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Abstract. We translate the coplactic operation by Lascoux and Schützenber-
ger which, based on the standard pairing of parentheses, transforms a word
on a two-letter alphabet into one of reversed weight ([18, 22]), to the action of
the jeu de taquin on two neighbor columns of a semi-standard Young tableau
of skew shape. That enables to extend the action of the symmetric group
on frank words to arbitrary k-column words, in a Knuth class. On the other
hand, considering variants of the jeu de taquin on two-column words, that
allows us to introduce variants of the mentioned Lascoux-Schützenberger op-
eration on words, based on nonstandard pairing of parentheses, and to give a
combinatorial description of the invariant factors associated with certain types
of sequences of product of matrices, over a local principal ideal domain.

1. Introduction

It is well-known that there is a remarkable relationship between the combina-
torics of semi-standard Young tableaux and Schur functions [14, 23, 24]. Not so
well-known is the relationship between those combinatorial objects with the in-
variant factors of matrices over a local principal ideal domain. Indeed a highlight
in this analogy is the fact that the Littlewood-Richardson rule describes the in-
variant factors of a product of matrices over a local principal ideal domain, as
well as the product of two Schur functions as a linear combination of the same
functions [14, 15, 16, 24]. In this paper we go further and some important combi-
natorial operations on semi-standard Young tableaux like Bender-Knuth involution
[10], Lascoux-Schützenberger operators based on standard pairing of parentheses
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[18, 22], and Schützenberger jeu de taquin, are interpreted in the context of the
invariant factors of matrices over a local principal ideal domain. On the way, we
extend the action of the symmetric group defined by Lascoux-Schützenberger on
frank words [19, 14] to arbitrary k-column words in a plactic class. This action
on k-column words is everywhere defined and in turn extends the one in [19], on
k-column words, not everywhere defined. On the other hand, in the free algebra,
that is, on all words, this action is translated into to the Lascoux-Schützenberger
action of the symmetric group based on the standard pairing of parentheses [18, 22].

In section 2, the combinatorial definition of Schur function where the Bender-
Knuth involution plays an important role is reviewed as well as its relationship
with other involutions on semi-standard Young tableaux [17, 21, 24]. In section 3,
we extend the action of the symmetric group defined by Lascoux-Schützenberger
on frank words [19] to arbitrary k-column words in a plactic class; the translation
to the action of the symmetric group in the free algebra via a variant of the dual
RSK-correspondence is explained. In the last section, the previous combinatorial
operations are interpreted in the context of the invariant factors of matrices over a
local principal ideal domain, and, in this context, some interesting generalizations
arise. The combinatorics of the invariant factors and its relationship with Ya-
manouchi tableaux (Littlewood-Richardson tableaux of partition shape) has been
developed earlier by several authors, like J. A. Green, T. Klein and R. C. Thompson
et al in [12, 25, 2, 3, 6, 1], with key-tableaux and frank words in [3, 4, 5] and, more
recently, in [7, 8, 9], with R. Mamede.

2. Schur functions and semi-standard Young tableaux

2.1. Symmetric functions. Let N be the set of nonnegative integers. Let x =
(x1, x2, . . . ) be a vector of indeterminates and n ∈ N. A homogeneous symmetric
function of degree n over a commutative ring R with identity is a formal power series
f(x) =

∑
α cαxα where α runs over all weak compositions α = (α1, α2, · · · ) of n,

cα ∈ R and xα stands for the monomial xα1xα2 · · · , such that f(xπ(1), xπ(2), . . . ) =
f(x1, x2, . . . ) for every permutation π of the positive integers [24]. The set of all
homogeneous symmetric functions of degree n over R is an R-module and a vector
space when R = Q. Different bases for this vector space are known. An important
one is given by the monomial symmetric functions

(2.1) mλ =
∑
α

xα

with λ a partition of n, written λ|−n, and α running over all distinct permutations
of the entries of λ.

2.2. Semi-standard Young tableaux. Given t ≥ 1, we put [t] := {1, . . . , t} and
denote by [t]∗ the free monoid in the alphabet [t] and by ε the empty word. The
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word ω = x1 · · ·xr over the alphabet [t] is called a column word if x1 > · · · > xr,
and a row word if x1 ≤ x2 ≤ · · · ≤ xr. The set of columns of [t]∗ is denoted by V .
The length r of ω is written |ω|. We define the weight of ω ∈ [t]∗ as wtω ∈ Nt,
where (wtω)i counts the number of letters i in ω.

Given a partition λ, the number of its nonzero parts l(λ) is the length of λ. A
partition is identified with the diagram of the boxes arranged in left justified rows
at the bottom. (The French convention is adopted, that is, the longest row of the
partition is in the bottom.) The empty partition is denoted by ∅. A semi-standard
Young tableau of shape λ is an array T = (tij), 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi, of positive
integers of shape λ, weakly increasing in every row and strictly decreasing down in
every column. Let µ be a partition such that µ ⊆ λ, that is, µi ≤ λi. The diagram
λ/µ, obtained from λ by removing µ, is called a skew-diagram. Similarly, we define
a semi-standard Young tableau of shape λ/µ as an a array T = (tij), 1 ≤ i ≤ l(λ),
µi < j ≤ λi. The partitions λ and µ are called, respectively, the outer and the
inner shape of the semi-standard Young tableau of shape λ/µ. When µ = ∅ we
get a semi-standard Young tableau of partition shape. Examples of semi-standard
Young tableaux of shape (5, 4, 2) and (4, 4, 2, 1)/(3, 1) are

T =
5 5
2 4 4 4
1 1 1 3 4

and H =

6
5 5

4 4 5
3

.(2.2)

The reading word of a semi-standard Young tableau T is the sequence of entries
of T obtained by concatenating the column words of T left to right. For instance
the reading word of T is 521 541 41 43 4 and of H is 65 54 4 4 53. The weight of a
SSYT is the weight of its reading word. T has weight (3, 1, 1, 4, 2). A SSYT of
partition shape is identified with its reading word.

A SSYT T of shape λ/µ and weight α may also be represented by a nested
sequence of partitions T = (λ0, λ1, . . . , λt), where µ = λ0 ⊆ λ1 ⊆ · · · ⊆ λt = λ,
such that for k = 1, . . . , t, the skew diagram λk/λk−1 is labeled by k, with αk =
|λk| − |λk−1| [24].

Cyclic permutations on words induce an operation on SSYT’s of partition shape,
called cyclage, providing a rank-poset structure on the of SSYT’s of given weight
α; the row word 1α12α2 . . . is the unique minimal element [18, 20]. For instance,
the cyclage chain of the SSYT’s with weight (3, 2) is the interval [1322, Y = 21211],

defined by
Y = 2 2 2

1 1 1 → 1 1 1 2 → 1 1 1 2 2.

2.3. Schur functions. There are several ways to define Schur functions [24]. For
our purposes, we adopt the one in terms of mλ (2.1) which exhibits the relationship
with semi-standard Young tableaux. For any semi-standard Young tableau T of
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weight α = (α1, α2, · · · ), we define the monomial xT = xα1
1 xα2

2 . . . . For instance for
the SSYT’s above (2.2) we have xT = x3

1x2x3x
4
4x

2
5 and xH = x3x

2
4x

3
5x6.

Given µ ⊆ λ, the skew-Schur function sλ/µ of shape λ/µ in the variables
x1, x2, . . . is the formal power series Sλ/µ(x) =

∑
T xT where T runs over all SSYT’s

of shape λ/µ. If µ = ∅, λ/µ = λ and we call sλ(x) the Schur function of shape λ.

Theorem 2.1. [10] The number of SSYT’s of shape λ/µ with weight α is indepen-
dent of the permutations of the entries of α.

Proof. The Bender-Knuth involution tk, for short B-K, on the set SSYT’s of shape
λ/µ and weight α, introduced in [10], performs an interchange of the contiguous
components αk and αk+1 in the weight α and leaves the shape of T unchanged.
Let T be a SSYT of shape λ/µ and weight α. All entries tij 6= k, k + 1 remain
unchanged. A portion of T with parts equal to k or k + 1 has the form

(2.3)
k + 1 k + 1

k k k k k k + 1 k + 1 k + 1 k + 1 k + 1
k k k.

Ignoring the columns with both parts k and k + 1, we obtain in each row of T a
word of the form kr(k + 1)s, for some r, s ≥ 0, which we replace with ks(k + 1)r.
The transformation tk acts on T by performing this interchange, independently for
each row, leaving the column words k + 1 k unchanged. ¤

From this combinatorial result it follows

Corollary 2.2. The skew-Schur functions are symmetric functions.

Clearly the B-K involution tk satisfies tkti = titk for |i − k| > 2 but does not
give rise to an action of the symmetric group on SSYT’s. As one may check, the
application of t1t2t1 and t2t1t2 to T above (2.2) leads to different results, although
both have the same weight (1, 1, 3, 4, 2, 1, 0, 1). In the proof of theorem 2.1 we might
have used the Lascoux-Schützenberger involution θk, for short L-S involution, which
satisfies the Moore-Coxeter relations of the symmetric group. The involution θk,
based on the standard parenthesis pairing procedure, is described as follows. Let
ω ∈ [t]∗. First we extract from ω a subword ω′ containing the letters k and k + 1
only. Second, in the word ω′ we remove consecutively all factors k+1 k. As a result
we obtain a subword of the form kr k + 1s. We replace it with the word ks k + 1r

and, after this, recover all the removed pairs and all the letters which differ from
k and k + 1. We arrive to a new word, denoted by θkω in [t]∗ whose weight is
the interchange of (wtω)k with (wtω)k+1. In general, tk 6= θk, as may be easily
checked applying θ2 and t2 to T (2.2).
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Nevertheless it is worth to point out that over the key tableaux [14, 19], that is
SSYT’s of partition shape whose weight is a permutation of the shape, the B-K invo-
lution tk and the pairing L-S involution θk agree [19, 22]. The array (2.3) either is al-

ways of the form k + 1 k + 1
k k k k k

or
k + 1 k + 1

k k k + 1 k + 1 k + 1.

The Schützenberger involution evac, based on the evacuation operation, is an
involution on SSYT’s which preserves the shape and reverses the weight. It is
shown in [17] that it can be defined as evac = t1 t2t1 t3t2t1 . . . tn−1 . . . t1,. Thus
evacuation equals the involution τ := θ1 θ2θ1 θ3θ2θ1 . . . θn−1 . . . θ1 on key tableaux.
These agreements do not follow for general SSYT’s (see also [17, 21]). Another
advantage of the involutions θi is their application to prove that the Littlewood-
Richardson number cλ

µ ν , the number of LR tableaux (tableaux whose rectification
is a Yamanouchi tableau ) of shape λ/µ and weight ν, is independent of the per-
mutation of ν. In particular, the involution τ can be used to exhibit the symmetry
cλ′
µ′ ν′ = cλ

µ ν where µ′, ν′, λ′ denote the conjugate partitions (see [6]).

3. Action of the symmetric group on the set of k-column words and
on the free algebra

3.1. Column words and SSYT’s. Given k ≥ 0, and ui ∈ V , 1 ≤ i ≤ k, we define
a k-column word as u = (u1, . . . , uk) ∈ V k. Two k-columns words (u1, . . . , uk) and
(v1, . . . , vk) are equal if ui = vi, 1 ≤ i ≤ k. The shape of the k-column word
u = (u1, . . . , uk) ∈ V k is (|u1|, . . . , |uk|). (When the column word is a SSYT of
partition shape, it will be clear from the context whether the column or row shape
is considered.) We shall write often u = u1 · · ·uk keeping in mind that the ui’s are
in V . A k-column word u may be identified with a unique SSYT, with k columns
of lengths |u1|, . . . , |uk| and reading word u1 · · ·uk, as follows. For k = 0, the SSYT
is ∅, and, for k = 1, is u1. For k = 2, the pair (u1, u2) is aligned to form a SSYT
of two columns with maximal row overlaping q. This SSYT with reading word
u1u2 has shape (q + r1 + s2, q + r1)/(r1, 0), where q + r1 = |u2| and q + s2 = |u1|
for some r1, s2 ≥ 0. For k > 2, each pair (ui−1, ui) of successive columns of u
is aligned to form a SSYT with two columns as in case k = 2. A frank word is
a distinguished column word whose shape is a permutation of the column shape
of the unique SSYT in its plactic class. In particular, if ui−1ui is a frank word
[19, 14], the pair is aligned at: the top whenever the right column ui is longer,
and, in this case, si = 0; and at the bottom whenever the left column ui−1 is
longer, and, in this case, ri−1 = 0. Note that the outcome SSYT has inner shape
(
∑k−1

j=1 rj , . . . , rk−1, 0). A SSYT satisfying this property for each successive pair of
columns is said to be in the compact form. In particular, a SSYT of partition shape
is always in the compact form.
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The k-column word of a SSYT with k columns is defined as (u1, . . . , uk) ∈ V k

with ui the i-th column. Two SSYT’s with k columns are said to be equivalent if
they have the same k-column word. This means that they have the same compact
form in the sense that every SSYT is jeu de taquin equivalent, by vertical slides, to
its compact form. However, not every pair of SSYT’s with k columns, jeu de taquin
equivalent, has the same compact form. For instance (for convenience we represent

the inner shape by X)
6
5
X 4

is in the compact form while

6
5
X 4
X X

is not, but it is

equivalent to the first one; and
6
5
4 X

is in the compact form but it is not equivalent

to the previous ones, although jeu de taquin equivalent. The six-column word

53 52 76 ε 5 53 is identified with the six-column SSYT,

5
3 5 7
X 2 6
X X X X 5 5
X X X X X 3

,

with shape (5, 4, 4, 2, 2, 2)/(3, 2, 2, 2, 1, 0).

3.2. A variant of the dual RSK-correspondence. We consider a variant of
the dual Robinson-Schensted-Knuth correspondence [13], [14], Appendix A.4.3, to
establish a bijection between tableau-pairs (P, Q) of conjugate shapes and SSYT’s in

the compact form. Let
(

u
v

)
=

(
u1 · · · uk

v1 · · · vk

)
be a biword without repeated

biletters, where u1, . . . , uk ∈ [n] and v1, . . . , vk ∈ [t]. Sorting the biletters of
(

u
v

)

by weakly increasing rearrangement for the anti-lexicographic order with priority

on the first row, we get Σ =
(

1f1 · · · nfn

w1 · · · wn

)
, where wtu = (|w1|, . . . , |wn|) and

ω = w1 · · ·wn ∈ V n (here V is the set of columns of [t]∗); and by weakly decreasing

rearrangement of the biletters of
(

u
v

)
for the lexicographic order with priority

on the second row, we get Σ′ =
(

Jt · · · J1

tmt · · · 1m1

)
, where wtv = (|J1|, . . . , |Jt|)

and J = Jt · · · J1 ∈ V t (here V is the set of columns of [n]∗). As usual, given a
word ω, P (ω) denotes the unique SSYT of partition shape in the Knuth class of ω,
and Q(ω) the corresponding Q-symbol [22]. From Greene’s theorem [11], we have
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Lemma 3.1. (a) The transformation Σ ↔ Σ′, as above, establishes a bijective
correspondence between the k-tuples of disjoint weakly increasing subwords of J =
Jt · · · J1 and those of decreasing subwords of ω = w1 · · ·wn.

(b) The SSYT’s P (ω) and P (J) have conjugate shapes with wtω the reverse shape
of the t-column word Jt · · · J1, and wtJ the shape of the n-column word w1 · · ·wn.

We consider the variant of the dual RSK-correspondence, for short RSK∗, defined

and denoted by
(

u
v

)
RSK∗
−→ (P, Q), where P = P (w) and Q = P (J). The SSYT’s

in this pair are related as follows, where v ↓ (u ↑) denotes v by weakly decreasing
(u by weakly increasing) order

Proposition 3.2. Let Σ =
(

u ↑
ω

)
and Σ′ =

(
J
v ↓

)
correspond by RSK∗ to

(P, Q). Then
(a) Q is the unique SSYT of weight (|w1|, . . . , |wn|) such that

Q(ω) = std(Q)T , where std stands for standardization.
(b) P is the unique SSYT of evaluation (|J1|, . . . , |Jt|) such that

Q(J) = std(evac P )T .

The RSK∗ correspondence establishes a bijection between the biwords Σ (Σ′)
over the alphabet [n]×[t] and tableau-pairs (P,Q) of conjugate shapes, with P ∈ [t]∗

and Q ∈ [n]∗. As we have seen in the previous section there is a bijection between
column words and SSYT’s in the compact form. We have therefore the following
bijections

{SSY T ′s with n-column word ω = w1 . . . wn} ↔
(

1f1 · · · nfn

w1 · · · wn

)
↔

(3.4) ↔
(

Jt · · · J1

tmt · · · 1m1

)
↔ (P,Q) SSYT’s of conjugate shapes.

Identify a column word with its underlying set. The set Ji ⊆ [n] is the set of
the column indices of the letter i in any SSYT with n-column word ω = w1 . . . wn.
A SSYT defines a unique pair (ω, J), in the conditions of proposition 3.2, and
J = Jt . . . J1 is called the indexing set column word.

Let σ ∈ St and si the transposition of the integers i and i + 1. Put σ# :=
rev σ with rev the reverse permutation in St. In particular, s#

i = st−i rev. If m
is a weak composition, put σm for the usual action of σ on m. In particular, put
m# := rev m. If J is a frank word, σJ denotes the frank word congruent with J
whose shape is the action of σ on the shape of J . In particular, put J# := rev J .
Given the sequence of nonnegative integers u = (u1, · · · , ur), we define the r-column
word Mu = u1 · · · 1 u1 + u2 · · ·u1 + 1 · · · ur + · · · + u1 · · ·ur−1 + · · · + u1 + 1 [19]
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whose shape is u. The tableau-pair (K, Q) of conjugate shapes with K a key and
the frank words in Q are related as follows. From proposition 3.2 we have

Proposition 3.3. [9] Let (K,Q) be a tableau-pair of conjugate shapes such that

the conjugate shape of Q is m. Let σ ∈ St. Let
(

J
K ↓

)
correspond by RSK∗ to

the pair (K, Q). The following statements are equivalent
(a) K is the key with weight σm.
(b) J is the frank word of shape σ#m in the Knuth class of Q.
(c) Q(J) = M(σ#m).

3.3. Jeu de taquin on two-column words. The jeu de taquin on consecutive
columns t− i, t− i + 1 of a t-column SSYT, in the compact form, exchanging the
shape of these columns, is translated, by RSK∗-correspondence, into the operation
θi on all words over the alphabet [t]. In particular, jeu de taquin on frank words is
translated into the operation θi on words congruent with keys.

Define the operation Θ on a two-column SSYT in the compact form, with column
lengths (q + s, q + r) and inner shape (r), for some q, r, s ≥ 0, as follows. If r > s
(r < s), perform jeu de taquin slides on the first |r−s| inside (outside) corners until
they become outside (inside) corners in the second (first) column. In other words,
we slide down (up) the first (second) column, maximally up to |r − s| positions;
then we exchange the east (west) neighbors with these corners. Then Θ T = T ′ is
a two-column SSYT, in the compact form, with column lengths (q + r, q + s) and
with inner shape (s), if s ≥ r, and (r), otherwise. In particular, when r = 0 or
s = 0, Θ is the jeu de taquin on frank words. For instance, the jeu de taquin slides
with respect to the corner ¥ as below define the operation Θ on T and T ′

(3.5) T =

7 7
3 6 6 ¥
2 5 Θ 3 5
1 4 ←→ T ′ = 2 4
¥ 3 1 3

2 2

.

Let T be a t-column SSYT, in the compact form. Define the operation Θi on T
as follows: apply Θ to the columns i and i + 1 of T and put the outcome t-column
SSYT in the compact form. As jeu de taquin preserves Knuth equivalence, we have
ΘiT ≡ T . The operations θi on words over the alphabet [t], and Θt−i on t-column
semi-standard Young tableaux in the compact form (equivalence classes of SSYT’s)
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are a translation of each other in the sense of the diagram below

(3.6)

Σ =
(

T ↑
w

)
Σ′ =

(
T

· · · i + 1q+siq+r · · ·
)

Σ̃ =
(

T ′ ↑
θiw

)
Σ̃′ =

(
Θt−iT

· · · i + 1q+riq+s · · ·
)

......................................................................................................... ................ .........................................................................................................................

......................................................................................................... ................ .........................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

.

If the columns t − i and t − i + 1 of Θt−iT are of the form
A
B C

D
, where

A ∪ B, C ∪D are columns such that B ≤ C, |B| = |C| = q, |A| = s, and |D| = r,
then θi is based on the pairing of parentheses defined by the increasing injections
j : B → C ∪ D. For instance, for the two-column SSYT T (3.5), we have the
following diagram

Σ =
(

1 2 2 3 3 4 5 6 7
2 2 1 2 1 1 1 1 2

)
Σ′ =

(
T

23+1 13+2

)

Σ̃ =
(

1 2 2 3 3 4 5 6 7
2 2 1 2 1 1 1 2 2

)
Σ̃′ =

(
Θ1T

23+213+1

)

........................................................................................................................ ................ ........................................................................................................................................

........................................................................................................................ ................ ........................................................................................................................................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

................................................................................
........
........
........
........
........
........
........
........
........
........
........
........................
................

,

where ω = (2(21)(21)1)122 → θ1ω = (2(21)(21)1)122.
As ΘiT ≡ T , from proposition 3.2, the operator θi preserves the Q-symbol,

Q(ω) = Q(θiω). For a two-column SSYT T with r > s, we have,

Q(T ) =
(

q + s + 1 · · · 2q + s
1 · · · q · · · q + s 2q + s + 1 · · · 2q + s + r

)T

and

Q(Θ1T ) =
(

q + r + 1 · · · 2q + r
1 · · · q · · · q + r 2q + r + 1 · · · 2q + s + r

)T

.

From proposition 3.2, Q(T ) = std(evacP (ω))T and Q(Θt−iT ) = std(evac P (θiω))T .
Thus P (θiω) = θiP (ω).

Theorem 3.4. Given Q a SSYT, let J be a t-column word congruent with Q. Let

P be a SSYT of weight the reverse shape of J . If
(

J
P ↓

)
and

(
Q ↑
w

)
are biwords in

RSK∗ correspondence with (P, Q), then
(

Θt−iJ
θiP ↓

)
and

(
Q ↑
θiw

)
correspond by RSK∗

to (θiP,Q).
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Corollary 3.5. [9] Given Q a SSYT and σ ∈ St, let K be the key tableau of weight

the shape of σQ. If
(

σ#Q
K ↓

)
and

(
Q ↑
ω

)
are biwords in RSK∗ correspondence with

(K,Q), then
(

st−iσ
#Q

θiK ↓
)

and
(

Q ↑
θiω

)
correspond by RSK∗ to (θiK,Q).

Remark 3.1. If J = J2 J1 is a two-column frank word with J2 = y+q+r+s . . . y+
q + r + 1 . . . y + q + 1 . . . q + 1 and J1 = y + q + r + 1 . . . y + q + 1 . . . y + 1, we have
ω = P (ω) a key tableau and θ1P (ω) = t1P (ω) (see also [5]).

Corollary 3.6. The following statements are equivalent:
(a) The operations Θi, 1 ≤ i ≤ t− 1, define an action of the symmetric group St

on the set of t-column words, equivalently, on the t-column SSYT’s in the compact
form. Moreover, ΘiT ≡ T , 1 ≤ i ≤ t− 1.

(b) The operations θi, 1 ≤ i ≤ t−1, defines an action of the symmetric group on
all words over the alphabet [t]. These operations preserve the Q-symbol and ω ≡ P
iff θiω ≡ θiP .

Example 3.1. An action of S3 on three-column SSYT’s in the compact form

9
7
6
4 7
2 3 6
1 2 5

1 4
3
2

9
7 7
2 6 6
1 4 5

3 4
2 3
1 2

9
7
2 6 7
1 4 6

3 5
2 4
1 3

2

9
7
6
2 4 7
1 3 6

2 5
1 4

3
2

9
7
6 7
4 6
2 3 5
1 2 4

1 3
2

9
7 7
6 6
2 4 5
1 3 4

2 3
1 2

...............
...............

...............
...............

...............
...............

..............................
................ ...................................................................................................................

.....
................

Θ1

........................................................................................................................... ................ ...........................................................................................................................................
Θ2

...............
...............

...............
...............

...............
...............

..............................................
........................................................................................................................ ...........

.....

Θ1

........................................................................................................................... ................ ...........................................................................................................................................
Θ1

........................................................................................................................ ...........
.....
...............

...............
...............

...............
...............

...............
..............................................

Θ2

...................................................................................................
......

.............................
.............
.............
.............
.............
.............
...........................
................

Θ2

4. Invariant factors and semi-standard tableaux

Given an n by n non-singular matrix A, with entries in a local principal ideal
domain with prime p, by Gaußian elimination one can reduce A to a diagonal
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matrix ∆µ with diagonal entries pµ1 , . . . , pµn , for unique nonnegative integers µ1 ≥
. . . ≥ µn, called the Smith normal form of A. The sequence pµ1 , . . . , pµn defines
the invariant factors of A, and (µ1, . . . , µn) is the invariant partition of A. It is
known that µ, β, γ are invariant partitions of nonsingular matrices A, B, and C
such that AB = C if and only if there exists a Littlewood-Richardson tableau T of
type (µ, β, γ), that is, a SSYT of shape γ/µ whose word is in the Knuth class of
the key tableau of weight β (Yamanouchi tableau of weight β). Apart from other
approaches [12, 25, 15, 16], this result can be derived in a purely matrix context
when one introduces the following

Definition 4.1. [3] Let T = (µ0, µ1, ..., µt) and F = (0, δ1, ..., δt) be SSYT’s both
of weight (m1, ...,mt). We say that a sequence of n by n nonsingular matrices
A0, B1, ..., Bt is a matrix realization of the pair (T, F ) of SSYT’s if:

I. For each r ∈ {1, ..., t}, the matrix Br has invariant partition (1mr , 0n−mr ).
II. For each r ∈ {0, 1, ..., t}, the matrix Ar := A0B1...Br has invariant parti-

tion the conjugate of µr.
III. For each r ∈ {1, ..., t}, the matrix B1...Br has invariant partition the con-

jugate of δr.

Given J ⊆ [n], we write DJ for the diagonal matrix having the ith diagonal
entry equal to p whenever i ∈ J and 1 otherwise. For the Bender-Knuth involution
we have the following interpretation.

Theorem 4.1. [3, 5] Let T be a SSYT with inner shape µ, indexing sets J1, J2,
and word ω. Let µ = (al1

1 , al2
2 , . . . , alk

k ), a1 > · · · > ak, li > 0, 1 ≤ i ≤ k, and
Xq = {∑q−1

j=0 lj + 1, . . . ,
∑q

j=0 lj} with l0 = 0 and 1 ≤ q ≤ k. If T ′ is the SSYT
realized by ∆µ, DJ2 , DJ1 with indexing sets J ′1, J

′
2 and word ω′, then

(a) (J ′2 ∩Xq)(J ′1 ∩Xq) = Θ1(J2 ∩Xq)(J1 ∩Xq), 1 ≤ q ≤ k.
(b) ω′q = t1ωq, where ωq and ω′q are the subwords, respectively, of ω and ω′

restricted to the positions in Xq, 1 ≤ q ≤ k.

T ′ is the result of the application of the evacuation to T [5, 17]. In fact we have
∆µDJ1DJ2 =

⊕k
q=1 ∆aqDJ1∩XqDJ2∩Xq , and ∆µDJ2DJ1 =

⊕k
q=1 ∆aqDJ2∩XqDJ1∩Xq .

Since ∆aq = paqI, it suffices to analyze the following situation. Let m = |J1∩J2|,
we have

DJ1 , DJ2 ∼ D[|J1|]D[m](I|J1| ⊕D|J2|−m) ↔ F =
2 . . . 2
1 . . . 1 1|J1|−m 2|J2|−m

and

DJ2 , DJ1 ∼ D[|J2|]D[m](I|J2|⊕D|J1|−m) ↔ t1F =
2 . . . 2
1 . . . 1 1|J2|−m 2|J1|−m = evac F,

where ∼ denotes unimodular equivalence.
Recall the operation Θ on a two-column semistandard Young tableau T in the

compact form, defined in the previous section, and denote by Θ̃, a variant of Θ,
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based on a variant of the jeu de taquin on T , running as follows: (1) If r−s = r (s−
r = s), add q extra vacant positions to the top (bottom) of the first (second) column
and slide the labeled entries in the first (second) column along the enlarged column
such that the row weak increasing order is preserved and a common label to the
two columns never has a vacant west (east) neighbor; then mark r vacant positions
in the first (second) column with labeled east (west) neighbors and exchange with
them. When the labeled entries of the first (second) column are slided down (up)
maximally such that the row weakly order is preserved, we get the jeu de taquin
operation Θ on frank words. (2) If 0 ≤ r − s < r (0 ≤ s − r < s), add q vacant
positions to the top (bottom) of the first (second) column and slide the q + s
labeled entries along the enlarged first column with q + r vacant positions such
that the previous restrictions are attained; then mark r − s vacant positions in
the first (second) column with east (west) labeled neighbors and exchange with
them. When the labeled entries of the first (second) column are slided down (up)
maximally at most r − s positions such that the row weakly order is preserved, we
get the operation jeu de taquin Θ on T . Unless, Θ̃ = Θ, Θ̃T 6≡ T . For instance,

(4.7)

5
¥ 4
1 3

2

Θ
←→

5
4 ¥
1 3

2

.

(4.8) Θ̃ :

5
1 4

3
¥ 2

−→
5
2 4
1 3

¥
Θ̃ :

5
1 4
¥ 3

2

−→
5
1 4
3 ¥

2

−→
5
3 4
1 2

¥
.

(4.9)

Θ̃ :

5
3 ¥
1 4

2

−→
5
¥ 3
1 4

2

−→
5
1 4
¥ 3

2

Θ̃ :

5
3 4
1 ¥

2

−→
5
3 4
¥ 1

2

−→
5
3 4
¥ 2

1

.

(4.10) Θ̃ :

6
5 ¥
3 ¥
1 4

2

−→

6
¥ 5
¥ 3
1 4

2

−→

6
1 5
¥ 4
¥ 3

2

.
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(4.11)
¥ 4
3 3
1 2

Θ
−→

4 ¥
3 3
1 2

Θ̃ :
3 4
1 3
¥ 2

−→
3 4
1 3
2 ¥

−→
3 ¥
2 4
1 3

.

Using RSK∗-correspondence, as explained in section 3, we define the operation
θ̃ as a translation of the operation Θ̃. Recall the operation θi, described at the end
of section 2. Then θ̃i denotes a variant of θi based on a non standard pairing of
parentheses procedure. Considering ω restricted to the two-letter alphabet {i, i+1},
written ω|{i,i+1}, we remove consecutively subwords i+1 i and as a result we obtain
a subword of the form:

(1) ir−l(i + 1 i)l, with 0 ≤ l ≤ r, [(i + 1 i)li + 1s−l, 0 ≤ l ≤ s] which is replaced
with i + 1r+l [is+l]. In this case, P (θ̃iω|{i,i+1}) ≤ P (θiω|{i,i+1}) with respect to the
cyclage order, and, in particular, P (θ̃iω|{i,i+1}) = P (θiω|{i,i+1}), if l = 0.

(2) ir−l(i + 1 i)li + 1s, 0 ≤ l ≤ r − s, [ir(i + 1 i)li + 1s−l, 0 ≤ l ≤ s − r,]
which is replaced by is+li + 1r [isi + 1r+l]. In this case, we may have either
P (θ̃iω|{i,i+1}) ≤ P (θiω|{i,i+1}) or P (θ̃iω|{i,i+1}) ≥ P (θiω|{i,i+1}) but if l = 0, we
have always P (θ̃iω|{i,i+1}) ≥ P (θiω|{i,i+1}) with respect to the cyclage order.

For instance, from (4.7), θ1(21112) = 21122 is based on the standard pairing pro-
cedure; from (4.8), θ̃1(21112) = 21212, based on the nonstandard pairing (2111)2
which leaves 12 2 free and is replaced with 1 22, and θ̃1(21112) = 22112 is based
on the nonstandard pairing (211)12 which leaves 122 free and is replaced with 212;
from (4.9) θ̃1(21212) = 21112 is based on the pairing (2121)2, or (21)212, which
leaves 10(21)121 free and is replaced with 11+120+1, and θ̃1(21212) = 11212 is based
on the pairing 21(21)2 which leaves 10(21)121 free and is replaced with 11+120+1;
from (4.10) we have θ̃1(212122) = 211112 is based on the pairing (21)2122 which
leaves 10(21)122 free and is replaced with 12+120+1.

We reduce the study of the invariant factors associated with the sequence of ma-
trices A0, B1, · · · , Bt, satisfying conditions (I)− (III) of definition 4.1, to the cases
∆µ, UDK and ∆µ, UDF where U is an n by n unimodular matrix, DK denotes
the sequence (D[m1], · · · , D[mt]) which realizes the key K of weight (m1, · · · ,mt),
and DF denotes the sequence (DF1 , · · · , DFt) which realizes the SSYT F with in-
dexing sets F1, · · · , Ft. The combinatorics associated with the sequences ∆µ, UDK

involves frank words and words congruent with keys and has been developed in
[2, 3, 4, 5, 6] and more recently with R. Mamede in [7, 8, 9]. In this case, the
matrix interpretation of the operations θ̃i and Θ̃t−i and their relationship is as
follows.
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Theorem 4.2. [4, 7, 8] Let T and T ′ be the SSYT’s realized by the sequences
∆µ, UDK and ∆µ, UDθ1K , with K the key of weight (m1,m2). Let J2J1, J ′2J

′
1 be

the two-column indexing sets, and ω, ω′ the words of T and T ′ respectively. Then,
(a) J2J1, J ′2J

′
1 are frank words such that Θ̃J2J1 = J ′2J

′
1.

(b) ω ≡ K and ω′ = θ̃1ω ≡ θ1K.
(c) there exists an unimodular matrix U ′ such that ∆µ, U ′DK and ∆µ, U ′Dθ1K

realize the SSYT’s T and T ′′ such that the two-column word of indexing sets J ′′2 J ′′1
and the word ω′′ of T ′′ satisfy J ′′2 J ′′1 = ΘJ2J1 and ω′′ = θ1ω.

Theorem 4.3. [8] Let T be the SSYT realized by ∆µ, U DK , with word ω and J
the column word of indexing sets. Then P (ω) = K and J is a frank word of shape
m#.

Theorem 4.4. [7, 9] Let σ ∈< s1, s2 > and θ ∈< θ1, θ2 > with the same reduced
word. Let σT be the tableau realized by ∆µ, UDθK with word σω and indexing set
column word σJ . Then {σT : σ ∈< s1, s2 >} are the vertices of a hexagon such
that

(a) siω = θ̃iw ≡ θiω, 1 ≤ i ≤ 2, where < θ̃1, θ̃2 > satisfy the Moore-Coxeter
relations of the symmetric group S3.

(b) siJ = Θ̃iJ , 1 ≤ i ≤ 2, where < Θ̃1, Θ̃2 > satisfy the Moore-Coxeter relations
of the symmetric group S3.

A complete description of the hexagons defined in (a) and (b) is given in [7, 9].
This family of hexagons contains in particular the hexagon defined by the operators
θi and its description is based on the characterization of the Knuth class of a key
tableau, over a three-letter alphabet, as the set of the shuffles of its columns [8].

Example 4.1. [9] Let U = P4321T14(p), where P4321 is the permutation matrix
associated with 4321 ∈ S4 and T14(p) is the elementary matrix obtained from
the identity by placing the prime p in position (1, 4). With µ = (2, 1) the se-
quences ∆µ, UD[3], D[2] and ∆µ, UD[2], D[3] are, respectively, matrix realizations for

T =
2
• 1 2
• • 1 1

and T ′ =
2
• 2 2
• • 1 1

. The words w = 21211 of T and w′ = 22211

of T ′ satisfy θ̃1w = w′ ≡ θiω, where θ̃1 is the operation based on the parentheses
matching (21(21)1). However, if we choose U ′ = P3241T24(p), with P3241 the per-
mutation matrix associated with 3241, the sequences ∆µ, U ′ D[3], D[2] and ∆µ, U ′

D[2], D[3] are, respectively, matrix realizations for T and T ′′ =
2
• 1 2
• • 1 2

. In this

case, the word w′′ of T ′′ satisfy θ1w = w′′. The corresponding operations on the
indexing set words (frank words) are displayed in (4.11).
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Given F a two-letter SSYT of partition shape, its indexing sets (F1, F2) are
F1 = [q]∪ [q + 1, q + r] and F2 = [q]∪ [q + r + 1, q + r + s] for some q, r, s ≥ 0. The
indexing sets of θ1F are F ′1 = [q]∪ [q + 1, q + s] and F ′2 = [q]∪ [q + s + 1, q + s + r].
When either r or s = 0, F is a key tableau K.

Theorem 4.5. Let ∆µ, UDF be a matrix realization of T with word ω and two-
column word of indexing sets J = J2J1. Then

(a) ω ≡ G with G in the interval [F,K] of the chain of cyclages on the SSYT’s
of weight (q + r, q + s).

(b) J2J1 is a two-column SSYT, in the compact form, with column lengths (q +
s, q + r) and inner shape (r − f), for some 0 ≤ f ≤ min{r, s}.
Example 4.2. Let µ = (3, 2, 1) and F = 11122. The sequences ∆µ, UDF , with
U running over the unimodular matrices of order 5, give rise to SSYT’s of inner
shape µ with words congruent with P running over {11122; 21 112; 21 21 1}. For

instance, (a) U = I,

1
• 1
• • 1
• • • 2 2

, ω = 11122; (b) U = P4321,

2
• 1
• • 1
• • • 1 2

,

ω = 21112; and (c) U = P12543P4321,

2
• 1
• • 2
• • • 1 2

, ω = 21211.

Theorem 4.6. Let ∆µ, UDF be a matrix realization of T with word ω and indexing
set word J2J1, and let ∆µ, UDθ1F be a matrix realization of T ′ with word ω′ and
indexing set word J ′2J

′
1. Then

(a) ω ≡ G and ω′ = θ̃1ω ≡ θ1H with G and H in the interval [F,K] in the chain
of cyclages on the SSYT’s of weight (q + r, q + s).

(b) J ′2J
′
1 = Θ̃J2J1.

When F = K, we have G = K = H and we recover theorem 4.2.

Example 4.3. Let F =
2 2 2
1 1 1 2 ← Y = 1 1 1 and

θ1F =
2 2 2
1 1 2 2 ← θ1Y = 1 1 2 be cyclage chains. The indexing

sets of F and θ1F are, respectively, F1 = {1, 2, 3}, F2 = {1, 4} and F ′1 = {1, 2},
F ′2 = {1, 3, 4}. Let U = P54321T15(p), V = P(15)T15(p), and W = P32541T15(p) uni-
modular matrices, where P54321 and P32541 are the permutation matrices associated
with 54321 and 32541 ∈ S5 respectively, and T15(p) is the elementary matrix ob-
tained from the identity by placing the prime p in position (3, 5). Let µ = (2, 1, 1).
(1) The sequences ∆µ, UDF and ∆µ, UDθ1F are, respectively, matrix realizations
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for T =
2
• 1 2
• • • 1 1

and T ′ =
2
• 2 2
• • • 1 1

. The words w of T and w′ of T ′

satisfy w = 21211 ≡ Y and w′ = 22211 ≡ θ1Y satisfy θ̃1w = w′, where θ̃1 is the op-
eration based on the parentheses matching (21(21)1). (2) The sequences ∆µ, V DF

and ∆µ, V Dθ1F are, respectively, matrix realizations for T =
2
• 1 1
• • • 1 2

and

T ′ =
2
• 1 2
• • • 1 2

. We have for the words w of T and w′ of T ′, w = 21112 ≡ F

and w′ = 21212 = θ1Y = θ̃1ω 6≡ θω based on the parentheses matching (2111)2.
(3) The sequences ∆µ,WDF and ∆µ,WDθ1F are, respectively, matrix realizations

for T =
2
• 1 1
• • • 1 2

and T ′ =
2
• 1 1
• • • 2 2

. We have w = 21112 = F and

w′ = 21122 = θ1F . (4) G = 11122, θ1G = 11222. U = P(23), T =
1
• 1 1
• • • 2 2

and T ′ =
1
• 2 1
• • • 2 2

.The corresponding operations on the indexing set words

are displayed in examples (4.7), (4.9).

Open Problem: Let σ ∈< s1, s2 > and θ ∈< θ1, θ2 > with the same reduced
word. Let F be a three-letter SSYT of partition shape , and σT the SSYT realized
by ∆µ, UDF . Describe the hexagon {σT : σ ∈< s1, s2 >}.
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845, 1987-98 (1998).

[16] W. Fulton, Eigenvalues, invariant factors, highest weigths, and Schubert calculus , Bulletin
of the American Mathematical Society, 37, 209-249, (2000).

[17] A. N. Kirillov, D. Berenstein, Groups generated by involutions, Gelfand-Tsetlin patterns, and
combinatorics of Young tableaux, Algebra i Analiz, translation in St. Petersburg Mathemat-
ical Journal, vol 7, 1 (1996).

[18] A. Lascoux, M. P. Schützenberger, Le monöıde plaxique, Noncommutative Structures in
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