes global convergence to a point satisfying the second{ordernecessary KKT conditions. The proof uses ideas applied in [13, Lem. 3.8]. However, we show thatconvergence to a limit point satis�es the second{order necessary conditions even in the degeneratecase.Theorem 8.2. Let fxkg be a bounded sequence of iterates generated by the trust{regioninterior{point SQP Algorithms 5.1 under Conditions C.1{C.3. Then fxkg has a limit point x�



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 31satisfying the �rst{order KKT conditions. Furthermore, x� satis�es the second{order necessaryKKT conditions.Proof. Consider the subsequence of fxkg for which the limit in (8.1) is zero. Since this subse-quence is bounded we can use the same arguments as in the proof of Theorem 7.1 to show that ithas a convergent subsequence indexed by fkjg such thatlimj �k �Dkj �gkjk+ kCkjk� = limj �kDkjWTkjrfkjk+ kCkjk� = 0:(8.8)Moreover, limj �2kjkj = 0;(8.9)where �kj is given by (5.17). Let x� denote the limit of fxkjg. It follows from (8.8) and thecontinuity of C(x) and D(x)W (x)Trf(x) that x� satis�es the �rst{order KKT conditions.Next, we will prove that limj kj = 0. First we consider the decoupled approach. De�ne thevector valued function h as follows:h(x)i = 8<: 1 if �W (x)Trf(x)�i = 0 and �D(x)ii� = 0;�W (x)Trf(x)�i otherwise;for all i = 1; : : : ; n �m. The function h is used to identify the active indices. By de�nition of hand since x� satis�es the �rst{order KKT conditions, the implicationsD(x�)ii = 0 () h(x�)i 6= 0; i = 1; : : : ; n�m(8.10)are valid. (If x� is nondegenerate then h(x�) = W (x�)Trf(x�).) Moreover,limx!x�D(x)h(x) = 0:(8.11)Since limj xkj = x�, (8.10) implies the existence of �0 2 (0; 1) such thatmin n(ukj )i � ai; bi � (ukj )io+ ����hkj�i��� > 2�0; i = 1; : : : ; n�m(8.12)for large enough j, and 2�0 < minfbi � ai; i = 1; : : : ; n�mg:Without loss of generality, we will only consider the cases where �kj � �kj < 1. In the followingthe index i will be the index de�ning �kj in (5.17). (The index i is really ij but we drop the j fromij to alleviate the notation.) We also assume that j is large enough such that���� �D2kjhkj�i��� < �20;(8.13)cf. (8.11).Multiplying both sides of (5.16) by �D2kj gives�Ekj + kjIn�m� odkj = �D2kj ���gkj �WTkjHkjWkjodkj� ;



32 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEwhich in turn implies kj j(odkj)ij � ( �D2kj)ii ������gkj �WTkjHkjWkjodkj�i��� :(8.14)Also, Assumption A.6 implies kodkjk � �9�kj � �9�max. From this, (6.3), and Assumptions A.3{A.4,we can write 1(odkj)i � kj�21( �Dkj)2ii(8.15)for some �21 independent of k. Now we distinguish between two cases.In the �rst case we consider ����hkj�i��� � �0 and appeal to (8.12) to get minf(ukj)i � ai; bi �(ukj)ig > �0. Thus from (8.15) and the de�nition (5.17) of �kj we obtain�kj � �kjkj �0�21( �Dkj)2ii :(8.16)Now we analyze the case ����hkj�i��� > �0. Two possibilities can occur.(i) The �rst possibility is that the value of the numerator de�ning �kj is equal to ( �Dkj)2ii. Inthis situation (8.15) immediately implies �kj � �kjkj�21 :(8.17)(ii) The other possibility is that the value of the numerator de�ning �kj is not equal to ( �Dkj)2ii.In this case we have from (8.13) that ( �Dkj )2ii < �0 and since bi � ai > 2�0, the numerator in thede�nition (5.17) of �kj is bigger than �0. Thus�kj � �kjkj �0�21( �Dkj)2ii :(8.18)Using (8.9), (8.16), (8.17), (8.18), �kj � �, and the boundedness of �Dkj this proves thatlimj kj = 0:By (5.15) we know that �DkjWTkjHkjWkj �Dkj + Ekj + kjIn�mis positive semi{de�nite. Hence condition (8.8), the continuity of W (x)Tr2xx`(x; �)W (x), the lim-its limj kWTkjHkjsnkjk = 0 and limj kj = 0 imply that the limit of the principal submatrix ofWTkjHkjWkj corresponding to indices l such that al < (u�)l < bl is positive semi{de�nite. Hence,the second{order necessary KKT conditions are satis�ed at x�. This completes the proof for thedecoupled approach.The proof for the coupled trust{region approach di�ers only from the proof for the decoupledapproach in the use of equations (5.20) and (5.21) and in the use of kWkjockjk � (1 + �9)�max tobound the right hand side of inequality (8.14).Remark 8.1. The global convergence results of Sections 7 and 8 hold true if the quadratic	k(su) is rede�ned as 	k(su) = qk(snk +Wksu) (see (5.7) and (5.8)) without the Newton augmenta-tion term 12sTu �Ek �D�2k � su. They are valid also if the matrices Dk and �Dk are rede�ned respectivelyas Dpk and �Dpk with p � 1.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 339. Local rate of convergence. We will now analyze the local behavior of Algorithms 5.1under Conditions C.1, C.3, and C.4. We start by looking at the behavior of the trust radius close toa nondegenerate point that satis�es the second{order su�cient KKT conditions. For this purposewe require the following lemma.Lemma 9.1. Under Condition C.1 the quasi{normal component satis�esksnkk � �22kskk;(9.1)where �22 is positive and independent of the iteration counter k.Proof. From sk = snk +Wk(sk)u, we obtainksnkk � kskk+ kWkk k(sk)uk:But since kskk2 = k(sk)yk2 + k(sk)uk2, we use Assumption A.4 to obtainksnkk � (1 + �6) kskk ;and (9.1) holds with �22 = 1+ �6.Theorem 9.1. Let fxkg be a sequence of iterates generated by the trust{region interior{pointSQP Algorithms 5.1 under Conditions C.1 and C.3. If xk converges to a nondegenerate point x�satisfying the second{order su�cient KKT conditions, then �k is uniformly bounded away from zeroand eventually all the iterations will be successful.Proof. It follows from limk!+1 xk = x� and C(x�) = 0 that limk!+1 kCkk = 0. Thisfact, condition (5.4), and Assumptions A.3{A.4, together imply limk!+1 kWTk Hksnkk = 0. Sincexk converges to a nondegenerate point that satis�es the second{order su�cient KKT conditions andlimk!+1 kWTk Hksnkk = 0, there exists a � > 0 such that the smallest eigenvalue of �DkWTk HkWk �Dk+Ek is greater than � for k su�ciently large.First we will proof that f�kg is a bounded sequence. Since 	k(0)�	k((sk)u) � 0, we obtain12( �D�1k (sk)u)T � �DkWTk HkWk �Dk + Ek� ( �D�1k (sk)u) � �( �D�1k (sk)u)T ( �Dk�gk)� k �D�1k (sk)uk k �Dk�gkk;which, by using the upper bounds on Wk and �Dk given by Assumptions A.4 and A.6, implieskstkk = kWk(sk)uk � 2�6�9� k �Dk�gkk:(9.2)Using (6.6) and (9.2), we �nd thatqk(snk )� qk(snk +Wk(sk)u) � �6k �Dk�gkkminf�7k �Dk�gkk; �8�kg� �23kstkk2;(9.3)where �23 = �6�2�6�9 minf �7�2�6�9 ; �8�6�9 ; �81+�9 g accounts for the decoupled and coupled cases.Next, we prove that if kCkk � �00kskk, where �00 will be de�ned later, then the penalty param-eter does not need to be increased. From (5.4) and kCkk � �00kskk, we getkskk2 � �ksnkk+ kstkk�2 � 2ksnkk2 + 2kstkk2� 2�00�21kCkk kskk+ 2kstkk2:



34 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEThis estimate, (5.4), (6.14), (9.3), and kCkk � �00kskk yieldpred(sk; �) = qk(snk )� qk(snk +Wk(sk)u) + qk(0)� qk(snk)���Tk (Jksk + Ck)+ � �kCkk2 � kJksk + Ckk2�� 14�23kskk2 + �14�23kskk � (�00�21�23 + �11(�00�1 + 1))kCkk� kskk(9.4) + � �kCkk2 � kJksk + Ckk2� ;for every � > 0. If kCkk � �00kskk, where �00 satis�es(4�11) �00 + �4�21�23 + 4�1�11� (�00)2 � �23 ;(9.5)then we set � = �k�1 in (9.4) and deduce that the penalty parameter does not need to be increased.See Step 2.3 of Algorithms 5.1. Hence if �k is increased then the inequality kCkk > �00kskk musthold, and we can proceed as in Theorem 8.1, equation (8.7), and write�k2 �2kCkkmin��3kCkk; 1�4 kskk� � (�11(�22 + 1) + ���4)kskk kCkk;(here we used inequality (9.1)) which in turn implies��22 min��3�00; 1�4�� �k � �11(�22 + 1) + ���4:This gives the uniform boundedness of the penalty parameter:�k � ��for all k.Given the boundedness of f�kg we can complete the proof of the theorem. If kCkk > �00kskk,where �00 satis�es (9.5), then from (6.1) and (6.21) we �nd thatpred(sk; �k) � �k �22 kCkkminf�3kCkk; �kg � �k�24kskk2;(9.6)where �24 = �2�002 minf�3�00; 1�4 g. In this case it follows from (6.20) and (9.6) that����ared(sk; �k)pred(sk; �k) � 1���� � �13�24 (kskk+ kCkk) :(9.7)Now, suppose that kCkk � �00kskk. From (9.4) with � = �k we obtain pred(sk; �k) � �234 kskk2.Now we use (6.20) and �k � ��, to get����ared(sk; �k)pred(sk; �k) � 1���� � 4�13���23 (kskk+ kCkk) :(9.8)Finally from (9.7), (9.8), limk!+1 xk = x�, and limk!+1 kCkk = 0, we getlimk!+1 ared(sk; �k)pred(sk; �k) = 1;



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 35which by the rules for updating the trust radius given in Step 2.4 of Algorithms 5.1, shows that �kis uniformly bounded away from zero.We use the following straightforward globalization of the quasi{normal component snk of theNewton step given in (5.27). The new quasi{normal component is given by:snk =  ��kCy(xk)�1Ck0 ! ;(9.9)where �k = 8<: 1 if kCy(xk)�1Ckk � �k;�kkCy(xk)�1Ckk otherwise.(9.10)Before we state the q{quadratic rate of convergence we prove the following important result.Lemma 9.2. The quasi{normal component (9.9) satis�es conditions (5.1), (5.4), and (5.5) forsome positive �1, �2, and �3 independent of k.Proof. It is obvious that (5.1) holds. Condition (5.4) is a direct consequence of the condition(5.5). In fact, using kCy(xk)(snk)y + Ckk � kCkk and the boundedness of fCy(xk)�1g we �nd thatksnkk = ksnk + Cy(xk)�1Ck � Cy(xk)�1Ckk� kCy(xk)�1k�kCy(xk)(snk)y + Ckk+ kCkk� � 2�6 kCkk :(9.11)So, let us prove (5.5). A simple manipulation shows thatkCkk2 � kCy(xk)(snk)y + Ckk2 = kCkk2 � k � �kCy(xk)Cy(xk)�1Ck + Ckk2= kCkk2 � �(1� �k)kCkk�2= �k(2� �k)kCkk2 � �k kCkk2:We need to consider two cases. If �k = 1, thenkCkk2 � kCy(xk)(snk )y + Ckk2 � kCkkminfkCkk; �kg:Otherwise, �k = �kkCy(xk)�1Ckk . In this case we getkCkk2 � kCy(xk)(snk)y + Ckk2 � 1�6 kCkk �k � 1�6 kCkkminfkCkk; �kg:Thus the result holds with �2 = minf1; 1�6 g and �3 = 1.Corollary 9.1. Let fxkg be a sequence of iterates generated by the trust{region interior{pointSQP Algorithms 5.1 under Conditions C.1, C.3, and C.4. If xk converges to a nondegenerate pointx� satisfying the second{order su�cient KKT conditions, then xk converges q{quadratically.Proof. We start by showing that j�Nk � 1j is O (kxk � x�k), where �Nk is given by (5.29). Sincelimk!+1 kWTk Hksnkk = 0, we have that �����Nk�k � 1���� is O(k(sNk )uk) (see [12, Eq. (6.4) and Lem. 12]).



36 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEAlso since by Condition C.4 j�k � 1j is O � �Dk�gk�, and �Dk�gk is O �k(sNk )uk� (see (5.26)), we cansee that j�k � 1j is also O �k(sNk )uk�. Furthermore,j�Nk � 1j � �k ������Nk�k � 1�����+ j�k � 1j :Hence j�Nk � 1j is O �k(sNk )uk�. But (sNk )u is O (kxk + snk � x�k) and snk is O (kxk � x�k) and thisshows that j�Nk � 1j is O (kxk � x�k).We need to prove that Condition C.4 does not conict with Condition C.1 so that Theorem 9.1can be applied. In other words, we need to show that the decrease conditions given in ConditionC.1 hold for the Newton damped step (5.28) whenever it is taken. In Lemma 9.2 we showed thatthe quasi{normal component snk given in (9.9) satis�es (5.1), (5.4), and (5.5). From Condition C.4,snk given by (5.27) is used when it coincides with the snk given by (9.9). Thus snk given by (5.27)satis�es also (5.1), (5.4), and (5.5). It remains to prove that �Nk (sNk )u satis�es the Cauchy decreasecondition (5.13) ((5.14) for the coupled approach). This is indeed the case since	k(0)�	k(�Nk (sNk )u) � ��Nk �gTk (sNk )u � 12(�Nk )2((sNk )u)T �WTk HkWk + Ek �D�2k � ((sNk )u)� �Nk ���gTk (sNk )u � 12((sNk )u)T �WTk HkWk +Ek �D�2k � ((sNk )u)�� �Nk �	k(0)�	k(cdk)� ;and j�Nk � 1j is O (kxk � x�k).Now we need to show that eventually sk is given by (5.28). Since fxkg converges to a nonde-generate point satisfying the second{order su�cient KKT conditions, (sNk )u exists for k su�cientlylarge. Furthermore (snk)y = �Cy(xk)�1Ck for k large enough because limk!+1 kCy(xk)�1Ckk = 0,and from Theorem 9.1, �k is eventually bounded away from zero. Using a similar argument we seethat �Nk (sNk )u is inside the trust region (5.10) for the decoupled approach or (5.12) for the coupledapproach. So, from Condition C.4 we conclude that there exists a positive integer �k such that skis given by (5.28) for k � �k.Using the fact that (sNk )u is O (kxk � x�k), we conclude that �Nk (sNk )u � (sNk )u isO (kxk � x�k2). Thussk � sNk =  snk � Cy(xk)�1Cu(xk)�Nk (sNk )u�Nk (sNk )u !�  snk � Cy(xk)�1Cu(xk)(sNk )u(sNk )u !is O (kxk � x�k2). This completes the proof since sNk can be seen as a Newton step on a givenvector function of the type (4.8). This function vanishes at x� and is continuously di�erentiablewith Lipschitz continuous derivatives and a nonsingular Jacobian matrix in an open neighborhoodof x�. See the discussion at the end of Section 4. Thus the q{quadratic rate of convergence followsfrom [17][Thm. 5.2.1] and from the fact that sk � sNk is O (kxk � x�k2).10. Trial steps and multiplier estimates. When we described the trust{region interior{point SQP algorithms, we deferred the practical computation of the quasi{normal and tangentialcomponents and of the multiplier estimates. In the following sections we address these issues.



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 3710.1. Computation of the quasi{normal component. The quasi{normal component snkis an approximate solution of the trust{region subproblemminimize 12kCy(xk)(sn)y + Ckk2(10.1) subject to k(sn)yk � �k;and it is required for global convergence to a point that satis�es the necessary KKT conditionsto satisfy conditions (5.1), (5.4), and (5.5). As we saw in equation (9.11) of the proof of Lemma9.2, property (5.4) is a consequence of (5.5). Whether Property (5.5) holds depends on the wayin which the quasi{normal component is computed. We will show below that (5.5) is satis�ed formany reasonable ways to compute snk .There are various ways to compute the quasi{normal component snk for large scale problems.For example, one can use the conjugate{gradient method as suggested in [61] and [63], or one canuse the Lanczos bidiagonalization as described in [26]. Both methods compute an approximateminimizer to the least squares functional in (10.1) from a subspace which contains its negativegradient �Cy(xk)TCk. Thus, the components snk generated by these methods satisfy jjsnk jj � �k and12kCy(xk)(snk)y + Ckk2 � min�12kCy(xk)s+ Ckk2 : s 2 spanf�Cy(xk)TCkg ; ksk � �k� :We can appeal to a classical result due to Powell, see [52, Thm. 4], [45, Lem. 4.8], to show thatkCkk2 � kCy(xk)(snk )y + Ckk2 � 12kCy(xk)TCkkmin( kCy(xk)TCkkkCy(xk)TCy(xk)k ; �k) :Now one can use the fact that fCy(xk)g and fCy(xk)�T g are bounded and writekCkk2 � kCy(xk)(snk )y + Ckk2 � �2kCkkminf�3kCkk; �kg;where �2 and �3 are positive and do not depend on k.An alternative to the previous procedures is to compute the solution of Cy(xk)s = �C(xk) andto scale this solution back into the trust region (see (9.9)). In Lemma 9.2, we proved that (9.9)satis�es conditions (5.1), (5.4), and (5.5).10.2. Computation of the tangential component. In this section we show how to de-rive conjugate{gradient algorithms to compute (sk)u. Other practical algorithms to compute trialsteps for box{constrained minimization trust{region subproblems are introduced in [7] using threedimensional subspace approximations and conjugate gradients.Let us consider �rst the decoupled trust{region approach given in Section 5.2.1. If we ignorethe bound constraints for the moment, we can apply the conjugate{gradient algorithm proposedby Steihaug [61] and Toint [63] to solve the problemminimize 	k(su)subject to k �D�1k suk � �k:However we also need to incorporate the constraints�k(a� uk) � su � �k(b� uk):This leads to the following algorithm:Algorithm 10.1 (Computation of sk = snk +Wk(sk)u (Decoupled Approach)).



38 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTE1 Set s0u = 0, r0 = ��gk = �WTk rqk(snk), q0 = �D2kr0, d0 = q0, and � > 0.2 For i = 0; 1; 2; : : : do2.1 Compute i = rTi qidTi (WTk HkWk+Ek �D�2k )di .2.2 Compute�i = maxf� > 0 : k �D�1k (siu + �di)k � �k ;�k(a� uk) � siu + �di � �k(b� uk)g:2.3 If i � 0, or if i > �i, then set (sk)u = siu + �idi, where �i is given as in 2.2 and go to3; otherwise set si+1u = siu + idi.2.4 Update the residuals: ri+1 = ri � i(WTk HkWk + Ek �D�2k )di and qi+1 = �D2kri+1.2.5 Check truncation criteria: if rrTi+1qi+1rT0 q0 � �, set (sk)u = si+1u and go to 3.2.6 Compute �i = rTi+1qi+1rTi qi and set di+1 = qi+1 + �idi.3 Compute sk = snk +Wk(sk)u and stop.Step 2 iterates entirely in the vector space of the u variables. After the u component of the stepsk has been computed, Step 3 �nds its y component. The decoupled approach allows an e�cientuse of an approximation bHk to the reduced Hessian WTk r2xx`kWk. In this case, only two linearsystems are required, one with Cy(xk)T in Step 1 to compute �gk and the other with Cy(xk) in Step3 to compute Wk(sk)u. If the Hessian r2xx`k is being approximated, then the total number of linearsystems is 2I(k) + 2, where I(k) is the number of conjugate{gradient iterations.One can transform this algorithm to work in the whole space rather then in the reduced space byconsidering the coupled trust{region approach given in Section 5.2.2. This alternative is presentedbelow.Algorithm 10.2 (Computation of sk = snk +Wk(sk)u (Coupled Approach)).1 Set s0 = 0, r0 = ��gk = �WTk rqk(snk), q0 = �D2kr0, d0 = Wkq0, and � > 0.2 For i = 0; 1; 2; : : : do2.1 Compute i = rTi qidTi Hkdi+(di)TuEk �D�2k (di)u .2.2 Compute�i = maxf� > 0 :  �Cy(xk)�1Cu(xk)�(di)u�D�1k �(di)u ! � �k ;�k(a� uk) � siu + �(di)u � �k(b� uk)g:2.3 If i � 0, or if i > �i, then stk = si + �idi, where �i is given as in 2.2 and go to 3;otherwise set si+1 = si + idi.2.4 Update the residuals: ri+1 = ri � i �WTk Hkdi + Ek �D�2k (di)u� and qi+1 = �D2kri+1.2.5 Check truncation criteria: if rrTi+1qi+1rT0 q0 � �, set stk = si+1 and go to 3.2.6 Compute �i = rTi+1qi+1rTi qi and set di+1 = Wk(qi+1 + �idi).3 Compute sk = snk + stk and stop.Note that in Step 2 both the y and the u components of the tangential component are beingcomputed. The coupled approach is suitable particularly when an approximation Hk to the fullHessian r2xx`k is used. The coupled approach can be used also with an approximation bHk tothe reduced Hessian WTk r2xx`kWk . In this case, we consider Hk that is given by (5.24) and use



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 39the equalities (5.25) to compute the terms involving Hk in Algorithm 10.2. If the Hessian r2xx`kis approximated, the total number of linear systems is 2I(k) + 2, where I(k) is the number ofconjugate{gradient iterations. If the reduced Hessian WTk r2xx`kWk is approximated, this numberis I(k) + 2.Two �nal important remarks are in order.Remark 10.1. If WTk Wk was included as a preconditioner in Algorithm 10.2, then theconjugate{gradient iterates would monotonically increase in the norm kWk � k. Dropping this pre-conditioner means that the conjugate{gradient iterates do not necessarily increase in this norm (see[61]). As a result, if the quasi{Newton step is inside the trust region, Algorithm 10.2 can terminateprematurely by stopping at the boundary of the trust region.Remark 10.2. Since the conjugate{gradient Algorithms 10.1, 10.2 start by minimizing thequadratic function 	k(su) along the direction � �D2k�gk, it is quite clear that they produce reducedtangential components (sk)u that satisfy (5.13) and (5.14), respectively, with �d1 = �c1 = 1.10.3. Multiplier estimates. A convenient estimate for the Lagrange multipliers is the ad-joint update �k = �Cy(xk)�Tryfk;(10.2)which we use after each successful step. However we also consider the following update:�k+1 = �Cy(xk)�Tryqk(snk) = �Cy(xk)�T �(Hksnk )y +ryfk� :(10.3)Here the use of (10.3) instead of�k+1 = �Cy(xk + sk)�Tryf(xk + sk);(10.4)might be justi�ed since we obtain (10.3) without any further cost from the �rst iteration of any ofthe conjugate{gradient algorithms described above. The updates (10.2), (10.3), and (10.4) satisfythe requirement given by A.4 needed to prove global convergence to a �rst{order KKT point.11. Numerical example. A typical application that has the structure described in this paperis the control of a heating process. In this section we introduce a simpli�ed model for the heatingof a probe in a kiln discussed in [8]. The temperature y(x; t) inside the probe is governed by anonlinear partial di�erential equation. The spatial domain is given by (0; 1). The boundary x = 1is the inside of the probe and x = 0 is the boundary of the probe.The goal is to control the heating process in such a way that the temperature inside the probefollows a certain desired temperature pro�le yd(t). The control u(t) acts on the boundary x = 0.The problem can be formulated as follows.minimize 12 Z T0 [(y(1; t)� yd(t))2 + u2(t)]dt(11.1)subject to�(y(x; t))@y@t(x; t)� @x(�(y(x; t))@xy(x; t)) = q(x; t); (x; t) 2 (0; 1)� (0; T );�(y(0; t))@xy(0; t) = g[y(0; t)� u(t)]; t 2 (0; T );�(y(1; t))@xy(1; t) = 0; t 2 (0; T );y(x; 0) = y0(x); x 2 (0; 1);ulow � u � uupp;



40 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTEwhere y 2 L2(0; T ;H1(0; 1)), and u 2 L2(0; T ). The functions � : IR ! IR and � : IR ! IRdenote the speci�c heat capacity and the heat conduction, respectively, y0 is the initial temperaturedistribution, q is the source term, g is a given scalar, and  is a regularization parameter. Hereulow; uupp 2 L1(0; T ) are given functions.If the partial di�erential equation and the integral are discretized, we obtain an optimizationproblem of the form (1.1). The discretization uses �nite elements and was introduced in [8] (see also[29] and [39]). The spatial domain (0; 1) is divided into Nx subintervals of equidistant length, andthe spatial discretization is done using piecewise linear �nite elements. The time discretization isperformed by partitioning the interval [0; T ] into Nt equidistant subintervals. Then the backwardEuler method is used to approximate the state space in time, and piecewise constant functionsare used to approximate the control space. This leads to a discretized problem with dimensionn = Nt(Nx + 1) + Nt and m = Nt(Nx + 1). Under the assumptions on the coe�cient functions �and � stated in [8], [39] which guarantee the well{posedness of the in�nite dimensional problem,it is shown in [39] that the constraints C(y; u) of the discretized problem satisfy the assumptionsA.3 and A.5 provided the discretization parameters Nx and Nt are chosen appropriately. For moredetails we refer to the comprehensive treatments in [8] and [39].The algorithms studied in this paper have been implemented in FORTRAN 77. The resultingsoftware package TRICE, trust{region interior{point SQP algorithms for optimal control and en-gineering design problems is available via the internet [16].We use the formula (9.9) to compute the quasi{normal component, and Algorithms 10.1 and10.2 to calculate the tangential component. The numerical test computations were done on a SunSparcstation 10 in double precision. These results demonstrate the e�ectiveness of the algorithms.With this discretization scheme, Cy(x) is a block bidiagonal matrix with tridiagonal blocks.Hence linear systems with Cy(x) and Cy(x)T can be solved e�ciently by block forward substitutionor block backward substitution, respectively. In each substitution step, only a small system withtridiagonal system has to be solved. In the implementation we use the linpack subroutine dgtslto solve the tridiagonal systems. Notice that direct factorizations are only applied to the small(Nx + 1) � (Nx + 1) tridiagonal subblocks of Cy(x), but not to the entire NtNx � (Nt(Nx + 1))Jacobian matrix (Cy(x) Cu(x)). See also [39].As we pointed out in Section 1, the inner products and norms used in the trust{region interior{point SQP algorithms are not necessarily the Euclidean ones. In our implementation [16], we callsubroutines to calculate the inner products hy1; y2i and hu1; u2i with y1; y2 2 IRm and u1; u2 2IRn�m. The user may supply these subroutines to incorporate a speci�c scaling. If the innerproduct hx1; x2i is required, then it is calculated as hy1; y2i + hu1; u2i. In this example, we useddiscretizations of the L2(0; T ) and L2(0; T ;H1(0; 1)) norms for the control and the state spacesrespectively. This is important for the correct computation of the adjoint and the appropriatescaling of the problem.In our numerical example we use the functions�(y) = q1 + q2y; y 2 IR; �(y) = r1 + r2y; y 2 IR;with parameters r1 = q1 = 4, r2 = �1, and q2 = 1. The desired and initial temperatures, and theright hand side are given byyd(t) = 2� e�t;y0(x) = 2 + cos �x; and



TRUST{REGION INTERIOR{POINT SQP ALGORITHMS FOR A CLASS OF NLP PROBLEMS 41q(x; t) = [�(q1+ 2q2) + �2(r1 + 2r2)]e�t cos �x�r2�2e2�t + (2r2�2 + �q2)e2�t cos2 �x;with � = �1. The �nal temperature is chosen to be T = 0:5 and the scalar g = 1 is used in theboundary condition. The functions in this example are those used in [39, Ex. 4.1]. The size of theproblem tested is n = 2200, m = 2100 corresponding to the values Nt = 100, Nx = 20.The scheme used to update the trust radius is the following fairly standard one:� If ratio(sk; �k) < 10�4, reject sk and set �k+1 = 0:5 norm(sk);� If 10�4 � ratio(sk ; �k) < 0:1, reject sk and set �k+1 = 0:5 norm(sk);� If 0:1 � ratio(sk; �k) < 0:75, accept sk and set �k+1 = �k;� If ratio(sk; �k) � 0:75, accept sk and set �k+1 = min �2�k; 1010	;where ratio(sk; �k) = ared(sk ;�k)pred(sk;�k) ,norm(sk) = maxnksnkk; k �D�1k (sk)ukoin the decoupled approach, andnorm(sk) = max(ksnkk;  �Cy(xk)�1Cu(xk)(sk)u�D�1k (sk)u !)in the coupled approach. The algorithms are stopped if the trust radius gets below 10�8.We have used �k = � = 0:99995 for all k; �0 = 1 as initial trust radius; ��1 = 1 and �� = 10�2in the penalty scheme. The tolerance used in the conjugate{gradient iteration was � = 10�4. Theupper and lower bounds were bi = 10�2, ai = �1000, i = 1; : : : ; n �m. The starting vector wasx0 = 0.For both the decoupled and the coupled approaches, we did tests using approximations toreduced and to full Hessians. We approximate these matrices with the limited memory BFGSrepresentations given in [10] with a memory size of 5 pairs of vectors. For the reduced Hessian weuse a null{space secant update (see [49], [67]). The initial approximation chosen was In�m for thereduced Hessian and In for the full Hessian, where  is the user speci�ed regularization parameterin the objective function (11.1).In our implementation we use the following form of the diagonal matrix �Dk� �Dk�ii = 8><>: minf1; (b� uk)ig if (�gk)i < 0;minf1; (uk � a)ig if (�gk)i � 0;(11.2)for i = 1; : : : ; n�m. This form of �Dk gives a better transition between the in�nite and �nite boundand is less sensitive to the introduction of meaningless bounds. See also Remark 3.1.The algorithms were stopped whenkDkWTk rfkk+ kCkk < 10�8:The results are shown in Tables 11.1 and 11.2 corresponding to the values  = 10�2 and = 10�3, respectively. There were no rejected steps. The di�erent alternatives tested performedquite similarly. The decoupled approach with reduced Hessian approximation seems to be the best



42 J. E. DENNIS, M. HEINKENSCHLOSS AND L. N. VICENTETable 11.1Numerical results for  = 10�2.Decoupled CoupledReduced bHk Full Hk Reduced bHk Full Hknumber of iterations k� 14 20 17 18kCk�k :5082E � 11 :1370E� 10 :7122E � 12 :8804E � 11kDk�WTk�rfk�k :4033E � 08 :1389E� 08 :6365E � 10 :2641E � 08ksk��1k :1230E � 04 :1461E� 04 :3546E � 05 :1445E � 04�k��1 :1638E + 05 :1049E+ 07 :1311E + 06 :2621E + 06�k��1 :1000E + 01 :1000E+ 01 :1000E + 01 :1000E + 01
Table 11.2Numerical results for  = 10�3.Decoupled CoupledReduced bHk Full Hk Reduced bHk Full Hknumber of iterations k� 16 18 17 19kCk�k :6233E � 11 :1115E� 10 :6487E � 11 :1246E � 09kDk�WTk�rfk�k :5161E � 08 :2539E� 08 :7282E � 09 :4696E � 08ksk��1k :1626E � 04 :1703E� 04 :1530E � 04 :4659E � 04�k��1 :6554E + 05 :2621E+ 06 :1311E + 06 :5243E + 06�k��1 :1000E + 01 :1000E+ 01 :1000E + 01 :1000E + 01
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Fig. 11.1. Coleman{Li a�ne scaling. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2

0

2

4

6

8

10
x 10

−3 Computed Control

t

u
Fig. 11.2. Dikin{Karmarkar a�ne scaling.for this example. Note that in this case the computation of each trial step costs only three linearsystem solvers with Cy(xk) and Cy(xk)T , one to compute the quasi{normal component and two forthe computation of the tangential component.We made an experiment to compare the use of the Coleman{Li a�ne scaling with the Dikin{Karmarkar a�ne scaling. When applied to our class of problems, the Coleman{Li a�ne scalingis given by the matrices Dk and �Dk. A study of the Dikin{Karmarkar a�ne scaling for steepestdescent is given in [54]. For our class of problems, this scaling is given by�Kk�ii = minf1; (uk � a)i; (b� uk)ig; i = 1; : : : ; n�m;(11.3)and has no dual information built in. We ran the trust{region interior{point SQP algorithm withthe decoupled and reduced Hessian approximation and (11.2) replaced by (11.3). The algorithmtook only 11 iterations to reduce kKkWTk rfkk + kCkk to 10�8. However, as we can see from theplots of the controls in Figures 11.1 and 11.2, the algorithm did not �nd the correct solution whenit used the Dikin{Karmarkar a�ne scaling (11.3). Some of the variables are at the wrong boundcorresponding to negative multipliers.12. Conclusions. In this paper we have introduced and analyzed some trust{region interior{point SQP algorithms for an important class of nonlinear programming problems that appear inmany engineering applications. These algorithms use the structure of the problem, and they com-bine trust{region techniques for equality{constrained optimization with an a�ne scaling interior{point approach for simple bounds. We have proved global and local convergence results for thesealgorithms that includes as special cases both the results established for equality constraints [15],[19] and those for simple bounds [13].We have implemented the trust{region interior{point SQP algorithms covering several trial stepcomputations and second{order approximations. In this paper we have reported numerical resultsfor the solution of a speci�c optimal control problem governed by a nonlinear heat equation. In [11],
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