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@ Control theory is a theory that deals with influencing the
behavior (controlling) of dynamical systems.

@ Many processes in industries like robotics and
aerospace industry have strong nonlinear dynamics.

@ The configuration spaces of many mechanical systems
are smooth manifolds (Lie groups, symmetric
spaces,...). Techniques from differential and
Riemannian geometry are fundamental in modern
control theory.



The evolution ...
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control @ Beginning - 60’s

Roger Brockett
- the father -

()+ )ddt

@ Adultness - mid 70’s

Agracheyv, Bloch, Crouch, Nijmeijer, Jurdjevic, Krener,
Sachkov, Sontag, Sussmann, Van der Schaft, ...

@ The steam of publications has grown sharply in recent
years and gives every indication of continuing to grow...



What is a dynamical system?
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Geometric

control A dynamical system is a differential equation

Dynamical X = f(X), x e M.
systems

@ M is a smooth manifold.

@ fis a (smooth) vector field on M:

x € M — f(x) € TxM (tangent space to M at x).

~ is a solution of x = f(x) < ~ is an integral curve of f

A dynamical system is a vector field




Vector fields and flows
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Geometri Assume that the vector field f is complete (i.e., for all xo, € M the
e solution x(t, xo) of the Cauchy problem x = f(x), x(0) = xo, is
defined for all t € R).
Dynamical

SSIENS Flow generated by the vector field f:

t - exp(tf): M - M ,teR
Xo +— X(t xo)

If x = f(x) describes the dynamics of a moving fluid in M, then
exp(t f) takes any particle of the fluid from a position xo and
moves it for a time t € R to the position exp(tf)(xo) = x(t, Xo)-

(If f not complete, flow is local)



Dynamical systems
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Geometric

control A dynamical system evolving on a smooth manifold M is a vector
field f(.) on M
Dynamical X(t) = f(X(t))’ X(t) € M

systems

Xo

The dynamics of this system is determined by the flow of one
vector field only. The future x(¢, xp) is completely determined by
the present state xp.

In order to affect (control) the dynamics we must consider
a family of vector fields. J




What is a control system?
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control A control system evolving on M is a family of vector fields f(., u)
on M, parameterized by the controls u.

x(1) = f(x(0), u(t), x(t)eM, u(t)eUcR™

X is the state of the system, M is the state space

u is the input or control of the system

In control theory we can change the dynamics of the control
system at any moment of time by changing the control u. J




Technical assumptions
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control x = f(x(t),u(t), x(t)eM, u(t)eUcCR"
The controls belong to a class U/ of admissible controls. Its choice
depends on what the control system is modeling.

control e On the set of admissible controls:
sysiems U contains all the piecewise constant functions with values in U,
which are piecewise continuous from the right.

Results on the continuity of solutions guarantee that
if a more general control function is approximated by
piecewise constant functions, the solution of the control
system for this class of admissible controls
approximates the solution of the original system.

e On the vector fields: For each xo € M and u € U, the ODE

x(t) = f(x(®),u(®),  x(0) =xo
has a solution for all t € [0, col.



Lie brackets
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The set of all smooth vector fields on M forms a Lie algebra.

control We can perform linear combinations and Lie brackets.

systems

In terms of coordinates, vector fields may be identified with
column matrices.

Lie bracket of two vector fields

9100 = 29 (0)1(x) ~ 2 (x)g(x).

(92 is the Jacobian matrix of g).



Lie brackets (cont.)
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The Lie bracket of 2 vector fields measures non-commutativity of
the corresponding flows J

control
systems

[f,g]=0 & exp(tf) o exp(sg) = exp(sg) o exp(tf), Vs t € R.

exp(-tf)

exp(-tg) exp(tg)

X
) exp(th)

f and g commute f and g don’t commute



The power of Lie brackets
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Geometric

control The Lie bracket allows studying interconnections between
different dynamical systems. J

control
systems

For control theory it is particularly important that

[f, 9] & span{f, g}.




3 Reachable sets
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Reachable set of 7 from a point x, € M

7?'(XO) = {eXp(tkfuk) e eXp(t1 fU1)(X0) | k € N7 fU,' € ]:a ti > O}J

Reachable

sets and

controllability The reachable set characterize the states that can be
reached from a given initial state xo € M in positive time, by
choosing various controls and switching from one to another

from time to time. )

Only forward-in-time motions allowed!
Reachable set



Controllability
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Controllability is the ability to steer a system from a given
initial state to any final state, in finite time, using the
available controls.

Reachable
sets and
controllability

A system is said to be controllable if R(x) = M, vx € M. J
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Affine control
systems

Affine control systems

X = go(x) +)_ uigi(x)

i=1

f(x,u)
e (o is the drift vector field - specifies the dynamics in the absence
of controls.

e g;, i =1,---m, are called the control vector fields

Assumptions:

e On the set of admissible controls:
U consists of all the piecewise constant functions with values in
U, which are piecewise continuous from the right.

e On the vector fields:
9o, 91, - , gm are smooth (of class C>°). m < n = dim(M).




The car
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\e
X, L

X4

The state of the car:

?;2?;55”"0' @ position of its center of mass (x;, x2) € R?

@ orientation angle 6 € S (relative to the positive direction of
the axis xq)

The state space:

M= {x=(x1,x2,0) | x1,X €R, 0 € S} =R2 x S'.



The car (cont.)
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Possible kinds of motion:

Linear motion: drive the car forward and backward with some

fixed linear velocity uy = /X2 + X2
Xy = ujcoséd
X2 = ursing (dynamical system for linear motion)
6 =0

Rotational motion: turn the car around its center of mass with with
some fixed angular velocity u, = 0

xx =0

5_(2 =0 (dynamical system for rotational motion)

0 = U



The car (cont.)
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control In vector form:

Xq cosé
x=1|x | eRExS" gi(x)=| sind |, gx)=
0

- O o
I

Combining both kinds of motion in an admissible way:

Affine control
systems

X = umgi(x) + Uz ga(X)
N—— N——
linear motion rotational motion

Affine control system, underactuated.

The control u = (uy, Up) can take any value in U C R?



Typical maneuver in parking a car
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Four motions with the same amplitude perform forbidden motion:

Affine control
systems
1. motion 2. rotation
forward counterclockwise
K>
3. motion 4, rotation

backward clockwise




The Lie bracket does your job!
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0 0 -—sinf 0 sin@
[91,9](x)=—| 0 O coséh 0| =1 —cosb |.
00 0 1 0

Affine control
systems

@ The vector field gy generates the forward/backward motion.

@ The vector field g» generates the clockwise/counterclockwise
rotation.

@ The vector field [gy, go] generates the motion in the direction
perpendicular to the orientation of the car.



Distributions and integrability
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e A distribution A on the manifold M is a map which assigns to
each point in M a subspace of the tangent space at this point:

M > x— A(x) C TyM.

dim(A) = k if dim(A(x)) = k, ¥x € M.

Example: M = R3\{0}, A(x)={veR®|vix=0}
A(x) is the tangent space at x to the sphere centered at 0
passing through x.

This distribution A has a special property: for every x € M, there
exists a smooth 2-dim submanifold N, of M (the sphere centered
at 0 passing through x) which is everywhere tangent to A.

This property is called integrability



Distributions and integrability (cont.)
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control e An integral manifold of a distribution A is a submanifold N of M
satisfying

TxN = A(x), VxeN.

e A distribution A is integrable if, for every x € M, there exists a
(maximal) integral manifold, N(x), of A through every point

x € M, or equivalently, there exists a (integral) foliation on M
whose tangent bundle is A.

Distributions
and
integrability

An integral foliation on M = R3\ {0}



Involutive distribution
FCTUC

Geometric

control The integrability of a distribution depends on its involutivity.

e A distribution A on M is said to be involutive if, Vx € M,

f(x), 9(x) € A(x) = [f, 9l(x) € A(x).

Frobenius theorem
Suppose a distribution A has constant dimension. Then,

Distributions
and

=gy A is integrable if and only if A is involutive.




Control systems without drift
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m
X=>"ug(x), xeM, (unconstrained inputs).
i=1

Control distribution

A(X) = Span{g1 (X)7 o ,gm(x)} C TxM~

Distributions
and
integrability



Control distribution
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Control distribution: A(x) = span{g1(x),---,gm(x)}

Example: M =R?, m=1, g (x) £ 0, for all x.

The control distribution is 1-dimensional. Through each point
Xo € R2 passes a curve y(xp) = x(t, Xo) which is everywhere
tangent to A. A is integrable.

4
,///

What is the reachable set from xg?

R(X0) = v(X0) # R?

The system is not controllable!




Control distribution (example)
FCTUC

Geometric
control

Distributions
and
integrability

0
X3 ] + Us [ ] , x €R3\{0}.
—X2 —Xi

The control distribution A is 2-dimensional.

X2
X=U| —X1 | +U

0

(91,92 = =93 (92,931 = —91 [93,91] = — Q.

A is involutive, so A is integrable.

2x(t) " x(t) = % [x(t)"x(t)] = 0.

Consequently, the maximal integral manifold of A, at a given
x € M, is the sphere centered at the origin, passing through x.

The reachable set from x € M is contained in a 2-dimensional
sphere. The system is not controllable.

Integrability of control distribution rules out controllability!?



Control distribution (example)
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cos 6 0
gi(x)= siné |, @(x)=10
0 1
The control distribution A is 2-dimensional.
sing
[91,00](x) = | —cos@ | & A(x).
Distributions 0
and
integrability The control distribution is not involutive. So, A is not integrable.

The reachable sets are not restricted to 2-dimensional
submanifolds.

Is the system controllable? Our experience says yes!




Bracket generating property
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m
=Y ugi(x), xeM
i=1
is controllable, its control distribution

A =span{g1,--- ,9m}

should satisfy a property that is intuitively opposite to integrability.

Distributions

A The distribution A = span{gy,--- ,gm} on M is said to be bracket
generating if the iterated Lie brackets

gi7[gl'agj]7[gl" [gj7gk]]7 71 S iajak S m,

span the tangent space of M at every point.




Rashevsky-Chow Theorem
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A =span{gy,---,9gm} is bracket generating iff

Liex(F) = TxM, for every x € M.

Assume that M is connected.
If the control distribution A = span{gi,---,9gm} is bracket
generating, then the (drift free) system

Main results

m
X =Y ug(x), xeM
i=1

is controllable.
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control X = go(X) + Z U,'g/(X), xeM
—~— 4
drift
The presence of drift significantly complicates the question of
controllability!

@ It is possible that the trajectories of a system can'’t be
restricted to a lower dimensional sub-manifold, and yet the
system is uncontrollable, as this example shows.

X1 o X22 0 w2
Main results |:X2:|_[O]+u|:1], M=%

The reachable set from a point z € R? is:

R(z)={weR?w >z} uU{z}.

Thus, the system is accessible but not controllable!



The rolling sphere
FCTUC

Geometric The rolling sphere consists of a sphere in 3-space, rolling without
Copes slip or twist over the tangent space at a point.

This rigid motion is described by the action of SE(3) (the special
Euclidean group), but has 2 types of constraints:

Main results @ Holonomic constraints (sphere keeps tangent to the plane
during motion)
@ Nonholonomic constraints (sphere can’t twist or slip)

o No twist (performing spins not allowed!)
@ No slip (performing slidding not allowed!)



Kinematic equations for the rolling sphere
FCTUC

Geometric The motion of S?, when rolling over the south tangent plane is

Certcl described by the following right-invariant control system evolving
on SE(3) = R® x SO(3):

U

S=| W (translational velocity)
0

. 0 0 Uy

R= 0 0 w|R (rotational velocity)
—-Uuy —U 0

Ralestts This system is controllable.

The rolling sphere is a complete nonholonomic system.




3 Forbidden motions
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How to steer the rolling sphere from one initial configuration to
any other admissible configuration, without violating the
nonholonomic constraints (i.e, avoiding forbidden motions)?

Forbidden motions

Twists

>

e
y N
y LN

Main results ‘ ’

Answer: Realizing the forbidden motions by rolling the
sphere without slip or twist!




Realizing a twist
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Geometric Realizing a rotation of an angle ¢ around the z-axis:

control

2= M1

Main results




Realizing a twist
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Geometric A twist is a rotation around the z-axis.

control

cosp —sinpg 0
z(p) =e ¥4 = |sinp cosp O
0 0 1

Euler’s theorem guarantees that any rotation around the z-axis
decomposes as rotations around the x-axis and the y-axis.

But to perform a twist, such decomposition has to be carefully
chosen, so that the angles of rotation around these 2 orthogonal
axis add up to zero.

Decomposition corresponding to the previous picture:

Main results



Realizing a slip
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@ d(po, p1) = multiple of 27
Roll along the segment pop;.

@ d(po, p1) # multiple of 27
Roll along the sides of the isosceles triangle in the picture.

I'is the smallest integer satisfying 27/ > d(po, p1).

Main results




Optimal control
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control Controllability doesn’t care about the quality of the trajectory
between two states, neither the amount of control effort!

What is the optimal way to control the system? We may
require smooth trajectories, minimizing costs, ...

Optimal
control



Rolling optimally
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control Given 2 admissible configurations, roll the sphere upon the
tangent plane from the first configuration to the second, so that

the curve traced in the plane by the contact point be the shortest
possible.

J(u) =1 J5' (U2 + uB) dt — min  (cost functional)
subject to:

(control system)
Optimal r

control . 0 0 U4
RO=RH)| 0 0 u
—uy —U 0

X(0) = Xo = (S0, Ro) X(t) =Xy =(s1,Ry)  (boundary cond.)



The rolling sphere meets Euler
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To solve optimal control problems one needs to understand the
Pontryagin Maximum Principal (Hamiltonian equations,
symplectic geometry,...).

The rolling sphere meets Euler

The point of contact of the sphere rolling optimally traces Euler
elastica on the plane!

Optimal
control



Elastic curves of Euler (1744)
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An elastic rod is a 1-dimensional object which is flexible
(bendable but not stretchable), which looks like a portion of a
straight line in its natural state.

Which form takes an elastic rod when subject to external forces
applied to its ends?

Jacob Bernoulli posed this problem in 1691 and showed that the
elastic energy of a deformed elastic rod is proportional to
| K2(t) dt, where () is the geodesic curvature.

B

[z




Elastic curves of Euler (1744)
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/ k2dt  — min

that gives rise to the shape that minimizes the elastic energy.

Optimal
control



Euler’s Elastica
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Geomettic Euler also sketched these beautiful curves even before the
discover of the elliptic functions (Carl Jacobi) was borne!

3f. Class 8

3d. Class 6
3e. Class 7

Optimal 77 =
control i w 2

PAE
3
|
Ql
/\\/
3a. Class 2
|
b
! /
e
d
| M
= T
)
/R\B\J/
( N
\
3b. Class 4
M
\
\
\\ P
o N
3c. Class S




References

FCTUC

A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Springer, Berlin, 2004.
Gig:;i}l”c V. Jurdjevic, Geometric Control Theory. Cambridge Univ. Press, Cambridge, 1997.
V.Jurdjevic and H. Sussmann, Control Systems on Lie Groups. Journal of Differential Equations, 12

(1972), 313-329.

° M. Kleinsteuber, K. Hiper and F. Silva Leite, Complete Controllability of the N-sphere - a constructive
proof. Proc. 3rd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control
(LHMNLC’06). Nagoya, Japan (19-21 July, 2006).

Y. Sachkov, Control Theory on Lie Groups. Journal of Mathematical Sciences, Vol. 156, No. 3, 2009.
J. Zimmerman, Optimal control of the Sphere S" Rolling on E". Math. Control Signals Systems, 17
(2005), 14-37.

Optimal
control



	Dynamical systems
	control systems
	Reachable sets and controllability
	Affine control systems
	Distributions and integrability
	Main results
	Optimal control

