Capítulo 3

Relação de Equivalência e Ordem

3.1 Relações de equivalência e abstracções

Uma relação binária R(x, y) em que tanto x como y percorrem certo conjunto, X, diz-se relação de equivalência se tem as seguintes propriedades:

- 1) $\forall_x R(x,x)$ propriedade reflexiva
- 2) $\forall_x \forall_y [R(x,y) \Rightarrow R(y,x)]$ propriedade simétrica
- 3) $\forall_x \forall_y \forall_z [R(x,y) \land R(y,z) \Rightarrow R(x,z)]$ propriedade transitiva

Por exemplo, sendo X o conjunto das rectas do plano, x, y, \ldots , a relação "x é paralela a y" é relação de equivalência (se se convencionar que cada recta é paralela a si própria); sendo X o conjunto dos números racionais, \mathbb{Q} , a relação "x é aproximadamente igual a y a menos de 0,001" não é relação de equivalência porque não satisfaz 3). As relações de equivalência intervêm no processo mental de abstracção do modo seguinte: por vezes, sabemos reconhecer se dois objectos, x e y, têm ou não certa analogia ainda que não saibamos definir a característica comum que os torna análogos, mas, se a relação R(x,y) que traduz essa analogia entre x e y for uma relação de equivalência, dado um objecto, x_0 , o conjunto $\{x:R(x_0,x)\}$ que representaremos por \hat{x}_0 e se chama a classe de equivalência definida por R e x_0 e o conjunto $\hat{x}_1 = \{x:R(x_1,x)\}$ em que x_1 satisfaz $R(x_0,x_1)$ – isto é, em que x_1 é análogo a x_0 – são iguais em virtude de 2) e 3). Deste modo, a propriedade

de pertencer a esta classe de equivalência não depende especificamente de x_0 , podendo ser definida por qualquer outro elemento, x_1 , da mesma classe. Abstraimos assim um conceito novo, a propriedade comum a x_0 e aos objectos análogos (segundo R). Por exemplo, como a relação de paralelismo entre rectas do plano é uma equivalência, todas as paralelas a certa recta x_0 têm uma propriedade comum, que se chama a direcção definida por x_0 (ou por qualquer destas paralelas). Pelo contrário, com a relação de igualdade aproximada a menos de 0,001, as coisas passam-se diferentemente: por exemplo, o n.° 2,4006 tem a propriedade de diferir de 2,4 menos de 0,001 mas a propriedade de diferir de 2,4006 menos de 0,001 já é outra (2,3992) tem a primeira propriedade mas não a segunda).

Vimos que, se $R(x_0, x_1)$, as classes de equivalência \hat{x}_0 e \hat{x}_1 coincidem. Vejamos agora que, se $\sim R(x_0, x_1)$, as mesmas classes são disjuntas, isto é, $\hat{x}_0 \cap \hat{x}_1 = 0$. Porque, se existisse $x_2 \in \hat{x}_0 \cap \hat{x}_1$ verificar-se-iam $R(x_0, x_2)$ e $R(x_1, x_2)$, donde, por 2), $R(x_2, x_1)$ e, por 3), $R(x_0, x_1)$, contradição.

Exemplo:

No conjunto

$$X = \{1, 2, 3, 4, 5\},\$$

"x-y é múltiplo de 3" é uma relação de equivalência, visto que

 $\forall_x \ x - x \ \text{\'e} \ \text{m\'ultiplo} \ \text{de} \ 3$

 $\forall_x \forall_y (x-y \text{ múltiplo de } 3 \Rightarrow y-x \text{ múltiplo de } 3)$

 $\forall_x \forall_y \forall_z (x-y \text{ múltiplo de } 3 \land y-z \text{ múltiplo de } 3 \Rightarrow x-z \text{ múltiplo de } 3)$

As classes de equivalência são:

$$\hat{1} = \hat{4} = \{1, 4\}$$

$$\hat{2} = \hat{5} = \{2, 5\}$$

$$\hat{3} = \{3\}$$

Como se vê neste exemplo, e também de um modo geral, uma relação R de equivalência definida no conjunto X efectua uma decomposição de X em subconjuntos (as classes de equivalência) dois a dois sem elementos comuns.

Reciprocamente, seja dada uma decomposição de X em subconjuntos A_i :

$$X = \bigcup_{i \in I} A_i$$

3.2. CARDINAIS

35

com

$$\forall_{i \in I} \ \forall_{j \in I} \ (i \neq j \Rightarrow A_i \bigcap A_j = 0)$$

A relação R(x,y) definida por $\exists_{i\in I} (x \in A_i \land y \in A_i)$, isto é, x e y satisfazem R sse ambos pertencem a um mesmo dos conjuntos A_i , é uma relação de equivalência.

Demonstremos, por exemplo, que R é transitiva. Suponhamos que R(x,y) e R(y,z), isto é,

$$\exists_{i \in I} (x \in A_i \land y \in A_i)$$

е

$$\exists_{j\in I} (y\in A_j \land z\in A_j)$$

Como

$$y \in A_i \cap A_j$$
, $A_i \cap A_j \neq 0$, donde $i = j$

(porque $i \neq j \Rightarrow A_i \cap A_j = 0$) de modo que $z \in A_i$ e $\exists_i (x \in A_i \land z \in A_i)$, isto é, R(x, z).

Dado um conjunto, X, e uma relação de equivalência, R, definida em X, fica então definido o conjunto das respectivas classes de equivalência, que se chama conjunto quociente de X pela relação R e se escreve X/R ou $\frac{X}{R}$.

No exemplo supra,

$$\frac{X}{B} = \{\{1,4\}, \{2,5\}, \{3\}\}.$$

Como a cada elemento x de X corresponde uma e uma só classe (porque duas classes distintas não têm elementos comuns), a classe \hat{x} , e como cada classe, \hat{x} , tem pelo menos um elemento (o próprio x), vê-se que a aplicação $x \mapsto \hat{x}$ é uma sobrejecção $X \to X/R$.

3.2 Cardinais

Um exemplo importante de conceito definido por uma relação de equivalência é o de número cardinal, ou cardinalidade ou potência de um conjunto; dados dois conjuntos X e Y diz-se que são equicardinais ou equipotentes ou têm o mesmo cardinal se existe uma bijecção de X para Y. A bijecção i_X e o facto de serem bijecções a inversa de uma bijecção e a composta de duas, mostram

que esta relação entre X e Y é, de facto, uma equivalência e a correspondente noção é a de número cardinal 1 .

Às diversas classes de equicardinalidade correspondem, assim, números cardinais 2 : à que é definida pelo conjunto vazio, \emptyset , (e que só possui esse conjunto) corresponde um cardinal a que se chama 0 (zero); à classe de equicardinalidade de que faz parte o conjunto $\{\emptyset\}$ (e todos os que lhe são equicardinais, como $\{a\}$, $\{24\}$, etc.) corresponde um cardinal a que se chama 1; chama-se 2 o cardinal do conjunto $\{\emptyset, \{\emptyset\}\}$, 3 o cardinal do conjunto $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ e assim por diante, considerando de cada vez um conjunto cujos elementos são todos os conjuntos anteriores.

Ficam, assim definidos o zero e os números naturais e poderiam definir-se também, para estes números, as relações de desigualdade $(\leq, \geq, <, >)$ e as operações $(+, -, \times, :,$ potenciação) que já conhecemos, e demonstrar, a partir dessas definições, as suas propriedades.

Em particular poderia demonstrar-se o princípio de boa ordem (em qualquer conjunto de números naturais há um que é o menor de todos) e o princípio de indução completa: se P(n) é uma propriedade da variável natural n,

$$P(1) \land \forall_n [P(n) \Rightarrow P(n+1)] \Rightarrow \forall_n P(n)$$

Os números naturais constituem um conjunto \mathbb{N} , cujo cardinal (chamado álefe-zero, \aleph_0) já não é um número natural, pois (num sentido intuitivamente evidente, mas que adiante se definirá), os primeiros são finitos e o segundo não.

Poderia ainda pensar-se que todos os conjuntos infinitos tinham o mesmo cardinal, mas não é verdade: alguns têm "mais elementos" que outros, se se definir esta noção do seguinte modo:

Dados dois conjuntos X e Y, diz-se que $\overline{\overline{X}} \leq \overline{\overline{Y}}$ se existe uma injecção $i: X \to Y$ (o que sucede, por exemplo, se $X \subseteq Y$). Se isto se verifica, i é também uma bijecção $X \to i(X) \subseteq Y$ e, reciprocamente, se existe uma bijecção $b: X \to Y_1 \subseteq Y$, b é também uma injecção $b: X \to Y$. Em particular, se $\overline{\overline{X}} = \overline{\overline{Y}}$ existe uma bijecção $b: X \to Y$ e b^{-1} é também

 $^{^1{\}rm O}$ cardinal do conjunto A representa-se aqui pela sua primitiva notação: $\overline{\overline{A}}.$ Outras são Card A e #A.

²A ideia de definir deste modo o número de elementos de um conjunto, que aparece por vezes atribuída a Russell, foi exposta já em 1884 pelo matemático alemão F.L.G. Frege (1848 - 1925) a quem se deve a fundamentação da aritmética na lógica.

3.2. CARDINAIS 37

bijectiva: $Y \to X$, donde

$$\overline{\overline{X}} = \overline{\overline{Y}} \Rightarrow \overline{\overline{X}} < \overline{\overline{Y}} \land \overline{\overline{Y}} < \overline{\overline{X}}$$

Podem então, em princípio, acontecer quatro casos:

$$\overline{\overline{X}} \leq \overline{\overline{Y}} \wedge \overline{\overline{Y}} \leq \overline{\overline{X}} \text{ (isto \'e, existem injecções } i: X \to Y \text{ e } j: Y \to X)$$

$$\overline{\overline{X}} \leq \overline{\overline{Y}} \wedge \sim \overline{\overline{Y}} \leq \overline{\overline{X}}$$

$$\sim \overline{\overline{X}} \leq \overline{\overline{Y}} \wedge \overline{\overline{Y}} \leq \overline{\overline{X}}$$

$$\sim \overline{\overline{X}} \leq \overline{\overline{Y}} \wedge \sim \overline{\overline{Y}} \leq \overline{\overline{X}}$$

É necessário recorrer agora a dois teoremas importantes da teoria dos conjuntos que não poderemos demonstrar aqui. O primeiro afirma que

$$\forall_X \forall_Y \overline{\overline{X}} \leq \overline{\overline{Y}} \vee \overline{\overline{Y}} \leq \overline{\overline{X}},$$

propriedade que, por vezes, se chama dicotómica (da relação \leq) ficando deste modo excluído o 4.° caso.

O outro teorema é o de BERNSTEIN, e afirma que

$$\overline{\overline{X}} \leq \overline{\overline{Y}} \wedge \overline{\overline{Y}} \leq \overline{\overline{X}} \Rightarrow \overline{\overline{X}} = \overline{\overline{Y}}$$

isto é, se existem injecções $i:X\to Y$ e
 $j:Y\to X$ existe uma bijecção $b:X\to Y.$

Deste modo, dados os cardinais de dois conjuntos quaisquer, X e \overline{Y} , ou se está no primeiro caso e $\overline{\overline{X}} = \overline{\overline{Y}}$, ou no segundo e diz-se então que $\overline{\overline{X}} < \overline{\overline{Y}}$ porque é $\overline{\overline{X}} \le \overline{\overline{Y}}$ mas não $\overline{\overline{X}} = \overline{\overline{Y}}$, ou no terceiro e diz-se então, por motivos análogos, que $\overline{\overline{Y}} < \overline{\overline{X}}$. Este resultado constitui a propriedade tricotómica da desigualdade de cardinais.

Definamos agora conjunto finito e conjunto infinito.

Representando por $X^* \subset X$ o facto de ser $X^* \subseteq X$ mas $X^* \neq X$, o que se exprime também dizendo que X^* é parte própria de X, diz-se que X é finito se nenhuma parte própria de X é equicardinal a X (isto é, se não existe nenhuma bijecção $b: X \to X^* \subseteq X$).

Por exemplo, $\{a,b\}$ com $a \neq b$ é finito porque as suas partes próprias são \emptyset , $\{a\}$ e $\{b\}$, e facilmente se vê que nenhuma é equicardinal a $\{a,b\}$. Um conjunto que não é finito diz-se infinito e o seu cardinal chama-se transfinito. Um exemplo simples é o do conjunto $\mathbb N$ que é equicardinal a $\mathbb N \setminus \{1\}$, pela bijecção b(n) = n+1, ou ao conjunto $\{1,4,9,16,\ldots\}$ dos quadrados dos números naturais 3 . Estes conjuntos e todos os que são equicardinais a $\mathbb N$ chamam-se conjuntos numeráveis, isto é, que podem ser numerados usando apenas os números naturais e todos eles.

Não podemos desenvolver aqui a teoria dos números cardinais (finitos ou transfinitos) e das suas relações e operações mas vamos citar alguns resultados importantes demonstrando alguns.

a)
$$A \text{ infinito} \Rightarrow \overline{\overline{A}} \geq \overline{\overline{\mathbb{N}}}$$

Suponhamos que existe $b: A \to A^* \subset A$. $A \setminus A^*$ tem pelo menos um elemento, a_1 . Seja $a_2 = b(a_1), a_3 = b(a_2), \ldots$ e em geral $a_{n+1} = b(a_n)$.

Mostremos que estes elementos são todos distintos.

Com efeito, se não fossem todos distintos, pelo príncipio de boa ordem haveria um índice m que seria o menor índice tal que

$$\exists_{n>m} \ a_m = a_n.$$

De n>m deduz-se sucessivamente n>1, $a_n=b(a_{n-1}),$ $a_n\in A^*$ (por ser imagem na bijecção b), $a_m\in A^*$ (por ser $=a_n$), $a_m=b(a_{m-1}),$ $b(a_{m-1})=b(a_{n-1})$ e $a_{m-1}=a_{n-1}$ por ser b bijectiva. Mas isto contraria a hipótese de ser m o menor índice, tal que

$$\exists_{n>m} a_m = a_n.$$

b)
$$\overline{\overline{A}} > \overline{\overline{\mathbb{N}}} \Rightarrow A \text{ infinito}$$

Seja i uma injecção: $\mathbb{N} \to A$. i é também uma bijecção $i: \mathbb{N} \to i(\mathbb{N})$ que tem uma inversa $i_1:i(\mathbb{N}) \to \mathbb{N}$.

 $^{^3\}acute{\rm E}$ o chamado paradoxo de Galileu: paradoxo, porque contradiz o axioma "a parte é menor que o todo" que vem já dos geómetras gregos, e de Galileu porque nos tempos modernos foi o astrónomo e físico florentino Galileu Galilei (1564 - 1642), bem conhecido protagonista da polémica em torno do heliocentrismo, quem chamou a atenção para este facto. Mas descobriu-se recentemente que já na primeira metade do séc. XIV se tinham ocupado do assunto dois autores, Henry of Harclay, em Oxford, e Gregorio da Rimini.

3.2. CARDINAIS 39

Considere-se a aplicação $j: A \to A$ definida por

$$j(x) = \begin{cases} x & \text{se } x \in A \setminus i \text{ (N)} \\ i(i_1(x) + 1) & \text{se } x \in i \text{ (N)} \end{cases}$$

j não é sobrejectiva porque, no primeiro caso, $j(x) \in A \setminus i(\mathbb{N})$ e, no segundo, $i_1(x) + 1$ nunca toma o valor 1, de modo que $\in \mathbb{N} \setminus \{1\}$ e, como i é injectiva, $j(x) = i(i_1(x) + 1) \in i(\mathbb{N} \setminus \{1\}) = i(\mathbb{N}) \setminus \{i(1)\}$; logo, j(x) nunca toma valor i(1).

Por outor lado, j é injectiva, pois: se $j(x_1)$ e $j(x_2)$ resultam do primeiro caso $(x_1 \in x_2 \in A \setminus i(\mathbb{N})), j(x_1) = j(x_2) \Rightarrow x_1 = x_2$ porque $j(x_1) = x_1$, etc.; se $j(x_1)$ e $j(x_2)$ resultam do segundo caso,

$$j(x_1) = j(x_2) \Rightarrow i(i_1(x_1) + 1) = i(i_1(x_2) + 1) \Rightarrow i_1(x_1) + 1 = i_1(x_2) + 1 \Rightarrow$$

 $\Rightarrow i_1(x_1) = i_1(x_2) \Rightarrow x_1 = x_2$

em vista de serem i e i_1 injectivas.

Então j é uma injecção $A \to A \setminus \{i(1)\} \subset A$ e A é infinito.

De a) deduz-se

c) Se A é infinito, contém um subconjunto numerável.

De a) e b) deduz-se

d)
$$A \in \text{finito} \Leftrightarrow \overline{\overline{A}} < \overline{\overline{\mathbb{N}}}$$

Pode demonstrar-se que também

- e) A é finito $\Leftrightarrow \overline{\overline{A}}$ é um número natural, ou zero.
- f) $\mathbb{N} \times \mathbb{N}$ é numerável.
- g) A reunião de uma família numerável (isto é, cujo conjunto de índices é \mathbb{N}) de conjuntos numeráveis é um conjunto numerável.
- h) A reunião de um número finito de conjuntos numeráveis é um conjunto numerável.

i) A reunião de um conjunto finito com um conjunto numerável é um conjunto numerável.

A segunda destas propriedades pode demonstrar-se elementarmente do seguinte modo. $\mathbb{N} \times \mathbb{N}$ é o conjunto de todos os pares (m,n) em que m e n são naturais. Se dispusermos estes pares num quadro com uma infinidade numerável de linhas e uma infinidade numerável de colunas como o que é sugerido à esquerda da figura 3 e se os numerarmos como é indicado pela outra parte da mesma figura, segundo linhas oblíquas 4 fica definida uma bijecção de $\mathbb{N} \times \mathbb{N}$ para \mathbb{N} .

(1, 1)	(1, 2)	(1, 3)	(1,4)	• • •	1	2	4	7	11	• • •
(2,1)	(2, 2)	(2,3)	(2,4)		3	5	8	12		
(3, 1)	(3, 2)	(3, 3)	(3, 4)		6	9	13			
(4, 1)	(4, 2)	(4, 3)	(4, 4)		10	14				
					15					

Fig. 3

A propriedade g) pode demonstrar-se por um processo análogo:

Sendo $A_1 \cup A_2 \cup \ldots A_n \cup \ldots$ 5 uma reunião de conjuntos numeráveis, podemos dispôr os elementos de A_1 na primeira linha de um quadro como o dos pares (m, n) da figura 3, os de A_2 na segunda linha e assim por diante e enumerá-los de modo análogo ao que aí se indicou apenas com a precaução de desprezar os elementos que, por figurarem em mais de um dos conjuntos A_n , já tinham recebido numeração. A demonstração de h) é análoga à de g) e a de i) é muito fácil.

i) permite mostrar que é numerável o conjunto $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$; daí, usando h), deduz-se que é numerável \mathbb{Z} porque o conjunto dos inteiros negativos é evidentemente equicardinal a \mathbb{N} ; g) permite mostrar que é numerável o conjunto

 $^{^4}$ É possível indicar explicitamente uma função b(m,n) que defina uma bijecção $b: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ de modo que esta propriedade se demonstre sem recurso à figura.

 $^{^5{\}rm Modo}$ sugestivo de exprimir a reunião $\bigcup~A_i.$

 \mathbb{Q}^+ dos números racionais positivos (A_1 seriam as fracções de denominador 1, A_2 as de denominador 2, etc...) e daqui se deduz, usando outra vez i) e h), que \mathbb{Q} também é numerável.

Finalmente, mostremos que

$$j) \ \overline{\overline{\mathcal{P}(X)}} > \overline{\overline{X}}$$

Como a aplicação $x \mapsto \{x\}$ é uma injecção de X em $\mathcal{P}(X)$, $\overline{\overline{X}} \leq \overline{\overline{\mathcal{P}(X)}}$. Se fosse igual, existiria uma injecção $i : \mathcal{P}(X) \to X$.

Seja $C = \{i(A) : i(A) \notin A\}$. Se fosse $i(C) \in C$, i(C) seria um dos elementos i(A) com a propriedade $i(A) \notin A$, logo $i(C) \notin C$, contradição. Se fosse $i(C) \notin C$, i(C) teria aquela propriedade e $i(C) \in C$, outra contradição. Logo, não existe i.

3.3 Relações de ordem

Chama-se relação de ordem (parcial) em sentido lato num conjunto X uma relação binária R que tenha as seguintes propriedades:

- 1) $\forall_x R(x,x)$
- 2) $\forall_x \forall_y [R(x,y) \land R(y,x) \Rightarrow x = y]$
- 3) $\forall_x \forall_y \forall_z [R(x,y) \land R(y,z) \Rightarrow R(x,z)]$

A cada relação R deste tipo corresponde uma e uma só relação binária R', relação de ordem (parcial) em sentido restrito definida por R'(x,y) sse $R(x,y) \wedge x \neq y$, que tem as propriedades seguintes:

- 1') $\forall_x \sim R'(x,x)$
- $2') \ \forall_x \forall_y \sim [R'(x,y) \land R'(y,x)]$
- 3') $\forall_x \forall_y \forall_z [R'(x,y) \land R'(y,z) \Rightarrow R'(x,z)]$

como seria fácil de provar.

Reciprocamente, dada uma relação R' com as propriedades 1'), 2') e 3') e definindo R por meio de

$$R(x,y)$$
 sse $R'(x,y) \lor x = y$

vê-se que R tem as propriedades 1), 2) e 3).

Também a partir de uma relação R se pode definir a relação inversa $R^{-1}(x,y)$, que se verifica see R(y,x) e que é também uma relação de ordem parcial, em sentido restrito ou em sentido lato, conforme for R.

Chama-se conjunto ordenado (parcialmente) um conjunto em que esteja definida uma relação de ordem parcial (por exemplo, em sentido lato R e, portanto, também as respectivas relações de ordem parcial R', R^{-1} e $(R^{-1})'$).

Mais propriamente, um conjunto ordenado é o par (X, R) em que X é um conjunto e R uma relação de ordem parcial.

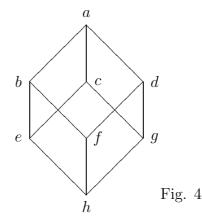
Exemplos:

1.°) O exemplo típico é o da relação $x \leq y$ no conjunto \mathbb{N} , \mathbb{Z} , \mathbb{Q} ou \mathbb{R} .

Por este motivo, em vez de R(x,y), escreveremos muitas vezes $x \leq y$, mesmo que não se trate destes conjuntos ordenados e que \leq tenha um significado diferente.

As respectivas relações R', etc., são <, \geq e >.

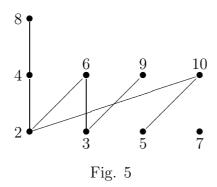
- 2.°) Uma recta horizontal, como conjunto dos seus pontos, ordenados por "x não está à direita de y". No conjunto dos pontos de um plano esta relação já não é de ordem parcial por se não verificar 2) nem 2').
- $3.^{\circ}$) N, com a relação "x é divisor de y".
- 4.°) Sendo E um conjunto, $\mathcal{P}(E)$ com a relação $X \subseteq Y$, em que $X \subseteq E$ e $Y \subseteq E$.
- 5.°) Considere-se o conjunto $\{a, b, c, \ldots, h\}$ de pontos indicados na figura 4:



com a relação " $x=y \lor x$ está abaixo de y e ligado a y por uma poligonal que não é intersectada em mais de um ponto por nenhuma recta horizontal". Verifica-se, por exemplo, R(h,h), R(h,e), R(h,c) mas não R(e,f) porque uma poligonal que una e a f, como e b f ou e h f já não tem a propriedade indicada.

Sendo finito o conjunto ordenado X, pode representar-se a relação de ordem R por um esquema deste tipo.

O exemplo $3.^{\circ}$, no conjunto $\{2, 3, \dots, 10\}$, tem o esquema



Dado um conjunto parcialmente ordenado (X, \leq) , define-se:

aé um elemento máximo (ou maximal) de X quando, com $x \in X, \ \forall_x \ (a \le x \Rightarrow a = x).$

Do mesmo modo, a é um elemento mínimo (ou minimal) de X quando $\forall_x \ (x \leq a \Rightarrow x = a)$.

Pode haver ou não e haver um ou mais elementos máximos e mínimos. Assim, considerem-se os seguintes exemplos:

- 6.°) Em (\mathbb{N}, \leq) não há máximos e há um único mínimo, 1.
- 7.°) Em (\mathbb{Z}, \leq) e no segundo dos exemplos anteriores não há máximos nem mínimos.
- 8.°) No exemplo a que se refere a figura 5 há cinco máximos, 6, 7, 8, 9 e 10 e 4 mínimos, 2, 3, 5 e 7.
- 9.°) Em $(\mathcal{P}(\{1,2,3\}),\subseteq)$ há um máximo, $\{1,2,3\}$, e um mínimo, \emptyset . O esquema deste conjunto ordenado é o da figura 4.

Desta noção de máximo e mínimo é preciso distinguir a seguinte:

Chama-se o maior (ou o máximo) elemento de X, se existir, ao elemento $a \in X$ tal que $\forall_x \ x \leq a$. Analogamente, a é o menor (ou o mínimo) elemento de X quando $\forall_x \ a \leq x$.

O maior e o menor elemento de X podem existir ou não: em (\mathbb{Z}, \leq) não existem; em (\mathbb{N}, \leq) existe só o menor elemento, 1; em $(\mathcal{P}\{1, 2, 3\}), \leq)$ $\{1, 2, 3\}$ é o maior elemento e \emptyset o menor.

a) O maior [menor] elemento de X, se existe é um máximo [mínimo] e o único máximo [mínimo].

Por exemplo, sendo a o maior elemento, $\forall_x \ x \leq a$. Então, se $a \leq x, a = x$, isto é, $\forall_x (a \leq x \Rightarrow a = x)$ e a é máximo.

Se fosse a' outro máximo, tinha de ser $a' \leq a$ (por ser a o maior) e $a' \leq a \Rightarrow a' = a$ por ser a' máximo; logo, a' = a.

Dado um subconjunto A do conjunto ordenado X, chama-se maiorante 6 de A, um elemento m de X tal que $\forall_{x \in A} \ x \leq m$; do mesmo modo, m é minorante de A quando $\forall_{x \in A} \ m \leq x$.

Como nas definições anteriores, pode haver ou não maiorantes e minorantes. E um ou mais.

Exemplos:

- 10.°) Em (\mathbb{Z}, \leq) o conjunto \mathbb{N} não admite maiorantes e tem muitos minorantes, como -4, 0 e até 1 (este por sinal $\in \mathbb{N}$).
- 11.°) No 5.° exemplo, o conjunto $A=\{b,c,d\}$ tem um só maiorante, a, que $\not\in A$ e 4 minorantes, e,f,g,h.

Se $A = \emptyset$, como $\forall_{x \in A} \ x \le m$ significa $\forall_x (x \in A \Rightarrow x \le m)$ e a hipótese $x \in A$ é sempre F, qualquer $m \in X$ é maiorante (e, analogamente, é minorante) de A.

Por vezes usam-se as seguintes abreviaturas:

Em vez de $\forall_{x \in A} \ x \leq m$ escreve-se $A \leq m$ e, analogamente se interpretam $A < m, \ A \geq m, \ A > m$. Se $\forall_{x \in A} \ \forall_{y \in B} \ x \leq y$, escreve-se $A \leq B$ e do mesmo modo A < B, etc.⁷.

 $^{^6}$ Melhor que "majorante" pois todas as palavras portuguesas da família de "maior" se escrevem com i, excepto "major".

⁷Não são relações de ordem em $\mathcal{P}(X)$.

Sendo (X, \leq) um conjunto ordenado e $A \subseteq X$, A e a restrição ⁸ da relação \leq ao conjunto A definem um novo conjunto ordenado. Pode, por exemplo, falar-se do maior dos elementos de A. E facilmente se vê que

b) O maior [menor] dos elementos de A é maiorante [minorante] de A (no conjunto ordenado (X, \leq)).

Considere-se agora o conjunto M_A dos maiorantes [minorantes] de A. Se existe o menor [maior] elemento de M_A , chama-se-lhe supremo ou extremo superior [ínfimo ou extremo inferior] de A e representa-se por sup A [inf A]. Pode existir ou não, mas se existir é único em virtude de a).

Exemplos:

- 12.°) \mathbb{N} em (\mathbb{Z}, \leq) não tem supremo (porque não tem maiorantes) mas tem ínfimo, que é 1 e $\in \mathbb{N}$.
- 13.°) $\{b, c, d\}$, do exemplo 11.°, tem supremo, a, que $\notin \{b, c, d\}$ mas não tem ínfimo.
- 14.°) Considere-se uma recta horizontal de que se excluiu um ponto, p, e ordene-se este conjunto, X, pela relação do exemplo 2.° (figura 6).

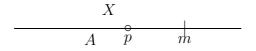


Fig. 6

Seja $A = \{x : x \text{ está à esquerda de } p\}$. Os maiorantes de A são todos os pontos de X que estão à direita de p (p não é maiorante porque não faz parte de X). Mas não existe sup A porque, dado um dos maiorantes, m, o ponto médio do segmento pm ainda é maiorante de A e está à esquerda de m.

Seja A uma parte do conjunto parcialmente ordenado X e M_A o conjunto dos seus maiorantes.

Então:

 $^{^8}$ Isto é, a relação $\leq (x,y)$ que se verifica sse $x\in A,\ y\in A$ e $x\leq y.$ Salvo indicação em contrário, quando se considera como conjunto ordenado um subconjunto A de (X,\leq) supõe-se que se toma para relação de ordem em A esta restrição de \leq .

a) m é o maior dos elementos de A sse $m \in A \cap M_A$.

Pois a definição de "maior dos elementos" foi que $m \in A$ e $\forall_{x \in A} \ x \leq_A m$ sendo \leq_A a restrição da relação \leq ao conjunto A.

Mas, entre elementos x e m de A, $x \leq_A m$ sse $x \leq m$, sendo pois m o maior dos elementos de A sse $m \in A \land \forall_{x \in A} x \leq m$, isto é, sse $m \in A \cap M_A$.

- a') m é o menor dos elementos de A sse $m \in A$ e m é minorante de A.
- b) Se $m \in A \cap M_A$, $m = \sup A$

m é maiorante de A. Para qualquer outro maiorante, m', $\forall_{x \in A} x \leq m'$, logo, porque $m \in A$, $m \leq m'$, isto é, m é minorante de M_A e, como $\in M_A$ de acordo com a') é o menor dos maiorantes de A, isto é, o sup A.

- b') Se algum minorante de A pertencer a A é o inf A.
- c) Se existe inf M_A , existe sup A e é igual. E reciprocamente.

Seja $c = \inf M_A$.

Ora

 $\forall_{a \in A} \ a \leq M_A \ (a \text{ \'e minorante de } M_A),$

donde

$$\forall_a \ a \leq c$$

por ser c o maior dos minorantes de M_A .

Logo, $c \in M_A$, mas como é minorante de M_A , por a'), c é o menor elemento de M_A , isto é, sup A.

Reciprocamente, se $c = \sup A$, é o menor elemento de M_A , logo, por a') e b'), é o inf M_A .

c') Se existe o supremo dos minorantes de A, existe inf A e é igual. E reciprocamente.

Facilmente se vê que

- d) $m > A \Leftrightarrow m > \sup A \in m < A \Leftrightarrow m < \inf A$.
- e) Se $A \subseteq B$, sup $A \le \sup B$ caso estes supremos existam.

De facto, $x \in A \Rightarrow x \in B$.

Logo, $\forall_{x \in B} x \leq m \Rightarrow \forall_{x \in A} x \leq m$.

Logo, $m \in M_B \Rightarrow m \in M_A$, isto é, $M_B \subseteq M_A$.

Como sup $B \in M_B$, sup $B \in M_A$, e como sup A é o menor elemento de M_A , sup $A \leq \sup B$.

- e') Se $A \subseteq B$ e inf A e inf B existem, inf $A \ge \inf B$.
- f) Se $A \neq \emptyset$ e inf A e sup A existem, inf $A \leq \sup A$ porque $\exists_a a \in A$ e inf $A \leq a \leq \sup A$.

Mas é costume considerar sup \emptyset igual ao menor dos elementos de X e inf \emptyset igual ao maior, se estes elementos existirem (porque, por exemplo, $\forall_{m \in X} (x \in \emptyset \Rightarrow x \leq m)$, de modo que $M_{\emptyset} = X$).

Seja $f:X\to Y$, em que X é um conjunto qualquer e Y um conjunto ordenado pela relação \leq . Seja $A\subseteq X$.

f(A), como parte de Y, pode ter ou não sup e inf, que se chamam então supremo ou ínfimo de f em A e se representam por sup f e $\inf_A f$ ou $\sup_{x \in A} f(x)$ e $\inf_{x \in A} f(x)$.

Se em particular este supremo ou este ínfimo pertencerem a f(A), isto é, forem valores efectivamente tomados pela função f em A, chamam-se o máximo absoluto 9 de f em A e o mínimo absoluto de f em A.

Por exemplo, sendo $f:R\to R$ dada por $x\mapsto x^2$ e A=[-1,2[,f(A) é $[0,4[,\inf_A f=0,\sup_A f=4$ e 0 é também o mínimo absoluto de f em A.

g)
$$A \subseteq B \Rightarrow \sup_{A} f \leq \sup_{B} f \wedge \inf_{A} f \geq \inf_{B} f$$

Basta atender a e) e e') e a que $f(A) \subseteq f(B)$.

h) Se
$$\forall_{x \in A} f(x) \leq g(x)$$
 e se $\sup_{A} f$ e $\sup_{A} g$ existem, $\sup_{A} f \leq \sup_{A} g$.

Porque a hipótese implica que qualquer maiorante de g(A) é maiorante de f(A), isto é, $M_{g(A)} \subseteq M_{f(A)}$, donde inf $M_{f(A)} \le \inf M_{g(A)}$ e estes ínfimos são precisamente sup f e sup g.

 $^{^{9}}$ Mesmo que, para abreviar, se diga apenas "o máximo de f em A" distingue-se esta noção da de "um máximo de f(A)" porque agora se usa o artigo definido.

h') Sob a mesma condição, se inf f e inf g existem, inf $f \leq \inf_{A} g$.

As noções de supremo, máximo, etc., de uma função aplicam-se naturalmente a famílias $(x_i : i \in I)$, bastando que $x_i \in X$, parcialmente ordenado.

Em particular o conjunto dos índices pode ser um produto cartesiano $I \times J$, isto é, pode tratar-se de um aplicação $x: I \times J \to X$, dada por $(i,j) \mapsto x_{ij}$.

Sem demonstração, citaremos uma propriedade importante.

i) Se $\forall_{j \in J} \sup_{I \in I} x_{ij}$ existe, então $\sup_{(i,j) \in I \times J} x_{ij}$ existe sse existe $\sup_{j \in J} x_{ij}$ e, nesse caso, estes dois supremos coincidem.

Seja agora $f:X\to Y$ uma aplicação entre dois conjuntos parcialmente ordenados por certas relações de ordem que, para simplificar, designaremos – ambas – pelo mesmo sinal <.

Diz-se que f é crescente em sentido lato quando

$$\forall_x \ \forall_y \left[x < y \Rightarrow f(x) \le f(y) \right]$$

Analogamente, diz-se que f é crescente em sentido restrito, decrescente em sentido lato e decrescente em sentido restrito quando se verificam propriedades análogas em que apenas a desigualdade $f(x) \leq f(y)$ é substituída, respectivamente por f(x) < f(y), $f(x) \geq f(y)$ e f(x) > f(y).

No primeiro e no terceiro casos diz-se, ainda, que f é monótona em sentido lato e que é monótona em sentido restrito nos outros dois.

É claro que a função crescente em sentido restrito é também crescente em sentido lato, etc.

Se f é crescente e decrescente em sentido lato, $\forall_x \forall_y [x < y \Rightarrow f(x) = f(y)]$, de modo que f é constante.

15.°) Exemplos de aplicações $f: \mathbb{R} \to \mathbb{R}$ classificadas quanto ao crescimento:

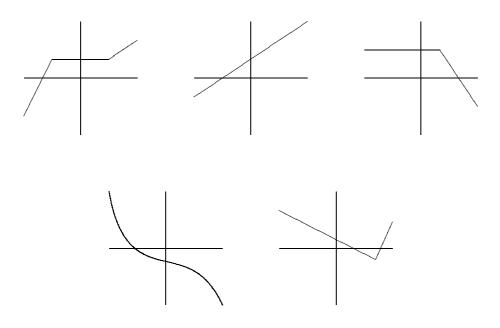


Fig. 7

Num conjunto parcialmente ordenado, X, dados dois elementos a e b, chamam-se intervalos de extremos a e b (por esta ordem) os conjuntos

 $[a,b] = \{x: a \leq x \land x \leq b\} \ ^{10} \quad \text{intervalo fechado}$ $[a,b[=\{x: a < x \land x < b\} \quad \text{intervalo aberto}$ $[a,b[=\{x: a \leq x \land x < b\} \quad \text{intervalo fechado à esquerda e aberto à direita}$ $[a,b] = \{x: a < x \land x \leq b\} \quad \text{intervalo aberto à esquerda e fechado à direita}$

Consideram-se ainda os intervalos ilimitados $[a, \to [,]a, \to [,] \leftarrow, b]$, $[a, \to [,]a, \to [,$

$$\{x : a \le x\}, \{x : a < x\}, \{x : x \le b\}, \{x : x < b\} \in X$$

16.°) Exemplos de intervalos no conjunto ordenado do exemplo 5.°.

$$[e,a] = \{e,b,c,a\}, \quad [g,a[=\{g,c,d\}, \quad]f,c[=\emptyset, \quad [f,\to [=\{f,b,d,a\}, \\ [f,f] = \{f\}, \quad [f,h] = \emptyset, \quad] \leftarrow, h[=\emptyset]$$

Facilmente se vê que os intervalos $[a, \to [e] \leftarrow, b]$ e, se $a \le b$, os intervalos [a, b], [a, b[e] a, b] não podem ser vazios.

Se a < b e a < b e a < b e a < b e vazio, diz-se que $a \in b$ são consecutivos.

Consideremos agora diversas espécies particulares de conjuntos ordenados.

Diz-se que X, ordenado por \leq , é filtrante à direita [esquerda] quando

$$\forall_x\,\forall_y\,\exists_m\,(x\leq m\wedge y\leq m)\;[\forall_x\,\forall_y\exists_m\,(m\leq x\wedge m\leq y)],$$

isto é, quando dois quaisquer elementos possuem um maiorante [minorante] comum.

j) Num conjunto filtrante à direita [esquerda], qualquer elemento máximo é o maior [menor] elemento.

Seja a o máximo.

$$\forall_x \exists_m (a \leq m \land x \leq m).$$

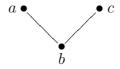
Como a é um máximo,

$$a \le m \Rightarrow a = m$$
,

donde

$$\forall_x \ x < a.$$

- 17.°) O conjunto do exemplo 3.° é filtrante à direita (por exemplo m= m.m.c. (x,y)) e à esquerda (m=1).
- 18.°) O conjunto parcialmente ordenado a, b, c representado por



é filtrante à esquerda mas não à direita.

Diz-se que X é um reticulado quando, dados dois quaisquer elementos, x e y, existem

$$\sup\{x,y\}$$
 e $\inf\{x,y\}$

Exemplo:

19.°) $(\mathcal{P}(E), \subseteq)$ é um reticulado.

Dados A e B, contidos em E, os maiorantes de A, B, isto é, os subconjuntos de E que contêm A e B são $A \cup B$ e todos os conjuntos que contêm $A \cup B$. $A \cup B$ é, pois, um maiorante \leq que qualquer outro (isto é, \subseteq em qualquer outro).

Logo, $A \cup B = \sup\{A, B\}$ e analogamente $\inf\{A, B\} = A \cap B$, no conjunto ordenado que estamos considerando.

1) Num reticulado a intersecção de dois intervalos é um intervalo.

Bastará analisar o que se passa num dos casos; os outros são análogos.

$$[a', b[\cap]a'', \to [= \{x : a' \le x \land x < b\} \cap \{x : a'' < x\}$$

$$= \{x : a' \le x \land x < b \land a'' \le x \land a'' \ne x\}$$

$$= \{x : a' \le x \land a'' \le x \land a'' \ne x \land x < b\}.$$

Seja $a = \sup \{a', a''\}.$

Então

$$a' \le x \land a'' \le x \Leftrightarrow \{a', a''\} \le x \Leftrightarrow a \le x$$

(de acordo com d). Logo, a intersecção daqueles intervalos é igual a

$$\{x : a \le x \land a'' \ne x \land x < b\} = [a, b] \setminus \{a''\}.$$

Como $a'' < a \lor a'' = a$, a mesma intersecção ou é [a, b[ou]a, b[. Chama-se denso um conjunto parcialmente ordenado, tal que

$$\forall_a \forall_b (a \leq b \Rightarrow]a, b \neq 0),$$

isto é, onde não há elementos consecutivos.

Por exemplo, (\mathbb{Q}, \leq) é denso, porque, dados

$$\frac{m_1}{n_1} \ e \ \frac{m_2}{n_2},$$

a sua média aritmética é ainda $\in \mathbb{Q}$ e pertence ao intervalo aberto determinado por aqueles números; (\mathbb{Z}, \leq) não é denso porque]2,3[, por exemplo, é vazio.

Chama-se completo um conjunto parcialmente ordenado que satisfaz uma das três condições seguintes (em que A e B designam subconjuntos do c.p.o. X)

- 1) $\forall_A (A \neq \emptyset \land A \text{ maiorado} \Rightarrow \exists_s \ s = \sup A)$
- 2) $\forall_B (B \neq \emptyset \land B \text{ minorado} \Rightarrow \exists_i \ i = \text{inf } B)$
- 3) $\forall_A \forall_B (A \neq \emptyset \land B \neq \emptyset \land A \leq B \Rightarrow \exists_x A \leq x \leq B)$

(diz-se que entre A e B, com $A \leq B$, há uma lacuna se $\sim \exists_x A \leq x \leq B$).

Estas três condições são equivalentes entre si, bastando verificar-se uma delas para que as outras se verifiquem (e o c.p.o. seja completo). Demonstração:

Vejamos que 1) \Rightarrow 3). Se A e B satisfazem a hipótese de 3), como $B \neq 0$, $\exists_b (b \in B \land A \leq b)$ (porque $A \leq B$) de modo que A é maiorado; por 1) existe $s = \sup A$, o que implica, conforme a definição de $\sup, s \in M_A$ e $s \leq M_A$, donde, respectivamente $A \leq s$ e $s \leq B$ (porque todos os elementos de B pertencem a M_A por ser $A \leq B$); s é então o x a que se refere a tese de 3).

Vejamos que $3) \Rightarrow 2$).

Seja $B \neq 0$ e minorado e seja $A = \{x : x \text{ \'e minorante de } B\}$. $A \neq 0$ porque B é minorado e $A \leq B$, dada a definição de A.

Então, por 3), $\exists_i A \leq i \leq B$. $A \leq i$ significa que $i \notin \geq$ qualquer minorante de B; $i \leq B$ significa ser i minorante de B.

Logo, $i = \inf B$.

Vejamos que $2) \Rightarrow 1$).

Se A satisfaz as hipóteses de 1), A maiorado, donde $M_A \neq 0$, e $A \neq 0$, de modo que M_A minorado (por ser $A \leq M_A$).

Então, por 2), existe inf M_A , mas, como se viu em c), existe então sup A.

- 20.°) Exemplo de um c.p.o. completo é (\mathbb{Z}, \leq) pois se A é um conjunto de inteiros não vazio $(\exists_{n_1} n_1 \in A)$ e maiorado $(\exists_{n_2} A \leq n_2)$, como $n_1 \leq n_2$ e entre n_1 e n_2 há apenas um número finito de inteiros, pode verificar-se um a um se $\in A$ ou $\notin A$ e encontrar-se assim o maior dos elementos de A, que é o sup A.
- 21.°) Exemplo de um c.p.o. não completo é o exemplo 14.°, acima mencionado, por não existir sup A como logo se vê.

Há aqui, pois, uma lacuna entre A e $X \setminus A$ como a figura 6 sugere.

22.°) Outro exemplo de c.p.o. não completo é (\mathbb{Q}, \leq) .

Seja $A=\{q:q>0 \land q^2<2\}.$ $1\in A,$ logo $A\neq 0.$ $q\in A\Rightarrow q\leq 2,$ pois $q>2\Rightarrow q^2>4;$ logo $A\leq 2.$

Se existisse, em \mathbb{Q} , $s = \sup A$, teria de ser $1 \le s \le 2$.

Vejamos o valor de s^2 .

Se $s^2 = 2$, seja $s = \frac{m}{n}$, irredutível.

Então $\frac{m^2}{n^2} = 2$, $m^2 = 2$ n^2 , m par, m = 2 p, 4 $p^2 = 2$ n^2 , 2 $p^2 = n^2$ e n par contra a hipótese de ser $\frac{m}{n}$ irredutível.

Se $s^2 < 2$, como $s^2 \ge 1$, $0 < 2 - s^2 \le 2 - 1 = 1$.

Então,

$$(s + \frac{2 - s^2}{5})^2 = s^2 + \frac{2}{5} s (2 - s^2) + \frac{(2 - s^2)^2}{25}$$

$$\leq s^2 + \frac{4}{5} (2 - s^2) + \frac{2 - s^2}{25}$$

(atendendo a que $s \le 2$ e $2 - s^2 \le 1$), donde

$$(s + \frac{2-s^2}{5})^2 = s^2 + \frac{21}{25}(2-s^2) < s^2 + (2-s^2) = 2.$$

O racional $s+\frac{2-s^2}{5}\in A$, não podendo s ser maiorante de A.

Se $s^2 > 2$, $0 \le s^2 - 2$, e

$$(s - \frac{s^2 - 2}{5})^2 = s^2 - \frac{2}{5} s (s^2 - 2) + \frac{(s^2 - 2)^2}{25}$$
$$\ge s^2 - \frac{4}{5} (s^2 - 2)$$

porque $s \leq 2$, vindo

$$(s - \frac{s^2 - 2}{5})^2 > s^2 - \frac{5}{5}(s^2 - 2) = 2.$$

Como $s^2 \le 4$, $\frac{s^2 - 2}{5} \le \frac{2}{5} < s \in s - \frac{s^2 - 2}{5}$ é positivo.

Logo,
$$s - \frac{s^2 - 2}{5} \not\in A$$
 e, se $q > s - \frac{s^2 - 2}{5}$ também $q > 0$ e $q^2 > 2$, donde $q \not\in A$.

Então,
$$q \in A \Rightarrow q \le s - \frac{s^2 - 2}{5}$$
 e $s - \frac{s^2 - 2}{5} \in M_A$ sendo $< s$, o que contradiz $s = \sup A$.

Finalmente, um conjunto parcialmente ordenado (X, R) diz-se totalmente ordenado ou linearmente ordenado se R satisfaz

4)
$$\forall_x \forall_y [R(x,y) \lor R(y,x)]$$

não podendo, pois, existir em X elementos incomparáveis (tais que nem x < y nem y < x).

O conjunto do exemplo 5.º não é linearmente ordenado. Os conjuntos \mathbb{N}, \mathbb{Z} e \mathbb{Q} são-no.

Se R satisfaz esta condição, a respectiva relação de ordem em sentido restrito, R', satisfaz a propriedade tricotómica:

 $\forall_x \forall_y$ Verifica-se sempre uma e uma só das três condições seguintes:

$$R'(x,y), x = y, R'(y,x).$$

De facto, se $R(x,y) \vee R(y,x)$, há três casos possíveis:

$$R(x,y) \wedge R(y,x)$$
, donde, por 2), $x = y$;

 $R(x,y) \wedge \sim R(y,x)$, donde R'(x,y), porque $\sim R(y,x)$ implica, em vista de 1), $x \neq y$; e analogamente, se $\sim R(x,y) \wedge R(y,x)$.

Em sentido inverso, se R' é tricotómica, a respectiva relação R satisfaz 1) e 2), como facilmente se vê, de modo que se pode caracterizar um conjunto totalmente ordenado por meio de uma relação de ordem (em sentido restrito) que seja, apenas, transitiva e tricotómica.

Algumas propriedades dos c.t.o.

m) Se (X, \leq) é totalmente ordenado, é um reticulado.

Pois, dados $a \in b$, se $a \le b$, sup $\{a, b\} = b$ e inf $\{a, b\} = a$, e inversamente se $a \ge b$.

n) Uma aplicação, f, monótona em sentido restrito de um conjunto totalmente ordenado X num conjunto parcialmente ordenado, Y, é injectiva e a respectiva aplicação $f^{-1}: f(X) \to X$ é crescente em sentido restrito ou decrescente em sentido restrito conforme for f.

Supondo f crescente,

$$x \neq y \Rightarrow \left\{ \begin{array}{l} x < y \Rightarrow f(x) < f(y) \\ \text{ou} \\ x > y \Rightarrow f(x) > f(y) \end{array} \right\} \Rightarrow f(x) \neq f(y)$$

de modo que f é injectiva. Inversamente, dados dois elementos de f(X), f(x) e f(y), $f(x) \neq f(y) \Rightarrow x \neq y$ e o esquema anterior mostra que

$$f^{-1}[f(x)] = x \stackrel{\leq}{>} y = f^{-1}[f(y)]$$
 conforme $f(x) \stackrel{\leq}{>} f(y)$.

o) Num conjunto totalmente ordenado, X, dado um subconjunto, A,

$$s = \sup A \Leftrightarrow s \ge A \land \forall_x (x < s \Rightarrow \exists_{a \in A} x < a \le s)$$

De facto, se $s = \sup A$, $e \ge A$ e sendo x < s, $e \ge A$, logo $\exists_{a \in A} e \ge a$. Ora, sendo $e \ge A$ totalmente ordenado,

$$\forall_x (\sim x \ge a \Leftrightarrow x < a)$$

de modo que ¹¹ $\exists_{a \in A} x < a \in a \le s$ por ser $s = \sup A$.

Reciprocamente $x < s \Rightarrow \exists_a x < a$ significa $x < s \Rightarrow \sim x \geq A$, donde $x \geq A \Rightarrow \sim x < s \Rightarrow x \geq s$. Logo, s é minorante de M_A , mas como $s \geq A$, $s \in M_A$ e é o sup A.

Analogamente, num conjunto totalmente ordenado

$$i = \inf A \Leftrightarrow i \leq A \land \forall_x (x > i \Rightarrow \exists_a x > a \geq i).$$

The $\forall_x (\sim x \geq a \Leftrightarrow x < a)$ deduz-se sucessivamente $\forall_x (\sim \sim x \leq a \Leftrightarrow \sim x < a)$, e por 3) da pág. ??, $\forall_x \sim \sim x \geq a \Leftrightarrow \forall_x \sim x < a$, e finalmente $\sim \forall_x \sim \sim x \geq a \Leftrightarrow \sim \forall_x \sim x < a$, isto é, $\exists_x \sim x \geq a \Leftrightarrow \exists_x x < a$.