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This bi-infinite sequence is an element of {1, 2, 3, 4}Z, i.e., a mapping
from Z to {1,2,3,4}.
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Subshifts

Let A be a finite alphabet.

A symbolic dynamical system of AZ, also called subshift or just shift, is a
nonempty subset X of AZ such that

X is topologically closed,

σ(X ) = X σ((xi )i∈Z) = (xi+1)i∈Z, xi ∈ A.
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The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

Then L(X ) = {. . . , 3221, . . .}

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

Then L(X ) = {. . . , 3221, 32, 22, 1, 2, 3, . . .}

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

Then L(X ) = {. . . , 3221, 32, 22, 1, 2, 3, 2114433, 4, 21, 11, . . .}

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

The language of a subshift

The language of a subshift

L(X ) = {u ∈ A+ : u = xixi+1 . . . xi+n for some x ∈ X , i ∈ Z, n ≥ 0}

The elements of L(X ) are the blocks of X .

Let X be the least subshift containing

x = · · · 32.211444333211443321443 · · ·

L(X ) = L(Y) if and only if X = Y.

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Morphisms between subshifts

X
ψ

//

σ

��

Y

σ

��
X

ψ
// Y

Isomorphic subshifts are called conjugate.
An isomorphism is called conjugacy.
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Sliding block codes

Let x ∈ AZ. Given a map g : Am → B, we can code x through g :

we choose integers k, l ≥ 0 such that m = k + l + 1;

we make yi = g(x[i−k,i+l ]).
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If X is a subshift of AZ then the map G : X → BZ defined by g is continuous

and commutes with the shift operation; its image Y is a subshift of BZ. We say

that G : X → Y is a sliding block code with block map g , memory k and

anticipation l , and we write G = g [−k,l ].
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Sliding block codes

Let x ∈ AZ. Given a map g : Am → B, we can code x through g :

we choose integers k, l ≥ 0 such that m = k + l + 1;

we make yi = g(x[i−k,i+l ]).

. . . xi−4xi−3xi−2 xi−1xixi+lxi+2

g





y

xi+3 . . .

. . . yi−2yi−1yi yi+1 yi+2 . . .

If X is a subshift of AZ then the map G : X → BZ defined by g is continuous

and commutes with the shift operation; its image Y is a subshift of BZ. We say

that G : X → Y is a sliding block code with block map g , memory k and

anticipation l , and we write G = g [−k,l ].

Theorem (Curtis-Hedlund-Lyndon, 1969)

The morphisms between subshifts are precisely the sliding block codes.
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Decomposition Theorem

A sliding block code (respectively, a conjugacy) with memory and
anticipation zero is called an 1-code (respectively, an 1-conjugacy).

Theorem (Williams, 1973)

Every code is the composition of an 1-code with the inverse of an

1-conjugacy.

Φ = Φ2 ◦ Φ
−1
1

Z
Φ1

��~~
~~

~~
~~ Φ2

��?
??

??
??

X
Φ

// Y
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Some conjugacy invariants

The number pn(X ) of points with period n.

The zeta function

ζX (z) = exp
(

+∞
∑

n=1

pn(X )

n
zn
)

.

The entropy

h(X ) = lim
1

n
log2 |L(X ) ∩ An|.
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Edge shifts

A subshift that is the set of bi-infinite paths on a graph is called an
edge subshift.

Vertices that are not in a bi-infinite path do not intervene in the
definition of an edge subshift. Graphs without such vertices are
called essential graphs.

•
$$

99

��

•
yy

•

•
$$

99 •
yy

An edge subshift is irreducible if and only if the corresponding
essential graph is strongly connected.
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Matrices of non-negative integers

An edge subshift is determined by its adjacency matrix.

•
$$

99// •
yy

[

1 2
1 0

]

Essential graphs correspond to matrices without null rows and null
columns. Consider this kind of matrices only.

Let A be a square matrix of nonnegative integers and let Λ be the list of
its non-zero eigenvalues, with corresponding multiplicities.

If λA = max{|λ| : λ ∈ Λ} then λA ∈ Λ and h(XA) = log(λA);

ζXA
(z) = [det(I − zA)]−1;

ζXA
and Λ determine each other.
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The conjugacy problem

Two square matrices of nonnegative integers are elementary strong shift

equivalent if
A = RS and B = SR

for some matrices R, S of nonnegative integers.
The transitive closure of this relation is called strong shift equivalence.

Theorem (Williams, 1973)

XA and XB are conjugate if and only if A and B are strong shift

equivalent.

Two square matrices of nonnegative integers are shift equivalent if

Al = RS B l = SR

AR = RB SA = BS

for some matrices R, S of nonnegative integers.

(Kim & Roush, 1990) Shift equivalence is decidable.

(Kim & Roush, 1999) Strong shift equivalence implies shift
equivalence, but the converse is false.



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Automata

An automaton over an alphabet A is a semigroup action over a set
Q of states.

The graphical representation of an automaton is that of a labeled
graph.

The automaton is finite if A and Q are finite.

A subshift X is sofic if and only if it is recognized by an essential

automaton.

A sofic subshift is irreducible if and only if it is presented by a
strongly connected essential automaton.

1a
$$

b

99 2

b

yy
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Symbolic matrices

•a
$$

b

99
c // •

b

yy
[

a b + c

b 0

]
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Fischer cover

Theorem

Every irreducible sofic subshift has a unique minimal strongly connected,

deterministic, reduced presentation.

1a
$$

b

99 2

b

yy
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Back to symbolic matrices

Two symbolic adjacency matrices A and B are strong shift equivalent

within Fischer covers if there is a sequence of symbolic adjacency
matrices of Fischer covers

A = A0,A1, . . . ,Al−1,Al = B

such that for 1 ≤ i ≤ l the matrices Ai−1 and Ai are elementary strong
shift equivalent.

Theorem (Nasu, 1986)

Let X and Y be irreducible sofic subshifts and let A and B be the

symbolic adjacency matrices of the Fischer covers of X and Y,

respectively.

Then X and Y are conjugate if and only if A and B are strong shift

equivalent within Fischer covers.
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Syntactic congruence

Let L be a language of A+. The context of u in L is the set

CL(u) = {(x , y) ∈ A∗ | xuy ∈ L}

Define

u ≡L v if and only if CL(u) = CL(v).

Then ≡L is a congruence, the syntactic congruence of L.
The quotient

S(L) = A+/≡L

is the syntactic semigroup of L. The semigroup S(L) is finite if and only
if it is recognized by a finite automata.

We denote by S(X ) the syntactic semigroup of L(X ). The semigroup
S(X ) is finite if and only if it X is sofic.
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Transition semigroup

Each automaton has a transition semigroup defined by the action of the
alphabet.
The transition semigroup of the Fischer cover of X is S(X ).

1a
$$

b

99 2

b

yy

Some elements of S(X ):

a = [1,_] = a2, b = [2, 1], b2 = [1, 2],

ab = [2,_], aba = [_,_] = ab3a.
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Green’s relations

Two elements s and t in a semigroup R are J -equivalent if they
generate the same principal ideal: R1sR1 = R1tR1.

Two elements s and t in a semigroup R are R-equivalent if they
generate the same principal right ideal: sR1 = tR1.

Two elements s and t in a semigroup R are L-equivalent if they
generate the same principal left ideal: R1s = R1t.

H = R∩ L

D = R∨ L. If S is finite then J = D.

Let H be an H-class. The subsemigroup T (H) of R1 such that
H · T (H) ⊆ H acts on H. If we identify elements of T (H) with the same
action, we get a group Γ(H), called the Schützenberger group of H.

If H is a group then Γ(H) ≃ H

If H1 and H2 are contained in the same D-class then Γ(H1) ≃ Γ(H2).
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Egg-Box Diagram of a D-class

* **

*

*

*

*

*

*

*

*

*
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Structural invariants

Given two D-classes D1 and D2, let D1 ≺ D2 if the principal ideal
generated by D1 is contained in that generated by D2. The relation ≺ is
a pre-order (i.e. reflexive and transitive). If the semigroup is finite, then
it is a partial order (i.e. reflexive, transitive, and anti-symmetric).

Let LU(X ) be the set of local units of S(X ), that is, of elements s

of S(X ) such that s = esf for some idempotents e and f .

Let (D(X ),≺) be the partial pre-ordered set of the D-classes of
S(X ) contained in D(X ).

Label each element D of D(X ) with the pair (ε,H), where ε = 1 if
D contains an idempotent, ε = 0 if not, and H is the
Schützenberger group of D.

Theorem (AC, 2006 + AC & B. Steinberg, ongoing)

The labeled pre-ordered set D(X ) is a conjugacy invariant.



Symbolic dynamical systems Syntactic semigroup Profinite semigroups

Example

Y : •

a

AA
b // •

b // •

a

BB

b

��
•

a

��

(1,Z3) (1,Z2)

(0,Z1)

QQQQQQ
mmmmmm

(1,Z1)

(1,Z1) *[ _, _, _, _ ]

*[ 1, _, _, 1 ] *[ 4, _, _, 4 ] [ 2, _, _, 2 ] [ 3, _, _, 3 ]

*[ 1, _, _, _ ] [ 4, _, _, _ ] [ 2, _, _, _ ] [ 3, _, _, _ ]

[ _, 1, _, _ ] [ _, 4, _, _ ] *[ _, 2, _, _ ] [ _, 3, _, _ ]

[ _, _, 1, _ ] [ _, _, 4, _ ] [ _, _, 2, _ ] *[ _, _, 3, _ ]

*[ 1, 2, 3, _ ]
[ 2, 3, 1, _ ]
[ 3, 1, 2, _ ]

[ 3, 4, _, _ ] [ 4, 3, _, _ ]

[ 4, _, 3, _ ] [ 3, _, 4, _ ]

[ _, 3, 4, _ ] [ _, 4, 3, _ ]

[ 3, _, 4, 3 ]
*[ 4, _, 3, 4 ]
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Example

X : •

a

AA
b // •

b // •

c

BB

b

��
•

c

��
Y : •

a

AA
b // •

b // •

a

BB

b

��
•

a

��

(1,Z3) (1,Z2)

(1,Z1)

HHHHHHHHH

vvvvvvvvv

(1,Z1)

(1,Z3) (1,Z2)

(0,Z1)

QQQQQQ
mmmmmm

(1,Z1)

(1,Z1)
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Key idea

To code words as we code
bi-infinite sequences...

... and to see the effect in the syntactic congruence...

Often, it suffices to consider 1-conjugacies. The coding of words is then
just a homomorphism between free semigroups.
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Working with the idea

Lemma
Let Φ = φ[0,0] : X → Y be a conjugacy. Suppose Φ−1 has memory and

anticipation k. Let u, v be words of length greater or equal than 2k such that

i2k(u) = i2k(v), t2k(u) = t2k(v).

Suppose v ∈ L(X ). If CL(Y)(φ(u)) ⊆ CL(Y)(φ(v)) then CL(X )(u) ⊆ CL(X )(v).

Proof.

Let (x , y) ∈ CL(X )(u); this means xuy ∈ L(X );

x ′xuyy ′ ∈ L(X );

φ(x ′xuyy ′) ∈ L(Y);

φ(x ′x)φ(u)φ(yy ′) ∈ L(Y);

φ(x ′x)φ(v)φ(yy ′) ∈ L(Y);

φ(x ′xvyy ′) ∈ L(Y);

ψφ(x ′xvyy ′) ∈ L(X );

ψφ(x ′xvyy ′) = xvy .
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Let (x , y) ∈ CL(X )(u); this means xuy ∈ L(X );
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Free profinite semigroup generated by A

A semigroup S is profinite if it is compact and residually finite as a
topological semigroup.

The latter condition means that there is a continuous homomorphism
ϕ : S → F onto a finite semigroup (endowed with the discrete topology)
such that ϕ(s) 6= ϕ(t) whenever s 6= t.

For every profinite semigroup S ,

A
�

�

//

map ϕ
!!CC

CC
CC

CC
C ΩAS

∃
1 continuous homomorphism ϕ̂

���
�

�

S

A+ ⊆ ΩAS
the elements of A+ are isolated points of ΩAS
A+ = ΩAS
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Taking the topological closure

Let X be a subshift of AZ. We can consider the topological closure of
L(X ) in ΩAS, denoted L(X ).

One-to-one mappings

X 7→ L(X ) 7→ L(X ) 7→ L(X ) \ A+
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The J -class associated to X

Irreducible subshifts:

u, v ∈ L(X ) ⇒ ∃w : uwv ∈ L(X )

As a subset of ΩAS, the set L(X ) contains a unique J -minimal class,
denoted J (X ), which is regular.

One-to-one mapping

X 7→ J (X )

��� )

��� )
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letters

A
+

Minimal Ideal

J -classes J (X )

with X minimal
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The maximal subgroup

Theorem (AC (2006) but announced by J. Almeida (2003))

The maximal subgroup G (X ) of J (X ) is a conjugacy invariant.

The group G (X ) was determined for several classes of minimal shifts:

(J. Almeida, 2005) If X is Arnoux-Rauzy of degree k ∈ N then
G (X ) is free profinite of finite rank k.

(J. Almeida, 2005) Examples were given such that G (X ) is not
free profinite, and...

(J. Almeida & AC, 2010)... a presentation was given in some of
these cases (e.g. Prouhet-Thue-Morse shift)
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Sofic case

Theorem (AC & B. Steinberg, 2010)

If X is an irreducible non-periodic sofic subshift then G(X ) is a free

profinite group of countable rank.

The proof of this result relies on a refinement of arguments used in the
proof by B. Steinberg of the particular case concerning the maximal
subgroup of the minimal ideal.
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A subset Y of a profinite group G converges to the identity if each
neighborhood of the identity contains all but finitely many elements of Y .

A free profinite group on a subset Y converging to the identity is a
profinite group F := ΩY G generated by Y (with the further demand that
Y is converging to the identity), such that every continuous map τ from
Y into a profinite group H such that τ(Y ) converges to the identity can
be extended to a unique continuous group homomorphism τ̂ : ΩY G → H.

rank(ΩY F) = |Y | Y
�

�

//

map τ
""DD

DD
DD

DD
D ΩY G

∃
1 continuous homomorphism τ̂

���
�

�

H
To prove a metrizable profinite group G is a free of countable rank:

For every finite group H, and every α, ϕ continuous onto homomorphisms,
there is a continuous homomorphism ϕ̃...

G

ϕ̃

����~
~

~
~

ϕ

����
H

α // // K
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Reduction on the type of subshift to be considered

Lemma

Let Y be an irreducible sofic subshift of BZ. Then there is a conjugate

irreducible sofic subshift X of AZ, an idempotent e ∈ J(X ) and a word z

so that e = zωe and alphabet(z) ( alphabet(X ).

Since G (X ) is a conjugacy invariant:

We can suppose
alphabet(z) ( alphabet(X )
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Open problems and bibliography

To investigate the dynamical meaning of the semigroup invariants.

To compute the profinite group G (X ) for more subshifts. When is it
decidable?
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