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This bi-infinite sequence is an element of {1,2,3,4}%, i.e., a mapping
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This bi-infinite sequence is an element of {1,2,3,4}%, i.e., a mapping
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This bi-infinite sequence is an element of {1,2,3,4}%, i.e., a mapping



Let A be a finite alphabet.

|
A symbolic dynamical system of AZ, also called subshift or just shift, is a
nonempty subset X' of A% such that
m X is topologically closed,
mo(X)=4X o((xi)iez) = (xit1)iez,

x; € A.
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- Symbolic dynamical systems ~ Syntactic semigroup Profinite semigroups
={u€A" :U=XXit1...Xi4n for some x € X, i € Z, n > 0}

The elements of L(X) are the blocks of X.
|
Let X be the least subshift containing
X = ---32.211444333211443321443 - - -
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- Symbolic dynamical systems ~ Syntactic semigroup Profinite semigroups
={ue AT u=x;xj11...xj1n for some x € X, i € Z, n > 0}
The elements of L(X) are the blocks of X.
|
Let X be the least subshift containing
X = ---32.211444333211443321443 - - -
Then L(X)={...,3221,...}
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 Symbolic dynamical systems ~ Syntactic semigroup Profinite semigroups
={ue AT u=x;xj11...xj1n for some x € X, i € Z, n > 0}
The elements of L(X) are the blocks of X.
|
Let X be the least subshift containing
X = ---32.211444333211443321443 - - -
Then L(X) = {...,3221,32,22,1,2,3
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 Symbolic dynamical systems ~ Syntactic semigroup Profinite semigroups
={ue AT u=x;xj11...xj1n for some x € X, i € Z, n > 0}
The elements of L(X) are the blocks of X.
.
Let X be the least subshift containing
X = ---32.211444333211443321443 - - -
Then L(X)={..., ,32,22.1,

3221,32,22,1,2,3,2114433,4,21,11
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- Symbolic dynamical systems ~ Syntactic semigroup Profinite semigroups
={u€A" :U=XXit1...Xi4n for some x € X, i € Z, n > 0}
The elements of L(X) are the blocks of X.
|
Let X be the least subshift containing
x = ---32.211444333211443321443 - - -

|
L(x) = L(Y) if and only if X = V.
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- Symbolic dynamical systems ~ Syntactic semigroup  Profinite semigroups
={u€A" :U=XXit1...Xi4n for some x € X, i € Z, n > 0}
The elements of L(X) are the blocks of X.
|
Let X be the least subshift containing
x = ---32.211444333211443321443 - - -
|
L(x) = L(Y) if and only if X = V.
Irreducible subshifts:
u,v e L(X)= 3w :uw e L(X)

DA



Isomorphic subshifts are called conjugate.

An isomorphism is called conjugacy.
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Let x € A%, Given a map g : A™ — B, we can code x through g:
m we choose integers k,/ > 0 such that m=k+ /41,
m we make y; = g(X[i—k,i+1])-
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Let x € A%, Given a map g : A™ — B, we can code x through g:

m we choose integers k,/ > 0 such that m=k+ /41,
m we make y; = g(X[i—k,i+1])-

‘|

cYie2 YiYis1Yiy2 - -
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Let x € A%, Given a map g : A™ — B, we can code x through g:

m we choose integers k,/ > 0 such that m=k+ /41,
m we make y; = g(X[i—k,i+1])-

o Xi—aXi—3[ Xi—2Xi—1XiXi41 | Xip2Xit3 . ..

d

s Yi—2Yi—1 y,'+1y,'+2 ce
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Let x € A%, Given a map g : A™ — B, we can code x through g:

m we choose integers k,/ > 0 such that m=k+ /41,
m we make y; = g(X[i—k,i+1])-

e Xi—aXi—3Xi—2 | Xi—1Xi Xi+1Xi+2 | Xit3 - - -

d

.- -y;-z}’i—l}’i}’i+2 cee
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ic d ical Syntactic semigroup Profinite semigroups

Sliding block codes

Let x € AZ. Given a map g : A™ — B, we can code x through g:
m we choose integers k,/ > 0 such that m=k+/+1,

m we make y; = g(X[i—k,i—H])-
c e Xi—aXi—3X{—2 | Xj—1 XXX 42 | Xi43 .-
e
-~-Yif2}’i71)/i)/i+2 cee

If X is a subshift of A% then the map G : X — B” defined by g is continuous
and commutes with the shift operation; its image ) is a subshift of BZ. We say
that G : X — ) is a sliding block code with block map g, memory k and

anticipation /, and we write G = gl=*/1.



ic dynamical sy Syntactic semigroup Profinite semigroups

Sliding block codes

Let x € AZ. Given a map g : A™ — B, we can code x through g:
m we choose integers k,/ > 0 such that m=k+/+1,

m we make y; = g(X[i—k,H—I])-
c e Xi—aXi—3X{—2 | Xj—1 XXX 42 | Xi43 .-
e
-~-)/i72}’i71)/i}/i+2 cee

If X is a subshift of A% then the map G : X — B” defined by g is continuous
and commutes with the shift operation; its image ) is a subshift of BZ. We say
that G : X — ) is a sliding block code with block map g, memory k and
anticipation /, and we write G = gl=*/1.

Theorem (Curtis-Hedlund-Lyndon, 1969)

The morphisms between subshifts are precisely the sliding block codes.



A sliding block code (respectively, a conjugacy) with memory and

anticipation zero is called an 1-code (respectively, an 1-conjugacy).
Every code is the composition of an 1-code with the inverse of an
1-conjugacy.
®=dy00;"
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m The number p,(X’) of points with period n.
m The zeta function

m The entropy

+o00
() = ep(3 P )

1
h(X) = lim - log, |L(X) N A".
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Syntactic semigroup Profinite semigroups

Edge shifts

m A subshift that is the set of bi-infinite paths on a graph is called an
edge subshift.

m Vertices that are not in a bi-infinite path do not intervene in the
definition of an edge subshift. Graphs without such vertices are
called essential graphs.

C

/—\\. C./'—\\.

oe<——0

m An edge subshift is irreducible if and only if the corresponding
essential graph is strongly connected.



An edge subshift is determined by its adjacency matrix.

TN
S S ——

1 2
10
Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.
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Syntactic semigroup Profinite semigroups

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.
T, { 1 2 }
10

\__/

Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let A be the list of
its non-zero eigenvalues, with corresponding multiplicities.



Syntactic semigroup Profinite semigroups

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

e £ Ty ¢ { Lo :|
_—
e \\\—/ - 1 O

Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let A be the list of
its non-zero eigenvalues, with corresponding multiplicities.

m If Aa = max{|A| : A € A} then A\a € A and h(Xa) = log(Ma);



Syntactic semigroup Profinite semigroups

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

e £ Ty ¢ { Lo :|
_—
e \\\—/ - 1 O

Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let A be the list of
its non-zero eigenvalues, with corresponding multiplicities.

m If Aa = max{|A| : A € A} then A\a € A and h(Xa) = log(Ma);
n Cua(2) = [det(l — 2A)]



Syntactic semigroup Profinite semigroups

Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

e £ Ty ¢ { Lo :|
_—
e \\\—/ - 1 O

Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let A be the list of
its non-zero eigenvalues, with corresponding multiplicities.

m If Aa = max{|A| : A € A} then A\a € A and h(Xa) = log(Ma);
m Cua(z) = [det(l — zA)] 7Y
m (x, and A\ determine each other.



The conjugacy problem

Two square matrices of nonnegative integers are elementary strong shift
equivalent if
A=RS and B=SR

for some matrices R, S of nonnegative integers.
The transitive closure of this relation is called strong shift equivalence.

Theorem (Williams, 1973)

Xa and Xg are conjugate if and only if A and B are strong shift
equivalent.

Two square matrices of nonnegative integers are shift equivalent if
Al=RS B'=5SR
AR=RB SA=BS

for some matrices R, S of nonnegative integers.

(Kim & Roush, 1990) Shift equivalence is decidable.
(Kim & Roush, 1999) Strong shift equivalence implies shift
equivalence, but the converse is false.



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Automata

m An automaton over an alphabet A is a semigroup action over a set

Q of states.

m The graphical representation of an automaton is that of a labeled
graph.

m The automaton is finite if A and Q are finite.

A subshift X is sofic if and only if it is recognized by an essential
automaton.

m A sofic subshift is irreducible if and only if it is presented by a
strongly connected essential automaton.

-\ k/ ’—\\\
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Every irreducible sofic subshift has a unique minimal strongly connected,
deterministic, reduced presentation.

b
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Syntactic semigroup

Back to symbolic matrices

Two symbolic adjacency matrices A and B are strong shift equivalent
within Fischer covers if there is a sequence of symbolic adjacency
matrices of Fischer covers

A= Ao, A1,...,A-1,A =B

such that for 1 <7 </ the matrices A;_; and A; are elementary strong
shift equivalent.

Theorem (Nasu, 1986)

Let X and Y be irreducible sofic subshifts and let A and B be the
symbolic adjacency matrices of the Fischer covers of X and Y,
respectively.

Then X and Y are conjugate if and only if A and B are strong shift
equivalent within Fischer covers.



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Syntactic congruence

Let L be a language of AT. The context of u in L is the set
Ci(u)={(x,y) € A" | xuy € L}
Define
u=; vifand only if C (u) = Ci(v).

Then = is a congruence, the syntactic congruence of L.
The quotient

S(L) = A+/E[_

is the syntactic semigroup of L. The semigroup S(L) is finite if and only
if it is recognized by a finite automata.

We denote by S(X’) the syntactic semigroup of L(X). The semigroup
S(X) is finite if and only if it X is sofic.



alphabet.

Each automaton has a transition semigroup defined by the action of the

The transition semigroup of the Fischer cover of X is S(X)

b
aC 1 /\ 2
~__ 7
b
Some elements of S(X):
a:[l’_] :‘927 b= [25 1]7
ab=1[2, ],

B =[1,2],
aba=[_, ]=ab%a.

«4O>» «4F»r «=)»

« =

>

DA



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Green's relations

m Two elements s and t in a semigroup R are J-equivalent if they
generate the same principal ideal: R'sR! = R'tR".

m Two elements s and t in a semigroup R are R-equivalent if they
generate the same principal right ideal: sR! = tR!.

m Two elements s and t in a semigroup R are L-equivalent if they
generate the same principal left ideal: R's = R't.

mH=RNL

m D=RVL IfSis finite then 7 = D.
Let H be an H-class. The subsemigroup T(H) of R! such that
H - T(H) C H acts on H. If we identify elements of T(H) with the same
action, we get a group '(H), called the Schiitzenberger group of H.

m If His a group then I'(H) ~ H

m If H; and H, are contained in the same D-class then ['(H;) ~ ['(H>).






Syntactic semigroup

Structural invariants

Given two D-classes D; and D», let D; < D, if the principal ideal
generated by D; is contained in that generated by D,. The relation < is
a pre-order (i.e. reflexive and transitive). If the semigroup is finite, then
it is a partial order (i.e. reflexive, transitive, and anti-symmetric).

m Let LU(X) be the set of local units of S(X), that is, of elements s
of S(X) such that s = esf for some idempotents e and f.

m Let (D(X), <) be the partial pre-ordered set of the D-classes of
S5(X) contained in D(X).

m Label each element D of D(X) with the pair (¢, H), where ¢ = 1 if

D contains an idempotent, ¢ = 0 if not, and H is the
Schiitzenberger group of D.

Theorem (AC, 2006 + AC& B. Steinberg, ongoing)

The labeled pre-ordered set D(X) is a conjugacy invariant.



Y: e b e b o/\o
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Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Key idea

To code words as we code
bi-infinite sequences...

.. and to see the effect in the syntactic congruence...

Often, it suffices to consider 1-conjugacies. The coding of words is then
just a homomorphism between free semigroups.



© Symbolic dynamical systems  Syntactic semigroup  Profinite semigroups
Let & = %% X — Y be a conjugacy. Suppose =1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V), tzk(u) = tzk(V).

Suppose v € L(X). If Ciyy(e(u)) C Criy(e(v)) then Crixy(u) C Cray(v).

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);
m p(x'xuyy’) € L(Y);
n O(XX)0(u)60) € L);
n G X)B(V)0(y) € L);
(x'xvyy') € L(Y);
m Yo(x' xvyy') € L(X);

N0

m Y ()(x xvyy') = xvy. -



© Symbolic dynamical systems  Syntactic semigroup  Profinite semigroups
Let & = %% X — Y be a conjugacy. Suppose =1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V), tzk(u) = tzk(V).

Suppose v € L(X). If Ciyy(e(u)) C Cry(e(v)) then Crixy(u) C Cray(v).

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);
m p(x'xuyy’) € L(Y);
n o(<x)p(u)o(yy') € L)
s G(XX)0(V)o(yy) € L)
(x'xvyy') € L(Y);
m Yo(x' xvyy') € L(X);

N0

m Y ()(x xvyy') = xvy. -



Syntactic semigroup

Working with the idea

Lemma

Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V)7 tzk(u) = tzk(V).
Suppose v € L(X). If Cuy)(#(1)) € Cuin(é(¥)) then Cuga (1) € Cugn(v):
Proof.

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);
m O(x'xuyy’) € L(Y);



Syntactic semigroup

Working with the idea

Lemma

Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V)7 tzk(u) = tzk(V).
Suppose v € L(X). If Cu(é(4)) € Cuy)(#(v)) then Cuga () € Cuay(v).
Proof.

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);

m P(x'xuyy’) € L(Y);

m ¢(x'x)p(u)(yy’) € L(Y);



Syntactic semigroup

Working with the idea

Lemma

Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V)7 tzk(u) = tzk(V).
Suppose v € L(X). If Coiy)(P(u)) C Criyy(d(v)) then Criay(u) C Crixy(v).
Proof.
m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);
m o(x'xuyy’) € L(Y);

m P(x'x)p(u)p(yy') € L(Y);
m p(X'x)p(v)o(yy') € L(Y);



Syntactic semigroup

Working with the idea

Lemma

Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and

anticipation k. Let u,v be words of length greater or equal than 2k such that
izk(u) = izk(V)7 tzk(u) = tzk(V).

Suppose v € L(X). If Coiy)(P(u)) C Criyy(d(v)) then Criay(u) C Crixy(v).

Proof.

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
m x'xuyy’ € L(X);

m ¢(x'xuyy’) € L(D);

(< x)¢(u)é(yy’) € LV);

(

(

x'x)p(v)(yy') € L(Y);

/

x'xvyy') € L(Y);



Syntactic semigroup

Working with the idea

Lemma

Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and
anticipation k. Let u,v be words of length greater or equal than 2k such that

izk(u) = izk(V)7 tzk(u) = tzk(V).
Suppose v € L(X). If Cu(é(4)) € Cuy)(#(v)) then Cuga () € Cuay(v).
Proof.

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
n x/xuyy’ € L(X);
o(x'xuyy’) € L(Y);
(X' x)p(u)dlyy’) € L(Y);
P(x'x)p(v)o(yy') € L(Y);
(] qb(x xvyy') € L(Y);
m Yo(x'xvyy’) € L(X);



Syntactic semigroup

Working with the idea

Lemma
Let d = ¢®%: x¥ — Y be a conjugacy. Suppose 1 has memory and

anticipation k. Let u,v be words of length greater or equal than 2k such that
iok(u) = iak(v), tok(u) = tok(v).

Suppose v € L(X). If Coiy)(P(u)) C Criyy(d(v)) then Criay(u) C Crixy(v).

Proof.

m Let (x,y) € Cy(x)(u); this means xuy € L(X);
n x/xuyy’ € L(X);
o(x'xuyy’) € L(Y);
P(x'x)p(u)(yy") € L(Y);
(X' x)p(v)e(yy') € L(V);
u qb(x xvyy') € L(Y);
m Yo(x'xvyy’) € L(X);
m (X xvyy') = xvy.



|
A semigroup S is profinite if it is compact and residually finite as a
topological semigroup.
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A semigroup S is profinite if it is compact and residually finite as a
topological semigroup.

The latter condition means that there is a continuous homomorphism

©: S — F onto a finite semigroup (endowed with the discrete topology)
such that ¢(s) # ¢(t) whenever s # t.
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Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Free profinite semigroup generated by A

A semigroup S is profinite if it is compact and residually finite as a
topological semigroup.

The latter condition means that there is a continuous homomorphism
©: S — F onto a finite semigroup (endowed with the discrete topology)
such that ¢(s) # ¢(t) whenever s # t.

For every profinite semigroup S,
AC——s ﬁAS

|
| 3 continuous homomorphism @
map ¢ 7

S

| A+ Q ﬁAS .
m the elements of A* are isolated points of Q45
m At = QAS



Let X be a subshift of A”_ We can consider the topological closure of
L(X) in QaS, denoted L(X).
X L(X) = L(X) — L(X)\ AT
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Irreducible subshifts:

u,vel(X)=3w:uw e L(X)
As a subset of Q,4S, the set L(X) contains a unique J-minimal class,
denoted J(X), which is regular.

X = J(X)
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Jclasses T(X)
with A minimal
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Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The maximal subgroup

Theorem (AC (2006) but announced by J. Almeida (2003))
The maximal subgroup G(X) of J(X) is a conjugacy invariant.

The group G(X') was determined for several classes of minimal shifts:
m (J. Almeida, 2005) If X' is Arnoux-Rauzy of degree k € N then
G(X) is free profinite of finite rank k.

m (J. Almeida, 2005) Examples were given such that G(X) is not
free profinite, and...

m (J. Almeida & AC, 2010)... a presentation was given in some of
these cases (e.g. Prouhet-Thue-Morse shift)



If X is an irreducible non-periodic sofic subshift then G(X) is a free
profinite group of countable rank.
subgroup of the minimal ideal.

The proof of this result relies on a refinement of arguments used in the
proof by B. Steinberg of the particular case concerning the maximal

«4O>» «4F»r «=)»
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Symbolic dynamical systems Syntactic semigroup Profinite semigroups

m A subset Y of a profinite group G converges to the identity if each
neighborhood of the identity contains all but finitely many elements of Y.

m A free profinite group on a subset Y converging to the identity is a
profinite group F := QyG generated by Y (with the further demand that
Y is converging to the identity), such that every continuous map 7 from
Y into a profinite group H such that 7(Y’) converges to the identity can
be extended to a unique continuous group homomorphism 7 : QyG — H.

m rank(QyF) = |Y| Yy 0,6

|
\ | 3 continuous homomorphism #
map T
N

H



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

m A subset Y of a profinite group G converges to the identity if each
neighborhood of the identity contains all but finitely many elements of Y.

m A free profinite group on a subset Y converging to the identity is a
profinite group F := QyG generated by Y (with the further demand that
Y is converging to the identity), such that every continuous map 7 from
Y into a profinite group H such that 7(Y’) converges to the identity can
be extended to a unique continuous group homomorphism 7 : QyG — H.

m rank(QyF) = |Y| Yy 0,6

|
\ | 3 continuous homomorphism #
map T
N

H

To prove a metrizable profinite group G is a free of countable rank:

For every finite group H, and every «, o continuous onto homomorphisms,
there is a continuous homomorphism ...

G
e,
¥ iq)

K

H——



Let Y be an irreducible sofic subshift of BZ. Then there is a conjugate

irreducible sofic subshift X of A, an idempotent e € J(X) and a word z
so that e = z¥e and alphabet(z) C alphabet(X).

Since G(X) is a conjugacy invariant:

|
We can suppose

alphabet(z) C alphabet(X)

«O> «Fr «

it

-
it

v
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decidable?

m To investigate the dynamical meaning of the semigroup invariants.

m To compute the profinite group G(X) for more subshifts. When is it

«4O>» «4F»r «=)»

« =

>
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