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Abstract

A number of first-order methods have been proposed for smooth multiobjective opti-
mization for which some form of convergence to first order criticality has been proved. Such
convergence is global in the sense of being independent of the starting point.

In this paper we analyze the rate of convergence of gradient descent for smooth un-
constrained multiobjective optimization, and we do it for non-convex, convex, and strongly
convex vector functions. These global rates are shown to be the same as for gradient de-
scent in single-objective optimization, and correspond to appropriate worst case complexity
bounds. In the convex cases, the rates are given for implicit scalarizations of the problem
vector function.

1 Introduction

Let us consider an unconstrained multiobjective optimization problem written in the form

min
x∈Rn

F (x) ≡ (f1(x), . . . , fm(x)),

where each objective function fi : Rn → R is continuously differentiable and with a gradient
Lipschitz continuous with constant Li > 0, i = 1, . . . ,m.

A number of descent methods have been developed and analyzed for smooth multiobjective
optimization (see Fukuda and Graña Drummond [9]). Steepest descent or gradient methods for
multiobjective optimization (see Fliege and Svaiter [8]) converge globally (i.e., independently
of the starting point) to a critical Pareto point. In gradient-based dynamic approaches (At-
touch and Goudou [1]), the steepest descent method can be recovered by an appropriate time
discretization of a system of differential equations whose solution converges to a Pareto point.
Other first-order globally convergent algorithms include proximal algorithms (see e.g. Bonnel,
Iusem, and Svaiter [4]), trust-region methods (Carrizo, Lotito, and Maciel [5]), and several
conjugate gradient methods (Pérez and Prudente [16]). A Newton’s method for multiobjective
optimization was proposed and analyzed by Fliege, Graña Drummond, and Svaiter [7].
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Perhaps the simplest gradient method for MOO takes the form xk+1 = xk + tkdk, where
tk > 0 is the stepsize and where the search direction dk is obtained from solving (see [8])

dk = arg min
d∈Rn

{
max

i∈{1,...,m}
∇fi(xk)>d+

1

2
‖d‖2

}
. (1)

When m = 1, one retrieves the steepest descent direction dk = −∇f1(xk).
For single-objective optimization (m = 1), it is well known (see the book by Nesterov [15])

that the steepest descent or gradient method decreases the gradient to zero at the rate of 1/
√
k

regardless of the starting point. Moreover, the corresponding worst case bound in the number
of iterations needed to achieve a gradient of norm smaller then ε ∈ (0, 1), which is of the order
of ε−2, was proven to be sharp or tight, in the sense that there exists an example for n = 1
(Cartis, Gould, and Toint [6]), dependent on an arbitrarily small parameter τ > 0, for which
such a number is of the order of ε−2+τ . The global rate 1/

√
k is shared by many first-order

methods which impose a sufficient decrease condition, like trust-region methods (using gradient
information) [6] and direct-search methods for derivative-free optimization [17]. Such a global
rate is improved to 1/k in the convex case (Nesterov [15]), and higher-order methods deliver
a rate that tends precisely to 1/k when the order tends to infinity (Birgin et al. [3]). Finally,
it is also well known that gradient descent exhibits a linear rate of convergence in the strongly
convex case (Nesterov [15]).

The goal of this paper is to extend this theory to multiobjective optimization. We will see
without too much surprise that the same rates of the single-objective setting are attainable,
although the convex and strongly convex cases unveil interesting questions. The rate of 1/

√
k in

the non-convex case does not raise any issue as it is derived for a measure of first-order criticality.
In the convex cases, however, as the rates are derived for function values it is not foreseeable,
before a careful analysis, what gap or error should be quantified.

It was brought to our attention by a Referee of this paper that Grapiglia in his PhD The-
sis [10, Section 3.5.2] had proved the same worst case complexity bound of the order of ε−2 for
smooth unconstrained multiobjective optimization but using instead trust-region methods. This
was later reported in the paper [12, Section 4.2]. Grapiglia made also a similar derivation using
line-search methods in an unpublished work [11]. The results of our paper are derived in a more
concise way and cover the convex and strongly convex cases.

2 Pareto criticality

Let∇F (x) denote the transpose of the Jacobian matrix of the vector-valued objective function F .
A necessary condition for a point x ∈ Rn to be a (local) weak Pareto minimizer is

range
(
∇F (x)>

)
∩ (−R++)m = ∅, (2)

where R++ is the set of (strictly) positive real numbers. Points that satisfy condition (2) are
then called (first-order) Pareto critical points. If a point x is not Pareto critical, then there
exists a direction d ∈ Rn such that

∇F (x)>d ∈ (−R++)m,

i.e., d is descent direction for F at the point x. This motivates the first term of the objective
function in subproblem (1).
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Now note that subproblem (1) can be rewritten equivalently as the following (differentiable)
quadratic optimization problem

(dk, αk) = arg min
d∈Rn,α∈R

α+
1

2
‖d‖2 ≡ q(d, α)

subject to ∇fi(xk)>d ≤ α, i = 1, . . . ,m.

(3)

From the KKT conditions of problem (3) we have

dk = −
m∑
i=1

λki∇fi(xk), (4)

where λki ≥ 0 are the Lagrange multipliers associated with the linear inequality constraints
in (3), and

m∑
i=1

λki = 1. (5)

The solution of subproblem (3) is intimately related to Pareto criticality as stated in the following
result from [8] (a proof is included for completeness).

Lemma 2.1. [8, Lemma 1] Let (dk, αk) be the solution of problem (3).

1. If xk is Pareto critical, then dk = 0 ∈ Rn and αk = 0.

2. If xk is not Pareto critical, then

αk ≤ −(1/2)‖dk‖2 < 0, (6)

∇fi(xk)>dk ≤ αk, i = 1, . . . ,m. (7)

Proof. If xk is Pareto critical, then there is no d such that ∇fi(xk)>d < 0, ∀i ∈ {1, . . . ,m},
otherwise condition (2) would not be satisfied, leading to the existence of an ī such that αk ≥
∇fī(xk)Tdk ≥ 0. Item 1 follows then by noting that (d, α) = (0, 0) is a feasible point of
subproblem (3).

As for Item 2, if xk is not Pareto critical, then there exists a d such that ∇fi(xk)>d < 0, ∀i,
resulting in αk < 0. Equation (7) follows directly from the constraints of subproblem (3). Since
(d, α) = (0, 0) is a feasible point, one has q(dk, αk) ≤ q(0, 0) = 0, hence (6), where q(·, ·) has
been defined in (3).

3 Gradient descent in the non-convex case

In this section we will analyze the gradient method described in Algorithm 1 (see [8]). At each
step, the steepest descent direction dk is first computed by solving (1) or equivalently (3). Then
a backtracking procedure along dk is applied which stops when a classical sufficient decrease
condition is satisfied; see (8). Each backtracking starts at t = 1 and halves the stepsize until it
finds one for which all functions have decreased sufficiently.

We start by showing the existence of a uniform lower bound on the stepsize tk that will be
used later in the analysis. Such a lower bound also shows that Step 4 of Algorithm 1 will always
stop in a finite number of steps. The argument is a classic one in line-search methods.
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Algorithm 1 MO gradient descent

1: Choose β ∈ (0, 1) and x0 ∈ Rn. Set k := 0.
2: Compute dk by solving the subproblem (3).
3: Stop if xk is Pareto critical.
4: Compute a stepsize tk ∈ (0, 1] as the maximum of

T k :=

{
t =

1

2j
| j ∈ N0, F (xk + tdk) ≤ F (xk) + βt∇F (xk)>dk

}
. (8)

5: Set xk+1 := xk + tkdk, k := k + 1, and goto Step 2.

Lemma 3.1. In Algorithm 1 the stepsize always satisfies tk ≥ tmin ≡ min {(1− β)/(2Lmax), 1}
where Lmax = max{L1, . . . , Lm} (with Li the Lipschitz constant of ∇fi, i = 1, . . . ,m) and
β ∈ (0, 1) is the parameter of the sufficient decrease condition (8).

Proof. When 2t does not satisfy the sufficient decrease condition (8) of Algorithm 1, there exists
an index i ∈ {1, . . . ,m} such that

fi(x
k + (2t)dk)− fi(xk) > β(2t)∇fi(xk)>dk. (9)

Due to Lipschitz continuity we have,

fi(x
k + (2t)dk)− fi(xk) ≤ (2t)∇fi(xk)>dk +

Li
2
‖(2t)dk‖2. (10)

By combining (9) and (10) one obtains

0 < (2t)(1− β)∇fi(xk)>dk + 2Lit
2‖dk‖2

which using (6)–(7) then implies

−Lit‖dk‖2 < (1− β)∇fi(xk)Tdk < −(1− β)

2
‖dk‖2,

establishing that

t >
1− β
2Li

.

The result follows by noting that t is never larger than one and that Lmax = max{L1, . . . , Lm}.

Is is then easy to prove that Algorithm 1 has a convergence rate of the order of 1/
√
k.

Theorem 3.1. Suppose that at least one of the functions f1, . . . , fm is bounded from below. Let
fmin
i be the lower bound on the function fi when bounded from below. For those indices i, let
Fmin be the minimum of the lower bounds fmin

i and let Fmax
0 be the maximum of the values

fi(x0).
The gradient method described in Algorithm 1 generates a sequence {xk} such that

min
0≤`≤k−1

‖d`‖ ≤
√
Fmax

0 − Fmin

M

1√
k
,

where M = βtmin
2 and tmin is given in Lemma 3.1.
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Proof. Let i be an index of a function fi bounded from below. From the sufficient decrease
condition (8) and the properties (6)–(7) of the direction dk,

fi(x
k + tkdk)− fi(xk) ≤ βtk∇fi(xk)>dk ≤ −β

tk

2
‖dk‖2,

and then from Lemma 3.1,

fi(x
k)− fi(xk + tkdk) ≥ βtk

2
‖dk‖2 ≥ βtmin

2
‖dk‖2 ≡ M‖dk‖2.

Summing up all decreases until iteration k − 1, yields

fi(x
0)− fi(xk−1 + tk−1dk−1) =

k−1∑
`=0

fi(x
`)− fi(x` + t`d`)

≥ M
k−1∑
`=0

‖d`‖2 ≥M(k)

(
min

0≤`≤k−1
‖d`‖

)2

,

and the proof is concluded from the definitions of Fmax
0 and Fmin.

4 The convex and strongly convex cases

In single-objective optimization when the function is convex, the analysis of the gradient method
is typically carried out for a fixed stepsize, inversely proportional to the Lipschitz constant of
the gradient of the objective function. It is also known that it can be alternatively imposed
a sufficient decrease condition, different from the traditional one used in the non-convex case.
We restate in Algorithm 2 the gradient method for multiobjective optimization using such an
alternative sufficient decrease condition (11).

Algorithm 2 MO gradient descent (convex case)

1: Choose γ ∈ (0, 1) and x0 ∈ Rn. Set k := 0.
2: Compute dk by solving the subproblem (3).
3: Stop if xk is Pareto critical.
4: Compute a stepsize tk ∈ (0, 1] as the maximum of

T k :=

{
t =

1

2j
| j ∈ N0, F (xk + tdk) ≤ F (xk) + t∇F (xk)>dk +

γ t

2
‖dk‖2e

}
, (11)

where e is the vector of ones in Rm.
5: Set xk+1 := xk + tkdk, k := k + 1, and goto Step 2.

It is also known that a lower bound on the stepsize can be obtained when imposing this
alternative sufficient decrease condition.

Lemma 4.1. In Algorithm 2 the stepsize always satisfies tk ≥ tmin ≡ min
{

γ
2Lmax

, 1
}

where

Lmax = max{L1, . . . , Lm}.
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Proof. By using the Lipschitz continuity of ∇fi, one can easily see that, for all t ∈ (0, γLi
],

fi(x
k + tdk) ≤ fi(x

k) + t∇fi(xk)>dk +
Li
2
‖tdk‖2

≤ fi(x
k) + t∇fi(xk)>dk +

γ

2t
‖tdk‖2.

Hence the sufficient decrease condition (11) is satisfied for t ∈ (0, γ
Lmax

] and the result comes
then from the fact that in the backtracking scheme the stepsize starts at one and is halved each
time.

Notice that when imposing (11) one obtains from (6)–(7), for all i ∈ {1, . . . ,m},

fi(x
k + tkdk) ≤ fi(x

k)− tk

2
‖dk‖2 +

γtk

2
‖dk‖2

= fi(x
k)− 1− γ

2
tk‖dk‖2.

Using the lower bound on tk from Lemma 4.1 we thus obtain a decrease that leads to a global
rate of 1/

√
k for min0≤l≤k−1 ‖d`‖ as in Theorem 3.1. This then proves that lim infk→∞ ‖dk‖ = 0.

Then, if L(x0) = {x ∈ Rn : F (x) ≤ F (x0)} is bounded, the sequence {xk} has a limit point x∗

that is Pareto critical. As the multipliers λk lie in a bounded set, one can also say, without loss
of generality, that the subsequence K for which xk converges to x∗ is such that λk converges to
a λ∗ such that

m∑
i=1

λ∗i∇fi(x∗) = 0,
m∑
i=1

λ∗i = 1, λ∗i ≥ 0, i = 1, . . . ,m. (12)

In the derivation of the global rates for the convex cases we will make the slightly stronger
assumption that the whole sequence (xk, λk) converges to (x∗, λ∗). Under the convexity as-
sumption on the objectives fi, the point x∗ is then a weak Pareto point, and if in addition x∗ is
the unique minimum of the scalar function

∑
i λ
∗
i fi, then x∗ is a Pareto point (see Theorem 5.13

and Lemma 5.14 in the book of Jahn [13]).
We will now assume convexity of all components of F . As so, we will make use of the

following known inequality

fi(x) ≤ fi(y) +∇fi(x)>(x− y)− µi
2
‖x− y‖2, (13)

valid for all x, y either when fi is convex and µi is set to zero or when fi is strongly convex with
modulus µi > 0. We start by an intermediate lemma establishing an upper bound in the same
vein of the known case m = 1. At this point there is no need to make assumptions about the
point x∗.

Lemma 4.2. Assume that {xk} converges to x∗. If fi is convex or strongly convex of modu-
lus µi > 0, i = 1, . . . ,m, then

m∑
i=1

λki

(
fi(x

k+1)− fi(x∗)
)
≤ 1

2tmin

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
− µ

2
‖xk − x∗‖2, (14)

where µ = min1≤i≤m µi and tmin is given in Lemma 4.1.
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Proof. Since γ < 1, one has for all i = 1, . . . ,m

fi(x
k+1) ≤ fi(x

k) +∇fi(xk)>(tkdk) +
1

2tk
‖tkdk‖2. (15)

One can now use the convexity (µi = 0) / strong convexity (µi > 0) of fi, see (13), to bound
fi(x

k) in (15), obtaining

fi(x
k+1) ≤ fi(x∗) +∇fi(xk)>(xk − x∗)− µ

2
‖xk − x∗‖2

+∇fi(xk)>(tkdk) +
1

2tk
‖tkdk‖2, i = 1, . . . ,m.

Rearranging terms, multiplying by λki and summing for all i = 1, . . . ,m,

m∑
i=1

λki

(
fi(x

k+1)− fi(x∗)
)
≤

(
m∑
i=1

λki∇fi(xk)

)
(xk − x∗ + tkdk)

+

(
tk

2
‖dk‖2 − µ

2
‖xk − x∗‖2

) m∑
i=1

λki .

From (4) and (5),

m∑
i=1

λki

(
fi(x

k+1)− fi(x∗)
)
≤ −(dk)>(xk − x∗ + tkdk) +

tk

2
‖dk‖2 − µ

2
‖xk − x∗‖2

= − 1

2tk

(
2(tkdk)>(xk − x∗) + ‖tkdk‖2

)
− µ

2
‖xk − x∗‖2

= − 1

2tk

(
‖xk − x∗ + tkdk‖2 − ‖xk − x∗‖2

)
− µ

2
‖xk − x∗‖2

=
1

2tk

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
− µ

2
‖xk − x∗‖2

≤ 1

2tmin

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
− µ

2
‖xk − x∗‖2.

The last inequality results from tk ≥ tmin and from the fact that the nonnegativity of the terms
λki [(fi(x

k+1)− fi(x∗)] necessarily implies the nonnegativity of ‖xk − x∗‖2 − ‖xk+1 − x∗‖2.

Remark 4.1. If a fixed stepsize with tk = t̄ constant would be used (instead of imposing sufficient
decrease), then as long as 0 < t̄ ≤ 1/Lmax the result of Lemma 4.2 would still be true without
assuming that {xk} converges to x∗. In such a case we would not know whether the left-hand-side
in (14) is nonnegative or not, and thus if such a result could be used later to prove an effective
rate.

We proceed separating the convex case from the strongly convex one. Next we address
the convex case establishing the desired 1/k rate for a certain sequence of weights {λ̄k} that
converges to the optimal weights λ∗ in (12) when the multipliers {λk} do so.

Theorem 4.1. Suppose that the functions f1, . . . , fm are convex. Assume that {xk} converges
to x∗.

7



The gradient method described in Algorithm 2 generates a sequence {xk} such that

m∑
i=1

λ̄k−1
i fi(x

k)−
m∑
i=1

λ̄k−1
i fi(x

∗) ≤ ‖x
0 − x∗‖2

2tmink
,

where the weights λ̄k−1
i ≡ 1

k

∑k−1
`=0 λ

`
i satisfy

m∑
i=1

λ̄k−1
i = 1 and λ̄k−1

i ≥ 0, i = 1, . . . ,m.

Finally, if {λk} converges to λ∗, then so does {λ̄k}.
Proof. By summing (14) from ` = 0, . . . , k−1, and since fi(x

`) ≤ fi(x`−1) for all i, `, one derives

k−1∑
`=0

m∑
i=1

λ`i

(
fi(x

k)− fi(x∗)
)
≤ 1

2tmin

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
≤ 1

2tmin
‖x0 − x∗‖2.

Hence
m∑
i=1

(
k−1∑
`=0

λ`i

)(
fi(x

k)− fi(x∗)
)
≤ 1

2tmin
‖x0 − x∗‖2.

The proof is completed dividing both sides of this last inequality by k.

Now we show that gradient descent also attains for multiobjective optimization a linear
convergence rate in the strongly convex case.

Theorem 4.2. Suppose that the functions fi are strongly convex with modulus µi > 0, i =
1, . . . ,m. Assume that {xk} converges to x∗.

The gradient method described in Algorithm 2 generates a sequence {xk} such that

‖xk − x∗‖ ≤
(√

1− tminµ
)k
‖x0 − x∗‖. (16)

Proof. We go back to (14) and write

m∑
i=1

λki

(
fi(x

k+1)− fi(x∗)
)
≤ 1

2tmin

(
(1− tminµ) ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
.

By noting that the left-hand side is nonnegative,

‖xk+1 − x∗‖2 ≤ (1− tminµ) ‖xk − x∗‖2,

and the proof is completed applying this last inequality recursively.

If the pair (x∗, λ∗) is Pareto critical and the fi’s are convex, f∗ ≡
∑m

i=1 λ
∗
i fi is a convex

function with minimizer at x∗. When all functions fi are strongly convex, so is f∗ with modulus
µ∗ = minλ∗i>0 µi. Moreover the function f∗ has a gradient that is Lipschitz continuous with con-

stant L∗ = maxλ∗i>0 Li. Hence, f∗(xk)− f∗(x∗) ≤ (L∗/2)‖xk −x∗‖2 (see, e.g., [2, Theorem 5.8])
and from (16) we also derive a linear rate for the optimality gap in f∗,

m∑
i=1

λ∗i fi(x
k)−

m∑
i=1

λ∗i fi(x
∗) ≤ L∗

2
‖xk − x∗‖2 ≤ L∗

2
(1− tminµ)k ‖x0 − x∗‖2.
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5 Concluding remarks

We derived global rates for gradient descent for smooth multiobjective optimization matching
what is known in single-objective optimization, for non-convex (1/

√
k), for convex (1/k), and

for strongly convex (rk for some r ∈ (0, 1)) vector-valued objective functions. Such global rates
translate into worst-case complexity bounds of the order of 1/ε2, 1/ε, and log(1/ε) iterations,
respectively, to reach an approximate optimality criterion of the form ‖dk‖ ≤ ε for some ε ∈ (0, 1),
where dk is the steepest descent direction (1).

There are a number of aspects to be further investigated, among which are the use of mo-
mentum and/or proximal operators (see the recent book [2] by Beck). In particular, proving a
global rate of 1/k2 for an accelerated gradient method, as Nesterov [14] did for single-objective
optimization, is more intricate than it seems at least using the steepest descent direction (1)
and the proof technology of our paper.
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