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necessarily very incomplete

T

The aim of this talk i1s to give an overview of Symplectic Geometry

(there is no intention of giving a list of recent results or open problems)




Notation: throughout the talk:

- M - real, finite-dim?, differentiable manifold without boundary

-C”(M)={f:M = R: f is smooth}
-x(M)={X:M —TM : X is a vector field}

-Q*(M)={®:TM x---XTM — R}
a)(p;vl ..... vk)eR

or Q' (M) ={w: g (M)x--x 5 (M) - C (M)}

o(X,,....X,)eC”(M) givenby: o(X,.....X,)(p)= a)(p;le ,...,ka)



1. Symplectic Manifolds

Def: Symplectic manifold is a pair
(M,0), where:
(a) weQ(M) ie.,
o(Y,X)=-0(X.Y)
o(X+gY.Z2)=fo(X,Z)+gw(Y,Z)
(b) w 1s nondegenerate, i.¢.:
o(X,Y)=0,VXey(M) & Y=0

(c) wisclosed,ie. do=0

We call o a symplectic form.

which manifolds “qualify” for being
symplectic?

Necessary conditions:

(N1) dim M = 2n

consider local coordinates (xl yoos ,xm) and build
the matrix A with entries:

1. Riemannian Manifolds

Def: Riemannian manifold is a pair
(M ,<,>), where:

(a) <> x(M)x y(M)— C~(M) satisfies:
<Y.X> = <X.¥>

<fX+gY,Z> =f<X,Z>+g<Y,Z>
(b) <, > 1s positive definite.

Consequence: < ,>1s nondegenerate.

which manifolds “qualify” for being
Riemannian?

all smooth manifolds!



J 9
a, =0l —,—
! ox, ox,

then (a) and (b) imply:
A"=-A and det(A)=0
U
m=2n

(N2) M 1s oriented

consider the nth exterior power:

0" =0on.A0eQ”" (M)

then (b) implies ™ is a volume form on M.

o" is called symplectic volume.

(N3) if M is compact then
H?,,(M,R)#0
w=doe=0"=dCAOA...A®)

U
vol(M)= | o™ =[ dB=] B=0

v

52" is not symplectic, for any n >1

(52 is symplectic)




2. Examples

example 1: |M =R*"

with coords:

S
and symplectic structure given by:

i=1

@, :dei Ady, =dx A dy

example 2: (M =T N

with symplectic

form:

®=dA
( A is the Liouville 1-
Apey(X)=<a,dm,,

form on M :

a)(X)> )

© The importance of example 1 will be

clear soon.

© example 2 1s behind the Hamiltonian
formulation of Conservative

Mechanics.




3. Special vector fields 3. Special vector fields

® Nondegeneracy of @ implies that the | ® Nondegeneracy of < ,> implies that

following is an isomorphism: the following is an isomorphism:
[:y(M)— Q' (M) I:y(M)—> Q' (M)
X—>iw=0(X,) X o< X, >

Def: Given f e C”(M) its Hamiltonian | Def: Given feC”(M) its gradient

vector field is: vector field is:

X, =I"(df) Vf=1"(df)
(in other words: o(X,,)=df(-) ) (in other words: < Vf,->=df(-) )
Lemma Lemma
X, 1s tangent to the level surface: Vf 1s normal to the level surface:

2. —{peM f(p } 2 —{peM f(p }

(equivalently f is constant on the flow of X,) if veT=, then:
note that: ve TE,. < df (v) =0 and: <Vf.v>=df(v)=0

df(X,)=w(X,.X,)=0




Other important vector fields:

Def: A vector field X 1s said to be
symplectic if I(X) is closed. In other

words:
diyw =0

e Hamiltonian vector fields are
symplectic, since ddf=0.

® Condition (c) implies that the flow
of any symplectic vector field
“preserves” o:
L.o= M +iydo=0

=0 =0 because of (¢)




4. Poisson bracket

One can use Hamiltonian vector fields
to define an “operation” between
smooth functions:

Def: Poisson bracket on M 1is:
{}:.co(M)xCc”(M)—C" (M)
(f.8) > 0(X,.X,)=df(x,)

® Condition (c) implies this bracket
satisfies Jacobi’s identity:

WAgh g {h.f1+1n{f.}}=0

which, together with obvious
properties of {,}, implies that:

(c™(m).{.})

is an infinite-dimensional Lie algebra.




5. Equivalence

Def: Two symplectic manifolds (M)
and (M'.w') are symplectomorphic if
there exists a C' map:

o:M—->M'
satisfying:

Ow'=w
1.e.,
@' (a’(pp (X).do, (Y)) =w,(X.,Y)

¢ 1is called a symplectic map and
necessarily do, is injective, for all p
SO:

dimM <dimM'

® A symplectomorphism is a symplectic

diffeomorphism of M.
Symplectomorphisms form an

(infinite dimensional) subgroup of the

group diff(M).

5. Equivalence

Def: Two Riemannian manifolds
(M,<,>) and (M'<,>") are isometric
if there exists a C! map:
o:M—>M'
satisfying:
<de,(X),dp,(Y)>",, = <X)¥>

¢ 1s called an isometry and
necessarily do, is injective, for all p
SO:

dimM <dimM'
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Darboux-Weinstein theorem

Let p be any point on a symplectic
manifold of dimension 2x. Then there
exist local coordinates (x,,....x,,y.....,)
(in U) such that:

a)‘U = zn:dxl. Ady,

i=1

Therefore all symplectic manifolds are
(locally) symplectomorphic to example
1. Consequence:

there are no local invariants
(apart from dimension) in
Symplectic Geometry

curvature is a local invariant
in Riemannian Geometry
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6. Global Invariants

As seen before, a symplectic manifold carries a symplectic volume:

(n)

O " =WON...\NQ

If ¢o:M — M' is asymplectic map, then it preserves (symplectic)
volumes:
P =0 (0A.. A0 )= (@)A..AQ (®)=0OA..ArO=0"

but the converse is not true forn > 1.

example: take (M.0)= (R“,idx,- Ady,.] and consider the map:

i=1

1 1
q)(xlo'XZ ,yl’yz) = (Exl’z’XZ ’Eyl’zyZJ

This map preserves the symplectic volume —2dx, A dx, Ady, Ady, but 1s not

symplectic.

so what really characterizes symplectomorphisms?
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6.1. Gromov’s Nonsqueezing Theorem

The key theorem for characterizing symplectomorphisms (using
symplectic invariants) is:

Nonsqueezing theorem - Gromov (1985)
There 1s a symplectic embedding:

¢o:(B"(r).,) /(2" (R).@,)
if and only if r < R.

(where:

B> (r { x,y) e R*: zx +y’<r } open (symplectic) ball of radius r

{ x,y) ER™ x 7 +y,° < Rz} open symplectic cylinder of radius R )

® a symplectic embedding is just a symplectic map which is also an
embedding. It is denoted by: ¢:(M.0) /(M "' .

e if (M,w) is a symplectic manifold and U is open in M, then (U,
also symplectic.

v) is
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® The theorem is not valid if “symplectic cylinder” is replaced by

“cylinder”:
C*(R)= {(x,y) eR™:x’+x,°< Rz}

example: the following is a symplectic embedding from B*2) into C*(1):

11
@(x,,%,,5,,,) = (Exl Pactesl ,2y2)




6.2. Symplectic Invariants - Capacities

Using Gromov’s nonsqueezing theorem, we will construct a symplectic
invariant: Gromov’s width. This is one of many symplectic invariants
known as symplectic capacities.

Let M(2n) denote the set of all symplectic manifolds of dimension 2n.

Def Symplectic capacity 1s a map:

c:M(2n)— R} oo

satisfying all three properties:
(1) monotonicity - if there is a symplectic embedding:
0:(M,,0) /" (M,0,)
then ¢(M,,0,)<c(M,,0,)

(2) conformality - ¢(M,Aw)=|Alc(M,@) VA#0

(3) (strong) nontriviality - c(Bz”(l),a)O) == c(ZZ”(l),a)O)
15



® [f n =1 then “(absolute value of) total volume of M” is a symplectic capacity.
® [f n> 1 then “(absolute value of) total volume of M” is not a symplectic
capacity (nontriviality fails).

Theorem
Any symplectic capacity is a symplectic invariant, i.e., if there is a
symplectomorphism:

¢:(M,,0)< (M, 0,)

then ¢(M,,0,)=c(M,,0,).

(proof: monotonicity in both ways)

Lemma
Any symplectic capacity satisfies:
C(an (r),a)o) =nr’ = C(Zz” (r),a)o).

(proof: previous theorem+conformality+nontriviality)
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Theorem
The existence of a symplectic capacity is equivalent to Gromov’s
nonsqueezing theorem.

= suppose c exists and that:
¢ :(Bz"(r),a)o) / (Zz”(R),a)o)

1s a symplectic embedding. Then monotonicity+previous lemma imply:
nrt = c(an (r),a)o) < c(22" (R),a)o) = R?
SO r<R.

< define the Gromov’s width of a symplectic manifold:

W, (M,0)= sup{nr2 3¢ (B (r).0,) / (M,a))}

r>0

(the area of the disk of the bigger ball one can symplectically-embed on (M ,0))

If Gromov’s nonsqueezing theorem holds (it does!) then Gromov’s width is a symplectic
capacity.



Theorem
Gromov’s width W, is the smallest of all capacities:

W, (M,w)< ¢(M,w), for any capacity ¢ and any (M ,).

(proof: let ¢ be any capacity and fix r such that there is an embedding:
o:(B"(r).0,) /(M)
Then monotonicity of ¢ implies:
nr’ =c(B” (r).0,) < c(M o)

Since this holds for all r and ¢(M,w) is independent of r:

sup{Jtr2 =10 :(BZ” (r),a)o) /! (M,a))} <c(M,w)

r>0

proving the result).
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6.3. Back to Symplectomorphisms

We go back to the question:

so what really characterizes symplectomorphisms?

It turns out that symplectomorphisms of R*" are (almost) characterized by
the property of “preserving capacity of ellipsoids()”:

Theorem (Eliashberg, 1987) (Hofer, 1990)
Let ¢:(R™.m,)— (R, be a diffecomorphism and ¢ a capacity. Then:

c((p(E,a)O)) = C(E,G)O) for any ellipsoid E < R*"

if and only if ¢ is symplectic or anti-symplectic®®.

(M ellipsoid is the image of a ball by a linear/affine diffeomorphism

(2) meaning that Q' w, = -,
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