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Nonlinear Geometric Control

Control theory is a theory that deals with influencing the
behavior (controlling) of dynamical systems.

Many processes in industries like robotics and
aerospace industry have strong nonlinear dynamics.

The configuration spaces of many mechanical systems
are smooth manifolds (Lie groups, symmetric
spaces,...). Techniques from differential and
Riemannian geometry are fundamental in modern
control theory.
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The evolution ...

Beginning - 60’s

Roger Brockett
- the father -

Adultness - mid 70’s

Agrachev, Bloch, Crouch, Nijmeijer, Jurdjevic, Krener,
Sachkov, Sontag, Sussmann, Van der Schaft, ...

The steam of publications has grown sharply in recent
years and gives every indication of continuing to grow...
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What is a dynamical system?

A dynamical system is a differential equation

ẋ = f (x), x ∈ M.

M is a smooth manifold.

f is a (smooth) vector field on M:

x ∈ M 7→ f (x) ∈ TxM (tangent space to M at x).

γ is a solution of ẋ = f (x)⇔ γ is an integral curve of f

A dynamical system is a vector field
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Vector fields and flows

Assume that the vector field f is complete (i.e., for all x0 ∈ M the
solution x(t , x0) of the Cauchy problem ẋ = f (x), x(0) = x0, is
defined for all t ∈ R).

Flow generated by the vector field f :

t → exp(t f ) : M → M , t ∈ R
x0 7→ x(t , x0)

If ẋ = f (x) describes the dynamics of a moving fluid in M, then
exp(t f ) takes any particle of the fluid from a position x0 and
moves it for a time t ∈ R to the position exp(t f )(x0) = x(t , x0).

(If f not complete, flow is local)
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Dynamical systems

A dynamical system evolving on a smooth manifold M is a vector
field f (.) on M

ẋ(t) = f (x(t)), x(t) ∈ M.

The dynamics of this system is determined by the flow of one
vector field only. The future x(t , x0) is completely determined by
the present state x0.

In order to affect (control) the dynamics we must consider
a family of vector fields.
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What is a control system?

A control system evolving on M is a family of vector fields f (.,u)
on M, parameterized by the controls u.

ẋ(t) = f (x(t),u(t)), x(t) ∈ M, u(t) ∈ U ⊂ Rm

x is the state of the system, M is the state space

u is the input or control of the system

In control theory we can change the dynamics of the control
system at any moment of time by changing the control u.
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Technical assumptions

ẋ = f (x(t),u(t)), x(t) ∈ M, u(t) ∈ U ⊂ Rm

The controls belong to a class U of admissible controls. Its choice
depends on what the control system is modeling.

• On the set of admissible controls:
U contains all the piecewise constant functions with values in U,
which are piecewise continuous from the right.

Results on the continuity of solutions guarantee that
if a more general control function is approximated by
piecewise constant functions, the solution of the control
system for this class of admissible controls
approximates the solution of the original system.

• On the vector fields: For each x0 ∈ M and u ∈ U , the ODE

ẋ(t) = f (x(t),u(t)), x(0) = x0

has a solution for all t ∈ [0,∞[.
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Lie brackets

The set of all smooth vector fields on M forms a Lie algebra.

We can perform linear combinations and Lie brackets.

In terms of coordinates, vector fields may be identified with
column matrices.

Lie bracket of two vector fields

[f ,g](x) =
∂g
∂x

(x)f (x)− ∂f
∂x

(x)g(x).

(∂g
∂x is the Jacobian matrix of g).



Geometric
control

.

Dynamical
systems

control
systems

Reachable
sets and
controllability

Affine control
systems

Distributions
and
integrability

Main results

Optimal
control

Lie brackets (cont.)

The Lie bracket of 2 vector fields measures non-commutativity of
the corresponding flows

[f ,g] ≡ 0 ⇔ exp(t f ) ◦ exp(sg) = exp(sg) ◦ exp(t f ), ∀s, t ∈ R.

x
exp(-sg)

exp(sg)

exp(-tf)

exp(tf)

x
2 exp(tf)

exp(-tf)

exp(tg)exp(-tg)

exp(t  [f,g])

f and g commute f and g don’t commute
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The power of Lie brackets

The Lie bracket allows studying interconnections between
different dynamical systems.

For control theory it is particularly important that

[f ,g] 6∈ span{f ,g}.
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Reachable sets

fu(.) := f (.,u), F = {fu}u∈U

Reachable set of F from a point x0 ∈ M

R(x0) = {exp(tk fuk ) · · · exp(t1fu1)(x0) | k ∈ N, fui ∈ F , ti ≥ 0}

The reachable set characterize the states that can be
reached from a given initial state x0 ∈ M in positive time, by
choosing various controls and switching from one to another
from time to time.

Only forward-in-time motions allowed!
Reachable set

x0

Reachable set
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Controllability

Controllability
Controllability is the ability to steer a system from a given
initial state to any final state, in finite time, using the
available controls.

A system is said to be controllable if R(x) = M, ∀x ∈ M.
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Affine control systems

ẋ = g0(x) +
m∑

i=1

uigi (x)︸ ︷︷ ︸
f (x,u)

• g0 is the drift vector field - specifies the dynamics in the absence
of controls.

• gi , i = 1, · · ·m, are called the control vector fields

Assumptions:

• On the set of admissible controls:
U consists of all the piecewise constant functions with values in
U, which are piecewise continuous from the right.

• On the vector fields:
g0,g1, · · · ,gm are smooth (of class C∞). m ≤ n = dim(M).
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The car

2
x

q2

1
x

f

q1

�

The state of the car:

position of its center of mass (x1, x2) ∈ R2

orientation angle θ ∈ S1 (relative to the positive direction of
the axis x1)

The state space:

M = {x = (x1, x2, θ) | x1, x2 ∈ R, θ ∈ S1} = R2 × S1.
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The car (cont.)

Possible kinds of motion:

2
x

q2

1
x

f

q1

�

Linear motion: drive the car forward and backward with some
fixed linear velocity u1 =

√
ẋ2

1 + ẋ2
2

ẋ1 = u1 cos θ
ẋ2 = u1 sin θ
θ̇ = 0

(dynamical system for linear motion)

Rotational motion: turn the car around its center of mass with with
some fixed angular velocity u2 = θ̇

ẋ1 = 0
ẋ2 = 0
θ̇ = u2

(dynamical system for rotational motion)



Geometric
control

.

Dynamical
systems

control
systems

Reachable
sets and
controllability

Affine control
systems

Distributions
and
integrability

Main results

Optimal
control

The car (cont.)

In vector form:

x =

 x1
x2
θ

 ∈ R2 × S1, g1(x) =

 cos θ
sin θ

0

 , g2(x) =

 0
0
1

 .

Combining both kinds of motion in an admissible way:

ẋ = u1g1(x)︸ ︷︷ ︸
linear motion

+ u2g2(x)︸ ︷︷ ︸
rotational motion

Affine control system, underactuated.

The control u = (u1,u2) can take any value in U ⊂ R2
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Typical maneuver in parking a car

2

22 2

forbidden

Four motions with the same amplitude perform forbidden motion:

2

22 2

2

22 2

1. motion
forward

2. rotation
counterclockwise

2

22 2 22 2 2

3. motion
backward

4. rotation
clockwise
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The Lie bracket does your job!

g1(x) =

 cos θ
sin θ

0

 , g2(x) =

 0
0
1

 ,

[g1,g2](x) = −

 0 0 − sin θ
0 0 cos θ
0 0 0

 0
0
1

 =

 sin θ
− cos θ

0

 .
The vector field g1 generates the forward/backward motion.

The vector field g2 generates the clockwise/counterclockwise
rotation.

The vector field [g1,g2] generates the motion in the direction
perpendicular to the orientation of the car.
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Distributions and integrability

• A distribution ∆ on the manifold M is a map which assigns to
each point in M a subspace of the tangent space at this point:

M 3 x 7→ ∆(x) ⊂ TxM.

dim(∆) = k if dim(∆(x)) = k , ∀x ∈ M.

Example: M = R3\{0}, ∆(x) = {v ∈ R3 | v>x = 0}

∆(x) is the tangent space at x to the sphere centered at 0
passing through x .
This distribution ∆ has a special property: for every x ∈ M, there
exists a smooth 2-dim submanifold Nx of M (the sphere centered
at 0 passing through x) which is everywhere tangent to ∆.

This property is called integrability
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Distributions and integrability (cont.)

• An integral manifold of a distribution ∆ is a submanifold N of M
satisfying

TxN = ∆(x), ∀x ∈ N.

• A distribution ∆ is integrable if, for every x ∈ M, there exists a
(maximal) integral manifold, N(x), of ∆ through every point
x ∈ M, or equivalently, there exists a (integral) foliation on M
whose tangent bundle is ∆.In[12]:= SphericalPlot3D@81, 2, 3<, 8θ, 0, Pi<, 8φ, 0, 3 Pi ê 2<, Axes → False, Boxed → FalseD

Out[12]=

An integral foliation on M = R3\{0}
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Involutive distribution

The integrability of a distribution depends on its involutivity.

• A distribution ∆ on M is said to be involutive if, ∀x ∈ M,

f (x),g(x) ∈ ∆(x) ⇒ [f ,g](x) ∈ ∆(x).

Frobenius theorem
Suppose a distribution ∆ has constant dimension. Then,

∆ is integrable if and only if ∆ is involutive.
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Control systems without drift

ẋ =
m∑

i=1

uigi (x), x ∈ M, (unconstrained inputs).

Control distribution
∆(x) = span{g1(x), · · · ,gm(x)} ⊂ TxM.
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Control distribution

Control distribution: ∆(x) = span{g1(x), · · · ,gm(x)}

Example: M = R2, m = 1, g1(x) 6= 0, for all x .

The control distribution is 1-dimensional. Through each point
x0 ∈ R2 passes a curve γ(x0) = x(t , x0) which is everywhere
tangent to ∆. ∆ is integrable.

x(t,x )
x0

0

What is the reachable set from x0?

R(x0) = γ(x0) 6= R2

The system is not controllable!
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Control distribution (example)

ẋ = u1

 x2
−x1

0

+ u2

 0
x3
−x2

+ u3

 x3
0
−x1

 , x ∈ R3\{0}.

The control distribution ∆ is 2-dimensional.

[g1,g2] = −g3 [g2,g3] = −g1 [g3,g1] = −g2.

∆ is involutive, so ∆ is integrable.

2x(t)>ẋ(t) =
d
dt
[
x(t)>x(t)

]
= 0.

Consequently, the maximal integral manifold of ∆, at a given
x ∈ M, is the sphere centered at the origin, passing through x .

The reachable set from x ∈ M is contained in a 2-dimensional
sphere. The system is not controllable.

Integrability of control distribution rules out controllability!?



Geometric
control

.

Dynamical
systems

control
systems

Reachable
sets and
controllability

Affine control
systems

Distributions
and
integrability

Main results

Optimal
control

Control distribution (example)

Back to the car model

g1(x) =

 cos θ
sin θ

0

 , g2(x) =

 0
0
1


The control distribution ∆ is 2-dimensional.

[g1,g2](x) =

 sin θ
− cos θ

0

 6∈ ∆(x).

The control distribution is not involutive. So, ∆ is not integrable.

The reachable sets are not restricted to 2-dimensional
submanifolds.

Is the system controllable? Our experience says yes!
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Bracket generating property

If the system

ẋ =
m∑

i=1

uigi (x), x ∈ M

is controllable, its control distribution

∆ = span{g1, · · · ,gm}

should satisfy a property that is intuitively opposite to integrability.

The distribution ∆ = span{g1, · · · ,gm} on M is said to be bracket
generating if the iterated Lie brackets

gi , [gi ,gj ], [gi , [gj ,gk ]], · · · ,1 ≤ i , j , k ≤ m,

span the tangent space of M at every point.
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Rashevsky-Chow Theorem

In other words:

∆ = span{g1, · · · ,gm} is bracket generating iff

Liex (F) = TxM, for every x ∈ M.

Theorem (Rashevsky-Chow)
Assume that M is connected.
If the control distribution ∆ = span{g1, · · · ,gm} is bracket
generating, then the (drift free) system

ẋ =
m∑

i=1

uigi(x), x ∈ M

is controllable.
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ẋ = g0(x)︸ ︷︷ ︸
drift

+
m∑

i=1

uigi (x), x ∈ M

The presence of drift significantly complicates the question of
controllability!

It is possible that the trajectories of a system can’t be
restricted to a lower dimensional sub-manifold, and yet the
system is uncontrollable, as this example shows.[

ẋ1
ẋ2

]
=

[
x2

2
0

]
+ u

[
0
1

]
, M = R2.

The reachable set from a point z ∈ R2 is:

R(z) =
{

w ∈ R2|w1 > z1
}
∪ {z}.

Thus, the system is accessible but not controllable!
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The rolling sphere

The rolling sphere consists of a sphere in 3-space, rolling without
slip or twist over the tangent space at a point.

M0

M1

α

αdev

This rigid motion is described by the action of SE(3) (the special
Euclidean group), but has 2 types of constraints:

Holonomic constraints (sphere keeps tangent to the plane
during motion)

Nonholonomic constraints (sphere can’t twist or slip)
No twist (performing spins not allowed!)
No slip (performing slidding not allowed!)
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Kinematic equations for the rolling sphere

The motion of S2, when rolling over the south tangent plane is
described by the following right-invariant control system evolving
on SE(3) = R3 n SO(3):

ṡ =

 u1
u2
0

 (translational velocity)

Ṙ =

 0 0 u1
0 0 u2
−u1 −u2 0

R (rotational velocity)

This system is controllable.

The rolling sphere is a complete nonholonomic system.
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Forbidden motions

Question:
How to steer the rolling sphere from one initial configuration to
any other admissible configuration, without violating the
nonholonomic constraints (i.e, avoiding forbidden motions)?

Forbidden motions

Twists Slips

� �

Answer: Realizing the forbidden motions by rolling the
sphere without slip or twist!
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Realizing a twist

Realizing a rotation of an angle ϕ around the z-axis:

M1

M

M

M

2

3

4
����

�

�

�

�

�

�
�

S
2
=

���

�

M4

M

M

5

6

�
�

�
�

� �
S2= z(��
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Realizing a twist

A twist is a rotation around the z-axis.

z(ϕ) = e−ϕA12 =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


Euler’s theorem guarantees that any rotation around the z-axis
decomposes as rotations around the x-axis and the y -axis.

But to perform a twist, such decomposition has to be carefully
chosen, so that the angles of rotation around these 2 orthogonal
axis add up to zero.

Decomposition corresponding to the previous picture:

z(ϕ) = x(
π

2
) y(

ϕ

2
) x(−π) y(−ϕ

2
) x(

π

2
)
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Realizing a slip

A slip is a pure translation.

d(p0,p1) = multiple of 2π
Roll along the segment p0p1.

d(p0,p1) 6= multiple of 2π
Roll along the sides of the isosceles triangle in the picture.

l is the smallest integer satisfying 2πl > d(p0,p1).

p

p
1

0

2�l
q
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Optimal control

Controllability doesn’t care about the quality of the trajectory
between two states, neither the amount of control effort!

Optimal control
What is the optimal way to control the system? We may
require smooth trajectories, minimizing costs, ...
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Rolling optimally

Given 2 admissible configurations, roll the sphere upon the
tangent plane from the first configuration to the second, so that
the curve traced in the plane by the contact point be the shortest
possible.

J(u) = 1
2

∫ t1
0 (u2

1 + u2
2) dt → min (cost functional)

subject to:

ṡ(t) =

 u1
u2
0


(control system)

Ṙ(t) = R(t)

 0 0 u1
0 0 u2
−u1 −u2 0


X (0) = X0 = (s0,R0) X (t1) = X1 = (s1,R1) (boundary cond.)
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The rolling sphere meets Euler

To solve optimal control problems one needs to understand the
Pontryagin Maximum Principal (Hamiltonian equations,
symplectic geometry,...).

The rolling sphere meets Euler

The point of contact of the sphere rolling optimally traces Euler
elastica on the plane!
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Elastic curves of Euler (1744)

An elastic rod is a 1-dimensional object which is flexible
(bendable but not stretchable), which looks like a portion of a
straight line in its natural state.

Which form takes an elastic rod when subject to external forces
applied to its ends?

Jacob Bernoulli posed this problem in 1691 and showed that the
elastic energy of a deformed elastic rod is proportional to∫
κ2(t) dt , where κ(t) is the geodesic curvature.

of the “curva elastica” and its ramifications. Leibniz had proposed: “From the hypothesis elsewhere
substantiated, that the extensions are proportional to the stretching forces...” which is today attributed
as Hooke’s law of the spring. Bernoulli questioned this relationship, and, as we shall see, his solution to
the elastica generalized even to nonlinear displacement.

5 James Bernoulli poses the elastica problem—1691

James Bernoulli posed the precise problem of the elastica in 1691:

Figure 3: Bernoulli poses the elastica problem.

“Si lamina elastica gravitatis espers AB, uniformis ubique crassitiei & latitudinis, inferiore extremitate
A alicubi firmetur, & superiori B pondus appendatur, quantum sufficit ad laminam eousque incurvan-
dam, ut linea directionis ponderis BC curvatae laminae in B sit perpendicularis, erit curvatura laminae
sequentis naturae:”

And then in cipher form:
“Portio axis applicatam inter et tangentem est ad ipsam tangentem sicut quadratum applicatae ad

constans quoddam spatium.”1

Assuming a lamina AB of uniform thickness and width and negligible weight of its own,
supported on its lower perimeter at A, and with a weight hung from its top at B, the force
from the weight along the line BC sufficient to bend the lamina perpendicular, the curve of
the lamina follows this nature:

The rectangle formed by the tangent between the axis and its own tangent is a constant area.

This poses one specific instance of the general elastica problem, now generally known as the rectangular
elastica, because the force applied to one end of the curve bends it to a right angle with the other end
held fixed.

The deciphered form of the anagram is hardly less cryptic than the original, but digging through
his 1694 explanation, it is possible to extract the fundamental idea: at every point along the curve, the
product of the radius of curvature and the distance from the line BC is a constant, i.e. the two quantities
are inversely proportional. And, indeed, that is the key to unlocking the elastica; the equation for the
shape of the curve follows readily, given sufficient mathematical skill.

6 James Bernoulli partially solves it—1692

By 1692, James Bernoulli had completely solved the rectangular case of the elastica posed earlier. In his
Meditatione CLXX dated that year, titled “Quadratura Curvae, e cujus evolutione describitur inflexae
laminae curvatura” [3], or, “Quadrature of a curve, by the the evolution of which is traced out the curve

1The cipher reads “Qrzumu bapt dxqopddbbp...” and the key was published in the 1694 Curvatura Laminae with the detailed
solution to the problem. Such techniques for establishing priority may seem alien to academics today, but are refreshingly
straightforward by comparison to the workings of the modern patent system.
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Elastic curves of Euler (1744)

Euler (1744) also studied the variational principle∫
κ2 dt → min

that gives rise to the shape that minimizes the elastic energy.
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Euler’s Elastica

Euler also sketched these beautiful curves even before the
discover of the elliptic functions (Carl Jacobi) was borne!
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