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Abstract

We translate to the language of triangles with boundary [9] the involution
presented in [3], [4], where the language of skew-tableaux has been used. This
involution makes explicit, in a simple way, the commutativity of the Littlewood-
Richardson rule.

In [4] the language of skew-tableaux is exclusively used to prove this symmetry.
Although the description of the algorithm, using these combinatorial objects, is
very simple and makes natural the commutativity of the Littlewood-Richardson
rule, the language of triangles suits more the purpose to giving a shorter proof of
the involution which exhibits the commutativity of the Littlewood-Richardson rule.

The motivation for this involution is easily understood in the language of the
invariant factors of a product of integral matrices when the transposition of this
product is considered. This matrix analogue follows from an appropriate decom-
position of a product of integral matrices established by R. C. Thompson in [14].
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1 Introduction

The main feature of this bijection is the decomposition of an LR triangle A, of size k >
1 and type [a,b,c|, into a nested sequence (A(S))’S‘“:l, A= AK D AG-D 5 D 4@ D
AM | of LR triangles of size s and type [a®), (b1,...,bs); (c1, ..., ¢5)], s = 1,...,k, where
(a(s))];:1 is a sequence of interlacing partitions. On its turn, this sequence of partitions defines
a decomposition of an LR triangle B, of type [b,a,c], into a nested sequence (B(S));“:l, B =
B®) > Bk=1) 5 5 B® > BW, of LR triangles of size s and type [(b1,...,bs);al®; (c1,
)], s=1,... k.

In the matrix setting LR triangles, may be interpreted as follows. Let X, Y and Z be k-
square nonsingular matrices, over a local principal ideal domain with prime p, such that XY =
Z. Let p™,...,p%, p®, ... p%, and p,...,p% be the invariant factors (Smith invariants)
of X, Y and Z respectively, where the exponents of the p-powers are by decreasing order. In
[1, 2, 7] is shown that there is one and only one LR triangle A of type [a, b, ¢| such that XY = Z
realizes [1, 2, 8], where a = (a;)]1, b= (b;)_; and ¢ = (¢;)} ;.

We consider the following algebraic formulation of the LR rule. (For a similar presentation
see [6, 15].) There exists an LR triangle of size k and type [a, b, ¢], iff there exists a sequence of
partitions b(8) = (bgs), ol bgs)), s=1,...,k, with () = b, satisfying the interlacing inequalities

B < b <5 for 1<i<s<k—1, (i)

i+1
schematically
b
2 2
b b5
bg?)) ng) b:(33)
bgk—n bgk_n bgk_n bl(ck—_ll)
k k k k k
R R R )

and the system of linear inequalities

r—1 T
as-1+ > O by > a1 ST 0T r =1, s -1, s =2, 0k, (i)
j=1 j=1

as + Z(bg-s) - bg-sfl)) =c5, s=1,...,k. (i)
j=1

(We put bgo) =0.)

Given an LR triangle A of size k > 1 and type [a, b, ¢], for each s € {1,2,...,k—1}, we may
associate, by deleting the k,..., (s + 1)-th rows of A, an LR triangle T®) of size s and type
[(a1,...,as); (bgs), e bgs)); (c1, ..., ¢s)], with T®) = A. Indeed, this sequence of LR triangles
T) of type [(ay,...,as); (bgs), cel bgs)); (c1y -..,¢s)], s=1,...,k, is such that the sequence of
partitions b(*) = (bgs), ceey bgs)), s=1,....k, with b%¥) = b, satisfy the previous linear inequalities
(4), (i1) and (4i7). This defines a b-decomposition of A.

The bijection to be exhibited between LR triangles of type [a,b,c] and [b,a,c| is based
on a combinatorial deletion operation transforming an LR triangle of size k into one of size



k —1, for k > 1, which defines an a-decomposition of an LR triangle of type [a,b, c]. That is,
given an LR triangle A of size k and type [a,b, ], this operation defines, uniquely, a nested
sequence A = A®) D AF=D 5 5 A® D A of LR triangles, with A®) of size s and type
[(ags), cel ags)); (b1,...,bs);(c1, ..., ¢cs)], s = 1,..., k, and such that the sequence of partitions
al®) = (ags), - ,ags)), s=1,...,k, with a®) = q, satisfies

(s+1) < a(s) < a(s+1)

a; 1 <a; , 1<i<s<k-1 (1v)

Furthermore, since the deletion operation can be performed backwards, we have also

r—1 T
bs—1 + Z(a§s_1) — a§5_2)) > by + Z(ag-s) — ags_l)), r=1,.,s—1, s=2,....k (v)
j=1 j=1

s

bs + Z(aé-s) - agsfl)) =cs, s=1,...,k (vi)

j=1
(We put ago) =0.)

This combinatorial deletion operation defines, uniquely, an a-decomposition of A. Thus,
given an LR triangle A of type [a, b, ¢|, we may associate, uniquely, by means of this deletion
operation, an LR triangle B of type [b,a,c|, defined by the a-decomposition of A. Moreover,
applying to B this combinatorial deletion operation, we recover A.

Considering [14] we may assert:

Let X, Y and Z be k-square non-singular matrices, with entries in a local principal ideal
domain, such that AB = C. Let p™,...,p%, p* ... p", and p°,...,p% be the invariant
factors of X, Y and Z, respectively, where ay > ... > ag, by > ... > b and c1 > ... > cx. We
may assume that:

(1) X is lower triangular [X diagonal, X = diag(p®,---,p™)];

(ii) Y is diagonal, Y = diag(p",...,p%) [Y upper triangular|;

(tii) Z = [yi5] is lower triangular with ~v;; = p“, p%|yi; for i > j, 1 < i < k [Z = [y]
is upper triangular with v; = p%, p%|vi;, for i < j, 1 < i < k| (the symbol ”|” denotes
divisibility).

Denote by A the LR triangle of type [a,b,c| realized by XY = Z. A is defined by the
interlacing decomposition of b as follows. Put X diagonal and Y upper triangular. Let X*) .=
X, Y® .=y, z®) .= Z and T® := A, and consider the sequence of product of matrices
X6y = z6) s =1,... k — 1, obtained by deleting the (s + 1)-th rows and columns of
X6+ y s+ and Z6+D | That is, X, V() and Z©) are the s-leading submatrices in the
first s rows of X(6tD Y (s+1) and Z(6+D respectively, for s = 1,2,...,k — 1. Since X is in
the triangular form, by the interlacing property relating the invariant factors of a matrix with
those of a submatrix [11, 12, 13, 15], we obtain, for each s € {1,2,...,k}, one LR triangle T(*)
of type [(a1,...,as); (bgs), . bgs)); (1, ..., ¢s)] realized by X(*)Y () = Z(5) where the sequence
b(s) = (bgs), ... bgs)), s=1,...,k, satisfies (7).

Now put X lower triangular and Y diagonal and consider the sequence of product of matrices
X&)y = z6) ¢ = 1.... k— 1, obtained by deleting the (s + 1)-th rows and columns of
X6+ y(s+) and 26+ That is, X, Y) and Z©) are the s-leading submatrices in the
first s rows of Xt Y+ and Z(+D) respectively, for s = 1,2,...,k — 1. Again, since X
is in the triangular form, by the interlacing property, we obtain, for each s € {1,2,...,k}, one
LR triangle of type [(ags), - ags)); (biy...,bs); (c1, ..., cs)] realized by X®)Y) = Z() where
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the sequence a(®) = (ags), ... ags)), s = 1,...,k, satisfies (iv). By transposition, the s-leading

submatrices in the first s rows of Y!X? = Z! (transposing both sides of XY = Z), realize
sequence of LR triangles of type [(b1, ..., bs); (ags), ...,ags)); (c1, ...,cs)], s =1,...,k, which
defines a, unique, LR triangle B of type [b, a, ¢] . Thus the matrix meaning of our combinatorial
involution, in the context of the invariant factors, is the transposition of a product of matrices.

Each triple XY = Z of matrices realizes a unique pair (A, B) of LR triangles of types
[a,b,¢] and [b,a,c| respectively. The triangle A is defined by the sequence of triangles T(%),
s =1,---,k, realized by the sequence of matrices XOy6) = 76 g=1,... k, considering X
diagonal and Y upper triangular. On the other hand, considering X lower triangular and Y
diagonal, the matrix sequence X )y () = Z(), of s-leading submatrices in the first s rows of
XY =7, s=1,...,k, realizes sequence of LR triangles of type [(ags), ...,ags)); (b1, ...,bs);
(c1, ...,cs)] where a(®) interlaces with 51V, for s = 1,2,...,k — 1. We point out the analogy
between this sequence of LR triangles of type [(ags), cee ags)); (b1, ...,bs); (c1, ...,cs)] and the
sequence of LR triangles A®), s = 1,... k, with A®) = A realized by XY = Z, achieved by
means of a combinatorial deletion operation, which decomposes a into a sequence of interlacing
partitions.

Therefore, if Pak-Vallejo Conjecture 1 in [10] is true, this means that the bijections p1, pa,
p5 and and the one presented here (denoted by ps in [10]) have a matrix analogue. In [5] is
shown that symmetries p1, p2, and p), coincide.



2 The space of triangles and the hive graph

Let k be a positive integer. Let T} be the space of triangles of size k [7] consisting of all
sequences

A= WO vy yE)

where V) = (ajj, ..., arj) € R+, 0 < j < k, and ago = 0. As a vector space T} ~
(k+1)2(k+2)71
' k+2

9 > vertices arranged in a

The hive graph Ay of size k is a graph in the plane with (

triangular grid, consisting of k% small equilateral triangles.

/\/ \/\/\ (1)
We identify T}, with the vector space of all labelling A = (ai;)o<j<i<k of Ay by real numbers

such that agg = 0.
We write A € T}, as a triangular array of real numbers

ano
a a
A— 10 11
a20 ag1 ag2
aso asy as2 ass

ISHEY

A Littlewood-Richardson (LR) triangle of size k [9] is an element A = (a;)o<j<i<k of T}
that satisfies the following inequalities

i i+1 . .
(1) Z;:jlafﬂ = Z;J;jﬂ agj+1, 1<j<i<k,
(S) Yp—oaip =)ot 1<j<i<k

For each j = 1,...,k — 1, we consider, in Ay (2),the labelled parallelogram p; = [a;j, ...,
ax—1,;, VU+D]. (We convention pj_; = [ak—1k—1,0kk| as a degenerated parallelogram.) The
labels of parallelograms p;, 1 < j < k — 1, satisfy inequalities ().
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For k = 8, we have the parallelogram ps = [ABC; A’B’C’] in Ag

where the labels of

A
“‘\‘ 5
! B A C
B ¢
satisfy the inequalities
A>A
A+B> A+ DB
A+B+C>A +B +(C'.
Fori=1,...,k—1, we consider the labelled trapezoids t; = [aio, @i1, - .

in Ay, (4). The labels of t;, 1 < j < k, satisfy inequalities (5).

-y Qgg; Q4105 5411,

;az'+1,z'+1]



For k = 8, we have the trapezoid to = [ABC; A’B'C'D’] in Ag

The labels of

satisfy

A> A+ B,
A+B>A +B +(C,
A+B+C>A+B +C'+D.

We denote by LRy the cone of all Littlewood-Richardson triangles in T}, and call it the
Littlewood-Richardson cone of order k.

To each triangle A = (aj)o<j<i<k € Ti we associate the real vectors a = (a1,...,ax),
b= (b1,...,b) and ¢ = (c1,...,cx), where

a; = ajp, 1<i<k

_ vk :
b] - Eg:jaqja 1 S J S k
ci:E’qzoaiq, 1< <k.

We call (a, b, c) the type of A, b the weight of A, and a the boundary of Tj,. Note that a is the
label of the right edge of the hive graph Ay.



Let x be a real vector, and denote by |x| the sum of its entries. If A € LRy, it follows from
(P), (S) and (I) that the vectors a, b, and ¢ satisfy a; > ... > ax >0, b1 > ... > b > 0,
c1>...>2¢;>0,and |a| + |b| = |c], a < c.

We denote by LRy(a,b,c) the set of all LR triangles in T}, of type (a,b,c).

For example, the triangle below is in LRy with type given by a = (5,3,2,0), b = (5,4,2,1)
and ¢ = (8,6,5,3)

k+1)(k+2

Let LRy(Z) :== LR N 2“5 1 be the set of all integral LR triangles of size k, that is,
the set of integer points of LRy. Since LRy, is a rational polyhedral cone, LRy (Z) is a finitely
generated semigroup and the cone generated by LRy(Z) is LRy.

Let Py denote the set of all k-tuples z = (x1,...,x%) of nonnegative integers such that
Let a, b, ¢ partitions in P such that ¢ < ¢ and |a| + [b] = |¢|. To each Littlewood-

Richardson triangle 7 of type (a,b,c), we associate an integral Littlewood-Richardson triangle
A= (aij)OSjgigk € Ty, defined by

app =0, ajp=a;, 1 <1<k,
a;; the number of j’s inrow i of 7,0 < j <i < k.

For example,

= o o O
N O OO
=N OO
w = o
w N O
N =

Proposition 1 [9] Let a, b, ¢ partitions in P such that |c| = |a| + |b] and a < ¢. Then the
. .. . (k+1)(k+2)

correspondence T «—— Ar is a bijection between LRy(a,b,c) NZ 51 ond the set of all
(k+1)(k+2)

LR-skew tableauz of type (a,b,c). In particular, |LRy(a,b,c) NZ 2 = Ng,.

3 'Triangles with 0-boundary by excavation of a par-
tition

We write A = (0; aij)1<j<i<k € T} when the right edge of Ay, is labelled by the null vector, that

iS, ai():(), 1§Z§k

Definition 1 Let b = (b1,...,b;) € Py. A nonnegative integral triangle A = (0;a,5) € Ty, of
weight b, is an excavation of b if

bi —ag; > bip1, 1 <i<k

bi — Xi_paji > bip1 — E;:iaﬂﬂ, 1<i<s<k.



An excavation of b = (b1, ba, b3, bs) may be seen as a decomposition of b. Put b := b®) and
split b into a sequence of partitions

0 0
o b 0 e
: 2 o " -
0 by 0 12
0 bffl) 0 a4 a42 a3 a4
0 0
0 b§2) 0 ai
0 bg) — 0 any as (6)
0 asi ass ass 0 asi as2 ass
0 a4 a49 a43 a44 0 aq1 a42 a43 Qa44.
That is,
B <P < b 1<i<s, b
bz(.i)l < bz@) < bz(.?’), 1<i<2, schematically b§2) b§2)
ng) < bgl) < bg2), b§3) bé?)) béS)
4 4 4 4
b\ b b b\,
or equivalently
air + ag1 +as1 > age +asz +age >0
a1 +ag1 > az +age > asz +aqg3 >0
ail > age > asz > asq > 0.
Proposition 2 Let b = (b1,...,b;) € P,. Let A = (0;a45)1<i<j<k be a nonnegative integral

triangle in Ty of boundary 0 and weight b. The following conditions are equivalent:
(a) A is an excavation of b.
(b) A satisfy the interlacing inequalities (I), that is,

; i1 . .
Sg=itaj = Bglji10g5+1, 1 <J < i<k

0 (c) b has a decomposition into a sequence of interlacing partitions b9) e P;, 1 <35 <k, with
b\ = b,

b < b0 < bVt 1 <i<j<k-1.



Proof: A is an excavation of b iff b has a decomposition into a sequence of interlacing
partitions b0 € Pj, 1 < j < k, with b®) = b, p0TD) <0 <0V 1 << j <k —1, where
b9 = (b?* ) aj+1,1,b§]+ ) — aj11,2,---,0541541), 1 <j <k
This is equivalent to
bY) —ajs = NI lags > bij:l )~ Ajt1,s+1 =Ygy i1gstl, 1 <J<s <k

[ |

Given a partition b in Py, this proposition shows that the triangles of size k obtained by
excavation of b are exactly the triangles of weight b with 0-boundary satisfying inequalities (I);
and may be identified with a decomposition of b into a sequence of interlacing partitions.

4 Deletion and insertion routes of LR triangles

Let A€ LR;.
e A walk 7 in the hive graph Ay

(k7jk) - (k _'1ajk) - (k _'17jk—1) - (k _'2>jk—1) A (uaju+l) - (U,O),

NN/
VAN

NIN/N/N/N
VAVAVAYAVAVAN
JAVAVAVAVAVAVAN

(kajk)

with k > jr > jg—1 > ... > Jut1 > ju = 0, such that

asj, >0, s=k,..., u,
sy = 0,js < < jsy1, s € {u,...,k—1},

is called an deletion route of A. The vertices (k,ji) and (u,0) are called the initial and final
vertices of the route, respectively. Clearly, and k — 1 > u > k — jp > 0.
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Do there exist always a deletion route of A € LRy for each bottom vertex (k,j) in Ay,
1<j<k-—1, with non zero label?

There is one and only one deletion route of A with initial vertex (k,j). The uniqueness is
clear from the definition of deletion route. To prove the existence suppose that for some bottom
vertex (k, ji) in Ag, with 1 < ji < k — 1, with non zero label, we had, at a certain point of the
route, ag; = 0, 0 < j < jgt1, with agj,, ..., ag+1,4,,, > 0. Then, as agy1,5,,, > 0, the trapezoid
p, wouldn’t satisfy the (.S) inequalities.

Given a bottom vertex (k,r), there exists a unique deletion route 7y of A € LRy, thus we
associate the deletion route triangle II} = (p;;) € Tj such that

Psjesy = L, s€{u,...,k—1}
psj. = —1, se{u,...,k}
0, otherwise.

The map (A,II}) — A+ 114 = (as; + pi;) defines a deletion operation on A.
e A walk 7| in the hive graph Ay

(kyjr) — (k—=1,j;) — (k= 1,jk—1) — ... — (u+ 1, jut1) < (&, jug1) < (u,0),

WAVAVAVAN N

AVAVAVAVAN
VAVAVAYAVAVAN
VAVAVAVAVAVAVAN

with & > jix > jk—1 > ... > Jutr1 > ju = 0, such that

auflzau‘*’l, U>1,
asj, ., >0, s=k—1,... u,
sy = 0,Js < T < Js1, S € {u,..., k—1},

is called an insertion route of A. The vertices (u,0) and (k, ji) are called the initial and final
vertices of the route, respectively. Clearly, k — 1> u >k — j > 0.

Given 1 < u < k — 1, unlike the deletion route, we haven’t always an insertion route with
initial vertex (u,0) such that a,—1 > a, + 1, u > 1. Clearly if there exists an insertion route
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of A with initial vertex (u,0), that route is unique and the final vertex is uniquely determined
by v and A. For example, the LR35 triangle

has no insertion route with initial vertex (1,0), but has a deletion route with initial vertex (3, 2)
and final vertex (1,0).
In fact, there exists an insertion route of A € LRy with initial vertex (u,0) iff ay,—1 > a,+1,
u > 1, and there exists a sequence of vertices (s, js+1) in Ay, with js < js11 < s, such that
asj,1 > 0, s =wu,...,k—1. Clearly, if ax_1x-1 > 0 and ay—1 > a, + 1, u > 1, there exists
always an insertion route of A € LRj, with initial vertex (u,0).
Given the insertion route 7, we associate the insertion route triangle II| = (p;;) € T} such
that
Psjopr = —1, s€{u,...,k -1}
psj, =1, s € {u,... .k}
0, otherwise.

The map (A,II}) — A +1II| = (a;j + pi;) defines an insertion operation on A.

Note that the triangles IIy and II| have weight 0 and, respectively, types (—ey, 0, —ej) and
(eu, 0, ex) (e; denotes, as usual, the elementary vector with 1 in entry i and zero elsewhere).

When we are referring indistinctly to a walk corresponding either to a deletion or insertion
route, we drop the arrows.

Definition 2 Given two walks ™ and 7t in Ay with, respectively, bottom and top vertices (k,r),
(k,7), and (u,0), (i,0). We say that % is to the right of 7 if

(1) either k = k and # > r or k > k and the vertices (l%,j), (/%,j +x), x > 1, of m satisfy
F>J+

(#i) (h,j), (h,j+x), x > 1 are vertices of w, with h > k, then (h,7), (h,j+y), y>1, are

vertices of 7, such that j > j + x.
By symmetry, we say that m is to the left of 7.

12



Clearly, if 7 is to the right of 7 then 4 < w.

ISINON .
JAVAVAVAVA
JAVAY AVAVAA

The walk 7|, restricted to Az, is to the right of 7;.

Proposition 3 Let A € LRy, with k > 3, and m| an insertion route of A with initial vertex
(u,0) and final vertex (k,ji), where 1 < ji, < k — 2. Then there exists a deletion route 7
in the restriction of A to Ay_1, with initial vertex (k — 1,jx) and final vertex (v,0) such that
u>v>1.

Proof: The vertices (k —1,jk), (kK — 2, jk—1),. .., (u+1, jut2), (4, ju+1) of m| have positive
labels. Therefore there exists a deletion route 77 with initial vertex (k — 1, ji) to the right of
m| and henceforth with final vertex at (v,0), with u > v.m

We have showed that for each insertion route of A € LRy, k > 3, with final vertex 1 < j; <
k — 2, there exists to its right a deletion route in the restriction of A to Ap_1.

By symmetry for each deletion route in the restriction of A to Ay_1, there exists to its left
an insertion route of A, with final vertex 1 < ji < k — 2.

Proposition 4 Let A € LRy, of type (a,b,c). If w1 is a deletion route of A with final vertex
(u,0), and I1; its triangle, then A+ 11} € LRy, and is of type (a — ey, b,c — eg).

Proof: As the deletion route (7) traverses Ay, the labels of the parallelograms p of A might
change according the following situations

13



(11)

(12)

Clearly the labels of these parallelograms still satisfy inequalities (I), and therefore A + II;

satisfy inequalities (7).

14



Similarly, as the deletion route (7) traverses Ay, the labels of the trapezoids t of A might
change according to the following situations

A B C

A-T 0 CFT D

(14)
A-1 B+1 C
A B -—T1CF1I D
(15)
A-1 B+1 C
A B -1 0 D +1
(16)
A-1 0 C+1
Al B C—1D +1
(a7)

A>A+B +C, C'">0=>A>A+B =A-1>A+B.

15



Clearly, the () inequalities are still satisfied by these trapezoids.m

This proposition shows that deletion operation preserve parallelogram and trapezoid in-
equalities.

As usual, let e; € Z", 1 < j < n, be the integral vector with j-entry equals 1 and 0
elsewhere.

Lemma 1 Let A € LRy, of type (a,b,c). Let 0 < s < r < k such that ags,ap, > 0 (if s =1
put ag, > 1). Let H%T) be the deletion route triangle of A with initial vertex (k,r), and H%S) the

deletion route triangle of A + H%T) with initial vertex (k,s).
Then A+H%T) € LRy, is of type (x| b, c—ey,), A+H%T)+H%s) € LRy, is of type (2, b, c—2e},),

where 2 interlaces with a, for 1 <i<2.

Proof: If (u,0) is the final vertex of the deletion route of A with initial vertex (k, ), then,
as s <, if (v,0) is the final vertex of the deletion route of A + H%T) with initial vertex (%, s),
we have v > u. Therefore z(!) = a — e, with a, — 1 > Qy+1, and @ =qg—¢, — ey, either with
Gy — 2 2 ayy1, if v = u, or with a, — 1 > ay41 > ay > ay — 1 > ayy1, otherwise. Therefore,
a— e, and a — e, — e, interlace with a. m

Let A € LRy, of type (a,b,c). Let ay := ¢x — ago — agk. Put 79 = 0 and define recursively,
fors=1,...,ag, H%rs’l) the triangle of the deletion route of A + Z:SZIH%”) € LRy, with initial
vertex (k,rs) such that ay,, is the rightmost non zero label, with r; < k, By induction on oy,
we conclude that the triangle A + EQ;IH%”) in LRy, of type (z(*),b,c — sey,) is such that (%)
interlaces with a, for 1 < s < 4.

Let A%kil) € LRy_1 of type (a(k_l); (bi,...,bg—1);(c1,...,cr—1)) with atk=1) = gl pe
the triangle obtained from X (o) deleting the (k — 1)-th row. Repeating the previous process

with A%kil) we obtain A%kﬂ) € LRj_5 of type (a(k_2); (b1, ...,bk—2);(c1,...,cr_2)), eventually

we obtain A%l) € LR; of type (a9,b1,c1). Therefore, as shown in (6), the sequence (a(*)%_,
define a triangle (0,Y") € T by excavation of a.

Note that since the final vertex (u,0) of a deletion route of A with initial vertex (k,r)
satisfies k > u > k — r, the triangles A and (0,Y") are such that Y = (y;;)1<i<j<k satisfy

(yslw'wys,s—l) j (as,s—la" . 70’81)7 s = 27 7k'

(= denotes majorization). Let k > 2, for s = 2,...,k, we call (ys1,...,Yss—1) the s-deletion
sequence of A.
Next we shall prove that T'= (b,Y) € LRy, of type (b, a,c).

Lemma 2 Let A € LRy of type (a,b,c) such that ap, > 0, with 1 < r < k . If | is an
insertion route of A with initial vertex (u,0) and final vertex (k+1,7) such that ay—1 > a,+1,
and I1| its triangle, then A+ 11} € LRy11 and is of type (a + ey, b, c + er), if and only if

k k1
i > S a1 + 1

In particular, if r = k, we have agy > agp1 k41 + 1, and if apr1,41 = 0, we have always
k k
Ei:rair > Eizr_;_lair—l—l + 1L

Proof: As the insertion route (8) traverses Ay, the labels of the parallelograms t of A
might change according to the following situations

16



Situation (18) implies

Cl
A
B Al
0 B —1 (19)
/_|_ 1
A
B— A
C+1 B —1 (20)
/+ 1
A
B— A
C+1 0 (21)
Cl

k k+1
Ei:rair > Ei:r+1air+1 + 1.

17



But if ¢/ =0, thenA + B > A’ + B’ implies trivially A+ B+ C > A"+ B’ + C’ + 1.

In the case of the degenerated parallelogram [agy ; ak+1k+1] We have apr > agr1 p+1 + 1.

The trapezoid inequalities can be easily checked, reversing the signs +1 and —1 in situations
(14, 15, 16, 17).m

This lemma shows that trapezoid inequalities are always preserved by insertion operations,
but the preservation of parallelogram inequalities requires additional conditions.

Proposition 5 Let A € LRj1 such that apy1; =0, 1 < j < k, and (Y1, .- -, Ykk—1) its k-

deletion sequence. Let 1 < u < k and m > 0. Then, fori=1,...,m, ﬂ_ium) 18 an insertion

route of A + Ei;llﬂiu;rs) € LRy41, with initial vertex (u,0), and final vertex (k + 1,r;), such
that A+ X7 11" € LRy iff

-1
akk + X521 Ykj 2 Akt k1 + M (22)
In particular, if u =1, arp > agy1,k+1 +m. We call m an u-insertion number of A € LRy41.

Proof: By induction on m. If m = 1, by lemma 1, with a;y41; =0, 1 < j <k, we have two
cases:

Case 1: r1 = k. Then A + H(U;rl) € LRy, iff ag, > ak+1 k+1 + 1. From proposition 3,
E“ 1yk] = 0, we have ayr > ap4+1k+1 + 1 equivalent to 2] 1yk] + agk > g1 p+1 + 1

u;ry)

Case 2: k+1—u <r; <k. We have alwaysA—kHE
situation is equivalent to E“ 1yk3 > 0. As apr > ap+1,k+1, this situation is also equivalent to
¥y Uk F Qe > QL + 1.

Let m > 1 and A(S) A+ 37 H(u ”), s =1,...,m — 1. Suppose that Ais) € LRyy1,
s=1,...,m—1. As 7TE Ui'm) is an insertion route of Aim_l)
Case 1: rpy_1 < 1y < k. We have a,(:;;}) =
we have always A(m—1) 4 H(Lu"qm) =A+ Eglﬂium) € LRyy1.

On the other hand, by proposition 3, E;Cllykj > m. As apr > Qp41 k41, Eygllykj > mis

€ LRy41. By proposition 3, this

, we consider again two cases:

agy1,j = 0, 1 < j < k, then, by lemma 1,

equivalent to EJ 1ykj + gk = 41 k41 + M.
Case 2: 1 = k. By lemma 1, A"V 411%™ = A 4 w7 0" € LRy iff aff ) >
akH k+1+ 1. On the other hand, by proposition 3, E ykj +ar—m+1> a](ck 1) Therefore,

b2 gkt ak —m+1> ap g+ 1 m
We say that (mq,...,myg) is an insertion sequence of A if mg is an s-insertion number of
A§m1+"'+m5*1), fors=1,...,k.

Example 1 In the triangle below, the 3-deletion sequence is (y31,¥ys2) = (1,1). According to
(22), 1 is an 2-insertion number, but 2 is not, since

azgz3+ys1 =1+1=au+1=1+1,

and
asst+ysi=1+1<agy+2=1+2.

18



4 1
[1—] 1— 2 1 1 —
0 1 1 1
0 0 0 0 1
0
4 1
— [1—)] 241 1-1 1 GLR4
0 1+1 1-1 1
0 0 0+1 0 1
But
0
4 1
1— 3 0 1 —
0 2 0 1
0 0 1 0 1
0
4 1
— 3+1 0 1-1
0 2 0+1 1-1
0 0 0 1+0 1
0
4 1
= 4 0 0 ¢ LRy.

Proposition 6 Let A € LRy 1 such that a1 =0, 1 < j < k, and (yp1, -
deletion sequence . Then (0,..., 0,m,,0, ...,0,my, 0,

of A iff

oy Ykk—1) 1S k-
..,0), u > v is an insertion sequence

~1
agk + E}):ﬂ/kj 2 Aft1,k+1 T Moy,
~1
akk + X521 Ykj 2 Q1 g1 My + My,
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By an inductive argument, we conclude that (mg,...,mg) is an insertion sequence of A iff

Qg 2 Q41 k+1 + M1,
Ak + Yr1 = Ak41,k+1 + M1+ mo

akgk + E?;%yk] > Ok+1,k+1 + M1+ ...+ Mg (23)

Example 2 In the last example, we have seen that (0, 1,0) is an insertion sequence of

2 1 1 € LRy.

Notice
a3 +ys1+y=1+1+1>anu+1+1=1+1+1.

So (0,1,1) is an insertion sequence as well. On the other hand,considering the triangle

2 1 1 € LRy.

(0,1,0) is an insertion sequence, but (0,1, 1) is not. Notice that the 3-deletion sequence is (1,0)
and thus
a3 + Y31 +ys2=1+0+1<agu+1+1=1+1+1

Example 3 The 3-deletion sequence of the triangle below is (2,1). The sequences (1, 1,0) and
(1,0,0) are not insertion sequences, although we have ags +y31 =14+2>aga+14+1=1+2.
That is, conditions (23) must be fulfilled

2 1 1 € LRy

Theorem 1 (Symmetry by boundary excavation) Let A € LRy, of type (a,b,c) and B = (b,Y)
the triangle of type (b, a,c) obtained by excavation of the boundary of A. Then B € LRy,.

Proof: It remains to prove that B = (b,Y) satisfy the trapezoid inequalities. The LR
triangle A may be obtained by insertion of Y into A. Put A(4Ap) := 0. Using proposition 6,
let, for r =1,...,k, A(A,) be obtained from A(A,_;) by insertion of (y,1,...,¥rr—1). Clearly,
A(Ag) = A. On the other hand, the r — 1-deletion sequence of A(A,_1)is (Yr—1,1, -, Yr—1,r—2)-
Thus, by proposition 6, the triangle B = (b,Y") satisfy the trapezoid inequalities as well. Hence
BeLR,m

We write excav(A) = B.
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Theorem 2 (Symmetry by boundary insertion) Let A € LRy, of type (a,b,c) and I' = (b, Z)
the triangle of type (b,a,c) obtained by insertion of A. Then I’ € LRy.

Proof: The triangle A satisfy the trapezoid inequalities. Start with the triangle I'y =
(a11;a1;¢1) € LRy, using proposition 6, we get I's = (a11 + a21; (a1, a2);(c1,c2)) € LRy by
insertion of a9; in I'y. By an inductive argument we get I', from I'._1 in LR,_1 by insertion
of (ar1,...,arr—1), r > 2. Notice that the deletion sequence of I';_1 is (ay—1,1,...,ar—1,—2) as
the insertion operation can be reversed.m

We write insert(A) =T.

Example 4 Symmetry by excavation of the boundary

1 2 4 5 0

1 2 4 5 0
0 5 3
— 0 3 1 2 —
1 2—-1 0 1+1 2
0 1 1-1 0 1
1 2 4 5 0
0 5 3
— 0 3 1 2 —
2 1-1 0+1 2 2
0 1-1 0 0 1
1 2 4 5 0
0 1 5—1 3+1
— 0 3 1-1 2+1 —
2 0 1 2—-1 2
0 1
1 2 4 ) 0
0 1 4 4
— 0 1 3—-1 0 3+1 —
2 0 1 1-1 2
0 1
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5 0
4
2-1 0+1
1-1
0
4-1 4+1
1-1
4 ) 0
1 3 )
1 4
0
0 5 3 2
3
1 2
1 2
1 0 1
5—1 3
3+1 1
2
1 2
0 1
4 3
4 1-1
2+1 1
2
0 1



) 4 0 1 1
3 3+1 1 —
2 2
0 1 1
0 4-1 2-1 1-1 0
5) ) 0+1 1+1 1+1
3 4 1 0 =
2 2 0
0 1

Notice that triangles (24) and (25) are the same.

5 Deletion and insertion are identical bijections

Clearly, deletion and insertion operations are the backwards of each other. That is, insert(excav(A)) =
A = excav(insert(A)). But we have even more,

Theorem 3 Let A € LRy, then
excav(A) = insert(A). (26)

This equality follows by induction, on the size of the triangle, and from the following
interesting property

Theorem 4 Let A € LRy of type (a,b, c) with bottom row (ak+1,0,€r, Gpt1k+1)- Let H%r) be

the deletion triangle of A with respect to vertex (k+ 1,r). Then

insert [(A + H(Tr))|Ak:| = linsert(A)]| a,-
Proof: By induction on k. Easy for k = 2,3,4.m
Corollary 1 Let A € LRy 1 of type (a,b,c). Let I} = Zle H%T) Then

insert [(A + HT)| } = linsert(A)] a,-

Ay
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In plain language, these theorem and corollary say that a deletion operation on A, with
initial vertex (k + 1,7), means an r-insertion of the label aj 1, on insert(Aa,)-

Proof of Theorem 3. For k = 2,3, it is easy to check. By definition of excavation, we
have

[exccw(A)hAk = excav [(A + HT)IAJ . (27)
By induction on k£ and previous theorem, we get

[e:/Uccw(A)]‘AlC = excav [(A +1I4) ] = insert [(A +1II;) } = [insert(A)], = (28)

lag, .

lay,

Example 6
0
5 3
3 1 2
4 = 2 0 1 2 -
0 1 1 0 1
0 0 0 (1) 0 0
0
5 3
[A+T8) 1], = 3 1 2
2-(1) 0 1+ (1) 2
0 1 1-(1) 0+ (1) 1
0 5 3 2—-(1) 0
5 3
3 1 2 —
2-(1) 0 1+ (1) 2
0 1 1—-(1) 0+ (1) 1
0 5—1 3 2—(1) 0
5 3+1 1
3 2 —
2-(1) 0 1+ (1) 2
0 1 1-(1) 0+ (1) 1
0 5—1 3 2—-(1) 0
5 4 1-1
3 241 1 N
2-(1) 0 (1) 2
0 1 1-(1) 0+ (1) 1



0 4 3—(1) 2—(1)
5 4 0 (1)
3 24+1+(1) 1 0
2 - (1) 2
0 1 1-(1) 0+ (1) 1
Denote by @ the right triangle.
0 4 2 0
5 4 0 1 0
3 4 1-(1)
2—(1) 24 (1) (1)
0 1 1
Denote by R the right triangle.
0 4—-1 2—-1 1-1
5 441 0+1 1+1 1
3 4 0 0
2-1 3 1
0 1
0 3 1 0 0
) ) 1 2 1
3 4 0 0
2-1 3 1
0 1
Denote the triangle on the right by 7'.
On the other hand
0 4 3 2 0 0
5 4 0 0
3 3 1
—
2 2
0 1 1 0 1
0 0 0 (1) 0 0
Denote by @ the right triangle, and notice that
0
. 4 4
@= 3+(1) 0 3—(1)
2 1 () 2 — (1)



is obtained from

2 1

by 2-insertion of 1 and then restricted to As.

Denote the right triangle by Q'.
Notice that QQ = QTA?N and

4

R = 4
3 0
1 1 0
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1

1 2
0

3 1
1

The triangle 7" on the right is such that T" A, 18 the triangle T above.

Example 7

By induction

4
4-()
0

4-(1)
4
0

4-(1)
4

27

0
5 4
4 1 4
4 0 0 2 —
1 0 0 1
0 (1) 1 0 0
0 1] 0 0 0
0
4
4 1 4
4— (1) 0+ (1 0 2
0 0+ (1) 0 1
0 T+[1] 0 0
3 3 3 0
6 2—(1) 1-(1) 1—-(1) 0
44 (1) 0+ (1) 0+ (1) 0
2 0 0
1 0
1+[1] 0 0
3 3 3 3 0
6 2—(1) 1-(1) 1-(1) 0
4+ (1) 1)-1 (1) -1 0
2+1 1 1
1 0
1] 0
3 3 3—[1]
6 2—(1) 1-(1) 1—(1)+[1]
4+ (1) 0+(1)—-1 0+ (-1 B
2+1+[1] 0+1 1
1 0



On the other hand,

0 3
5 6 2
4 4
4 2
3
0 0 (1) 1 0
0 0 0 [1] 0
0 3 3
5 6 2
4 4 0
4 241
3 1
0 0 (1) 0 0
0 0 0 [1] 0 0
0 3 3
5 6 2— (1)
4 44 (1) o
4 2+1
3 1
0
0 0 0 (1] 0 0
0 3 3 3 — (1)
6 2 — (1) 1-1
1+ (1) - [1] T—[1]
241+ [l] [1}
1 0
0
0
References
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1 1
0 0
0
1
0
0 0
3 3 0 0
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