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@ Rolling Maps for Euclidean Manifolds
@ Notions of Pseudo-Riemannian Manifolds

© Rolling Maps for Pseudo-Riemannian Manifolds

!

Rolling the Hyperbolic n-sphere over its affine tangent space
at a point, both embedded in the generalized Minkowski space
Rf“:

o Geodesics

e The Kinematic Equations

e Paralell Transport

F. Pina Rolling Pseudo-Riemannian Manifolds



Rolling Motions in Euclidean Space

Some Notations J

@ SOy (Special Orthogonal Group) ~~ connected component of
the orthogonal group Oy containing the identity matrix.

o SEy=S0y xRN (Special Euclidean Group) ~~ group of
isometries preserving orientations, also called rigid motions
(these include rotations, translations and combinations of
them).

Action of SEy on RV

(R,s) € SEp:
o (R,s)op=Rp+s ~ action of (R,s) on points p € RV

@ The action of SEy on RV induces a linear map between
tangent spaces, sending 1 to Rn

F. Pina Rolling Pseudo-Riemannian Manifolds



Rolling Map - Euclidean Case

M; and My ~~ manifolds of the same dimension embedded in
R, {.,.))

A rolling map of M; on My, without slipping or twisting over a

curve ac: [0, 7] — My (7 > 0) is a smooth map:

h: [0,7] — SEny=SOn xRN
t = h(t)=(R(t),s(t))

satisfying, for each t € [0, 7], the following (RMC) conditions:

© Rolling conditions
© No-slip condition
© No-twist conditions
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Rolling conditions

@ h(t)oa(t) =: age(t) € My
® Th(t)oa(t)(h(t) © M1) = Th(t)oa(t)Mo

e « is called rolling curve on M,

@ Qqev is called development of o on M,

Example: 52
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No-slip condition

h(t) o My and My have the same velocity at the contact point,
that is:

h(t) o é(t) = rgey(t)

(slip)
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No-twist conditions

Tangential Part

Any tangent vector field X(t) along a(t) is parallel along «(t) iff
h(t) o X(t) is parallel along agey(t)-

)

R(ERT() Toyon(yMo C (Tagey(tyMo) ™

Adev

Normal Part

Any normal vector field Z(t) along a(t) is normal parallel along
a(t) iff h(t) o Z(t) is normal parallel vector field along cgey(t).

i}
R()R"(t)(Toy(yMo)- C T,

Qdev

(Mo
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No-twist conditions

Remarks:

@ Tangential Part is always satisfied for manifolds of dimension 1

@ Normal Part is always satisfied for manifolds of codimension 1
(such as Euclidean sphere S”, hyperbolic sphere H")

Example: 52

(twist)
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Our Goal Now

Is to generalize the concept of rolling for pseudo-Riemannian
manifolds

4

the metric fails to be positive definite
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Pseudo-Riemannian Manifold

Pseudo-Riemannian Manifold

Smooth manifold M furnished with a metric tensor g (a symmetric
nondegenerate (0,2) tensor field on M of constant index.)

If (M,g) is a pseudo-Riemannian manifold and v € T,M, then:
e v is spacelike if g(v,v) >0orv=0
@ v is timelike if g(v,v) <0

e v is lightlike if g(v,v) =0and v #0
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Rolling Map — Pseudo-Riemannian Case

My and My ~» manifolds ofihe same dimension embedded in a
pseudo-Riemannian space (M, g)

A rolling motion of My over My, without slipping or twisting is
described by a smooth mapping:

h: [0,7] — G
t  — h(t)

that satisfies the (RMC) conditions, where:

e G is now the cconnected group of orientation preserving
isometries of M

@ orthogonality being taken with respect to the pseudo-Riem.
metric g

@ o being the action of G on our manifolds

F. Pina Rolling Pseudo-Riemannian Manifolds



Rolling the Hyperbolic n-sphere

N=n+1
M= Ri’“ ~+ denotes R™! equipped with the pseudo-Riemannian
metric:

g(x,y) = (x,y)y = (x,Jy) = x" Jy, with J = diag(/,, —1) )

M := H" ~~ n-dimensional hyperbolic sphere (connected
component)

H"={peR"': (p,p);=—1 and pp41 >0} J

ToH = {veR™ v =Qpy, Qcso(n1)}
so(n,1)={Acgl(n+1):ATJ=—JA)
SO(n,1) ={X €GL(n+1): X"JX =J and det(X)=1}
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Rolling the Hyperbolic n-sphere

My := T;OFFH” ={xeR™ : x=py+Qpg, QEs0(n1)} J

(TpH™)* = Rpy (codimension 1)
Example: n =2
My = H?

Mo = T H?

/

\
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Rolling the Hyperbolic n-sphere

SE(n + 1) ~» is the connected group of orientation preserving
isometries of the Euclidean space R"*1

What is the connected group of orientation preserving isometries of
the Minkowski space Ri’+1?

Answer:

G =S0,(n, 1) x R
where

SO,(n,1)={ReGL(n+1): R"JR=1J, Ryi1ns1 >0}
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Rolling the Hyperbolic n-sphere - Remarks

Elements in G are pairs (R, s), R € SOo(n,1), s € RI™

Group Operations

(1,0) is the identity and:
@ (R1,51)(R2,52) = (R1R2, Ris2 + s1)
o (R,s)™1:=(R1,—R1s)

Action of G on R"*1
(R,s)ox=Rx+s

|

this induces a linear map between T,R"*! and Tgr, R,
sending every 1 to Rn
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Rolling the Hyperbolic n-sphere - Remarks

@ The Lie algebra of SO,(n, 1) is so(n, 1)
@ SO,(n,1) is a Lie subgroup of SO(n, 1) and

R € SOy(n,1) and pe H" = Rp € H" )

!

the "rotational” part of the rolling map maintains H"” invariant

The restriction of (.,.); to T,H" at any point p € H" is positive
definite

!

Although H" is embedded in a pseudo-Riemannian manifold ]R'l’H,
it is indeed a Riemannian manifold (all tangent vectors are
spacelike)
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Rolling the Hyperbolic n-sphere - Geodesics

Geodesics on H", with respect to the Riemannian metric (.,.),
can be written explicitly:

Let pe€ H" and v € T,H" with (v,v); = 1. Then,
t+— v(t) = pcosh t + vsinht

is the geodesic in H" satisfying v(0) = p, ¥(0) = v.

Let p,g € H". Then,

, (t) he cosh @ . el sinh t
— =] — -
K P o sinh 0 > qsinh@’

where 6 is defined by cosh = —(p, ), is the geodesic in H" that
joins the point p (at t = 0) to the point g (at t = 0).
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Rolling the Hyperbolic n-sphere - Kinematic Equations

My :=H"  My:= TS;FH” =po+ TpH" rolling curve « s.t.
a(0) = po

HP A TTH? = {po}

t — u(t) € R™1 a piecewise smooth function s.t. (u(t), po); =0

Kinematic Equations (KE)

{ 10w
R(t) = R(t) (—~u(t)pg + pou' (t)) J

If (R,s) € G is the solution of (KE) satisfying s(0) = 0, R(0) = /,
then:
o t+— h(t) = (R7Y(t),s(t)) € G ~ rolling map of H" over
Taff yn
Po
e t+— aft) = R(t)po ~ rolling curve
@ t— agey(t) = po+s(t) € T;OfFH” ~~ development curve
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Definition

Assumptions: u'(t)Jpo =0 po Jpo = —1

A= (T (0 Ju(0) A AT = (T () u()) T AR |

If u(t)=u (constant), then

cosh pt
2

sinh pt

M=+ A2 +

A,

where A= (—upy + pou') J € s0(n,1) and p := (uT Ju)?
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Example 1

u(t) = u (constant) s.t. u' Jpy = 0 and (uTJu)% — 1l

Solution of KE, with initial conditions s(0) = 0, R(0) =/

s(t) = ut
{ R(t) = eAt

o aft) = e’py = pycosh t + usinh t

(geodesic in H" passing through pg at t = 0 with initial
velocity u)
® Qdev(t) = po+ ut

(geodesic in T2TH™)
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Rolling the Hyperbolic n-sphere - Kinematic Equations

Example 2

po=¢éu1=[0 0 ... 0 1]T, then we must have
u=[uw w ... u, 0]7

Solution of KE
5(t) = u(t) )
R(t) = R(t) <Z ui(t)(Eint1 + En+1,i)>

i=1

where the matrices E;; have all entries equal to zero except the
entry (i,/) which is equal to 1.

@ These (KE) can be rewitten as a right-invariant control
system evolving on SO,(n,1) x R,

@ For n > 2, this system is controllable.
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Rolling the Hyperbolic n-sphere - Parallel Transport

Idea:

The tangent (resp. normal) parallel transport of a vector Yp,
tangent (resp. normal) to a manifold at a point pg, along a curve
a, s.t. a(0) = pp, can be accomplished by rolling (without slip or
twist) along that curve.
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Rolling the Hyperbolic n-sphere - Parallel Transport

Let h(t) = (R71(t),s(t)) € G be a rolling map for H", with rolling
curve « satisfying «(0) = po.

Tangent Parallel Transport
If Qpg € TpH", then

Y (1) = R(t)2po

defines the unique tangent parallel vector field along «, satisfying
Y(O) = on.

Normal Parallel Transport
If 2y € TPLOH”, then

Z(t) = R(t)Z

defines the unique normal parallel vector field along «, satisfying
Z(0) = Z.
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Final Remarks

Lorentzian manifolds - their applications to theory of general
relativity

@ Stiefel Manifolds

5", SO, and Grassmann Manifolds

Quadratic Lie groups

Riemannian manifolds

Controllability
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