
Rolling Pseudo-Riemannian Manifolds

Fátima Pina

DMUC, University of Coimbra, Portugal

(Seminar supervised by Professor Fátima Silva Leite)

May 2011

F. Pina Rolling Pseudo-Riemannian Manifolds



Contents

1 Rolling Maps for Euclidean Manifolds

2 Notions of Pseudo-Riemannian Manifolds

3 Rolling Maps for Pseudo-Riemannian Manifolds

↓

Rolling the Hyperbolic n-sphere over its affine tangent space
at a point, both embedded in the generalized Minkowski space
Rn+1

1 :

Geodesics

The Kinematic Equations

Paralell Transport

F. Pina Rolling Pseudo-Riemannian Manifolds



Rolling Motions in Euclidean Space

Some Notations

SON (Special Orthogonal Group)  connected component of
the orthogonal group ON containing the identity matrix.

SEN =SON nRN (Special Euclidean Group)  group of
isometries preserving orientations, also called rigid motions
(these include rotations, translations and combinations of
them).

Action of SEN on RN

(R, s) ∈ SEN :

(R, s) ◦ p = Rp + s  action of (R, s) on points p ∈ RN

The action of SEN on RN induces a linear map between
tangent spaces, sending η to Rη
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Rolling Map - Euclidean Case

M1 and M0  manifolds of the same dimension embedded in
(RN , 〈., .〉)

A rolling map of M1 on M0, without slipping or twisting over a
curve α : [0, τ ]→ M1 (τ > 0) is a smooth map:

h : [0, τ ] → SEN =SON nRN

t 7→ h(t)=(R(t), s(t))

satisfying, for each t ∈ [0, τ ], the following (RMC) conditions:

1 Rolling conditions

2 No-slip condition

3 No-twist conditions
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Rolling conditions

h(t) ◦ α(t) =: αdev(t) ∈ M0

Th(t)◦α(t)(h(t) ◦M1) = Th(t)◦α(t)M0

α is called rolling curve on M1

αdev is called development of α on M0

Example: S2

M0

M1

α

αdev

F. Pina Rolling Pseudo-Riemannian Manifolds



No-slip condition

h(t) ◦M1 and M0 have the same velocity at the contact point,
that is:

h(t) ◦ α̇(t) = α̇dev(t)

m

Ṙ(t)R>(t)(αdev(t)− s(t)) + ṡ(t) = 0

Example: S2

� �

(slip)
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No-twist conditions

Tangential Part

Any tangent vector field X (t) along α(t) is parallel along α(t) iff
h(t) ◦ X (t) is parallel along αdev(t).

m

Ṙ(t)R>(t)Tαdev(t)M0 ⊂ (Tαdev(t)M0)⊥

Normal Part

Any normal vector field Z (t) along α(t) is normal parallel along
α(t) iff h(t) ◦ Z (t) is normal parallel vector field along αdev(t).

m

Ṙ(t)R>(t)(Tαdev(t)M0)⊥ ⊂ Tαdev(t)M0
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No-twist conditions

Remarks:

Tangential Part is always satisfied for manifolds of dimension 1

Normal Part is always satisfied for manifolds of codimension 1
(such as Euclidean sphere Sn, hyperbolic sphere Hn)

Example: S2

(twist)
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Our Goal Now

Is to generalize the concept of rolling for pseudo-Riemannian
manifolds

⇓

the metric fails to be positive definite
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Pseudo-Riemannian Manifold

Pseudo-Riemannian Manifold

Smooth manifold M furnished with a metric tensor g (a symmetric
nondegenerate (0,2) tensor field on M of constant index.)

If (M, g) is a pseudo-Riemannian manifold and v ∈ TpM, then:

v is spacelike if g(v , v) > 0 or v = 0

v is timelike if g(v , v) < 0

v is lightlike if g(v , v) = 0 and v 6= 0
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Rolling Map – Pseudo-Riemannian Case

M1 and M0  manifolds of the same dimension embedded in a
pseudo-Riemannian space (M, g)

A rolling motion of M1 over M0, without slipping or twisting is
described by a smooth mapping:

h : [0, τ ] → G
t 7→ h(t)

that satisfies the (RMC) conditions, where:

G is now the connected group of orientation preserving
isometries of M

orthogonality being taken with respect to the pseudo-Riem.
metric g

◦ being the action of G on our manifolds
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Rolling the Hyperbolic n-sphere

N = n + 1

M = Rn+1
1  denotes Rn+1 equipped with the pseudo-Riemannian

metric:

g(x , y) := 〈x , y〉J = 〈x , Jy〉 = x>Jy , with J = diag(In,−1)

M1 := Hn  n-dimensional hyperbolic sphere (connected
component)

Hn = {p ∈ Rn+1 : 〈p, p〉J = −1 and pn+1 > 0}

Tp0H
n = {v ∈ Rn+1 : v = Ωp0, Ω ∈ so(n, 1)}

so(n, 1) = {A ∈ gl(n + 1) : A>J = −JA}

SO(n, 1) = {X ∈ GL(n + 1) : X>JX = J and det(X ) = 1}

F. Pina Rolling Pseudo-Riemannian Manifolds



Rolling the Hyperbolic n-sphere

M0 := T aff
p0

Hn = {x ∈ Rn+1 : x = p0 + Ωp0, Ω ∈ so(n, 1)}

(Tp0H
n)⊥ = Rp0 (codimension 1)

Example: n = 2

M1 = H2

M0 = T aff
p0

H2
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Rolling the Hyperbolic n-sphere

SE(n + 1)  is the connected group of orientation preserving
isometries of the Euclidean space Rn+1

Question

What is the connected group of orientation preserving isometries of
the Minkowski space Rn+1

1 ?

Answer:

G = SOo(n, 1) n Rn+1

where

SOo(n, 1) = {R ∈ GL(n + 1) : R>JR = J, Rn+1,n+1 > 0}
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Rolling the Hyperbolic n-sphere - Remarks

Elements in G are pairs (R, s), R ∈ SOo(n, 1), s ∈ Rn+1
1

Group Operations

(I , 0) is the identity and:

(R1, s1)(R2, s2) := (R1R2,R1s2 + s1)

(R, s)−1 := (R−1,−R−1s)

Action of G on Rn+1

(R, s) ◦ x = Rx + s

↓

this induces a linear map between TxRn+1 and TRx+sRn+1,
sending every η to Rη
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Rolling the Hyperbolic n-sphere - Remarks

The Lie algebra of SOo(n, 1) is so(n, 1)

SOo(n, 1) is a Lie subgroup of SO(n, 1) and

R ∈ SOo(n, 1) and p ∈ Hn ⇒ Rp ∈ Hn

↓

the ”rotational” part of the rolling map maintains Hn invariant

The restriction of 〈., .〉J to TpHn at any point p ∈ Hn is positive
definite

↓

Although Hn is embedded in a pseudo-Riemannian manifold Rn+1
1 ,

it is indeed a Riemannian manifold (all tangent vectors are
spacelike)
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Rolling the Hyperbolic n-sphere - Geodesics

Geodesics on Hn, with respect to the Riemannian metric 〈., .〉J ,
can be written explicitly:

Let p ∈ Hn and v ∈ TpHn with 〈v , v〉J = 1. Then,

t 7→ γ(t) = p cosh t + v sinh t

is the geodesic in Hn satisfying γ(0) = p, γ̇(0) = v .

Let p, q ∈ Hn. Then,

t 7→ γ(t) = p

(
cosh t − cosh θ

sinh θ
sinh t

)
+ q

sinh t

sinh θ
,

where θ is defined by cosh θ = −〈p, q〉J is the geodesic in Hn that
joins the point p (at t = 0) to the point q (at t = θ).
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Rolling the Hyperbolic n-sphere - Kinematic Equations

M1 := Hn M0 := T aff
p0

Hn = p0 + Tp0H
n rolling curve α s.t.

α(0) = p0

Hn ∩ T aff
p0

Hn = {p0}
t 7→ u(t) ∈ Rn+1 a piecewise smooth function s.t. 〈u(t), p0〉J = 0

Kinematic Equations (KE){
ṡ(t) = u(t)

Ṙ(t) = R(t)
(
−u(t)p>0 + p0u

>(t)
)
J

If (R, s) ∈ G is the solution of (KE) satisfying s(0) = 0, R(0) = I ,
then:

t 7→ h(t) = (R−1(t), s(t)) ∈ G  rolling map of Hn over
T aff

p0
Hn

t 7→ α(t) = R(t)p0  rolling curve

t 7→ αdev(t) = p0 + s(t) ∈ T aff
p0

Hn  development curve
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Definition

A : R → so(n, 1)
t 7→ A(t)=

(
−u(t)p>0 + p0u

>(t)
)
J

Assumptions: u>(t)Jp0 = 0 p>0 Jp0 = −1

A2j−1 =
(
u>(t)Ju(t)

)j−1
A(t); A2j =

(
u>(t)Ju(t)

)j−1
A2(t)

If u(t)=u (constant), then

eAt = I +
cosh ρt

ρ2
A2 +

sinh ρt

ρ
A,

where A =
(
−up>0 + p0u

>) J ∈ so(n, 1) and ρ := (u>Ju)
1
2
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Example 1

u(t) = u (constant) s.t. u>Jp0 = 0 and (u>Ju)
1
2 = 1

Solution of KE, with initial conditions s(0) = 0, R(0) = I{
s(t) = ut
R(t) = eAt

α(t) = eAtp0 = p0 cosh t + u sinh t

(geodesic in Hn passing through p0 at t = 0 with initial
velocity u)

αdev(t) = p0 + ut

(geodesic in T aff
p0

Hn)
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Example 2

p0 = en+1 = [ 0 0 . . . 0 1 ]>, then we must have
u = [ u1 u2 . . . un 0 ]>

Solution of KE
ṡ(t) = u(t)

Ṙ(t) = R(t)

(
n∑

i=1

ui (t)(Ei ,n+1 + En+1,i )

)
where the matrices Ei ,j have all entries equal to zero except the
entry (i , j) which is equal to 1.

These (KE) can be rewitten as a right-invariant control
system evolving on SOo(n, 1) n Rn+1.

For n ≥ 2, this system is controllable.
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Rolling the Hyperbolic n-sphere - Parallel Transport

Idea:

The tangent (resp. normal) parallel transport of a vector Y0,
tangent (resp. normal) to a manifold at a point p0, along a curve
α, s.t. α(0) = p0, can be accomplished by rolling (without slip or
twist) along that curve.
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Rolling the Hyperbolic n-sphere - Parallel Transport

Let h(t) = (R−1(t), s(t)) ∈ G be a rolling map for Hn, with rolling
curve α satisfying α(0) = p0.

Tangent Parallel Transport

If Ωp0 ∈ Tp0H
n, then

Y (t) = R(t)Ωp0

defines the unique tangent parallel vector field along α, satisfying
Y (0) = Ωp0.

Normal Parallel Transport

If Z0 ∈ T⊥p0
Hn, then

Z (t) = R(t)Z0

defines the unique normal parallel vector field along α, satisfying
Z (0) = Z0.

F. Pina Rolling Pseudo-Riemannian Manifolds



Final Remarks

Lorentzian manifolds - their applications to theory of general
relativity

Stiefel Manifolds

Sn, SOn and Grassmann Manifolds

Quadratic Lie groups

Riemannian manifolds

Controllability
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