On an involution on the set of Littlewood-Richardson tableaux and the hidden commutativity

Olga Azenhas ¹
Departamento de Matemática
Universidade de Coimbra
3001-454 Coimbra, Portugal

14-7-2005

Abstract

We translate to the language of triangles with boundary [9] the involution presented in [3], [4], where the language of skew-tableaux has been used. This involution makes explicit, in a simple way, the commutativity of the Littlewood-Richardson rule.

In [4] the language of skew-tableaux is exclusively used to prove this symmetry. Although the description of the algorithm, using these combinatorial objects, is very simple and makes natural the commutativity of the Littlewood-Richardson rule, the language of triangles suits more the purpose to giving a shorter proof of the involution which exhibits the commutativity of the Littlewood-Richardson rule.

The motivation for this involution is easily understood in the language of the invariant factors of a product of integral matrices when the transposition of this product is considered. This matrix analogue follows from an appropriate decomposition of a product of integral matrices established by R. C. Thompson in [14].

Keywords: Littlewood-Richardson triangles, Littlewood-Richardson rule symmetries. combinatorics of integral matrices.

AMS Subject Classification: 05E10, 05E05, 15A18; 15A33

¹Work supported by FCT, CMUC/FCT

1 Introduction

The main feature of this bijection is the decomposition of an LR triangle A, of size $k \geq 1$ and type [a,b,c], into a nested sequence $(A^{(s)})_{s=1}^k$, $A=A^{(k)} \supseteq A^{(k-1)} \supseteq \ldots \supseteq A^{(2)} \supseteq A^{(1)}$, of LR triangles of size s and type $[a^{(s)},(b_1,\ldots,b_s);\ (c_1,\ldots,c_s)],\ s=1,\ldots,k$, where $(a^{(s)})_{s=1}^k$ is a sequence of interlacing partitions. On its turn, this sequence of partitions defines a decomposition of an LR triangle B, of type [b,a,c], into a nested sequence $(B^{(s)})_{s=1}^k$, $B=B^{(k)}\supseteq B^{(k-1)}\supseteq\ldots\supseteq B^{(2)}\supseteq B^{(1)}$, of LR triangles of size s and type $[(b_1,\ldots,b_s);a^{(s)};\ (c_1,\ldots,c_s)],\ s=1,\ldots,k$.

In the matrix setting LR triangles, may be interpreted as follows. Let X, Y and Z be k-square nonsingular matrices, over a local principal ideal domain with prime p, such that XY = Z. Let $p^{a_1}, \ldots, p^{a_k}, p^{b_1}, \ldots, p^{b_k}$, and p^{c_1}, \ldots, p^{c_k} be the invariant factors (Smith invariants) of X, Y and Z respectively, where the exponents of the p-powers are by decreasing order. In [1, 2, 7] is shown that there is one and only one LR triangle A of type [a, b, c] such that XY = Z realizes [1, 2, 8], where $a = (a_i)_{i=1}^n$, $b = (b_i)_{i=1}^n$ and $c = (c_i)_{i=1}^n$.

We consider the following algebraic formulation of the LR rule. (For a similar presentation see [6, 15].) There exists an LR triangle of size k and type [a, b, c], iff there exists a sequence of partitions $b^{(s)} = (b_1^{(s)}, \ldots, b_s^{(s)})$, $s = 1, \ldots, k$, with $b^{(k)} = b$, satisfying the interlacing inequalities

$$b_{i+1}^{(s+1)} \le b_i^{(s)} \le b_i^{(s+1)}$$
, for $1 \le i \le s \le k-1$, (i)

schematically

and the system of linear inequalities

$$a_{s-1} + \sum_{j=1}^{r-1} (b_j^{(s-1)} - b_j^{(s-2)}) \ge a_s + \sum_{j=1}^r (b_j^{(s)} - b_j^{(s-1)}), \ r = 1, \dots, s-1, \ s = 2, \dots, k, \quad (ii)$$
$$a_s + \sum_{j=1}^s (b_j^{(s)} - b_j^{(s-1)}) = c_s, \ s = 1, \dots, k. \quad (iii)$$

(We put $b_1^{(0)} = 0$.)

Given an LR triangle A of size k > 1 and type [a, b, c], for each $s \in \{1, 2, ..., k-1\}$, we may associate, by deleting the k, ..., (s+1)-th rows of A, an LR triangle $T^{(s)}$ of size s and type $[(a_1, ..., a_s); (b_1^{(s)}, ..., b_s^{(s)}); (c_1, ..., c_s)]$, with $T^{(k)} = A$. Indeed, this sequence of LR triangles $T^{(s)}$ of type $[(a_1, ..., a_s); (b_1^{(s)}, ..., b_s^{(s)}); (c_1, ..., c_s)], s = 1, ..., k$, is such that the sequence of partitions $b^{(s)} = (b_1^{(s)}, ..., b_s^{(s)}), s = 1, ..., k$, with $b^{(k)} = b$, satisfy the previous linear inequalities (i), (ii) and (iii). This defines a b-decomposition of A.

The bijection to be exhibited between LR triangles of type [a, b, c] and [b, a, c] is based on a combinatorial deletion operation transforming an LR triangle of size k into one of size

k-1, for k>1, which defines an a-decomposition of an LR triangle of type [a,b,c]. That is, given an LR triangle A of size k and type [a,b,c], this operation defines, uniquely, a nested sequence $A=A^{(k)}\supseteq A^{(k-1)}\supseteq\ldots\supseteq A^{(2)}\supseteq A^{(1)}$ of LR triangles, with $A^{(s)}$ of size s and type $[(a_1^{(s)},\ldots,a_s^{(s)});(b_1,\ldots,b_s);(c_1,\ldots,c_s)],\ s=1,\ldots,k$, and such that the sequence of partitions $a^{(s)}=(a_1^{(s)},\ldots,a_s^{(s)}),\ s=1,\ldots,k$, with $a^{(k)}=a$, satisfies

$$a_{i+1}^{(s+1)} \le a_i^{(s)} \le a_i^{(s+1)}, \quad 1 \le i \le s \le k-1.$$
 (iv)

Furthermore, since the deletion operation can be performed backwards, we have also

$$b_{s-1} + \sum_{j=1}^{r-1} (a_j^{(s-1)} - a_j^{(s-2)}) \ge b_s + \sum_{j=1}^r (a_j^{(s)} - a_j^{(s-1)}), \ r = 1, ..., s - 1, \ s = 2, ..., k, \quad (v)$$
$$b_s + \sum_{j=1}^s (a_j^{(s)} - a_j^{(s-1)}) = c_s, \quad s = 1, ..., k. \quad (vi)$$

(We put $a_1^{(0)} = 0$.)

This combinatorial deletion operation defines, uniquely, an a-decomposition of A. Thus, given an LR triangle A of type [a,b,c], we may associate, uniquely, by means of this deletion operation, an LR triangle B of type [b,a,c], defined by the a-decomposition of A. Moreover, applying to B this combinatorial deletion operation, we recover A.

Considering [14] we may assert:

Let X, Y and Z be k-square non-singular matrices, with entries in a local principal ideal domain, such that AB = C. Let $p^{a_1}, \ldots, p^{a_k}, p^{b_1}, \ldots, p^{b_k}$, and p^{c_1}, \ldots, p^{c_k} be the invariant factors of X, Y and Z, respectively, where $a_1 \geq \ldots \geq a_k$, $b_1 \geq \ldots \geq b_k$ and $c_1 \geq \ldots \geq c_k$. We may assume that:

- (i) X is lower triangular [X diagonal, $X = diag(p^{a_1}, \dots, p^{a_k})];$
- (ii) Y is diagonal, $Y = diag(p^{b_1}, \dots, p^{b_k})$ [Y upper triangular];
- (iii) $Z = [\gamma_{ij}]$ is lower triangular with $\gamma_{ii} = p^{c_i}$, $p^{c_i}|\gamma_{ij}$ for i > j, $1 \le i \le k$ $[Z = [\gamma_{ij}]]$ is upper triangular with $\gamma_{ii} = p^{c_i}$, $p^{c_i}|\gamma_{ij}$, for i < j, $1 \le i \le k$] (the symbol "|" denotes divisibility).

Denote by A the LR triangle of type [a,b,c] realized by XY=Z. A is defined by the interlacing decomposition of b as follows. Put X diagonal and Y upper triangular. Let $X^{(k)}:=X$, $Y^{(k)}:=Y$, $Z^{(k)}:=Z$ and $T^{(k)}:=A$, and consider the sequence of product of matrices $X^{(s)}Y^{(s)}=Z^{(s)},\ s=1,\ldots,k-1$, obtained by deleting the (s+1)-th rows and columns of $X^{(s+1)},\ Y^{(s+1)}$ and $Z^{(s+1)}$. That is, $X^{(s)},\ Y^{(s)}$ and $Z^{(s)}$ are the s-leading submatrices in the first s rows of $X^{(s+1)},\ Y^{(s+1)}$ and $Z^{(s+1)}$ respectively, for $s=1,2,\ldots,k-1$. Since X is in the triangular form, by the interlacing property relating the invariant factors of a matrix with those of a submatrix [11,12,13,15], we obtain, for each $s\in\{1,2,\ldots,k\}$, one LR triangle $T^{(s)}$ of type $[(a_1,\ldots,a_s);(b_1^{(s)},\ldots,b_s^{(s)});(c_1,\ldots,c_s)]$ realized by $X^{(s)}Y^{(s)}=Z^{(s)}$, where the sequence $b^{(s)}=(b_1^{(s)},\ldots b_s^{(s)}),\ s=1,\ldots,k$, satisfies (i).

Now put X lower triangular and Y diagonal and consider the sequence of product of matrices $X^{(s)}Y^{(s)}=Z^{(s)},\ s=1,\ldots,k-1$, obtained by deleting the (s+1)-th rows and columns of $X^{(s+1)},\ Y^{(s+1)}$ and $Z^{(s+1)}$. That is, $X^{(s)},\ Y^{(s)}$ and $Z^{(s)}$ are the s-leading submatrices in the first s rows of $X^{(s+1)},\ Y^{(s+1)}$ and $Z^{(s+1)}$ respectively, for $s=1,2,\ldots,k-1$. Again, since X is in the triangular form, by the interlacing property, we obtain, for each $s\in\{1,2,\ldots,k\}$, one LR triangle of type $[(a_1^{(s)},\ldots,a_s^{(s)});(b_1,\ldots,b_s);(c_1,\ldots,c_s)]$ realized by $X^{(s)}Y^{(s)}=Z^{(s)}$, where

the sequence $a^{(s)}=(a_1^{(s)},\ldots a_s^{(s)})$, $s=1,\ldots,k$, satisfies (iv). By transposition, the s-leading submatrices in the first s rows of $Y^tX^t=Z^t$ (transposing both sides of XY=Z), realize sequence of LR triangles of type $[(b_1,\ldots,b_s);(a_1^{(s)},\ldots,a_s^{(s)});(c_1,\ldots,c_s)], s=1,\ldots,k$, which defines a, unique, LR triangle B of type [b,a,c]. Thus the matrix meaning of our combinatorial involution, in the context of the invariant factors, is the transposition of a product of matrices.

Each triple XY = Z of matrices realizes a unique pair (A, B) of LR triangles of types [a, b, c] and [b, a, c] respectively. The triangle A is defined by the sequence of triangles $T^{(s)}$, $s = 1, \dots, k$, realized by the sequence of matrices $X^{(s)}Y^{(s)} = Z^{(s)}$, $s = 1, \dots, k$, considering X diagonal and Y upper triangular. On the other hand, considering X lower triangular and Y diagonal, the matrix sequence $X^{(s)}Y^{(s)} = Z^{(s)}$, of s-leading submatrices in the first s rows of XY = Z, $s = 1, \dots, k$, realizes sequence of LR triangles of type $[(a_1^{(s)}, \dots, a_s^{(s)}); (b_1, \dots, b_s); (c_1, \dots, c_s)]$ where $a^{(s)}$ interlaces with $a^{(s+1)}$, for $s = 1, 2, \dots, k-1$. We point out the analogy between this sequence of LR triangles of type $[(a_1^{(s)}, \dots, a_s^{(s)}); (b_1, \dots, b_s); (c_1, \dots, c_s)]$ and the sequence of LR triangles $A^{(s)}$, $s = 1, \dots, k$, with $A^{(k)} = A$ realized by XY = Z, achieved by means of a combinatorial deletion operation, which decomposes a into a sequence of interlacing partitions.

Therefore, if Pak-Vallejo Conjecture 1 in [10] is true, this means that the bijections ρ_1 , ρ_2 , ρ'_2 and and the one presented here (denoted by ρ_3 in [10]) have a matrix analogue. In [5] is shown that symmetries ρ_1 , ρ_2 , and ρ'_2 coincide.

2 The space of triangles and the hive graph

Let k be a positive integer. Let T_k be the space of triangles of size k [7] consisting of all sequences

$$A = (V^{(0)}, V^{(1)}, \dots, V^{(k)}),$$

where $V^{(j)} = (a_{jj}, \dots, a_{kj}) \in \mathbb{R}^{k-j+1}, \ 0 \le j \le k$, and $a_{00} = 0$. As a vector space $T_k \simeq \mathbb{R}^{\frac{(k+1)(k+2)}{2}-1}$.

The hive graph Δ_k of size k is a graph in the plane with $\binom{k+2}{2}$ vertices arranged in a triangular grid, consisting of k^2 small equilateral triangles.

We identify T_k with the vector space of all labelling $A = (a_{ij})_{0 \le j \le i \le k}$ of Δ_k by real numbers such that $a_{00} = 0$.

We write $A \in T_k$ as a triangular array of real numbers

A Littlewood-Richardson (**LR**) triangle of size k [9] is an element $A = (a_{ij})_{0 \le j \le i \le k}$ of T_k that satisfies the following inequalities

$$\begin{array}{ll} (P) \ a_{ij} \geq 0, & 0 \leq i, j \leq k, \\ (I) \ \sum_{q=j}^{i} a_{qj} \geq \sum_{q=j+1}^{i+1} a_{q,j+1}, & 1 \leq j \leq i < k, \\ (S) \ \sum_{p=0}^{j-1} a_{ip} \geq \sum_{p=0}^{j} a_{i+1,p}, & 1 \leq j \leq i < k. \end{array}$$

For each $j=1,\ldots,k-1$, we consider, in Δ_k (2),the labelled parallelogram $\mathbf{p}_j=[a_{jj},\ldots,a_{k-1,j},\ V^{(j+1)}]$. (We convention $\mathbf{p}_{k-1}=[a_{k-1,k-1},a_{kk}]$ as a degenerated parallelogram.) The labels of parallelograms $\mathbf{p}_j,\ 1\leq j\leq k-1$, satisfy inequalities (I).

For k = 8, we have the parallelogram $\mathbf{p}_5 = [ABC; A'B'C']$ in Δ_8

where the labels of

satisfy the inequalities

$$\begin{split} A &\geq A' \\ A+B &\geq A'+B' \\ A+B+C &\geq A'+B'+C'. \end{split}$$

For $i = 1, \ldots, k-1$, we consider the labelled trapezoids $\mathbf{t}_i = [a_{i0}, a_{i1}, \ldots, a_{ii}; a_{i+10}, a_{i+11}, \ldots, a_{i+1,i+1}]$ in Δ_k (4). The labels of \mathbf{t}_j , $1 \leq j < k$, satisfy inequalities (S).

For k = 8, we have the trapezoid $\mathbf{t}_2 = [ABC; A'B'C'D']$ in Δ_8

The labels of

satisfy

$$A \ge A' + B',$$

 $A + B \ge A' + B' + C',$
 $A + B + C \ge A' + B' + C' + D'.$

We denote by LR_k the cone of all Littlewood-Richardson triangles in T_k , and call it the Littlewood-Richardson cone of order k.

To each triangle $A = (a_{ij})_{0 \le j \le i \le k} \in T_k$ we associate the real vectors $a = (a_1, \ldots, a_k)$, $b = (b_1, \ldots, b_k)$ and $c = (c_1, \ldots, c_k)$, where

$$a_{i} = a_{i0}, \quad 1 \leq i \leq k$$

$$b_{j} = \sum_{q=j}^{k} a_{qj}, \quad 1 \leq j \leq k$$

$$c_{i} = \sum_{q=0}^{i} a_{iq}, \quad 1 \leq i \leq k.$$

We call (a, b, c) the type of A, b the weight of A, and a the boundary of T_k . Note that a is the label of the right edge of the hive graph Δ_k .

Let x be a real vector, and denote by |x| the sum of its entries. If $A \in LR_k$, it follows from (P), (S) and (I) that the vectors a, b, and c satisfy $a_1 \geq \ldots \geq a_k \geq 0$, $b_1 \geq \ldots \geq b_k \geq 0$, $c_1 \geq \ldots \geq c_k \geq 0$, and |a| + |b| = |c|, $a \leq c$.

We denote by $LR_k(a, b, c)$ the set of all **LR** triangles in T_k of type (a, b, c).

For example, the triangle below is in LR_4 with type given by a = (5, 3, 2, 0), b = (5, 4, 2, 1) and c = (8, 6, 5, 3)

Let $LR_k(\mathbb{Z}) := LR_k \cap \mathbb{Z}^{\frac{(k+1)(k+2)}{2}-1}$ be the set of all integral LR triangles of size k, that is, the set of integer points of LR_k . Since LR_k is a rational polyhedral cone, $LR_k(\mathbb{Z})$ is a finitely generated semigroup and the cone generated by $LR_k(\mathbb{Z})$ is LR_k .

Let P_k denote the set of all k-tuples $x = (x_1, \ldots, x_k)$ of nonnegative integers such that $x_1 \ge \ldots \ge x_k \ge 0$.

Let a, b, c partitions in P_k such that $a \leq c$ and |a| + |b| = |c|. To each Littlewood-Richardson triangle \mathcal{T} of type (a, b, c), we associate an integral Littlewood-Richardson triangle $A = (a_{ij})_{0 \leq j \leq i \leq k} \in T_k$ defined by

$$a_{00} = 0$$
, $a_{i0} = a_i$, $1 \le i \le k$, a_{ij} the number of j's in row i of \mathcal{T} , $0 < j \le i \le k$.

For example,

Proposition 1 [9] Let a, b, c partitions in P_k such that |c| = |a| + |b| and $a \le c$. Then the correspondence $\mathcal{T} \longleftrightarrow A_{\mathcal{T}}$ is a bijection between $LR_k(a,b,c) \cap \mathbb{Z}^{\frac{(k+1)(k+2)}{2}-1}$ and the set of all LR-skew tableaux of type (a,b,c). In particular, $|LR_k(a,b,c) \cap \mathbb{Z}^{\frac{(k+1)(k+2)}{2}-1}| = N_{ab}^c$.

3 Triangles with 0-boundary by excavation of a partition

We write $A = (0; a_{ij})_{1 \le j \le i \le k} \in T_k$ when the right edge of Δ_k is labelled by the null vector, that is, $a_{i0} = 0, 1 \le i \le k$.

Definition 1 Let $b = (b_1, ..., b_k) \in P_k$. A nonnegative integral triangle $A = (0; a_{ij}) \in T_k$, of weight b, is an excavation of b if

$$b_i - a_{ki} \ge b_{i+1}, \ 1 \le i < k$$

 $b_i - \sum_{j=k}^s a_{ji} \ge b_{i+1} - \sum_{j=k}^{s+1} a_{ji+1}, \ 1 \le i \le s < k.$

An excavation of $b = (b_1, b_2, b_3, b_4)$ may be seen as a decomposition of b. Put $b := b^{(4)}$ and split b into a sequence of partitions

$$b^{(4)} := (b_1, b_2, b_3, b_4 = a_{44})$$

$$b^{(3)} = (b_1 - a_{41}, b_2 - a_{42}, b_3 - a_{43} = a_{33})$$

$$b^{(2)} = (b_1^{(3)} - a_{31}, b_2^{(3)} - a_{32} = a_{22})$$

$$b^{(1)} = (b_1^{(2)} - a_{21} = a_{11}),$$

as shown in the following sequence of arrays

That is,

or equivalently

$$a_{11} + a_{21} + a_{31} \ge a_{22} + a_{32} + a_{42} \ge 0$$

 $a_{11} + a_{21} \ge a_{22} + a_{32} \ge a_{33} + a_{43} \ge 0$
 $a_{11} \ge a_{22} \ge a_{33} \ge a_{44} \ge 0$.

Proposition 2 Let $b = (b_1, ..., b_k) \in P_k$. Let $A = (0; a_{ij})_{1 \le i \le j \le k}$ be a nonnegative integral triangle in T_k of boundary 0 and weight b. The following conditions are equivalent:

- (a) A is an excavation of b.
- (b) A satisfy the interlacing inequalities (I), that is,

$$\Sigma_{q=j}^{i} a_{qj} \geq \Sigma_{q=j+1}^{i+1} a_{q,j+1}, \ 1 \leq j \leq i \leq k.$$

(c) b has a decomposition into a sequence of interlacing partitions $b^{(j)} \in P_j$, $1 \le j \le k$, with $b^{(k)} = b$,

$$b_{i+1}^{(j+1)} \le b_i^{(j)} \le b_i^{(j+1)}, \ 1 \le i \le j \le k-1.$$

Proof: A is an excavation of b iff b has a decomposition into a sequence of interlacing partitions $b^{(j)} \in P_j$, $1 \le j \le k$, with $b^{(k)} = b$, $b^{(j+1)}_{i+1} \le b^{(j)}_i \le b^{(j+1)}_i$, $1 \le i \le j \le k-1$, where

$$b^{(j)} = (b_1^{(j+1)} - a_{j+1,1}, b_2^{(j+1)} - a_{j+1,2}, \dots, a_{j+1,j+1}), \ 1 \le j \le k.$$

This is equivalent to

$$b_s^{(j)} - a_{js} = \sum_{q=s}^{j-1} a_{qs} \ge b_{s+1}^{(j+1)} - a_{j+1,s+1} = \sum_{q=s+1}^{j} a_{q,s+1}, \quad 1 \le j \le s \le k.$$

Given a partition b in P_k , this proposition shows that the triangles of size k obtained by excavation of b are exactly the triangles of weight b with 0-boundary satisfying inequalities (I); and may be identified with a decomposition of b into a sequence of interlacing partitions.

4 Deletion and insertion routes of LR triangles

Let $A \in LR_k$.

• A walk π_{\uparrow} in the hive graph Δ_k

$$(k, j_k) \to (k-1, j_k) \to (k-1, j_{k-1}) \to (k-2, j_{k-1}) \to \dots \to (u, j_{u+1}) \to (u, 0),$$

with $k > j_k > j_{k-1} > \ldots > j_{u+1} > j_u = 0$, such that

$$a_{sj_s} > 0, \ s = k, \dots, u,$$

 $a_{sx} = 0, j_s < x < j_{s+1}, \ s \in \{u, \dots, k-1\},$

is called an deletion route of A. The vertices (k, j_k) and (u, 0) are called the initial and final vertices of the route, respectively. Clearly, and $k - 1 \ge u \ge k - j_k > 0$.

Do there exist always a deletion route of $A \in LR_k$ for each bottom vertex (k, j) in Δ_k , $1 \le j \le k-1$, with non zero label?

There is one and only one deletion route of A with initial vertex (k, j). The uniqueness is clear from the definition of deletion route. To prove the existence suppose that for some bottom vertex (k, j_k) in Δ_k , with $1 \leq j_k \leq k-1$, with non zero label, we had, at a certain point of the route, $a_{qj} = 0$, $0 \leq j < j_{q+1}$, with $a_{k,j_k}, \ldots, a_{q+1,j_{q+1}} > 0$. Then, as $a_{q+1,j_{q+1}} > 0$, the trapezoid \mathbf{p}_q wouldn't satisfy the (S) inequalities.

Given a bottom vertex (k, r), there exists a unique deletion route π_{\uparrow} of $A \in LR_k$, thus we associate the deletion route triangle $\Pi_{\uparrow} = (p_{ij}) \in T_k$ such that

$$p_{sj_{s+1}} = 1, \ s \in \{u, \dots, k-1\}$$

 $p_{sj_s} = -1, \ s \in \{u, \dots, k\}$
0. otherwise.

The map $(A, \Pi_{\uparrow}) \to A + \Pi_{\uparrow} = (a_{ij} + p_{ij})$ defines a deletion operation on A.

• A walk π_{\perp} in the hive graph Δ_k

$$(k, j_k) \leftarrow (k-1, j_k) \leftarrow (k-1, j_{k-1}) \leftarrow \ldots \leftarrow (u+1, j_{u+1}) \leftarrow (u, j_{u+1}) \leftarrow (u, 0),$$

with $k > j_k > j_{k-1} > \dots > j_{u+1} > j_u = 0$, such that

$$a_{u-1} \ge a_u + 1, \quad u > 1,$$

$$a_{sj_{s+1}} > 0, \quad s = k - 1, \dots, u,$$

$$a_{sx} = 0, j_s < x < j_{s+1}, \quad s \in \{u, \dots, k - 1\},$$

is called an insertion route of A. The vertices (u,0) and (k,j_k) are called the initial and final vertices of the route, respectively. Clearly, $k-1 \ge u \ge k-j_k > 0$.

Given $1 \le u \le k-1$, unlike the deletion route, we haven't always an insertion route with initial vertex (u,0) such that $a_{u-1} \ge a_u + 1$, u > 1. Clearly if there exists an insertion route

of A with initial vertex (u,0), that route is unique and the final vertex is uniquely determined by u and A. For example, the LR_3 triangle

has no insertion route with initial vertex (1,0), but has a deletion route with initial vertex (3,2) and final vertex (1,0).

In fact, there exists an insertion route of $A \in LR_k$ with initial vertex (u,0) iff $a_{u-1} \ge a_u + 1$, u > 1, and there exists a sequence of vertices (s, j_{s+1}) in Δ_k , with $j_s < j_{s+1} \le s$, such that $a_{s,j_{s+1}} > 0$, $s = u, \ldots, k-1$. Clearly, if $a_{k-1,k-1} > 0$ and $a_{u-1} \ge a_u + 1$, u > 1, there exists always an insertion route of $A \in LR_k$ with initial vertex (u,0).

Given the insertion route π_{\downarrow} , we associate the insertion route triangle $\Pi_{\downarrow} = (p_{ij}) \in T_k$ such that

$$p_{sj_{s+1}} = -1, \ s \in \{u, \dots, k-1\}$$

 $p_{sj_s} = 1, \ s \in \{u, \dots, k\}$
0, otherwise.

The map $(A, \Pi_{\downarrow}) \to A + \Pi_{\downarrow} = (a_{ij} + p_{ij})$ defines an insertion operation on A.

Note that the triangles Π_{\uparrow} and Π_{\downarrow} have weight 0 and, respectively, types $(-e_u, 0, -e_k)$ and $(e_u, 0, e_k)$ $(e_i$ denotes, as usual, the elementary vector with 1 in entry i and zero elsewhere).

When we are referring indistinctly to a walk corresponding either to a deletion or insertion route, we drop the arrows.

Definition 2 Given two walks π and $\hat{\pi}$ in Δ_k with, respectively, bottom and top vertices (k, r), (\hat{k}, \hat{r}) , and (u, 0), $(\hat{u}, 0)$. We say that $\hat{\pi}$ is to the right of π if

- (i) either $k = \hat{k}$ and $\hat{r} > r$ or $k > \hat{k}$ and the vertices (\hat{k}, j) , $(\hat{k}, j + x)$, x > 1, of π satisfy $\hat{r} \ge j + x$;
- (ii) (h, j), (h, j + x), $x \ge 1$ are vertices of π , with $h > \hat{k}$, then (h, \hat{j}) , $(h, \hat{j} + y)$, $y \ge 1$, are vertices of $\hat{\pi}$, such that $\hat{j} \ge j + x$.

By symmetry, we say that π is to the left of $\hat{\pi}$.

Clearly, if $\hat{\pi}$ is to the right of π then $\hat{u} < u$.

The walk $\hat{\pi}_{\downarrow}$, restricted to Δ_7 , is to the right of $\hat{\pi}_{\uparrow}$.

Proposition 3 Let $A \in LR_k$, with $k \geq 3$, and π_{\downarrow} an insertion route of A with initial vertex (u,0) and final vertex (k,j_k) , where $1 \leq j_k \leq k-2$. Then there exists a deletion route $\hat{\pi}_{\uparrow}$ in the restriction of A to Δ_{k-1} , with initial vertex $(k-1,j_k)$ and final vertex (v,0) such that $u > v \geq 1$.

Proof: The vertices $(k-1, j_k)$, $(k-2, j_{k-1}), \ldots, (u+1, j_{u+2}), (u, j_{u+1})$ of π_{\downarrow} have positive labels. Therefore there exists a deletion route $\hat{\pi}_{\uparrow}$ with initial vertex $(k-1, j_k)$ to the right of π_{\downarrow} and henceforth with final vertex at (v, 0), with u > v.

We have showed that for each insertion route of $A \in LR_k$, $k \geq 3$, with final vertex $1 \leq j_k \leq k-2$, there exists to its right a deletion route in the restriction of A to Δ_{k-1} .

By symmetry for each deletion route in the restriction of A to Δ_{k-1} , there exists to its left an insertion route of A, with final vertex $1 \leq j_k \leq k-2$.

Proposition 4 Let $A \in LR_k$ of type (a,b,c). If π_{\uparrow} is a deletion route of A with final vertex (u,0), and Π_{\uparrow} its triangle, then $A + \Pi_{\uparrow} \in LR_k$ and is of type $(a - e_u, b, c - e_k)$.

Proof: As the deletion route (7) traverses Δ_k , the labels of the parallelograms \mathbf{p} of A might change according the following situations

$$B + 1 \longrightarrow A'$$

$$C - 1 \longrightarrow B' + 1$$

$$C' - 1$$

$$(12)$$

$$B + 1 \longrightarrow A'$$

$$C - 1 \longrightarrow 0$$

$$C'$$
(13)

Clearly the labels of these parallelograms still satisfy inequalities (I), and therefore $A + \Pi_{\uparrow}$ satisfy inequalities (I).

Similarly, as the deletion route (7) traverses Δ_k , the labels of the trapezoids **t** of A might change according to the following situations

$$A' = \frac{A-1}{B'} \frac{0}{C'-1} \frac{C+1}{D'} + 1$$
(17)

$$A \ge A' + B' + C', \ C' > 0 \Rightarrow A > A' + B' \Rightarrow A - 1 \ge A' + B'.$$

Clearly, the (S) inequalities are still satisfied by these trapezoids.

This proposition shows that deletion operation preserve parallelogram and trapezoid inequalities.

As usual, let $e_j \in \mathbb{Z}^n$, $1 \leq j \leq n$, be the integral vector with j-entry equals 1 and 0 elsewhere.

Lemma 1 Let $A \in LR_k$ of type (a,b,c). Let $0 < s \le r < k$ such that $a_{ks}, a_{kr} > 0$ (if s = r put $a_{kr} > 1$). Let $\Pi_{\uparrow}^{(r)}$ be the deletion route triangle of A with initial vertex (k,r), and $\Pi_{\uparrow}^{(s)}$ the deletion route triangle of $A + \Pi_{\uparrow}^{(r)}$ with initial vertex (k,s).

Then $A+\Pi_{\uparrow}^{(r)} \in LR_k$ is of type $(x^{(1)}, b, c-e_k)$, $A+\Pi_{\uparrow}^{(r)}+\Pi_{\uparrow}^{(s)} \in LR_k$ is of type $(x^{(2)}, b, c-2e_k)$, where $x^{(i)}$ interlaces with a, for $1 \le i \le 2$.

Proof: If (u,0) is the final vertex of the deletion route of A with initial vertex (k,r), then, as $s \leq r$, if (v,0) is the final vertex of the deletion route of $A + \Pi_{\uparrow}^{(r)}$ with initial vertex (k,s), we have $v \geq u$. Therefore $x^{(1)} = a - e_u$ with $a_u - 1 \geq a_{u+1}$, and $x^{(2)} = a - e_u - e_v$, either with $a_u - 2 \geq a_{u+1}$, if v = u, or with $a_u - 1 \geq a_{u+1} \geq a_v \geq a_v - 1 \geq a_{v+1}$, otherwise. Therefore, $a - e_u$ and $a - e_u - e_v$ interlace with $a_u = 0$.

Let $A \in LR_k$ of type (a,b,c). Let $\alpha_k := c_k - a_{k0} - a_{kk}$. Put $r_0 = 0$ and define recursively, for $s = 1, \ldots, \alpha_k$, $\Pi_{\uparrow}^{(r_{s-1})}$ the triangle of the deletion route of $A + \sum_{i=1}^{r_s} \Pi_{\uparrow}^{(r_i)} \in LR_k$ with initial vertex (k, r_s) such that a_{k,r_s} is the rightmost non zero label, with $r_s < k$, By induction on α_k , we conclude that the triangle $A + \sum_{i=1}^{r_s} \Pi_{\uparrow}^{(r_i)}$ in LR_k of type $(x^{(s)}, b, c - se_k)$ is such that $x^{(s)}$ interlaces with a, for $1 \le s \le \alpha_k$.

Let $A_{\uparrow}^{(k-1)} \in LR_{k-1}$ of type $(a^{(k-1)}; (b_1, \ldots, b_{k-1}); (c_1, \ldots, c_{k-1}))$ with $a^{(k-1)} := x^{(\alpha_k)}$, be the triangle obtained from $X^{(\alpha_k)}$ deleting the (k-1)-th row. Repeating the previous process with $A_{\uparrow}^{(k-1)}$ we obtain $A_{\uparrow}^{(k-2)} \in LR_{k-2}$ of type $(a^{(k-2)}; (b_1, \ldots, b_{k-2}); (c_1, \ldots, c_{k-2}))$, eventually we obtain $A_{\uparrow}^{(1)} \in LR_1$ of type $(a^{(0)}, b_1, c_1)$. Therefore, as shown in (6), the sequence $(a^{(s)})_{s=1}^k$ define a triangle $(0, Y) \in T_k$ by excavation of a.

Note that since the final vertex (u,0) of a deletion route of A with initial vertex (k,r) satisfies $k > u \ge k - r$, the triangles A and (0,Y) are such that $Y = (y_{ij})_{1 \le i \le j \le k}$ satisfy

$$(y_{s1}, \dots, y_{s,s-1}) \leq (a_{s,s-1}, \dots, a_{s1}), \quad s = 2, \dots, k.$$

(\leq denotes majorization). Let $k \geq 2$, for $s = 2, \ldots, k$, we call $(y_{s1}, \ldots, y_{s,s-1})$ the s-deletion sequence of A.

Next we shall prove that $T = (b, Y) \in LR_k$ of type (b, a, c).

Lemma 2 Let $A \in LR_{k+1}$ of type (a,b,c) such that $a_{kr} > 0$, with $1 \le r \le k$. If π_{\downarrow} is an insertion route of A with initial vertex (u,0) and final vertex (k+1,r) such that $a_{u-1} > a_u + 1$, and Π_{\downarrow} its triangle, then $A + \Pi_{\downarrow} \in LR_{k+1}$ and is of type $(a + e_u, b, c + e_k)$, if and only if

$$\sum_{i=r}^{k} a_{ir} \ge \sum_{i=r+1}^{k+1} a_{ir+1} + 1.$$

In particular, if r = k, we have $a_{kk} \ge a_{k+1,k+1} + 1$, and if $a_{k+1,r+1} = 0$, we have always $\sum_{i=r}^{k} a_{ir} \ge \sum_{i=r+1}^{k} a_{ir+1} + 1$.

Proof: As the insertion route (8) traverses Δ_k , the labels of the parallelograms **t** of A might change according to the following situations

$$\begin{array}{c}
A \\
B \\
A' \\
B' - 1
\end{array}$$
(19)

$$B - 1 \longrightarrow A'$$

$$C + 1 \longrightarrow B' - 1$$

$$C' + 1$$

$$(20)$$

$$B - 1 \longrightarrow A'$$

$$C + 1 \longrightarrow 0 \tag{21}$$

Situation (18) implies

$$\Sigma_{i=r}^{k} a_{ir} \ge \Sigma_{i=r+1}^{k+1} a_{ir+1} + 1.$$

But if C' = 0, then $A + B \ge A' + B'$ implies trivially $A + B + C \ge A' + B' + C' + 1$.

In the case of the degenerated parallelogram $[a_{kk}; a_{k+1,k+1}]$ we have $a_{kk} \ge a_{k+1,k+1} + 1$.

The trapezoid inequalities can be easily checked, reversing the signs +1 and -1 in situations (14, 15, 16, 17).

This lemma shows that trapezoid inequalities are always preserved by insertion operations, but the preservation of parallelogram inequalities requires additional conditions.

Proposition 5 Let $A \in LR_{k+1}$ such that $a_{k+1,j} = 0, 1 \leq j \leq k$, and $(y_{k1}, \ldots, y_{kk-1})$ its kdeletion sequence. Let $1 \leq u \leq k$ and m > 0. Then, for $i = 1, \ldots, m$, $\pi_{\perp}^{(u;r_i)}$ is an insertion route of $A + \sum_{s=1}^{i-1} \Pi_{|}^{(u;r_s)} \in LR_{k+1}$, with initial vertex (u,0), and final vertex $(k+1,r_i)$, such that $A + \sum_{i=1}^{m} \Pi_{\perp}^{(u;r_i)} \in LR_{k+1}$ iff

$$a_{kk} + \sum_{i=1}^{u-1} y_{kj} \ge a_{k+1,k+1} + m. \tag{22}$$

In particular, if u = 1, $a_{k,k} \ge a_{k+1,k+1} + m$. We call m an u-insertion number of $A \in LR_{k+1}$.

Proof: By induction on m. If m = 1, by lemma 1, with $a_{k+1,j} = 0$, $1 \le j \le k$, we have two cases:

Case 1: $r_1 = k$. Then $A + \Pi_{\perp}^{(u;r_1)} \in LR_{k+1}$ iff $a_{kk} \geq a_{k+1,k+1} + 1$. From proposition 3, $\sum_{j=1}^{u-1} y_{kj} = 0$, we have $a_{kk} \ge a_{k+1,k+1} + 1$ equivalent to $\sum_{j=1}^{u-1} y_{kj} + a_{kk} \ge a_{k+1,k+1} + 1$.

Case 2: $k+1-u \le r_1 < k$. We have always $A+\Pi_{\downarrow}^{(u;r_1)} \in LR_{k+1}$. By proposition 3, this situation is equivalent to $\sum_{j=1}^{u-1} y_{kj} > 0$. As $a_{kk} \geq a_{k+1,k+1}$, this situation is also equivalent to $\sum_{i=1}^{u-1} y_{kj} + a_{kk} \ge a_{k+1,k+1} + 1.$

Let m > 1 and $A_{\downarrow}^{(s)} := A + \sum_{i=1}^{s} \Pi_{\downarrow}^{(u;r_i)}, \ s = 1, \dots, m-1$. Suppose that $A_{\downarrow}^{(s)} \in LR_{k+1}$, $s=1,\ldots,m-1$. As $\pi_{\parallel}^{(u;r_m)}$ is an insertion route of $A_{\parallel}^{(m-1)}$, we consider again two cases:

Case 1: $r_{m-1} \leq r_m < k$. We have $a_{k+1,j}^{(m-1)} = a_{k+1,j} = 0$, $r_{m-1} < j \leq k$, then, by lemma 1, we have always $A^{(m-1)} + \prod_{j=1}^{u} \prod_{j=1}^{u$

On the other hand, by proposition 3, $\sum_{j=1}^{u-1} y_{kj} \geq m$. As $a_{kk} \geq a_{k+1,k+1}$, $\sum_{j=1}^{u-1} y_{kj} \geq m$ is

equivalent to $\Sigma_{j=1}^{u-1} y_{kj} + a_{kk} \ge a_{k+1,k+1} + m$. Case 2: $r_m = k$. By lemma 1, $A_{\downarrow}^{(m-1)} + \Pi_{\downarrow}^{(u;r_m)} = A + \Sigma_{i=1}^m \Pi_{\downarrow}^{(u;r_i)} \in LR_{k+1}$ iff $a_{kk}^{(m-1)} \ge a_{kk}^{(m-1)}$ $a_{k+1,k+1}+1$. On the other hand, by proposition 3, $\sum_{j=1}^{u-1}y_{kj}+a_{kk}-m+1\geq a_{kk}^{(m-1)}$. Therefore, $\sum_{i=1}^{u-1} y_{kj} + a_{kk} - m + 1 \ge a_{k+1,k+1} + 1. \blacksquare$

We say that (m_1, \ldots, m_k) is an insertion sequence of A if m_s is an s-insertion number of $A_{\perp}^{(m_1+\ldots+m_{s-1})}$, for $s=1,\ldots,k$.

Example 1 In the triangle below, the 3-deletion sequence is $(y_{31}, y_{32}) = (1, 1)$. According to (22), 1 is an 2-insertion number, but 2 is not, since

$$a_{33} + y_{31} = 1 + 1 = a_{44} + 1 = 1 + 1,$$

and

$$a_{33} + y_{31} = 1 + 1 < a_{44} + 2 = 1 + 2.$$

But

Proposition 6 Let $A \in LR_{k+1}$ such that $a_{k+1,j} = 0$, $1 \le j \le k$, and $(y_{k1}, \ldots, y_{kk-1})$ its k-deletion sequence. Then $(0, \ldots, 0, m_v, 0, \ldots, 0, m_u, 0, \ldots, 0)$, u > v is an insertion sequence of A iff

$$a_{kk} + \sum_{j=1}^{v-1} y_{kj} \ge a_{k+1,k+1} + m_v,$$

$$a_{kk} + \sum_{j=1}^{u-1} y_{kj} \ge a_{k+1,k+1} + m_u + m_v.$$

By an inductive argument, we conclude that (m_1, \ldots, m_k) is an insertion sequence of A iff

$$a_{kk} \ge a_{k+1,k+1} + m_1,$$

$$a_{kk} + y_{k1} \ge a_{k+1,k+1} + m_1 + m_2$$

$$\dots$$

$$a_{kk} + \sum_{j=1}^{k-1} y_{kj} \ge a_{k+1,k+1} + m_1 + \dots + m_k.$$
(23)

Example 2 In the last example, we have seen that (0,1,0) is an insertion sequence of

Notice

$$a_{33} + y_{31} + y_{32} = 1 + 1 + 1 \ge a_{44} + 1 + 1 = 1 + 1 + 1.$$

So (0,1,1) is an insertion sequence as well. On the other hand, considering the triangle

(0,1,0) is an insertion sequence, but (0,1,1) is not. Notice that the 3-deletion sequence is (1,0) and thus

$$a_{33} + y_{31} + y_{32} = 1 + 0 + 1 < a_{44} + 1 + 1 = 1 + 1 + 1.$$

Example 3 The 3-deletion sequence of the triangle below is (2,1). The sequences (1,1,0) and (1,0,0) are not insertion sequences, although we have $a_{33} + y_{31} = 1 + 2 \ge a_{44} + 1 + 1 = 1 + 2$. That is, conditions (23) must be fulfilled

Theorem 1 (Symmetry by boundary excavation) Let $A \in LR_k$ of type (a, b, c) and B = (b, Y) the triangle of type (b, a, c) obtained by excavation of the boundary of A. Then $B \in LR_k$.

Proof: It remains to prove that B = (b, Y) satisfy the trapezoid inequalities. The LR triangle A may be obtained by insertion of Y into A. Put $A(\Delta_0) := 0$. Using proposition 6, let, for $r = 1, \ldots, k$, $A(\Delta_r)$ be obtained from $A(\Delta_{r-1})$ by insertion of $(y_{r1}, \ldots, y_{r,r-1})$. Clearly, $A(\Delta_k) = A$. On the other hand, the r-1-deletion sequence of $A(\Delta_{r-1})$ is $(y_{r-1,1}, \ldots, y_{r-1,r-2})$. Thus, by proposition 6, the triangle B = (b, Y) satisfy the trapezoid inequalities as well. Hence $B \in LR_k$.

We write excav(A) = B.

Theorem 2 (Symmetry by boundary insertion) Let $A \in LR_k$ of type (a, b, c) and $\Gamma = (b, Z)$ the triangle of type (b, a, c) obtained by insertion of A. Then $\Gamma \in LR_k$.

Proof: The triangle A satisfy the trapezoid inequalities. Start with the triangle $\Gamma_1 = (a_{11}; a_1; c_1) \in LR_1$, using proposition 6, we get $\Gamma_2 = (a_{11} + a_{21}; (a_1, a_2); (c_1, c_2)) \in LR_2$ by insertion of a_{21} in Γ_1 . By an inductive argument we get Γ_r from Γ_{r-1} in LR_{r-1} by insertion of $(a_{r1}, \ldots, a_{r,r-1}), r > 2$. Notice that the deletion sequence of Γ_{r-1} is $(a_{r-1,1}, \ldots, a_{r-1,r-2})$ as the insertion operation can be reversed.

We write $insert(A) = \Gamma$.

Example 4 Symmetry by excavation of the boundary

Example 5 Symmetry by boundary insertion

Notice that triangles (24) and (25) are the same.

5 Deletion and insertion are identical bijections

Clearly, deletion and insertion operations are the backwards of each other. That is, insert(excav(A)) = A = excav(insert(A)). But we have even more,

Theorem 3 Let $A \in LR_k$, then

$$excav(A) = insert(A).$$
 (26)

This equality follows by induction, on the size of the triangle, and from the following interesting property

Theorem 4 Let $A \in LR_{k+1}$ of type (a,b,c) with bottom row $(a_{k+1,0},e_r,a_{k+1,k+1})$. Let $\Pi_{\uparrow}^{(r)}$ be the deletion triangle of A with respect to vertex (k+1,r). Then

$$insert\left[(A+\Pi_{\uparrow}^{(r)})_{|\Delta_{k}}\right]=\left[insert(A)\right]_{|\Delta_{k}}.$$

Proof: By induction on k. Easy for k = 2, 3, 4.

Corollary 1 Let $A \in LR_{k+1}$ of type (a,b,c). Let $\Pi_{\uparrow} = \sum_{r=1}^{k} \Pi_{\uparrow}^{(r)}$ Then

$$insert\left[\left(A+\Pi_{\uparrow}\right)_{|_{\Delta_{k}}}\right]=\left[insert(A)\right]_{|_{\Delta_{k}}}.$$

In plain language, these theorem and corollary say that a deletion operation on A, with initial vertex (k+1,r), means an r-insertion of the label $a_{k+1,r}$ on $insert(A_{|\Delta_k})$.

Proof of Theorem 3. For k=2,3, it is easy to check. By definition of excavation, we have

$$\left[excav(A)\right]_{|\Delta_k} = excav\left[(A + \Pi_{\uparrow})_{|\Delta_k}\right]. \tag{27}$$

By induction on k and previous theorem, we get

$$\left[excav(A)\right]_{|\Delta_k} = excav\left[(A + \Pi_\uparrow)_{|\Delta_k}\right] = insert\left[(A + \Pi_\uparrow)_{|\Delta_k}\right] = \left[insert(A)\right]_{|\Delta_k}. \blacksquare \tag{28}$$

Example 6

Denote by \hat{Q} the right triangle.

Denote by \hat{R} the right triangle.

Denote the triangle on the right by \hat{T} .

On the other hand

Denote by Q the right triangle, and notice that

is obtained from

by 2-insertion of 1 and then restricted to Δ_3 .

Denote the right triangle by Q'. Notice that $\hat{Q} = Q'_{|\Delta_3}$, and

is obtained from Q' by 3-insertion of 1 and then restricted to Δ_4 .

The triangle T' on the right is such that $T'_{|\Delta_4}$ is the triangle \hat{T} above.

Example 7

By induction

On the other hand,

References

- [1] G. D. Appleby, A simple approach to matrix realizations for Littlewood-Richardson sequences, *Linear Algebra and its Applications*, 291:1-14, 1999.
- [2] O. Azenhas and E. Marques de Sá, Matrix realizations of Littlewood-Richardson sequences, Linear and Multilinear Algebra, 27:229-242, 1990.
- [3] O. Azenhas, Littlewood-Richardson fillings and their symmetries, *Matrices and Group Representations*, *Coimbra*, 6-8 May 1998, Textos de Matemática, Série B, Departamento de Matemática, Universidade de Coimbra, 1999.

- On an involution on the set of Littlewood-Richardson tableaux and [4] O. Azenhas, the hidden commutativity, Pré-Publicações do Departamento de Matemática. Universidade Coimbra, 00-27(2000),available preprint number from http://www.mat.uc.pt/preprints/2000.html
- [5] V. I. Danilov, G. A. Koshevoy, Arrays and the octahedron recurrence, arXiv:math.CO/0504299, April 2005.
- [6] S. Johnson, The Schubert Calculus and Eigenvalue Inequalities for Sums of Hermitian Matrices, Dissertation, Santa Barbara, 1979 (unpublished).
- [7] A. N. Kirillov, A. D. Berenstein, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux, *Algebra i Analiz* 7, 1995.
- [8] T. Klein, The multiplication of Schur functions and extensions of p-modules, Journal of the London Mathematical Society, 43:280-284, 1968.
- [9] I. Pak, Ernesto Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, preprint (2003) 15 pp., to appear in Europ. J. Combinatorics, available from http://www-math.mit.edu/pak/research.html
- [10] I. Pak, E. Vallejo, Reductions of Young tableaux bijections, preprint (2004), 42 pp, available from http://www-math.mit.edu/pak/research.html
- [11] J. F. Queiró, E. M. de Sá, A. P. Santana. O. Azenhas, Interlacing of eigenvalues and invariant factors, *Mathematical Inequalities and Applications*, 2:149-154, 2000.
- [12] E. Marques de Sá, Imbedding conditions for λ -matrices, Linear Algebra and its Applications 24, 33-50, 1979.
- [13] R. C. Thompson, Interlacing inequalities for invariant factors, *Linear Algebra and its Applications* 24, 1-32, 1979.
- [14] R. C. Thompson, An inequality for invariant factors, *Proceedings of the American Mathematical Society*, 86, 1982.
- [15] R. C. Thompson, Smith invariants of a product of integral matrices, in Linear Algebra and its Role in Systems Theory, *Contemporary Mathematics*, 47:401-435, AMS, 1985.