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Abstract. It is well known that categorical injective partially ordered
sets and topological T0-spaces are complete posets and continuous lat-
tices, respectively. We analyse their fibrewise counterparts, that is (cat-
egorical) injective monotone maps between posets and (categorical) in-
jective continuous maps between T0-spaces, presenting characterizations
of these maps and establishing parallelisms between them.
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1. Introduction

A partially ordered set X is said to be injective if any monotone map g : A !
X admits an extension to B whenever A ✓ B (as a substructure); that is, there
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exists g : B ! X making the diagram

A� _

i
✏✏

g
// X

B
g

>>

commutative. It is easy to check that this condition is equivalent to complete-
ness of X.

If one considers the fibrewise notion of injective poset one says that a mono-
tone map f : X ! Y is injective if it is injective as an object of the category of
monotone maps over Y . This means that, given any other object over Y , that
is a monotone map b : B ! Y , A ✓ B and a monotone map g : A ! X over Y ,
so that the following diagram

A� _

i
✏✏

g
// X

f

✏✏

B
b
// Y

commutes, there exists a monotone map g : B ! X extending g, i.e. g · i = g,
over Y , meaning f · g = b. That is, the following diagram is commutative

A� _

i
✏✏

g
// X

f

✏✏

B

g
>>

b
// Y.

Injective monotone maps in the category PoSet, of posets and monotone maps,
have interesting properties, that were studied in [10, 1]. Namely they can be
seen as topological functors through the identification of posets and monotone
maps as (posetal) categories and functors. Indeed, together with embeddings,
injective monotone maps form a weak factorization system, which turns out to
be the restriction to PoSet of an interesting weak factorization system in the
category of small categories and functors (see [1] for details).

Every poset can be endowed with its Alexandro↵ topology : for every x 2 X,

{x} = #x = {x0 | x0  x},
and, for every A ✓ X,

A =
S

x2A
{x}.

Monotone maps are continuous with respect to these topologies, so that this
identification defines a functor

PoSet �
� Alex

// Top0.

The order of the poset X is the specialization order of the space Alex(X). We
recall that for every T0-space X one can define its specialization order , given,



Fibrewise complete posets and continuous lattices 71

for x, y 2 X, by:

x  y () x 2 {y}
()

·
y! x

() 8U 2 O(x) y 2 U

(where
·
y is a net constantly equal to y, and O(x) is the set of open neighbour-

hoods of x). Since the topology of every Alexandro↵ T0-space is completely
determined by its specialization order and continuity of maps between Alexan-
dro↵ spaces is equivalently to monotonicity, injectivity for spaces in the cate-
gory of Alexandro↵ T0-spaces and continuous maps means again completeness
(as posets).

General injective T0-spaces are more interesting: as Scott showed in [9], a
T0-space is injective if, and only if, it is a retract of a power of the Sierpinski
space, and if, and only if, its specialization order makes it a continuous lattice.
Characterizations of injective continuous maps were obtained much later (see
[2, 3, 4]). In [2] the authors make use of a space of continuous sections, that we
recall in Section 3, the characterization obtained in [3] is based on the fact that
injective continuous maps are algebras for the fibrewise filter monad (see also
[8]), while the characterizations presented in [4] deal directly with properties
of the topologies, very much like the characterizations of injective monotone
maps of [1, 10]. All the three approaches show that, as expected, topology – or
‘infinite’ convergence – creates a severe obstacle that makes the study of these
maps much more demanding.

In this paper we recall characterizations of both injective monotone maps
and injective continuous maps and compare them, pointing out the role of
convergence.

2. Injective morphisms versus convergence

The characterizations of Theorems 1 and 2 are due to J. Adámek and can
be found in [10].

Theorem 1. A monotone map f : X ! Y is injective in PoSet if, and only
if:

(inj) for each y 2 Y , Xy = f�1(y) is injective ( i.e. a complete poset);
(fib) f is a fibration;

(cofib) f is a cofibration.

Here by fibration is meant that, for each x 2 X and y 2 Y with y  f(x),
there exists xy = max{x0 2 X | x0  x and f(x0)  y} 2 Xy; this can be
depicted by:

max{x0 2 X | x0  x, f(x0)  y} = (9) xy_

✏✏

 x_

✏✏

(8)

(8) y  f(x)
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Dually f is a cofibration if, for each x 2 X and y 2 Y with f(x)  y, there
exists xy = min{x0 2 X | x  x0 and y  f(x0)} 2 Xy:

(8) x (9)_

✏✏

xy_

✏✏

=

f(x)  y (8)

min{x0 2 X | x0 � x, f(x0) � y}

Theorem 2. A monotone map f : X ! Y is injective in PoSet if, and only
if:

(inj) for each y 2 Y , Xy is injective;
(exp) f is convex;
(ho) f is homogeneous;

(coho) f is co-homogeneous.

Here a monotone map f : X ! Y is called convex if it has the following
interpolation property : for each x0  x00 in X and y 2 Y with f(x0)  y 
f(x00), there exists x 2 Xy with x0  x  x00:

x0
_

✏✏





x00
_

✏✏

(9) x



_

✏✏

f(x0)  y  f(x00)

We remark that this condition is equivalent to f being exponentiable (see, for
instance, [10, 7]), reason for the use of (exp) to label it. By homogeneous
monotone map it is meant that, whenever are given y  y0 in Y and families
(xi)i2I and (x0

i)i2I in Xy and Xy0 respectively, if, for every i 2 I, xi  x0
i, then

W

y
xi 

W

y0
x0
i, where

W

y
xi is the join of (xi) in the complete posetXy. The notion

of co-homogeneous monotone map is defined dually. We point out that in [10,
Proposition 3(iii)] co-homogeneity is missing. But it is necessary to add it to
(inj), (exp) and (ho) to assure that f is injective. For instance, if we consider
the posets Y = {0, 1}, with 0  1, X = {0, 1} ⇥ {2, 3}, with (0, 2)  (0, 3),
(1, 2)  (1, 3) and (0, 2)  (1, 2), and the first projection f : X ! Y . Then f
has complete fibres, it is convex and homogeneous, but it is not a cofibration:
f(0, 3) = 0  1 but the set {x 2 X | (0, 3)  x and 1  f(x)} = ; has no
minimum.

From the characterizations of injective continuous maps in T0-spaces ob-
tained in [4] we can derive the next two theorems, which can be compared to
the former results for monotone maps.

Theorem 3. A continuous map f : X ! Y is injective in Top0 if, and only
if:

(inj) for each y 2 Y , Xy is injective ( i.e. a continuous lattice);
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(fib+) for each net (x�)�2⇤ in X and y 2 lim(f(x�)) in Y , there exists xy =
max{x0 2 X | x� ! x0 and f(x0)  y} 2 Xy;

(cofib+) for each x 2 X and y 2 Y with f(x)  y, there exists xy 2 Xy such
that x  xy and, for each net (x�) in Xy0 with y  y0, if x� ! x then
x� ! xy;

(nho) for each x 2 X and each U 2 O(x), there exist a continuous section s
of f and W 2 O(f(x)) such that XW \ {x0 2 X | x0 � s(f(x0))} is a
neighbourhood of x contained in U .

This is the closest counterpart to Theorem 1 we could obtain. Conditions
(fib+) and (cofib+) are (stronger) versions of (fib) and (cofib) that use non-
principal convergence. We need the extra condition (nho), involving continuity,
but this is not surprising when one passes from finite to infinite structures, or
from order to topology.

Theorem 4. A continuous map f : X ! Y is injective in Top0 if, and only
if:

(inj) for each y 2 Y , Xy is injective;
(exp) f is exponentiable;
(ho+) for each set S of continuous sections, the section s : Y ! X, defined by

s(y) =
W

y
{s(y) | s 2 S}, is continuous;

(coho�) for each x 2 X and y 2 Y with f(x)  y, there exists xy = min{x0 2 X |
x0 � x, f(x0) = y}.

3. Injective morphisms versus the space of continuous sections

To exploit further the role of continuous sections of an injective continuous
map we start by defining the topological space of continuous sections of f :

Sec(f) = {s : Y ! X continuous | f · s = 1Y },
endowed with the subspace topology induced by the inclusion

Sec(f) �!
Q

y2Y
Xy

s 7�! (s(y))y2Y .

Using results of [2], in [4] it is shown that:

Proposition 5. If f : X ! Y is injective in Top0, then:

(inj⇤) Sec(f) is injective.

This leads to a new characterization of injectivity, also established in [4].

Theorem 6. A continuous map f : X ! Y is injective in Top0 if, and only
if:

(inj) for each y 2 Y , Xy is injective;
(ho+) for each set S of continuous sections, the section s : Y ! X, defined by

s(y) =
W

y
{s(y) | s 2 S}, is continuous;
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(sec) the continuous map h1X , fi : X ! X ⇥ Y is a section over Y , that is
there is a continuous map r : X ⇥ Y ! X with r · h1X , fi = 1X and
making the diagram

X
h1X ,fi

//

f
  

X ⇥ Y
r

oo

⇡Y
{{

Y

commute.

As already observed in [2, Theorem 2.1], this characterization interpreted in
PoSet gives:

Theorem 7. A monotone map f : X ! Y is injective in PoSet if, and only
if:

(inj) for each y 2 Y , Xy is injective;
(sec) the monotone map h1X , fi : X ! X ⇥ Y is a section over Y .

4. Injective morphisms versus topological functors

Finally we mention a characterization of injective monotone maps as topo-
logical functors, that was obtained in [1, Proposition 2.5] in the realm of weak
factorization systems.

Theorem 8. The following conditions are equivalent, for a monotone map
f : X ! Y between partially ordered sets:

(i) f , considered as a functor between the posetal categories X and Y , is
topological;

(ii)(adj) f has a left and a right adjoint;
(exp) f is convex;
(inj) for each y 2 Y , Xy is a complete poset;

(emb) for each y 2 Y , the embedding Xy ,! X preserves non-empty joins
and meets.

(iii) f is an injective morphism in PoSet.

This result suggests some interesting properties of injective continuous maps.
Indeed, if one extends the specialization order to continuous maps between T0-
spaces, so that, for continuous maps f, g : X ! Y ,

f  g () 8x 2 X (f(x)  g(x)),

then one has the notion of adjunction available. That is, for f : X ! Y and
g : Y ! X, f is said to be a left adjoint to g (and g a right adjoint to f) if

8x 2 X 8y 2 Y (f(x)  y () x  g(y)).

The following result is shown in [4], and in fact follows easily from Theorems 4
and 6.
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Proposition 9. If the continuous map f : X ! Y is injective in Top0, then:

(adj) f has a left and a right adjoint.

As a curiosity we add the following result.

Proposition 10. If the continuous map f : X ! Y in Top0 is a surjection
and has injective fibres, then:

(1) f is closed () f has a left adjoint () the minimum section of f is
continuous;

(2) f is open () f has a right adjoint () the maximum section of f is
continuous.

In particular, every injective continuous map is both open and closed.

In fact the use of the object of continuous sections in [2] led to several char-
acterizations of injective continuous maps in the category CtLat of continuous
lattices (see [2, Theorem 4.6]). Here we stress that (adj) is enough in this case
to guarantee injectivity.

Theorem 11. A continuous map f : X ! Y between continuous lattices is
injective in CtLat if, and only if, it has both a left and a right adjoint.

Final Remarks. We do not know whether there is a formulation similar to
Theorem 8 that allows for a characterization of injective continuous maps as
generalized topological functors. The use of ‘levels’ of ultrafilter convergence,
as used in [5, 7, 6] to characterize special classes of continuous maps may be a
way of formulating notions of generalized fibrations and cofibrations so that the
intricate conditions of Theorems 3 and 4 are better captured and understood.
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