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0. ABSTRACT

We prove a restriction of an analogue of the Robinson-Schensted-Knuth cor-
respondence for semi-skyline augmented fillings, due to Mason, to multisets
of cells of a staircase, in French convention, possibly truncated by a smaller
staircase at the upper left end corner, or at the bottom right end corner. The
condition to be imposed on the pairs of semi-skyline augmented fillings is that
the pair of shapes, rearrangements of each other, satisfies an inequality in
the Bruhat order, w.r.t. the symmetric group, where one shape is bounded
by the reverse of the other. For semi-standard Young tableaux the inequality
means that the pair of their right keys is such that one key is bounded by
the Schützenberger’s evacuation of the other. This bijection is then used to
obtain an expansion formula of the non-symmetric Cauchy kernel, over stair-
cases or truncated staircases, in the basis of Demazure characters of type A,
and the basis of Demazure atoms. The expansion implies a Lascoux’s ex-
pansion formula over arbitrary Ferrers shapes, when specialised to staircases
or truncated staircases, and make explicit, in the latter, the Young tableaux
in the Demazure crystal by interpreting Demazure operators via elementary
bubble sorting operators acting on weak compositions.

Fomin has introduced a growth diagram presentation for the Robinson-
Schensted correspondence and van Leeuwen and Roby developed it further.
Krattenthaler uses the same approach to treat fillings of diagrams under cer-
tain restrictions. The growth diagram approach avoids insertion operations
and makes symmetries transparent. We also introduce a growth diagram pre-
sentation for the analogue of the Robinson-Schensted-Knuth correspondence.
This is done in a natural way via reverse semi-standard Young tableaux which
are in bijection with semi-skyline augmented fillings. While our strategy, in
the first part of our work, is to consider the smallest staircase containing the
truncated shape, it is however observed by Lascoux that the Cauchy kernel
expansion, over an arbitrary Ferrers shape, can be recovered from the ex-
pansion on staircases, by considering the biggest staircase inside the Ferrers
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shape. The strategy, in the last chapter, is then to use a convenient growth
diagram to reduce the expansion, over arbitrary Ferrers shapes, to staircases
by moving the cells outside the biggest staircase into inside. This is achieved
by interpreting the action of crystal operators, on words, as matchings and
slides of cells marked with 1 in the 01-filling of our growth diagram, and, then,
convert the resulting information to semi-skyline augmented fillings. With
these tools we give a combinatorial proof for the Lascoux’s non-symmetric
Cauchy kernel expansion over an arbitrary Ferrers shapes, in the cases, of
one and two non-consecutive boxes above the staircase, and an idea in the
general case. In particular, this affords another combinatorial proof for strict
truncated staircases, considered in the first part of our work.

A previous expansion of the non-symmetric Cauchy kernel, over stair-
cases, was given by Lascoux, based on the structure of double crystal graphs,
and, by Fu and Lascoux, relying on Demazure operators properties. The
expansion, over an arbitrary Ferrers shape, was derived by Lascoux alge-
braically.



0. RESUMO

Prova-se uma restrição de uma análoga da correspondência de Robinson-
Schensted-Knuth, para preenchimentos semistandard de linhas de horizonte
aumentadas, da autoria de Mason, a multiconjuntos de células em diagra-
mas em escada, segundo a convenção Francesa, possivelmente truncados
por escadas mais pequenas nos cantos superior esquerdo ou inferior dire-
ito. A condição imposta nos pares de linhas de horizonte aumentadas com
preenchimento semistandard é que o par de formatos, rearranjos um do outro,
satisfaça uma desigualdade na ordem de Bruhat, com respeito ao grupo
simétrico, onde um formato é limitado pelo outro em ordem reversa. Para
tableaux de Young semistandard, a desigualdade significa que o par de chaves
à direita é tal que uma chave é limitada pela evacuação de Schützenberger
da outra. Esta bijecção é seguidamente usada para obter uma expansão não
simétrica do kernel de Cauchy, sobre diagramas em escada ou diagramas em
escada truncados, na base dos caracteres de Demazure do tipo A, e na base
dos átomos de Demazure. Esta expansão implica uma outra, da autoria de
Lascoux, sobre diagramas de Ferrers arbitrários, quando especializada a dia-
gramas em escada ou diagramas em escada truncados, e explicita, no último,
os tableaux de Young no cristal de Demazure via operadores elementares de
bolha actuando em vectores de entradas inteiras não negativas.

Fomin introduziu uma apresentação em diagramas de crescimento para a
correspondência de Robinson-Schensted, e van Leeuwen e Roby desenvolveram-
na. Krattenthaler usou a mesma abordagem para tratar preenchimentos de
diagramas sujeitos a certas restrições. Os diagramas de crescimento evitam
operações de inserção e tornam as simetrias transparentes. Nós também in-
troduzimos nesta tese uma apresentação de diagramas de crescimento para
a análoga da correspondência de Robinson-Schensted Knuth referida acima.
Isto é feito naturalmente via tableaux de Young reversos os quais estão em
bijecção com as linhas de horizonte aumentadas com preenchimentos semi-
standard. Enquanto, na primeira parte do nosso trabalho, a estratégia foi
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considerar o diagrama em escada mais pequeno contendo o diagrama trun-
cado, é, no entanto, observado por Lascoux que a expansão não simétrica do
kernel de Cauchy sobre diagramas de Ferrers arbitrários, pode ser reduzida
ao caso da expansão dos diagramas em escada, considerando para esse efeito
o maior diagrama em escada contido no diagrama de Ferrers. De acordo com
esta observação, usamos agora diagramas de crescimento convenientes para
reduzir a expansão sobre diagramas de Ferrers arbitrários a diagramas em
escada, deslocando, para esse efeito, as células que estão fora da maior escada
para o seu interior. Isto é alcançado interpretando a acção dos operadores
de cristal em palavras como emparelhamentos e deslocamentos de células
marcadas com 1 no preenchimento 0-1 do nosso diagrama de crescimento,
e converter, em seguida, a informação resultante para linhas de horizonte
aumentadas com preenchimento semistandard. Com estas ferramentas obte-
mos uma prova combinatória para a expansão não simétrica do kernel de
Cauchy sobre diagramas de Ferrers, nos casos, de uma ou duas caixas não
consecutivas em cima do diagrama em escada, e uma ideia no caso geral.
Em particular, este método fornece uma outra prova combinatória para a
expansão do kernel Cauchy sobre diagramas em escada truncados, consider-
ados na primeira parte do trabalho.

A expansão não simétrica do kernel de Cauchy previamente obtida por
Lascoux, sobre diagramas em escada, foi baseada na estrutura de grafos de
cristal duplos, e a obtida por Fu e Lascoux apoiou-se em propriedades dos
operadores de Demazure. No caso dos diagramas de Ferrers arbitrários, esta
foi deduzida algebricamente por Lascoux.
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1. INTRODUCTION

The main definitions and notations that appear throughout the thesis are
discussed in this chapter. Although the contents of this chapter is well known,
we reproduce it here for the convenience of the reader. For more information
about these objects, including proofs of elementary facts, see [4, 12, 30, 38,
49]. We start with objective and background of our research.

1.1 Background and objective

Let λ be a partition. Kashiwara [19, 20] has associated with λ a crystal Bλ,
which can be realised in type A as a coloured directed graph whose vertices
are all semi-standard Young tableaux (SSYTs) of shape λ with entries ≤ n,
and the edges are coloured with a colour i, for each pair of crystal operators
fi, ei, such that there exists a coloured i-arrow from the vertex P to P ′ if
and only if fi(P ) = P ′, equivalently, ei(P

′) = P , for i = 1, . . . , n − 1. For
a given permutation w in the symmetric group Sn, the shortest in its class
modulo the stabiliser of λ, the subset Bwλ ⊆ Bλ is a certain subgraph called
Demazure crystal, [21, 34] and the Demazure character corresponding to λ
and w, is the sum of the weight monomials of the SSYTs in the Demazure
crystal Bwλ.

Demazure characters (or key polynomials) are also defined through De-
mazure operators (or isobaric divided differences). They were introduced by
Demazure [8] for all Weyl groups and were studied combinatorially, in the
case of Sn, by Lascoux and Schützenberger [28, 32] who produce a crystal
structure. We assume throughout N as the set of nonnegative integers. The
action of the simple transpositions si ∈ Sn on weak compositions in Nn, by
permuting the entries i and i+ 1, induces an action of Sn on the polynomial
ring Z[x1, . . . , xn] by considering weak compositions α ∈ Nn as exponents of
monomials xα := xα1

1 x
α2
2 · · ·xαnn [29], and defining six

α := xsiα as the trans-
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position of xi and xi+1 in the monomial xα. If f ∈ Z[x1, . . . , xn], sif indicates
the result of the action of si in each monomial of f . For i = 1, . . . , n− 1, one
defines the linear operators πi, π̂i on Z[x1, . . . , xn] by

πif =
xif − si(xif)

xi − xi+1

, π̂if = (πi − 1)f = πif − f, (1.1)

where 1 is the identity operator on Z[x1, . . . , xn]. These operators are called
isobaric divided differences [29], and the first is the Demazure operator [8]
for the general linear Lie algebra gln(C).

The 0-Hecke algebra Hn(0) of Sn, a deformation of the group algebra
of Sn, can be faithfully realized either by its action on Z[x1, . . . , xn] via
isobaric divided difference operators {πi : 1 ≤ i < n} or {π̂i : 1 ≤ i <
n}, or by the action on weak compositions in Nn via the elementary bub-
ble sort operators, i.e. πi is viewed as the operator which sorts the en-
tries in positions i and i + 1 in weakly increasing order. They are used
to generate two kinds of key polynomials [32, 45], the Demazure charac-
ters [8, 18], and the Demazure atoms [40]. For α ∈ Nn, the key poly-
nomial κα (resp. κ̂α) is κα = κ̂α = xα, if α is a partition. Otherwise,
κα = πiκsiα (resp. κ̂α = π̂iκ̂siα), if αi+1 > αi. The key polynomial κα lifts
the Schur polynomial s(αn,...,α1) when α1 ≤ . . . ≤ αn, and then κα = s(αn,...,α1).
It should be noticed that the action of Demazure operators on key polyno-
mials is described by the action of the elementary bubble sort operators on
weak compositions: πiκα = κsiα, if αi > αi+1, otherwise, πiκα = κα [45].
Both families of key polynomials {κα : α ∈ Nn}, and {κ̂α : α ∈ Nn} form
linear Z-bases for Z[x1, . . . , xn].

If w′ < w in the Bruhat order on the classes modulo the stabiliser of λ,
Bw′λ ⊂ Bwλ. Setting B̂wλ := Bwλ \

⋃
w′<wBw′λ, one has the decomposition

Bwλ =
⋃
w′≤w B̂w′λ [34]. A key tableau is a SSYT whose content is a rear-

rangement of the shape. Each component B̂wλ has exactly one key tableau,
key(wλ), with shape λ and content wλ. Lascoux and Schützenberger [32]

have characterised B̂wλ as the set of those SSYTs whose right key is the
unique key tableau in B̂wλ, and defined the Demazure atom (or standard ba-

sis) κ̂wλ to be the sum of the weight monomials over B̂wλ. As the sum of the
weight monomials over all the crystal Bλ gives the Schur polynomial sλ, the
Demazure atoms decompose the Schur polynomials. Specialising the com-
binatorial formula for the nonsymmetric Macdonald polynomial Êα(x; q; t)

given in [15], by setting q = t = 0, implies that Êα(x; 0; 0) is the sum of the



1.1. Background and objective 7

weight monomials of all semi-skyline augmented fillings (SSAF) of shape α
which are fillings of diagrams of weak compositions with positive integers,
weakly decreasing upwards along columns, and the rows satisfy inversion
conditions. These polynomials are also a decomposition of the Schur poly-
nomial sλ, with α+ = λ the decreasing rearrangement of α. Semi-skyline
augmented fillings are in bijection with semi-standard Young tableaux such
that the content is preserved and the right key of the SSYT is the unique
key with content the shape of the SSAF [39]. Hence, the Demazure atom κ̂α
and Êα(x; 0; 0) are equal [15, 40].

Mason shows [39] that semi-skyline augmented fillings also satisfy a varia-
tion of the Robinson-Schensted-Knuth algorithm which commutes with RSK
and retains its symmetry. Semi-standard Young tableaux of shape λ and
entries ≤ n decompose into subsets according to the right key. We see this
RSK analogue as a refinement of the ordinary RSK where the right keys are
provided. In chapters 2 and 4, we consider the following Ferrers diagram, in
the French convention, λ = (mn−m+1,m − 1, . . . , n − k + 1), 1 ≤ m ≤ n,
1 ≤ k ≤ n, n+ 1 ≤ m+ k, shown in green colour below,

k
n

m

Theorem 10, in Chapter 2, exhibits a bijection between multisets of cells of λ
and pairs of SSAFs whose shapes satisfy an inequality in the Bruhat order,
in the symmetric group Sn such that one shape is bounded by the reverse of
the other. In particular, if m+k = n+ 1 then λ is a rectangle and it reduces
to the ordinary RSK correspondence in the sense that the inequality on the
right keys is relaxed. We then use this bijection, in Chapter 4, to give an
expansion of the non-symmetric Cauchy kernel

∏
(i,j)∈λ (1 − xiyj)

−1 in the
basis of Demazure characters, and the basis of Demazure atoms, where the
product is over all the cells (i, j) of λ in French convention. The expansion is
obtained in two steps: firstly, the bijection provides an expansion as a sum of
products of Demazure atoms and the generating functions of SSYTs in the
intersection of two Demazure crystals; secondly, interpreting the action of
Demazure operators on key polynomials via the action of sorting operators
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on weak compositions, we compute the Demazure crystal resulting from that
intersection, and, thereby, the key polynomial with that generating function.
More precisely, one obtains the general formula∏

(i,j)∈λ
k≤m

(1− xiyj)−1 =
∑
µ∈Nk

κ̂µ(x)κ(0m−k,α)(y), (1.2)

where α = (α1, . . . , αk) ∈ Nk is such that, for each i = k, . . . , 1, the entry
αi is the maximum element among the last min{i, n − m + 1} entries of µ
in reverse order, after deleting αj, for i < j ≤ k. The Demazure crystal
B(0m−k,α) consists of all SSYTs with entries ≤ m, shape (µ+, 0m−k), and
right key bounded by key(0m−k, α). If m < k, the formula is symmetrical,
swapping in (1.2) x with y, and k with m.

If λ is a rectangle, α = ωµ+ and the classical Cauchy identity in the basis
of Schur polynomials is recovered; and if λ is the staircases of length n, α is
the reverse of µ, and the Lascoux’s expansion, in Theorem 6 of [30], and in
[11], of the non symmetric Cauchy kernel in the basis of Demazure characters
and the basis of Demazure atoms, is also recovered. The proofs, given by
Lascoux, for the latter expansion, use double crystal graphs in [30], and, in
[11], with Fu, is based on algebraic properties of isobaric divided differences.
For truncated staircases, the expansion (1.2) implies Lascoux’s formula in
Theorem 7 of [30], and makes explicit the SSYTs of the Demazure crystal.

Fomin has introduced a growth diagram presentation to the Robinson-
Schensted correspondence, and van Leeuwen and Roby developed it further.
Krattenthaler uses the same approach to treat fillings of diagrams under cer-
tain restrictions. The growth diagram approach avoids insertion operations
and makes symmetries transparent. In this chapter and in the next, we
introduce a growth diagram presentation for the analogue of the Robinson-
Schensted-Knuth correspondence, based on the reverse Robinson-Schensted-
Knuth correspondence for reverse semi-standard Young tableaux. Reverse
semi-standard Young tableaux are in bijection with semi-skyline augmented
fillings. While, in Chapter 4, the strategy is to consider the smallest stair-
case containing the truncated staircase, it is, however, observed by Lascoux
that the Cauchy kernel expansion, over an arbitrary Ferrers shape, can be
recovered from the staircases by considering the biggest staircase inside the
Ferrers shape. The strategy, in the last chapter, is to use our growth dia-
gram approach to reduce the expansion over arbitrary Ferrers shapes to the
staircase, by moving the cells outside the biggest staircase into inside. This
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is achieved by interpreting crystal operators on words as matching and slides
of cells marked with 1 in the 01-filling of the growth diagram, and then con-
vert the resulting information to semi-skyline augmented fillings. With these
tools we give a combinatorial proof for the Lascoux’s non-symmetric Cauchy
kernel expansion over an arbitrary Ferrers shapes, in the cases, of one and
two non-consecutive boxes above the staircase, and an idea in the general
case. The expansion over an arbitrary Ferrers shape was derived by Lascoux
algebraically.

The objective of our research is to give a combinatorial proof for the
Lascoux’s non-symmetric Cauchy kernel expansion for some Ferrers shapes,
(Theorem 7 in [30]), and, in particular, to give explicitly the Young tableaux
in the expansion formula over truncated staircases.

The original results of this thesis are included in two articles: one pub-
lished [3], and the other submitted although available electronically [1]. The
results of the last chapter is the content of an article in preparation [2].

1.2 Semi-standard and reverse semi-standard Young tableaux

Let N denote the set of non-negative integers. Fix a positive integer n, and
define [n] as the set {1, . . . , n}. A weak composition γ = (γ1 . . . , γn) is a vec-
tor in Nn. We call

∑n
i=1 γi the weight of γ, denoted |γ|. If γi = · · · = γi+k−1

then we also write γ = (γ1 . . . , γi−1, γ
k
i , γi+k, . . . , γn). We often concate-

nate weak compositions α ∈ Nr and β ∈ Ns, with r + s = n, to form the
weak composition (α, β) = (α1, . . . , αr, β1, . . . , βs) ∈ Nn. When there is no
danger of confusion we also use the notation γ1 . . . γn for the weak compo-
sition γ = (γ1, . . . , γn). A weak composition γ whose entries are in weakly
decreasing order, that is, γ1 ≥ · · · ≥ γn, is said to be a partition. Every
weak composition γ determines a unique partition γ+ obtained by arranging
the entries of γ in weakly decreasing order. A partition λ = (λ1, . . . , λn) is
identified with its Young diagram (or Ferrers shape) dg(λ) in French con-
vention, an array of left-justified cells with λi cells (or boxes) in row i from
the bottom, for 1 ≤ i ≤ n. The cells are located in the diagram dg(λ) by
their row and column indices (i, j), where 1 ≤ i ≤ n and 1 ≤ j ≤ λi. The
number `(λ) of positive entries of λ is said to be the length of the partition
λ. If the context does not require the number of the entries of λ, we do
not distinguish λ and (λ1, . . . , λ`(λ), and write λ = (4, 2, 1, 0) = (4, 2, 1). In
this sense we identify the null partition (0, . . . , 0) with the empty partition
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() or empty tableau, denoted ∅. The conjugate of the partition λ is the par-
tition λ̄ = (λ′1, λ

′
2, . . . , λ

′
λ1

) where λ′j is the length of the j-th column in the
Ferrers diagram dg(λ). For instance the partition λ = (4, 2, 1, 0) has weight
|λ| = 4 + 2 + 1 = 7 and `(λ) = 3, and its Young diagram is

.

The conjugate of the partition λ = (4, 2, 1, 0) is λ̄ = (3, 2, 1, 1).
We define a partial order ⊆ on partitions by containment of their Ferrers

diagrams. If µ = (µ1, µ2, . . . , µn) ∈ Nn and ν = (ν1, ν2, . . . , νn) ∈ Nn, then
µ ∪ ν is the partition λ = (λ1, λ2, . . . , λn), where λi = max{µi, νi} for i =
1, 2, . . . , n. The intersection µ ∩ ν of two partitions µ and ν, µ ∩ ν, is the
partition ρ = (ρ1, ρ2, . . . , ρn), where ρi = min{µi, νi} for i = 1, 2, . . . , n.

Let A be a finite completely ordered alphabet. A word in this alphabet
is a finite sequence of letters in A, and its content is the weak composition
(α1, . . . , αn) where αi is the multiplicity of the letter ai in the word. A filling
of shape λ in the alphabet A is a map T : dg(λ)→ A = {a1 < · · · < an}. A
semi-standard Young tableau (SSYT) T of shape sh(T ) = λ, in the alphabet
A, is a filling T : dg(λ) → A, which is weakly increasing in each row from
left to right and strictly increasing up in each column. Let SSYTn denote
the set of all semi-standard Young tableaux in the alphabet [n]. The column
word of T ∈SSYTn, col(T ), is the word, over the alphabet [n], which consists
of the entries of each column, read top to bottom and left to right. The
content or weight of T ∈SSYTn is the content or weight of its column word
in the alphabet [n], denoted c(T ). Below, T is a SSYT in the alphabet [7],
sh(T ) = (4, 2, 1), c(T ) = (2, 2, 1, 1, 0, 1, 0) and col(T ) = 4216123.

1 1 2 3
2 6
4

T =
.

Sometimes we forget the cells and write only the filling of the tableau T .

T =

4

2 6

1 1 2 3.
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A skew shape (or a skew-diagram) is a pair of partitions (λ, µ) such that the
Young diagram of λ contains the Young diagram of µ; it is denoted by λ/µ.
A semi-standard Young tableau of skew shape λ/µ (or skew semi-standard
Young tableau) is the filling of the cells in the Young diagram of λ not in
the Young diagram of µ which is weakly increasing in each row from left to
right and strictly increasing up in each column.

Example 1. A SSYT T of skew shape λ/µ = (4, 3, 1)/(2, 1)

3

3 4

2 3

A reverse semi-standard Young tableau (RSSYT) of shape λ is a filling
of a Ferrers diagram of shape λ such that the entries in each row are weakly
decreasing from left to right, and strictly decreasing from bottom to top.

Example 2. The reverse semi-standard Young tableau T̃ with shape sh(T̃ ) =

(4, 2, 1) and content c(T̃ ) = (1, 3, 1, 1, 1).

T̃ =

1

3 2

5 4 2 2

1.3 Key tableau

A key tableau is a semi-standard Young tableau such that the set of entries
in the (j + 1)th column is a subset of the set of entries in the jth column, for
all j. There is a bijection in [45] between weak compositions in Nn and key
tableaux in the alphabet [n], given by γ → key(γ), where key(γ) is the key
such that for all j ∈ [n], the first γj columns contain the letter j. The inverse
map is defined by sending the key tableau to its content. Any key tableau is
of the form key(γ) with γ its content and γ+ the shape. When γ = γ+ one
obtains the key tableau of shape and content γ, called Yamanouchi tableau
of shape γ, that is the SSYT with all entries equal to i in row i, for all
1 ≤ i ≤ `(γ).
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Example 3. Let γ = (3, 0, 1, 2, 1), then γ+ = (3, 2, 1, 1, 0)

key(γ) =

5

4

3 4

1 1 1

and key(γ+) =

4

3

2 2

1 1 1.

1.4 Schützenberger’s evacuation

In this section we follow close [12]. To define the evacuation of a tableau T ,
we need the definition of jeu de taquin.

jeu de taquin.
Given a skew tableau T of skew shape λ/µ, pick an empty cell, denoted c,
that is in µ and can be added to λ/µ; what this means is that c is in µ and
must share at least one edge with some cell in T , and the result of adding
it to T must also be a skew shape. Slide the number from its neighbouring
cell into c; if c has neighbours both to its right and above, then pick the
smallest of these two numbers, and in the case of equality choose the above
number. (This rule preserves the property of increasing rows and columns
in the SSYT.) If the cell that just has been emptied has no neighbour to
its right or above, then the slide is completed. Otherwise, slide a number
into that cell according to the same rule as before, and continue this manner
until the slide is completed. After this transformation, the resulting tableau
is still a skew (or possibly straight, that is, the inner shape µ = ∅) tableau.

Example 4. 2 4
2 4

2 3
5

2 4
4

2 3
5

2 2 4
3 4

2
5

2

For any word w = x1x2 . . . xr in the alphabet [n], let w∗ := x∗r . . . x
∗
2x
∗
1 =

n + 1 − xr . . . n + 1 − x1, where x∗i = n + 1 − xi. We consider the anti-
isomorphism on words over the alphabet [n], w −→ w∗.

Schützenberger’s evacuation.
Given a tableau T in the alphabet [n], we construct a dual tableau, denoted
evac(T ), on the alphabet [n] as follows. Remove the entry, say x, from the
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lower left corner of T , and play jeu de taquin on the skew tableau that is left.
We obtain a tableau, denoted ∆T, whose diagram is the diagram of T with
one box removed. Put the letter x∗ in this removed box from T . Repeat this
algorithm on ∆T, getting the smaller tableau ∆2T, and putting y∗ in the box
removed from ∆T , where y is the letter in the lower corner of ∆T. Continue
until all the entries have been removed. This happens after |λ| steps that is
∆|λ|(T ) = ∅. The Young diagram of T has been filled with the duals of the
letters in T , and the result is the evac(T ). This procedure of constructing
evac(T ) is called the evacuation of T .

Example 5. The evacuation of the tableau T :

1 1 2

2 2

3

T

1 2 2

2 1∗
3

∆T

1∗

1∗

2 2 2

3

∆2T

1∗

1∗

2∗2 2

3

∆3T

1∗

1∗

2∗2∗2

3

∆4T

1∗

1∗

2∗2∗
2∗

3

∆5T

1∗

1∗

2∗2∗
2∗

3∗

∆6T = ∅

1 2 2

2

3

3

evac(T )

Proposition 1. Let α = (α1, . . . , αn) ∈ Nn then key(αn, . . . , α1) =evac(key(α)).

Proof. We prove by induction on |α|. As usual let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈

Nn, where 1 is in the position i, for some 1 ≤ i ≤ n. If |α| = 1, α = ei, for

some 1 ≤ i ≤ n. Since evac(key(ei)) = n+1−i = key(en+1−i), the statement

holds where |α| = 1.

Let m ≥ 1 and suppose that the statement holds for |α| < m. Now

consider a weak composition α with |α| = m. Let αi be the first non-

zero entry of α, that is α = (0i−1, αi, . . . , αn). So i appears in the bottom

left corner of key(α). We play jeu de taquin on the bottom left corner of

key(α). The chosen neighbours will be the right neighbours with entry i,
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up to the column αi. Since each column is contained in the previous one,

the rest of the chosen neighbours are in the column αi. Hence the removed

box will appear in the top of the column αi and ∆(key(α)) is still a key

tableau, ∆(key(α)) = key(α′), where α′ = (0i−1, αi − 1, . . . , αn), with |α′| =

m − 1. By induction hypothesis evac(key(α′)) = key(αn, . . . , αi − 1, 0i−1).

The evac(key(α)) is equal to the evac(key(α′)) = key(αn, . . . , αi − 1, 0i−1)

with one box on the top of the column αi with the entry n + 1− i and this

is exactly key(αn, . . . , αi, 0
i−1).

For example in the Example 5, T = key(2, 3, 1), ∆(T ) = key(1, 3, 1),
∆2(T ) = key(0, 3, 1), ∆3(T ) = key(0, 2, 1), ∆4(T ) = key(0, 1, 1), ∆5(T ) =
key(0, 0, 1), ∆6(T ) = ∅ and evac(T ) = key(1, 3, 2).

1.5 Bruhat orders on Sn

Let Sn denote the symmetric group on n elements. An element σ ∈ Sn

permutes {1, . . . , n} by mapping i→ σ(i). This permutation will be written
in one-line notation σ = σ(1)σ(2) . . . σ(n). The length of a permutation
σ ∈ Sn, denoted by `(σ), is the cardinality of the set of its inversions

I(σ) = {(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}.

Example 6. σ = 2314 ∈ S4 then I(σ) = {(1, 3), (2, 3)}

The group Sn is generated by the simple transpositions {s1, . . . , sn−1},
where si is the permutation interchanging i and i + 1, and fixing all other
elements. The simple transpositions satisfy the Coxeter relations

s2
i = 1 for all i,

sisj = sjsi if |i− j| > 1, and (1.3)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2.

The two last are called, respectively, commutation and braid relations. Note
that `(si) = 1, for 1 ≤ i ≤ n. Since the symmetric group is generated by
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simple transpositions and `(siσ) = `(σ)±1, for any σ ∈ Sn and si, 1 ≤ i ≤ n.
Any permutation σ ∈ Sn can be written as a product of at least `(σ) simple
transpositions. σ = si` . . . si1 for some {i1, . . . , i`}, where ` ≥ `(σ).

Definition 1. If σ = si` . . . si1 where ` = `(σ), then si` . . . si1 is a reduced

decomposition of σ. In this case, we say that the sequence of indices i`, . . . , i1

is a reduced word for σ.

The unique element of maximal length in Sn is denoted by ω := n . . . 21.
It is a well known fact that any two reduced decompositions for σ are con-
nected by a sequence of the last two Coxeter relations (1.3). Next example
shows a reduced decomposition which will be used in Section 4.1.

Example 7. Let 1 ≤ k ≤ m ≤ n and n − k ≤ m − 1, consider the de-

composition σ =
∏k−(n−m)−1

i=1 (si+n−k−1 . . . si)
∏n−m

i=0 (sm−1 . . . sk−(n−m)+i). It

is easy to see that each simple transposition increases one unity the number

of inversions. So the number of inversions is equal to the number of simple

transpositions and therefore σ is a reduced decomposition.

The transposition tij exchanges the integers i and j, where i < j. In
particular ti,i+1 = si. Let σ ∈ Sn, then tijσ interchanges the positions
of values i and j in the permutation σ and σtij interchanges the values in
positions i and j in σ.

The (strong) Bruhat order in Sn is defined by the following primitive
relation: given µ and σ in Sn, µ covers σ (or σ precedes µ) if `(µ) = `(σ) + 1
and there exists a transposition t such that tσ = µ [5]. It can be shown that
in this case there is also a transposition t′ such that σt′ = µ: if t = tij then
t′ = tkl, where k < l and k, l are the positions of the values i and j.

The Bruhat order in Sn is therefore the partial order on Sn which is the
transitive closure of the relations

θ < tθ, if `(θ) < `(tθ), (t transposition, θ ∈ Sn). (1.4)

This definition is equivalent to the subword property of the (strong) Bruhat
order in a Coxeter group.
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Theorem 1. [5] Let θ, σ in Sn and iN . . . i1 a reduced word for σ, then θ ≤ σ

if and only if there exists a subsequence of iN . . . i1 which is a reduced word

for θ.

Notice that the maximal length element ω is the maximal element of the
Bruhat order, σ ≤ ω, for any σ ∈ Sn, and it satisfies ω2 = 1. Besides, its
left and right translations σ → ωσ and σ → σω are anti automorphisms
for the Bruhat order. The action of Sn in Nn is defined by the left action
of a permutation σ = σ1σ2 . . . σn, written in one-line notation, on a vector
γ = (γ1, γ2, . . . , γn) ∈ Nn, that is, σ(γ1, γ2, . . . , γn) := (γσ−1(1), γσ−1(2), . . . ,
γσ−1(n)), each component γi ends up at position σi in the sequence permutated
by σ.

Example 8. The action of permutation σ = s1s2 on the vector α = (2, 2, 1)

is

s1s2(2, 2, 1) = s1(2, 1, 2) = (1, 2, 2).

Let λ = (λ1, . . . , λn) be a partition, and Snλ = {σλ : σ ∈ Sn}, the
Sn-orbit of λ. The stabiliser of λ under the action of Sn is the parabolic
subgroup stabλ := {σ ∈ Sn : σλ = λ}. Given σ ∈ Sn, the class of σ
modulo the stabiliser of λ, is the (left) coset σstabλ = {σθ : θ ∈ stabλ}. Two
permutations σ and θ in Sn are said to be in the same class modulo the
stabiliser of λ if their cosets are equal or, equivalently, θ−1σ ∈ stabλ. Let
Sn/stabλ be the set of left cosets of stabλ in Sn. Each coset in Sn/stabλ has
a unique shortest permutation called a minimal length coset representative
for Sn/stabλ [5].

The Sn-orbit of λ is therefore in bijection with the set of cosets of Sn

modulo the stabiliser of λ, equivalently, with the set of minimal length coset
representatives of Sn/stabλ, whose cardinality is n!/|stabλ| [4, 5, 17]. The
minimal length coset representatives for Sn/stabλ are characterized in [4, 5,
17] as {σ ∈ Sn : `(σsi) > `(σ), si ∈ stabλ}.

Example 9. Consider S4 and partition λ = (3, 2, 2, 0). Then

stabλ := {σ ∈ S4 : σλ = λ} = {id, s2},
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the set of cosets is

S4/stabλ = {{id, s2}, {s1, s1s2}, {s3, s3s2}, {s2s1, s1s2s1}, {s3s1, s1s3s2},

{s2s3, s2s3s2}, {s1s2s3, s1s2s3s2}, {s2s1s3, s2s1s3s2}, {s3s2s1, s1s3s2s1},

{s1s2s1s3, s2s1s2s3s2}, {s3s2s1s3, s2s1s3s2s1}, {s3s1s2s1s3, s3s2s1s2s3s2}}.

The set of minimal length coset representatives of S4/stabλ is

{id, s1, s3, s2s1, s3s1, s2s3, s1s2s3, s2s1s3,s3s2s1, s1s2s1s3, s3s2s1s3, s3s1s2s1s3}

and the set of all rearrangements of λ is

S4λ = {(3, 2, 2, 0), (2, 3, 2, 0), (3, 2, 0, 2), (2, 2, 3, 0), (2, 3, 0, 2), (3, 0, 2, 2),

(0, 3, 2, 2), (2, 0, 3, 2), (2, 2, 0, 3), (0, 2, 3, 2), (2, 0, 2, 3), (0, 2, 2, 3)}. The cardinals

of these two sets are both 4!/|stabλ| = 4!/2 = 12.

It is known [50, 51] that the restriction of the Bruhat ordering from Sn to
the set of minimal length coset representatives for Sn/stabλ can be converted
to an ordering of Snλ by taking the transitive closure of the relations

γ < tijγ, if γi > γj, i < j. (1.5)

If α1 and α2 are in the Sn-orbit of λ, and σ1 and σ2 are the shortest permu-
tations such that σ1λ = α1, σ2λ = α2, then we write α1 ≤ α2 in the sense of
(1.5) which is equivalent to σ1 ≤ σ2 in the Bruhat order. Henceforth, we say
that (1.5) defines the Bruhat order on the weak compositions in the Sn-orbit
of λ. Recall that the Hasse diagram of a partially ordered set (P,≤) is the
diagram (directed graph) where the vertices are the elements x ∈ P , and
there is an upward-directed edge between x and y if y covers x. The bottom
of the Hasse diagram of this poset is the partition λ and the top is the reverse
of λ. Clearly, α1 ≤ α2 only if ωα1 ≥ ωα2 since applying ω to the nodes of
the Hasse diagram it reverses the upward-directed edges.

If we replace, in (1.4), t with the simple transposition si, the transitive
closure of a such relations defines the left weak Bruhat order on Sn. Its
restriction to the set of minimal length coset representatives of Sn/stabλ is
then converted to an ordering in Snλ by replacing, in (1.5), j with i + 1.
Consider now the elementary bubble-sorting operation πi, 1 ≤ i < n, on
words γ1γ2 · · · γn of length n (or weak compositions in Nn), which sorts the
letters in positions i and i + 1 in weakly increasing order, that is, it swaps
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γi and γi+1 if γi > γi+1, or fixes γ1γ2 · · · γn otherwise. Define the partial
order on Snλ by taking the transitive closure of the relations: γ < πiγ when
γi > γi+1, (γ ∈ Snλ and 1 ≤ i < n). It coincides with the left weak Bruhat
ordering of Snλ.

It can be proved that the elementary bubble-sorting operations πi, 1 ≤
i < n, satisfy the relations

π2
i = πi, πiπi+1πi = πi+1πiπi+1, and πiπj = πjπi, for |i− j| > 1. (1.6)

Consider Example 9. Figure 1.1 displays four Hasse diagrams regarding
to the Bruhat orders discussed above. The two first are respectively the
restrictions of the left weak Bruhat order and the strong Bruhat order to
S4/stab(3,2,2,0). The two last are their translation to S4(3, 2, 2, 0).

We recall here a construction of the minimal length coset representatives
for Sn/stabλ in [30] due to Lascoux, where the notion of key tableau is used.
This allows to convert the tableau criterion for the Bruhat order in Sn to a
tableau criterion for the Bruhat order (1.5) in the orbit Snλ. The bijection
between staircase keys of shape (n, . . . , 1) and permutations in Sn gives a
tableau criterion for the Bruhat order [9, 38]. If σ is a permutation in Sn,
its key tableau, key(σ(n, . . . , 1)), is the semi-standard Young tableau with
shape (n, . . . , 1), in which the ith column consists of the n − i + 1 integers
σ(1), . . . , σ(n−i+1), placed in increasing order from bottom to top. Recipro-
cally any staircase key may be obtained in this way by defining the following
permutation: first write the element of the right most column of the key then
the new element that appears in the column next to the last, and so on. We
have therefore the well-known tableau criterion for the Bruhat order in Sn.

Example 10. The permutation corresponding to the stair key tableau.

key(σ(4, 3, 2, 1)) =

4

3 4

2 2 2

1 1 1 2

⇐⇒ σ = 2143

Proposition 2. [38] Let σ, β ∈ Sn, we have σ ≤ β in the Bruhat order if and

only if key(σ(n, . . . , 1)) ≤ key(β(n, . . . , 1)) for the entrywise comparison.
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id

s3 s1

s2s3 s3s1 s2s1

s1s2s3 s2s3s1 s3s2s1

s1s2s3s1 s2s3s2s1

s1s2s3s2s1

id

s3 s1

s2s3 s3s1 s2s1

s1s2s3 s2s3s1 s3s2s1

s1s2s3s1 s2s3s2s1

s1s2s3s2s1

(3, 2, 2, 0)

(3, 2, 0, 2) (2, 3, 2, 0)

(3, 0, 2, 2) (2, 3, 0, 2) (2, 2, 3, 0)

(0, 3, 2, 2) (2, 0, 3, 2) (2, 2, 0, 3)

(0, 2, 3, 2) (2, 0, 2, 3)

(0, 2, 2, 3)

(3, 2, 2, 0)

(3, 2, 0, 2) (2, 3, 2, 0)

(3, 0, 2, 2) (2, 3, 0, 2) (2, 2, 3, 0)

(0, 3, 2, 2) (2, 0, 3, 2) (2, 2, 0, 3)

(0, 2, 3, 2) (2, 0, 2, 3)

(0, 2, 2, 3)

Fig. 1.1: Hasse diagram of the restrictions of the left weak Bruhat order and

the strong Bruhat order to S4/stab(3,2,2,0) and their translation to

S4(3, 2, 2, 0).

In [30], Lascoux constructs the shortest element in the coset σstabλ such
that σλ = γ ∈ Nn using the key tableau of γ as follows: firstly, add the
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complete column [n . . . 1] as the left most column of key(γ), if γ has an entry
equal to zero, secondly, write the elements of the right most column of key(γ)
in increasing order then the new elements that appear in the column next to
the last in increasing order and so on until the first column. The resulting
word is the desired permutation in Sn.

Example 11. Let γ = (1, 3, 0, 1) and key(γ) =

4

2

1 2 2

. First add the com-

plete column [4, 3, 2, 1], to get

4

3 4

2 2

1 1 2 2

. Hence, σ = 2143 is the shortest

permutation in the coset σ stab3110, where stab3110 =< s2 >.

Theorem 2. Let α1 and α2 be in the Snλ with the Bruhat ordering. Then

(a) α1 ≤ α2 if and only if key(α1) ≤ key(α2).

(b) α1 ≤ α2 if and only if evac(key(α2)) ≤ evac(key(α1)).

Proof. (a) Let σ1 and σ2 be the shortest length representatives of Sn/stabλ

such that σ1λ = α1, σ2λ = α2. Then, α1 ≤ α2 if and only if σ1 ≤ σ2

in Bruhat order, and, by Proposition 2, this means key(σ1(n, . . . , 1)) ≤

key(σ2(n, . . . , 1)). Using the constructions of σ1 and σ2 explained above this

is equivalent to say that key(α1) ≤ key(α2).

(b) Recall that evac(key(α)) = key(ωα).

1.6 Schur polynomials

Let x = (x1, . . . , xn) be a list of indeterminates and Z the set of integers.
The ring of homogenous symmetric polynomials over Z is denoted by ΛZ.
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ΛZ is also a module over Z. An important Z-linear basis for this ring is
the basis of Schur polynomials, {sλ(x) : λ a partition in Nn}. To a semi-
standard Young tableau T with content (α1, . . . , αn), we associate the mono-
mial xT := xα1

1 x
α2
2 . . . xαnn in the sequence of n variables x = (x1, . . . , xn)

called the weight monomial of T . Then for each such partition λ there exists
a Schur polynomial sλ(x) which is a homogeneous symmetric polynomial in
the variables (x1, . . . , xn) of total degree |λ|, and it may be defined in terms
of SSYTs by

sλ(x) =
∑
T

xT ,

summed over all SSYTs of shape λ with content in Nn.

Example 12. The SSYTs that appear in the Schur polynomial sλ(x1, x2, x3) =

s311(x1, x2, x3).

1
2
3

1 1 1
2
3

2 2 1
2
3

1 2 1
2
3

3 3 1
2
3

2 3 1
2
3

1 3

1.7 The Robinson-Schensted-Knuth correspondence

In this section we follow the notation of [49]. The Robinson-Schensted-Knuth
(RSK) correspondence [24, 48] is a combinatorial bijection between matrices
A with finitely many non-negative integer entries (N-matrix of finite support)
and pairs (P,Q) of semi-standard Young tableaux of the same shape. The
content of P is given by the column sums of A, and the content of Q by its
row sums.

There are many useful consequences of the RSK. For instance the Cauchy
identity, that we will explain in Chapter 4, can be obtained by the RSK
correspondence.

Theorem 3. [24] There exists a bijection between N-matrices of finite sup-

port and pairs (P,Q) of SSYT of the same shape.

The main operation involved in the RSK correspondence is the Schensted
row insertion P ← k of a positive integer k into a semi-standard Young
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tableau P = (Pij) [48], where the (Pij) is the entry of the cell (i, j) of P .
(Here i is the row and j is the column containing the entry Pij.) Let r be
the largest integer such that P1,r−1 ≤ k. If there is no such an r, place k at
the end of the first row and the procedure is complete. Otherwise, k bumps
P1,r = k′ into the second row and the procedure is repeated in the second
row for k′. Continue this procedure until an element is inserted at the end
of a row (possibly creating a new row). The resulting diagram is P ← k.

Let A = (aij) be an N-matrix with finite support. There exists a unique
biword, a two-line array, corresponding to A which is defined by the non-zero
entries in A. Let aij be the first non-zero entry encountered when scanning
the entries of A from left to right, top to bottom. Place an i in the top
line and a j in the bottom line aij times. When this has been done for each
non-zero entry, one obtains the following array

wA =

(
i1 i2 . . .
j1 j2 . . .

)
in lexicographic order, that is,

(it < it+1) or (it = it+1 and jt ≤ jt+1), for all t.

Begin with a pair (P (0), Q(0)) := (∅, ∅) and let P (t+ 1) := P (t)← jt+1. Let
Q(t+ 1) be obtained from Q(t) by placing it+1 at the end of a row of Q(t) so
that Q(t + 1) has the same shape as P (t + 1). The result is the pair (P,Q),
where P represents the insertion tableau and Q represents the recording
tableau. Notice that we apply Schensted row insertion in the second row of
biword from left to right.

Example 13. RSK correspondence applied to the biword w in the lexico-

graphic order.

w =

 1 1 2 3 4 4 5 7 7

2 7 2 4 1 3 3 1 1

 RSK−−−→

7

4

2 2 3

1 1 1 3

P

7

4

2 4 7

1 1 3 5

Q

.
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The content of the first row of w is c(Q) = (2, 1, 1, 2, 1, 0, 2) and the content

of the second row of w is c(P ) = (3, 2, 2, 1, 0, 0, 1) and sh(P ) = sh(Q) =

(4, 3, 1, 1).

The RSK correspondence satisfies the following symmetry property.

Proposition 3. ([24, 49]) Let A be an N-matrix of finite support, and sup-

pose that A RSK−−−→ (P,Q). Then At RSK−−−→ (Q,P ), where t denotes transpose.

It means that if we swap the rows of the biword wA and rearrange it
in the lexicographic order, and then we apply the RSK, one obtains the
pair (Q,P ). This property will become clear when we introduce the growth
diagram presentation of RSK in Section 1.10.

1.8 The right key of a tableau

The notion of the right key of tableau T , K+(T ), is due to Lascoux and
Schützenberger in [32]. There are now several ways to define the right key
of a tableau [12, 32, 40, 53]. For instance, in [53, 44] is provided a new
way to calculate the right key of a SSYT. We give in this section the orig-
inal definition of right key [32]. However for the propose of our work it is
more convenient to define it in terms of semi-skyline augmented filling [40],
a combinatorial object which will be introduced in the next chapter.

The Knuth or plactic equivalence ∼ is defined on the set of all words on
the alphabet [n] by the transitive closure of the relations [32, 45]

axzyb ∼ azxyb for x ≤ y < z
ayxzb ∼ ayzxb for x < y ≤ z

,

where a and b are words. The set of words congruent modulo the Knuth
relations to a given word w is called the Knuth equivalence class of w. There
exists a unique word v in each Knuth equivalence class such that v = col(T )
for some semi-standard Young tableau T . If u ∼ v then the Schensted row
insertion of u and v is T and we write u ∼ v ∼ T .

The column form of a word w, denoted colform(w), is the weak compo-
sition consisting of the lengths of the maximal strictly decreasing subwords
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of w from left to right. Let w be an arbitrary word such that w ∼ T for
SSYT T of shape λ. The word w is said to be column-frank if colform(w) is
a rearrangement of the nonzero parts of λ̄, the conjugate of λ.

Example 14.

T =

5

3 4

1 2

, λ = (2, 2, 1), λ̄ = (3, 2),

w = 31542 ∼ T and colform(w) = (2, 3), so w is column-frank.

Definition 2. [32] Let T be a semi-standard Young tableau of shape λ. The

right key of T , denoted K+(T ), is the unique key of shape λ whose jth column

is given by the last column of any column-frank word v such that v ∼ T and

colform(v) is of the form (. . . , λ′j), where λ̄ = (λ′1, . . . , λ
′
j).

Next example shows the sequence of Knuth equivalent words which gives
the right key of tableau T .

Example 15.

T =

4

2 3

1 2 3

,

w := col(T ) = 421.32.3 ∼ 421.3.32 ∼ 2.41.3.32 ∼ 21.43.32 ∼ 21.3.432.

The two red words are not column-frank because their colform are (1, 2, 1, 2)

and (2, 2, 2), respectively. We choose the last columns of the black words

which are column-frank. Therefore

K+(T ) =

4

3 3

2 2 3
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1.9 Fomin’s growth diagrams

In this section we introduce growth diagrams as certain objects which asso-
ciate sequences of partitions to fillings of matrices with non-negative integer
entries or biwords in lexicographic order. Many properties of tableau algo-
rithms such as symmetry become clear when the algorithms are formulated in
terms of growth diagrams governed by local rules. Fomin [10, 6] introduced
this approach to the Robinson-Schensted correspondence, it was rediscovered
by van Leeuwen [52], and Roby [46] developed it further. Krattenthaler also
use the growth diagram to treat fillings of diagrams under certain conditions.
In this section we follow very close [25].

A 01-filling of a rectangle shape F is obtained by filling the cells of F
with 1’s and 0’s, where we present 1’s by × and suppress the 0’s, such that
every row and every column contains at most one 1.

Example 16. A 01-filling of 4× 4-square.

×

×

×

×

A NE-chain of a 01-filling is a sequence of 1’s such that any 1 is above and
to the right of the preceding 1 in the sequence. A SW-chain of a 01-filling is
a sequence of 1’s such that any 1 is below and to the left of the preceding 1
in the sequence. The length of a NE-chain or a SW-chain is defined to be the
number of 1’s in the chain. Consider the upper right corner of the example
above: there are two NE-chains, one of lengths 3 and one of length 1, and
similarly for SW-chains.

The growth diagram for a 01-filling of a rectangle shape F is obtained
by labelling the corners of all the squares in F by partitions in such a way
that the partition assigned to any corner is either equal to the partition to
its left or is obtained from it by adding a horizontal strip, that is, by a set
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of squares no two of which are in the same column. The partition assigned
to any corner either equals the partition below it or is obtained from this
partition by adding a vertical strip, that is, by a set of squares no two of
which are in the same row.

We start by assigning the empty partition ∅ to each corner on the left
and bottom edges of F . Then assign the partitions to the other corners
inductively by applying the following local rules. Consider the cell below,
labeled by the partitions ρ, µ, ν, where ρ ⊆ µ and ρ ⊆ ν, µ and ρ differ by a
horizontal strip, and ν and ρ differ by a vertical strip. Then λ is determined
as follows:

ρ µ

ν

• If ρ = µ = ν, and if there is no cross in the cell, then λ = ρ.

• If ρ = µ 6= ν, then λ = ν.

• If ρ = ν 6= µ, then λ = µ.

• If ρ, µ, ν are pairwise different, then λ = µ ∪ ν.

• If ρ 6= µ = ν, then λ is formed by adding a square to the (k+ 1)-st row
of µ = ν, given that µ = ν and ρ differ in the k-th row.

• If ρ = µ = ν, and if there is a cross in the cell, then λ is formed by
adding a square to the first row of ρ = µ = ν.

In addition there is a global description of the local rules as a consequence
of Greene’s theorem [13] as explained in [25].

Theorem 4 (Theorem 2 [25]). Given a diagram with empty partitions la-

belling all the corners along the left side and the bottom side of a rectangle

shape, the partition λ = (λ1, λ2, . . . , λl) labelling corner c satisfies the follow-

ing property:

For any k, the maximal cardinality of the union of k NE-chains situated in
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the rectangular region to the left and below of c is equal to λ1 +λ2 + · · ·+λk.

In particular, λ1 is the length of the longest NE-chain in the rectangular

region to the left and below of c.

See the Figure 1.2.

×

×

×

×

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅

∅ 1 1 1

∅ 1 2 2

∅ 1 2 3

1 11 21 31

Fig. 1.2: The growth diagram

In the following we extend the construction described above to arbitrary
fillings of a rectangle. It means that we allow more than one 1 in each row
and in each column, and we allow also arbitrary non-negative entries in our
fillings. The construction that we explain next is the same as the first variant
construction in [25, 47]. In order to apply the local rules we would like to
pass to a 01-filling of the diagram, it means that there will be at most one 1
in each row and each column. To remedy this, we ”separate” the entries in
the diagram in the following way.

Construct a rectangle diagram with more rows and columns so that entries
which are originally in the same column or in the same row are put in different
columns and rows in the larger diagram, and that an entry m is replaced by
m 1’s in the new diagram all of them placed in different rows and columns.
Separate the entries in a row from bottom/left to top/right, as before the
1’s are represented by ×’s and 0’s are suppressed. If there should be several
entries in a column as well, separate entries in a column from bottom/left
to top/right. In the cell with entry m we replace m by a chain of m ×’s
arranged from bottom/left to top/right.



28 1. Introduction

In the figure, the original columns and rows are indicated by thick lines,
whereas the newly created columns and rows are indicated by thin lines.
We refer to this process, transforming a filling into a standard filling, as
standardization. Figure 1.3 shows an arbitrary filling, its standardization
and corresponding growth diagram.

1.10 Growth diagram presentation of

Robinson-Schensted-Knuth correspondence

In this section we are going to interpret the RSK in terms of Fomin’s growth
diagrams. The reader is referred to [10, 12, 24] and [49] for extensive infor-
mation on the Robinson-Schensted-Knuth correspondence. For what follows
it is convenient to consider an equivalent definition of SSYT. Here we see
a SSYT of shape λ on the alphabet [n] as a sequence of nested partitions
∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn such that λi/λi−1 is an horizontal strip (possible
empty) filled only with |λi| − |λi−1| letters i for 1 ≤ i ≤ n.

Consider a biword w with letters in the alphabet [n] and represent it in a
n×n square as follows: put the number r in the cell (i, j) of the square if the

biletter

(
j
i

)
appears r times in the biword w. Then consider the 01-filling

associated to that square as explained in the previuos section. Applying the
local rules to it leads to a pair of sequences of partitions, one in the right and
another in the top of the growth diagram. The partitions of each sequence
are related by containment. Let λi be the partition associated to the i-th
column thick line on the top of the growth diagram when we scan the thick
column lines from left to right. Then the top side of the growth diagram is a
sequence of partitions with ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λl, where l is the maximum
element in the first row of the biword w and λi/λi−1 is a horizontal strip.

Let λi be the partition associated to the i-th thick row line on the right
side of the growth diagram when we scan the thick row lines from bottom to
top. Then the right side of the growth diagram is a sequence of partitions
with ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λt, where t is the maximum element in the second
row of the biword w and λi/λi−1 is a horizontal strip.

Fill with i all the squares in λi/λi−1 and λi/λi−1, for i ≥ 1. This defines
a pair (P,Q) of SSYTs of the same shape, where Q has the content of the
first row of w and P has the content of second row of w. In [10, 46] it is
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shown that this pair of SSYTs is the pair obtained by applying the RSK to
the biword w. For example, if we consider the biword

w =

(
1 1 2 3 4 4 5 7 7
2 7 2 4 1 3 3 1 1

)
then the 01-filling and the growth diagram associated to w are shown in the
Figure 1.3. Consider the i-th thick row line on the right side of the growth
diagram and the associated partition λi for i = 1, . . . , 7 ,with λ0 = ∅. Fill
with i all the cells that appear in λi/λi−1, and one gets

∅
∅
λ0

1 1 1

3
λ1

1 1 1
2 2

32
λ2

1 1 1 3
2 2 3

43
λ3

1 1 1 3
2 2 3
4

431 431 431
λ4 λ5 λ6

1 1 1 3
2 2 3
4
7

4311
λ7

= P

Consider the i-th thick column line on the top side of the growth diagram
and its associated partition λi for i = 1, . . . , 7 ,with λ0 = ∅. Fill with i all
the cells that appear in λi/λi−1, and one gets

∅
∅
λ0

1 1

2
λ1

1 1
2

21
λ2

1 1 3
2

31
λ3

1 1 3
2 4
4

321
λ4

1 1 3 5
2 4
4

421
λ5 λ6

421

1 1 3 5
2 4 7
4
7

4311
λ7

= Q

By applying the RSK to the biword w, one has the pair, as we have seen in
the Section 1.7.

P =
1 1 1 3
2 2 3
4
7

Q =
1 1 3 5
2 4 7
4
7

which is equal to the pair of SSYTs, coming from the two sequences of
partitions.

Another way to find the top and the right sequences of nested partitions
is just looking for the k longest NE-chains in the growth diagram using
Theorem 4.
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1.11 The reverse Robinson-Schensted-Knuth correspondence

and its growth diagram presentation

The reverse Robinson-Schensted-Knuth correspondence [49] is a combina-
torial bijection between matrices A with non-negative integer entries (N-

matrix) or, equivalently, biwords in the lexicographic order, and pairs (P̃ , Q̃)
of reverse semi-standard Young tableaux of the same shape.

The reverse RSK correspondence is the obvious variant of the RSK cor-
respondence, where we reverse the roles of ≤ and ≥ in the Schensted row
insertion, called reverse Schensted row insertion. Equivalently, applying the

RSK to the biword w̃ =

(
−in . . . −i1
−jn · · · −j1

)
instead of w =

(
i1 · · · in
j1 · · · jn

)
(whose entries are now negative integers) and then change the sign back to

positive of all entries of the pair of tableaux. We obtain then a pair (P̃ , Q̃)
of RSSYTs. For example applying the reverse RSK correspondence to the
biword

w =

(
1 1 2 3 4 4 5 7 7
2 7 2 4 1 3 3 1 1

)
gives the pair of RSSYT in Figure 1.4.

To find an interpretation of the reverse RSK in terms of growth diagrams,
we consider the diagram corresponding to w̃, that is, the diagram of w by
reflecting each cross with respect to the origin. Equivalently, we can just
change the origin to the upper right corner and apply backward the local
rules from there in the diagram of w, see Figure 1.5. The backward local
rules are the same as local rules for the following square,

ρ

µ

ν

Applying backward the local rules leads to the pair of sequences of par-
titions in the left and in the bottom of growth diagram. The partitions of
each sequence are related by containment.

Let λi be the partition associated to the i-th thick column line on the
bottom of the growth diagram when we scan the thick column lines from
right to left. Then the bottom side of the growth diagram is a sequence of



1.11. The reverse RSK and its growth diagram presentation 31

partitions with ∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λl, where l is the maximum element in
the first row of the biword w and λi/λi−1 is a horizontal strip.

Let λi be the partition associated to the i-th row thick line on the left of
the growth diagram when we scan the thick row lines from top to bottom.
Then the right side of the growth diagram is a sequence of partitions with
∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λt, where t is the maximum element in the second row
of the biword w and λi/λi−1 is a horizontal strip. Fill with n+ 1− i all the
squares in λi/λi−1 and λi/λi−1, for i ≥ 1. This pair of nested sequences of

partitions defines a pair (P̃ , Q̃) of RSSYTs of the same shape with contents
respectively, of the second row and the first row of w. The growth diagram
corresponding to the reverse RSK for

w =

(
1 1 2 3 4 4 5 7 7
2 7 2 4 1 3 3 1 1

)
is shown in the Figure 1.6.

The pair of RSSYTs that one obtains from the left and the bottom se-
quences of partitions is as follows:

∅
∅
λ0

7 7

2
λ1

2
λ2

7 7
5

21
λ3

7 7 4
5 4

32
λ4

7 7 4
5 4
3

321
λ5

7 7 4
5 4
3

2

331
λ6

7 7 4
5 4
3

2
1

1

4311
λ7

= Q̃

and,

∅
∅
λ0

7

1
λ1

1
λ2

1
λ3

7
4

11
λ4

7 3

3
4

211
λ5

7 3
4
3

2 2

411
λ6

7 3
4
3

2 2

1

1 1

4311
λ7

= P̃

This pair (P̃ , Q̃) of RSSYTs is the same as the pair that we have obtained
by applying the reverse RSK to the biword w in Figure 1.4. Another way
to find the nested sequences of partitions on the bottom and on the left of
diagram is just looking for the k SW-chains by using the following natural
version of the Theorem 4.
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Theorem 5. Given a diagram with empty partitions labelling all the corners

along the right side and the top side of a rectangle shape, which has been

completed according to the reverse RSK, the partition λ = (λ1, λ2, . . . , λl)

labelling corner c satisfies the following property:

For any k, the maximal cardinality of the union of k SW-chains situated in

the rectangular region to the right and above of c is equal to λ1 +λ2 + · · ·+λk.

In particular, λ1 is the length of the longest SW-chain in the rectangular

region to the right and above c.
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1

32
1
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1
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11
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11

∅

1∅

∅ ∅ ∅ ∅ 1 1 1 1 1

∅ ∅ ∅ ∅ 1 1 1 1 2

∅ ∅ ∅ ∅ 1 1 1 1 2

1 1 1 1 11 11 11 11 21

1 1 2 2 21 21 21 21 22

1 1 2 2 21 31 31 31 32

1 1 2 2 21 31 41 41 42

1 1 2 3 31 32 42 42 421

1 1 2 3 31 32 42 42 421

1 1 2 3 31 32 42 42 421

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Fig. 1.3: An arbitrary filling, 01-filling and the growth diagram



34 1. Introduction

7 3 2 2
4 1 1
3
1

P̃ =
7 7 4 1
5 4 2
3
1

Q̃ =

Fig. 1.4: The pair of RSSYT

×
×

×
×

×
×

×
×

×
×

local
rules

local
rules

Fig. 1.5: Reflection with respect to the origin
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Fig. 1.6: Growth diagram with backward local rules
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2. SEMI-SKYLINE AUGMENTED FILLINGS

In this chapter we introduce the combinatorial objects called semi-skyline
augmented fillings (SSAF), which were defined to describe combinatorially
non-symmetric Macdonald polynomials [15]. This is done in sections 2.1 and
2.2 where, in particular, the relationship with Schur polynomials is discussed.
In sections 2.3, 2.4, 2.5, 2.6 and 2.7 we study useful properties of SSAF
and its relation with RSSYT and SSYT. In sections 2.8 and 2.9 we study
an analogue of RSK and its relation with reverse RSK. In Section 2.10 we
make an interpretation of the analogue of RSK in terms of Fomin’s growth
diagram. Finally in the last section we bring the main theorem which will be
used to find a bijective proof for non-symmetric Cauchy kernel expansions
over staircases and truncated staircases.

2.1 Combinatorial description of non-symmetric Macdonald

polynomials

The following combinatorial statistics defined on fillings are used to describe
the Macdonald polynomials [14] and non-symmetric Macdonald polynomials
[15]. The Macdonald polynomials were introduced by Macdonald in [35]. The

theory of the non-symmetric Macdonald polynomials, Êγ(x; q, t), where γ ∈
Nn and x = (x1, . . . , xn) a list of indeterminates, is developed by Cherednik
[7], Macdonald [37], and Opdam [41]. Haglund, Haiman, and Loehr [14, 15]
recently found a combinatorial description for the Macdonald polynomials
and the non-symmetric Macdonald polynomials. We follow most of the time
the conventions and terminology in [14, 15, 39, 40].

A weak composition γ = (γ1, . . . , γn) is visualised as a diagram consisting
of n columns, with γj boxes in column j, for 1 ≤ j ≤ n. Formally, the column
diagram of γ is the set dg′(γ) = {(i, j) ∈ N2 : 1 ≤ j ≤ n, 1 ≤ i ≤ γj} where
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the coordinates are in French convention, i indicates the vertical coordinate,
indexing the rows, and j the horizontal coordinate, indexing the columns.
(The prime reminds that the components of γ are the columns.) The number
of cells in a column is called the height of that column and a cell a in a column
diagram is denoted a = (i, j), where i is the row index and j is the column

index. The augmented diagram of γ, d̂g(γ) = dg′(γ)∪{(0, j) : 1 ≤ j ≤ n}, is
the column diagram with n extra cells in row 0. This adjoined row is called
the basement and it always contains the numbers 1 through n in strictly
increasing order. The shape of d̂g(γ) is defined to be γ. For example, column
diagram and the augmented diagram for γ = (1, 0, 3, 0, 1, 2, 0) are

dg′(γ)

1 2 3 4 5 6 7

d̂g(γ)

A filling of a diagram γ is a function σ : dg′(γ)→ [n], and an augmented

filling is the filling σ̂ : d̂g(γ) → [n], of the augmented diagram such that
σ̂ agrees with σ on dg′(γ). In the other words an augmented filling can be
pictured as an assignment of positive integer entries to the non-basement
cells of d̂g(γ). Two cells a and b are called attacking if either they are in the
same row or they are in adjacent rows, such that the entry in the higher row
is strictly to the right of the entry in the lower row. It means a = (i1, j1)
and b = (i2, j2) are attacking if either i1 = i2, or i2 − i1 = 1 and j1 < j2, or
i1 − i2 = 1 and j2 < j1.

1
2
3

3
4
2

5 6
4

1 2 3 4 5 6 7

Fig. 2.1: An augmented filling σ̂

A non-attacking filling is a filling such that σ̂(a) 6= σ̂(b) for every pair
of attacking cells a and b. As in [14], a descent of σ̂ is a pair of entries
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σ̂(u) > σ̂(v), where the cell u is directly above v. In other words, v = (i, j)
and u = (i + 1, j), where i is the row of cell v and j is the column of cell
v. (We include pairs u, v such that v = (0, j) and u = (1, j).) Define
Des(σ̂) = {u ∈ dg′(γ) : σ̂(u) > σ̂(v) is a descent}. In Figure 2.1, we have
Des(σ̂) = {(2, 1), (3, 1), (2, 3)}. Let leg of u be the number of cells above u

in the column of d̂g(γ), which contains u, denoted l(u). If we consider cell

u = (1, 3) in Figure 2.1, then l(u) = 2. Define maj(σ̂) =
∑

u∈Des(σ̂)

(l(u) + 1).

In Figure 2.1, maj(σ̂) = 2 + 1 + 2 = 5.
The reading order of a shape dg′(γ) is the total ordering of the cells given

by reading the rows from left to right, top to bottom. A cell a = (i, j)
precedes a cell b = (i′, j′) in the reading order if either i′ < i or i′ = i and
j′ > j. The word derived from a filling σ̂ by reading the non-basement entries
in reading order is called the reading word of σ̂, denoted read(σ̂). In Figure
2.1 we have read(σ̂) = 322441356. The content of an augmented filling σ̂,
denoted by c(σ̂), is the weak composition (α1, . . . , αn) where αi is the number

of non-basement cells in d̂g(γ) (or the number of cells in dg′(γ)) with entry
i, where n is the number of basement elements. The content of σ̂ in Figure
2.1 is c(σ̂) = (1, 2, 2, 2, 1, 1, 0).

The standardization of σ̂ is the unique augmented filling that one obtains
by sending the i-th occurrence of j in the reading order to i +

∑j−1
m=1 αm,

where c(σ̂) = (α1, . . . , αn). Figure 2.2 is a standardization of σ̂ in Figure 2.1.

1
3
4

5
6
2

8 9
7

1 2 3 4 5 6 7

Fig. 2.2: A standardization of σ̂

Let three cells a, b, c ∈ d̂g(γ), where a and c are in the same row. Then

(a, b, c) is said to be a triple. Let a, b, c ∈ d̂g(γ) three cells situated as follows,

b

a c. . .
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where a and c are in the same row, possibly the first row, possibly with cells
between them, and the height of the column containing a and b is greater
than or equal to the height of the column containing c. Then the triple (a, b, c)
is a triple of type I. The triple (a, b, c) is said to be an inversion triple of type
I if and only if after standardization the ordering from smallest to largest of
the entries in cells a, b, c induces a counterclockwise orientation. Similarly,
consider three cells a, b, c ∈ d̂g(γ) situated as follows,

a c
b

. . .

where a and c are in the same row (possibly the basement) and the column
containing b and c has strictly greater height than the column containing a.
Then the triple (a, b, c) is a triple of type II. The triple (a, b, c) is said to be
an inversion triple of type II if and only if after standardization the ordering
from smallest to largest of the entries in cells a, b, c induces a clockwise ori-
entation. Figure 2.3 shows inversion triples of type I and II. In fact the blue
entries define a type I inversion triple and the red entries a type II inversion
triple.

2
3
3

1
2
1

4 5
5

1 2 3 4 5 6 7

Fig. 2.3: Inversion triples of type I and II in σ̂

For an augmented filling σ̂ of a weak composition γ, define [39]

Inv(σ̂) = { inversion triples of σ̂}, and inv(σ̂) = |Inv(σ̂)|.

Let coinv(σ̂) be the number of triples of type I and II which are not an
inversion triples [39]. For example, in Figure 2.3 we have inv(σ̂) = 4 and
coinv(σ̂) = 6.

The last combinatorial notion that we need to introduce, in order to give
a combinatorial description of non-symmetric Macdonald polynomials, is the
notion of arm of a cell u ∈ dg′(γ). Define the arm of cell u, denoted a(u),
to be the number of cells to the right of u in row i appearing in columns
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whose height is weakly less than the height, h, of the column containing u
plus the number of cells to the left of u in row i − 1 appearing in columns
whose height is strictly less than h. For example, if we consider u = (2, 3) in
Figure 2.3, then a(u) = 1, that is, there is only the cell v = (2, 6) satisfying
the definition.

Theorem 6. [15] The non-symmetric Macdonald polynomials Êγ are given

by the formula

Êγ(x; q, t) =
∑

σ:dg′(γ)→[n]
non−attacking

xσqmaj(σ̂)tcoinv(σ̂)
∏

u∈dg′(γ)
σ̂(u)6=σ̂(d(u))

1− t
1− ql(u)+1ta(u)+1

,

where γ ∈ Nn and x = (x1, . . . , xn) a list of indeterminates, xσ =
∏

u∈dg′(γ)

xσ(u)

and d(u) is the cell directly below u.

Notice that we have used the notation of Mason in [39] for non-symmetric

Macdonald polynomial, Êγ(x; q, t), which is equal to the notation in [15],
Eγ(x; q, t), when we replace in latter q and t with 1/q and 1/t respectively.
In [15] it is shown that the Macdonald polynomial monic form Pλ(x; q, t) [36]
can be written in terms of non-symmetric Macdonald polynomials as in the
next proposition, where λ = γ+.

Proposition 4. [15] Let λ be a partition and ωλ be the rearrangement of λ

in weakly increasing order. Then

Pλ(x; q, t) =
∏

u∈dg′(ωλ)

(1− ql(u)+1ta(u)).
∑
γ

γ+=λ

Êγ(x; q, t)∏
u∈dg′(γ)(1− ql(u)+1ta(u))

,

where the sum is over all rearrangements γ of λ.

It is well known [36] that sλ(x) = limq,t→0Pλ(x; q, t), so letting q, t → 0
we get the following combinatorial expansion of the Schur polynomials [15],

sλ(x) =
∏

u∈dg′(ωλ)

(1− 0l(u)+10a(u)).
∑
γ

γ+=λ

Êγ(x; 0, 0)∏
u∈dg′(γ)(1− 0l(u)+10a(u))

=
∑
γ

γ+=λ

Êγ(x; 0, 0).
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Therefore, in Theorem 6, setting q = t = 0 and assuming q0 = t0 = 1

Êγ(x; 0, 0) =
∑

σ:dg′(γ)→[n]
non−attacking

maj(σ̂)=coinv(σ̂)=0

xσ. (2.1)

Hence,

sλ(x) =
∑
γ

γ+=λ

Êγ(x; 0, 0) =
∑
γ+=λ

σ:dg′(γ)→[n]
non−attacking

maj(σ̂)=coinv(σ̂)=0

xσ. (2.2)

2.2 Semi-skyline augmented fillings

The conditions maj(σ̂) = coinv(σ̂) = 0 are equivalent to say every columns
should be weakly decreasing from bottom to top and every triple should be
an inversion triple. Mason in [39] has shown that these two conditions imply
a non-attacking condition. Let us define the next object called semi-skyline
augmented filling [39].

Definition 3. A semi-skyline augmented filling (SSAF) of an augmented

diagram d̂g(γ) is an augmented filling F such that every triple is an inversion

triple and columns are weakly decreasing from bottom to top. The shape of

the semi-skyline augmented filling is γ and is denoted by sh(F ).

Figure 2.4 is an example of a semi-skyline augmented filling with sh(F ) =

(1, 0, 3, 2, 0, 1), reading word read(F )=1321346, and content c(F )=(2, 1, 2, 1,0, 1).
Corollary 2.4 in [39] allows us to write the next proposition.

Proposition 5. Every semi-skyline augmented filling F is a non-attacking

filling.

Therefore the combinatorial interpretation of Êγ(x; 0, 0) (2.1) is as follows

Êγ(x; 0, 0) =
∑

F SSAF
sh(F )=γ

xF . (2.3)
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1 2 3 4 5 6
1 3

3
1

4
2

6

Fig. 2.4: A SSAF F of shape (1, 0, 3, 2, 0, 1)

Thereby the decomposition of the Schur polynomials (2.2) can be written in
terms of SSAF [39], as a generating function of all SSAFs of shape γ with
entries ≤ n,

sλ(x) =
∑
γ+=λ

Êγ(x; 0, 0) =
∑

F SSAF
sh(F )=γ

γ+=λ

xF . (2.4)

Example 17. Decomposition of the Schur polynomial sλ(x) where λ = 311

and x = (x1, x2, x3), in terms of SSAFs.

1 2 3
1
1
1

2 3
1 2 3
1

2
2

2 3
1 2 3
1

2
1

2 3
1 2 3
1

3
3

2 3
1 2 3
1

3
2

2 3
1 2 3
1

3
1

2 3

sλ(x1, x2, x3) = x3
1x2x3 + x1x

3
2x3 + x2

1x
2
2x3 + x1x2x

3
3 + x1x

2
2x

2
3 + x2

1x2x
2
3.

2.3 Properties of semi-skyline augmented fillings

We collect in this section the properties of SSAF in [39] which are impor-
tant for our purpose in sections 2.8 and 2.11. The two first properties are
consequence of the definition of Semi-skyline augmented filling.

Property 1. The entry of a cell in the first row of a SSAF is equal to
the basement element where it sits and, thus, in the first row the cell entries
increase from left to the right.

Proof. By contrary suppose that there is a cell b on the top of the basement
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a with F (b) < a, as follows

1 . . . e
c
. . . a

b
. . .n .

Since F (b) < a, there is a basement e = F (b) to the left of the basement

a. If the height of the column with the basement a is strictly bigger than the

height of column with the basement e, then the triple (a, e, b) is not a type II

inversion triple. If the height of column with the basement a is weakly less

than the height of column with the basement e, since there is no attacking

cell in SSAF, then the cell on the top of the basement e should be different

from F (b). As the columns are weakly decreasing from bottom to top the

cell on the top of e is , c with F (c) < F (b), and therefore the triple (b, c, e)

is not a type I inversion triple. This is a contradiction. So the entries of the

first row are equal to their basement.

Property 2. For any weak composition γ in Nn, there is at least one
SSAF with shape γ, by putting γi cells with entries i in the top of the
basement element i.

Proof. This construction implies decreasing property of columns. So we only

need to prove that every triple is an inversion triple. Consider triple,

a b

c
. . .

with F (a) = a, F (b) = F (c) = b and a < b, after standardization we get,

F (a) = 1, F (c) = 2 and F (b) = 3 that is clockwise orientation and so it is

type II inversion triple. Now consider triple,

c
a b. . .
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with F (a) = F (c) = a, F (b) = b and a < b, after standardization one gets,

F (a) = 1, F (c) = 2 and F (b) = 3 that is counterclockwise orientation and so

it is type I inversion triple.

In [39] a sequence of lemmas provides several conditions on triples of cells
in a SSAF. We recall a property regarding an inversion triple of type II which
will be used in the proof of our main theorem in Section 2.11.

Property 3. Consider the type II inversion triple (a, b, c) as below

a c
b

. . .

then F (a) < F (b) ≤ F (c).

2.4 A weight preserving bijection between reverse

semi-standard Young tableaux and semi-skyline

augmented fillings

There is a weight preserving bijection between semi-skyline augmented fill-
ings (SSAFs) and reverse semi-standard Young tableaux (RSSYTs) in [39].
Construct the RSSYT, ρ(F ), from SSAF, F , by putting the i-th row of
SSAF in decreasing order from bottom to top as a i-th column of RSSYT.
In [39] it is proved that ρ(F ) is a RSSYT. It means that the columns are
strictly decreasing from bottom to top and rows are weakly decreasing from
left to right. (Note that in [39] the rows of SSAF go to the rows of RSSYT
and therefore the RSSYT defined in [39] is the transpose of ours. It means
that in there RSSYT is a weakly decreasing from bottom to top and strictly
decreasing from left to right.)

To find the map ρ−1, consider RSSYT P̃ , and call Ci the column i of
P̃ . Consider C1, and put the largest element of C1 in the leftmost possible
place in the first row of an empty augmented diagram to have a decreasing
from bottom to top, then put the next largest element of C1 in the leftmost
possible place in the first row of the new augmented diagram, continue this
manner to put all the elements of C1 in the first row. Then put in the same
way all the elements of C2 in the second row of augmented filling and so
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on. It means that the elements in column i of RSSYT go to the row i of
the augmented filling, write F = ρ−1(P̃ ). Next theorem says that ρ−1(P̃ )
is a SSAF and therefore it can be seen as a map from a collection {Ci} of
columns to a SSAF.

Theorem 7. [39] The augmented filling F that has been constructed above

is a semi-skyline augmented filling.

To have a bijection between SSAF and RSSYT, it remains to prove that
F is the unique SSAF with row collection {C1, . . . , Ck} where Ci consists of

the elements in column i of the RSSYT P̃ , 1 ≤ i ≤ k.

Theorem 8. [39] The SSAF F is the only SSAF with row entries given by

the collection {Ci}ki=1, where Ci is the set of entries of column i of the RSSYT

P̃ .

Example 18. The SSAF corresponding to the RSSYT P̃

5 3 3 2
4 2
1

P̃

sh(P̃ ) = (4, 2, 1)

1 2 3 4 5
1 4

3
3
2

5
2

F

sh(F ) = (1, 0, 0, 4, 2)

c(P̃ ) = c(F ) = (1, 2, 2, 1, 1)

ρ

ρ−1

2.5 An analogue of Schensted insertion

As we have seen in Section 1.7, the fundamental operation of the Robinson-
Schensted-Knuth (RSK) correspondence is Schensted insertion which is a pro-
cedure for inserting a positive integer k into a semi-standard Young tableau
T . In [39] it is defined a similar procedure for inserting a positive integer



2.5. An analogue of Schensted insertion 47

k into a SSAF F , which is used to describe an analogue of the RSK corre-
spondence. If F is a SSAF of shape γ, we set F := (F (j)), where F (j) is
the entry in the j-th cell in reading order, with the cells in the basement
included, and j goes from 1 to n+

∑n
i=1 γi. If ĵ is the cell immediately above

j and the cell is empty, set F (ĵ) = 0. The operation k → F, for k ≤ n, is
defined as follows.

Procedure. The insertion k → F :

1. Set i := 1, set x1 := k, set p0 = ∅, and set j := 1.

2. If F (j) < xi or F (ĵ) ≥ xi, then increase j by 1 and repeat this step.
Otherwise, set xi+1 := F (ĵ) and set F (ĵ) := xi. Set pi = (b + 1, a), where
(b, a) is the j-th cell in reading order. (This means that the entry xi ”bumps”
the entry xi+1 from the cell pi.)

3. If xi+1 6= 0 then increase i by 1, increase j by 1, and repeat step 2.

4. Set tk equal to pi, which is the termination cell, and terminate the
algorithm.

Another way to explain this algorithm is as follows. Scan cells through the
reading word, stop at the first cell c with F (c) ≥ k. If the top of c is empty,
then k sits in the top of c and the resulting figure is k → F . Otherwise let a
be the cell on the top of c. If F (a) < k then k bumps F (a). In other words,
k replaces F (a) and we continue the same manner with the cell immediately
to the right of c in read(F ). If F (a) ≥ k then continue scanning read(F )
to find the cell greater than or equal F (a) such that the entry in the top of
that, is less than k. Continue this scanning and bumping process until an
entry is placed on top of a column. Then the resulting diagram is k → F .
See Example 19.

Proposition 6. [39] The procedure terminates in finitely many steps and

the result k → F is a SSAF.

Notice that if the insertion element, k, is bigger than the number of
elements in basement, n, then the insertion of k to F increases the number
of basement elements until k, and k sits in the top of basement k.
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Example 19. Insertion 3→ F

1 2 3 4 5 6
3
2
1

4
1

6

F

3

i = 1, x1 := 3, p0 = ∅, j = 1,

F (1) < x1 → j = 2,

F (2) < x1 → j = 3,

F (3) < x1 → j = 4,

x2 := F (4̂) = 2, F (4̂) := 3, p1 = (2, 3),

1 2 3 4 5 6
3
3
1

4
1

6

i = 2, j = 5, x3 := F (5̂) = 1, F (5̂) := 2, p2 = (2, 4),

1 2 3 4 5 6
3
3
1

4
2

6

i = 3, j = 6, x4 := F (6̂) = 0, F (6̂) := 1, p3 = t3 = (2, 6).

1 2 3 4 5 6
3
3
1

4
2

6
1

3→ F
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Note that in [39] the analogue of Schensted insertion comes from joining
the reverse Schensted row insertion in the RSSYT and map ρ. The relation
between the analogue of Schensted insertion k → F and reverse Schensted
row insertion of k into ρ(F ) = P̃ , P̃ ← k, is as follows:

Proposition 7. [39] If F is a semi-skyline augmented filling and k is an

arbitrary positive integer, then the figure k → F is a semi-skyline augmented

filling and the insertion procedure commutes with the map ρ in the sense that

ρ(k → F ) = ρ(F )← k.

To see it, consider the insertion in Example 19 and the reverse Schensted
row insertion for ρ(F ).

Example 20. The map ρ commutes with Schensed insertions.

1 2 3 4 5 6
3
2
1

4
1

6

F

3

=

1 2 3 4 5 6
3
3
1

4
2

6
1

3→ F

; =6

4
3

2
1

1
3

6

4
3

3
2
1

1

ρ(F ) ρ(F )← 3
= ρ(3→ F )

2.6 A weight preserving, shape rearranging bijection between

semi-standard Young tableaux and semi-skyline

augmented fillings

Based on the analogue of Schensted insertion, it is given a weight preserving,
shape rearranging bijection Ψ between SSYT and SSAF over the alphabet
[n] in [39]. The bijection Ψ is defined to be the insertion, from right to
left, of the column word of a SSYT into the empty SSAF with basement
1, . . . , n. Consider the SSYT T with column word col(T ) = k1 . . . ktkt+1 then
F := Ψ(T ) = (k1 → · · · (kt → (kt+1 → ∅))). See the Example 21.
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Example 21. The bijection Ψ between SSYT and SSAF on the alphabet [5]

T =1 3 3
2 5
4

col(T ) = 421533

F1 := (3→ ∅) =
1 2 3 4 5

3
F2 := (3→ F1) =

1 2 3 4 5
3
3

F3 := (5→ F2) =
1 2 3 4 5

3
3

5
F4 := (1→ F3) =

1 2 3 4 5
3
3

5

1

F5 := (2→ F4) =
1 2 3 4 5

3
3

5
1

2

Ψ(T ) := (4→ F5) =
1
1

2 3 4 5
3
3

5
4

2

sh(T ) = (3, 2, 1, 0, 0), sh(Ψ(T )) = (1, 0, 3, 0, 2), c(T ) = c(Ψ(T )) = (1, 1, 2, 1, 1).

Since the analogue of the Schensted insertion is related to the reverse
Schensted row insertion via map ρ, if we apply the reverse Schensted row
insertion to the col(T ), in Example 21, from right to left, the RSSYT that
we obtain is ρ(F ). To prove that Ψ is a bijection it is shown in [39] that
the map Ψ is invertible. Since the analogue of the Schensted insertion is
related to the reverse Schensted row insertion via map ρ, and the reverse
Schensted row insertion is invertible, then the map Ψ is invertible too. Let
F be a SSAF. First consider all the topmost cells of each column and put
A1 := {a1, a2, . . . , al}. Start with the cell in A1 with smallest height, say a1,
if there are more than one column with the same height consider rightmost as
a smaller. Let F (a1) be a filling of cell a1, delete F (a1) and scan the elements
in the backward read(F ) from a1 to find the cell b1 with F (b1) > F (a1) and
F (b̂1) ≤ F (a1) or F (b̂1) = ∅, where b̂1 is the cell immediately above the cell
b1. Replace F (b1) with F (a1) and continue the searching for F (b1), continue
this manner until the first letter of col(T ) is reached. Then choose the second
elements in A1 and do the same manner to get the second element of col(T ).
When we delete all the elements of A1, consider all the topmost cells of the
new columns as a set A2, and do the same for set A2. Continue this manner
until all the elements of col(T ) are reached. We illustrate with the following
example.
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Example 22. The left picture shows the name of cells in the SSAF F , and

on the right we have SSAF F .

a1 a2

a3

a4

a5

a6

a7

1 2 3 4 5
1 3

3
2

4
2

5
1 2 3 4 5

Then A1 = {a7, a1a6, a4}, delete a7 and continue deleting, one gets,

1 3
3
2

4
2

1 2 3 4 5

→ 5

3
2
2

4
1

1 2 3 4 5

→ 3

3
2
1

4
1 2 3 4 5

→ 2

3
2

4
1 2 3 4 5

→ 1

Let A2 = {a5, a3}, delete first a5 and then a3, one has,

3
2

1 2 3 4 5

→ 4
3

1 2 3 4 5

→ 2

Finally A3 = {a2}, after deleting a2 one has,

1 2 3 4 5

→ 3

Therefore col(Ψ−1(F )) = 5321.42.3 and

T = Ψ−1(F ) =
1
2
3
5

2
4

3
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2.7 The right key of a tableau via semi-skyline augmented

filling

We have seen in Section 1.8, the original definition of the right key. In [40] it
is shown that the right key can be defined in terms of SSAF. The bijection
Ψ provides the right key of tableau T , K+(T ), in the following theorem.

Theorem 9. [40] Given an arbitrary SSYT T , let γ be the shape of Ψ(T ).

Then K+(T ) = key(γ).

Example 23.

1
2
3
5

1
3

4

1

4

3

T
1 2 3 4 5
1
1

3
3
3
1

4
4
2

5

Ψ(T )

Ψ

Consider dg′(sh(Ψ(T ))), where sh(Ψ(T )) = γ = (2, 0, 4, 3, 1).

Rotate counterclockwise
dg′(γ) by 90◦ and
reflect it vertically

1 1

3 3 3 3

4 4 4
5

fill the cells with

the row indices
upwards

1
3

4
5

1
3

4

3

4

3

Dropping cells
(by gravity)

K+(T ) = key(γ)
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Since the map Ψ is a weight preserving and shape rearranging bijection
between SSYTs and SSAFs, one has

{T ∈ SSY Tn : sh(T ) = λ} =
⊎
γ+=λ

{T ∈ SSY Tn : K+(T ) = key(γ)}

and therefore ∑
F SSAF
sh(F )=γ

xF =
∑

T SSY T
sh(T )=γ+

K+(T )=key(γ)

xT ,

for all γ+ = λ.
From this equation and (2.4), we have the following combinatorial expan-

sions for Schur polynomials

sλ(x) =
∑
γ+=λ

Êγ(x; 0, 0) =
∑

F SSAF
sh(F )=γ

γ+=λ

xF =
∑

T SSY T
sh(T )=γ+

K+(T )=key(γ)

γ+=λ

xT .

Mason has proved in [40] that Êγ(x, 0, 0) are equivalent to Demazure atoms
to be discussed in the next chapter.

2.8 An analogue of Robinson-Schensted-Knuth

correspondence

We have introduced the RSK correspondence in the first chapter. Given
the alphabet [n], the RSK correspondence is a bijection between biwords
in lexicographic order on the alphabet [n] and pairs of SSYTs of the same
shape over [n]. Equipped with the analogue of Schensted insertion, Mason
finds in [39] an analogue Φ of the RSK yielding a pair of SSAFs. This
bijection has an advantage over the classical RSK because the pair of SSAFs
comes along with the extra pair of right keys. The map Φ defines a bijection
between the set An of all biwords w in lexicographic order in the alphabet
[n] or, equivalently, N-matrices of finite support, and pairs of SSAFs whose
shapes are rearrangements of the same partition in Nn, and the contents are,
respectively, those of the second and first rows of w. Let SSAFn be the set
of all semi skylines augmented fillings with basement [n].
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Procedure. The map Φ : An −→ SSAFn × SSAFn. Let w ∈ An.
1. Set r := l, where l is the number of biletters in w and the index of

rightmost biletter in w. Let F = ∅ = G, where ∅ is the empty SSAF.
2. Set F := (jr → F ). Let hr be the height of the column in (jr → F ) at

which the insertion procedure (jr → F ) terminates.
3. Place ir on top of the leftmost column of height hr − 1 in G such that

doing so preserves the decreasing property of columns from bottom to top.
Set G equal to the resulting figure.

4. If r−1 6= 0, repeat step 2 for r := r−1. Else terminates the algorithm.

Remark 1. 1. The entries in the top row of the biword are weakly increasing

when read from left to right. Henceforth, if hr > 1, placing ir on top of the

leftmost column of height hr − 1 in G preserves the decreasing property of

columns. If hr = 1, the ithr column of G does not contain an entry from a

previous step. It means that number ir sits on the top of basement ir.

2. Let h be the height of the column in F at which the insertion procedure

(j → F ) terminates. The condition on inversion triples of type II, in Property

1 implies that there is no column of height h+ 1 in F to the right.

The Example 24 shows the action of map Φ.

Example 24. Consider biword w =

 1 2 2 3 4 5

3 2 4 1 5 3

, starting from right-

most biletter and applying map Φ one has,

1 2 3 4 5
3

F
1 2 3 4 5

5

G

1 2 3 4 5
3 5

F
1 2 3 4 5

54

G
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1 2 3 4 5
3 5
1

F
1 2 3 4 5

54
3

G

1 2 3 4 5
3 5
1 4

F
1 2 3 4 5

54
3 2

G

1 2 3 4 5
3 5
1 4

2

F
1 2 3 4 5

54
3 2
2

G

1 2 3 4 5
3 5
2 4

3

1

F
1 2 3 4 5

54
3 2
2

1

G

The map Φ is invertible, in [39] there is a description of the inverse of Φ.

2.9 A triangle of Robinson-Schensted-Knuth correspondences

There are two propositions in [39] that give relations between the analogue
of RSK, the reverse RSK, and RSK. One is a relation between RSK and the
analogue of RSK as below.

Proposition 8. [39, 40] The RSK correspondence commutes with the above

analogue Φ. That is, if (P,Q) is the pair of SSYTs produced by RSK corre-

spondence applied to biword w, then (Ψ(P ),Ψ(Q)) = Φ(w), and K+(P ) =

key(sh(Ψ(P ))), K+(Q) = key(sh(Ψ(Q))).
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(P,Q)

w

(F,G)

RSK Φ

Ψ

sh(F )+ = sh(G)+ = sh(P ) = sh(Q),
K+(P ) = key(sh(F )), K+(Q) = key(sh(G)).

c(P ) = c(F ), c(Q) = c(G),

Fig. 2.5: The relation between RSK and the analogue of RSK

This result is summarised in the Figure 2.5 from which, in particular, it
is clear the RSK analogue Φ also shares the symmetry of RSK.

The other relation is between the reverse RSK and the analogue of RSK
as below.

Proposition 9. [39] If (P̃ , Q̃) is the pair of reverse semi-standard Young

tableaux obtained by applying the reverse RSK correspondence to the biword

w, then

(ρ−1(P̃ ), ρ−1(Q̃)) = Φ(w) = (F,G).

Putting together these two propositions and also the relations between
SSAF, SSYT and RSSYT, one obtains Figure 2.6.

2.10 Growth diagram presentation of an analogue of

Robinson-Schensted-Knuth corrspondence

Figure 2.6 shows the relation between RSK, reverse RSK and analogue of
RSK. Since there are presentations of RSK and reverse RSK in terms of
Fomin’s growth diagrams, it is interesting to find a similar presentation of
the analogue of RSK. The map ρ gives a nice relation between SSAF and
RSSYT, and from that we are able to find the pair of SSAFs using a Fomin’s
growth diagram. Let w be a biword in the lexicographic order. Consider
the growth diagram associated to the biword w. As we have seen before,
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w

(P̃ , Q̃) (F,G) (P,Q)

RSK
Φ

reverse RSK

ρ Ψ

sh(F )+ = sh(G)+ = sh(P ) = sh(Q) = sh(P̃ ) = sh(Q̃)

key(sh(F )) = K+(P ), key(sh(G)) = K+(Q)

c(F ) = c(P ) = c(P̃ ), c(G) = c(Q) = c(Q̃)

Fig. 2.6: The relation between RSK, reverse RSK and analogue of RSK

applying backward local rules we are led to a pair of sequences of partitions
respectively, on the left and on the bottom of the growth diagram. The
partitions of each sequence are related by containment and they give a pair
of RSSYTs. Now we are going to use these sequences of partitions to get a
pair of SSAFs as follows.

Let λi be the partition associated to the i-th thick column line on the
bottom of the growth diagram when we scan the thick column lines from
right to left, and consider the sequence of partitions {λij}, where λi = λi1 ⊆
· · · ⊆ λili , associated with the thick column line i and the li− 1 thin column
lines strictly in between the two thick column lines i and i+ 1 counted from
right to left. Start with the rightmost partition of the bottom sequence in
the growth diagram and also with an empty SSAF. When we arrive to the
partition λij we put a cell with filling n+1−i in the leftmost possible place of
the SSAF with basement 1 through n, such that the shape of the new SSAF
becomes a rearrangement of the partition λij and the decreasing property on
the columns of SSAF, from bottom to top, is preserved.

Similarly let λi be the partition associated to the i-th thick row line in
the left of the growth diagram when we scan the thick row lines from top
to bottom, and consider the sequence of partitions {λij}, where λi = λi1 ⊆
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· · · ⊆ λiei , associated with the thick row line i and the ei − 1 thin row lines
strictly in between the two thick row lines i and i + 1 counted from top to
bottom. Start with the topmost partition of the left sequence in the growth
diagram and also with an empty SSAF. When we arrive to the partition
λij we put a cell with filling n + 1 − i in the leftmost possible place of the
SSAF with basement 1 through n, such that the shape of the new SSAF
becomes a rearrangement of the partition λij and the decreasing property on
the columns of SSAF, from bottom to top, is preserved.

The growth diagram corresponding to the reverse RSK for

w =

(
1 1 2 3 4 4 5 7 7
2 7 2 4 1 3 3 1 1

)

is shown in the Figure 2.7. The SSAF that is obtained from the bottom
sequence of partitions is constructed below.

7 7
7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ01 = ∅
λ0 = ∅

λ11 = 1
λ1 = 2

λ12 = 2
λ1 = 2

7
7

5 7
7

5
4

7
7

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ21 = 2
λ2 = 2

λ31 = 21
λ3 = 21

λ41 = 22
λ4 = 32

5
4
4

7
7

3 5
4
4

7
7

3 5
4
4

7
7
2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ42 = 32
λ4 = 32

λ51 = 321
λ5 = 321

λ61 = 331
λ6 = 331
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×

×

×

×

×

×

×

×

×

1

1

1

11

111

211

311

411

4111

4211

4311

122

212232

32
1

33
1

43
11

∅

33
11

∅

∅∅∅∅∅∅∅∅1

∅∅∅∅∅∅∅∅1

∅∅∅∅∅∅∅∅1

∅∅∅∅∅∅1111

∅∅∅1111111111

∅∅∅1222121211

∅∅∅1222131311

∅∅∅1222131311

1111121212113113111

1222122222213213211

∅∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Fig. 2.7: Growth diagram with backward local rules

1 3 5
4
4

7
7
2

1 3 5
4
4
1

7
7
2

1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ71 = 3311
λ7 = 4311

λ72 = 4311
λ7 = 4311
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The same procedure for the left side of growth diagram gives,

7 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

λ01
= ∅

λ0 = ∅
λ11

= 1
λ1 = 1

λ21
= 1

λ2 = 1

7 4 7 4 73
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

λ31
= 1

λ3 = 1
λ41

= 11
λ4 = 11

λ51
= 111

λ5 = 211

3
3

4 7 3
3
2

4 7 3
3
2
2

4 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

λ52
= 211

λ5 = 211
λ61

= 311
λ6 = 411

λ62
= 411

λ6 = 411

1 3
3
2
2

4 7 1
1

3
3
2
2

4 7 1
1
1

3
3
2
2

4 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
λ71

= 4111
λ7 = 4311

λ72
= 4211

λ7 = 4311
λ73

= 4311
λ7 = 4311

Therefore the pair of SSAF corresponding to the growth diagram in Figure
2.7 is,

1
1
1

3
3
2
2

4 7
1 2 3 4 5 6 7

1 3 5
4
4
1

7
7
2

1 2 3 4 5 6 7 1 2 3 4 5 6 7

which through map ρ−1 corresponds to the pair (P̃ , Q̃) of RSSYT in the
growth diagram of Figure 1.6.
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2.11 Main theorem

We prove a restriction of the bijection Φ to multisets of cells in a staircase or
truncated staircase of length n, such that the staircases of length n − k on
the upper left corner, or of length n −m on the bottom right corner, with
1 ≤ m ≤ n, 1 ≤ k ≤ n and k +m ≥ n+ 1, are erased. The restriction to be
imposed on the pairs of SSAFs is that the pair of shapes in a same Sn-orbit,
satisfy an inequality in the Bruhat order, where one shape is bounded by the
reverse of the other. Equivalently, pairs of SSYTs whose right keys are such
that one is bounded by the Schützenberger’s evacuation of the other.

The following lemma gives sufficient conditions to preserve the Bruhat
order relation between two weak compositions when one box is added to a
column of each column diagram.

Lemma 1. Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) be two weak

compositions in Nn, rearrangements of each other, with key(β) ≤ key(α).

Given k ∈ {1, . . . , n}, let k′ ∈ {1, . . . , n} be such that βk′ is the left most

entry of β satisfying βk′ = αk. Then if α̃ = (α1, α2, . . . , αk + 1, . . . , αn) and

β̃ = (β1, β2, . . . , βk′ + 1, . . . , βn), it holds key(β̃) ≤ key(α̃).

Proof. Let k, k′ ∈ {1, . . . , n} as in the lemma, and put αk = βk′ = m ≥ 1.

(The proof for m = 0 is left to the reader. The case of interest for our

problem is m > 0 which is related with the procedure of map Φ.) This

means that k appears exactly in the first m columns of key(α), and k′ is

the smallest number that does not appear in column m + 1 of key(β) but

appears exactly in the first m columns. Let t be the row index of the cell

with entry k′ in column m of key(β). Every entry less than k′ in column m

of key(β) appears in column m + 1 as well, and since in a key tableau each

column is contained in the previous one, this implies that the first t rows

of columns m and m + 1 of key(β̃) are equal. The only difference between

key(β̃) and key(β) is in columns m+ 1, from row t to the top. Similarly if z
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is the row index of the cell with entry k in column m+ 1 of key(α̃), the only

difference between key(α̃) and key(α) is in columns m+ 1 from row z to the

top. To obtain column m+ 1 of key(β̃), shift in the column m+ 1 of key(β)

all the cells with entries > k′ one row up, and add to the position left vacant

(of row index t) a new cell with entry k′. The column m + 1 of key(α̃) is

obtained similarly, by shifting one row up in the column m+ 1 of key(α) all

the cells with entries > k and adding a new cell with entry k in the vacant

position. See Figure 2.8. Put p := min{t, z} and q := max{t, z}. We divide

b1

...

bp−1

k′
bp+1

...

bq
bq+1

...

bl

column
m

key(β)

d1

...

dp−1

dp
dp+1

...

dq

column
m+ 1
key(β)

b1

...

bp−1

k′
bp+1

...

bq
bq+1

...

bl

column
m

key(β̃)

d1

...

dp−1

k′
dp

...

dq

column
m+ 1
key(β̃)

Fig. 2.8: .

the columns m+ 1 in each tableau pair key(β), key(β̃) and key(α), key(α̃)

into three parts: the first, from row one to row p − 1; the second, from row

p to row q; and the third, from row q + 1 to the top row. The first parts of

column m + 1 of key(β̃) and key(β) are the same, equivalently, for key(α̃)

and key(α). The third part of column m+ 1 of key(β̃) consists of row q plus

the third part of key(β), equivalently, for key(α̃) and key(α). As columns
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m+ 1 of key(β) and key(α) are entrywise comparable, the same happens to

the first and third parts of columns m+ 1 in key(β̃) and key(α̃). It remains

to analyse the second parts of the pair key(β̃), key(α̃) which we split into

two cases according to the relative magnitude of p and q.

Case 1. p = t < q = z. Let k′ < bt < · · · < bz−1 and dt < · · · < dz−1 < k

be respectively the cell entries of the second parts of columns m + 1 in the

pair key(β̃), key(α̃). By construction k′ < bt ≤ dt < dt+1, bi < bi+1 ≤ di+1,

t < i < z − 2, and bz−1 ≤ dz−1 < k, and, therefore, the second parts are also

comparable.

b1

...

bt−1

k′
bt

...

bz−2

bz−1

bz

...

bl′

column
m+ 1
key(β̃)

d1

...

dt−1

dt

dt+1

...

dz−1

k

dz

...

dl′

column
m+ 1
key(α̃)

part 1

part 2

part 3

Case 1

b1

...

bz−1

bz

bz+1

...

bt−1

k′
bt

...

bl′

column
m+ 1
key(β̃)

d1

...

dz−1

k

dz

...

dt−2

dt−1

dt

...

dl′

column
m+ 1
key(α̃)

part 1

part 2

part 3

Case 2

Case 2. p = z ≤ q = t. In this case, the assumption on k′ implies that the

first q rows of columns m and m+ 1 of key(β̃) are equal. On the other hand,

since column m of key(β) is less or equal than column m of key(α), which

is equal to the column m of key(α̃) and in turn is less or equal to column

m+ 1 of key(α̃), forces by transitivity that the second part of column m+ 1
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of key(β̃) is less or equal than the corresponding part of key(α̃).

Example 25. We illustrate the lemma with β = (3, 22, 1, 02, 1),

α=(2, 0, 3, 0, 1, 2, 1), β̃ = (3, 23, 02, 1), and α̃ = (2, 0, 3, 0, 22, 1),

key(β) = ≤ key(α) =

1

2

3

4

7

1

2

3

1 1

3

5

6

7

1

3

6

3

key(β̃) = ≤ key(α̃) =

1

2

3

4

7

1

2

3

4

1 1

3

5

6

7

1

3

5

6

3 .

We are now ready to state and prove the main theorem.

Theorem 10. Let w be a biword in lexicographic order in the alphabet [n],

and let Φ(w) = (F,G). For each biletter

(
i

j

)
in w one has i+j ≤ n+1 if and

only if key(sh(G)) ≤ key(ωsh(F )), where ω is the longest permutation of Sn.

Moreover, if the first row of w is a word in the alphabet [k], with 1 ≤ k ≤ n,

and the second row is a word in the alphabet [m], with 1 ≤ m ≤ n, the shape

of G has the last n−k entries equal to zero, and the shape of F the last n−m

entries equal to zero.

Proof. ”Only if part”. We prove by induction on the number of biletters of w.

If w is the empty word then F and G are the empty semi-skyline augmented

filling and there is nothing to prove. Let w′ =

 ip+1 ip · · · i1

jp+1 jp · · · j1

 be

a biword in lexicographic order such that p ≥ 0 and it + jt ≤ n + 1 for

all 1 ≤ t ≤ p + 1, and w =

 ip · · · i1
jp · · · j1

 such that Φ(w) = (F,G). Let

F ′ := (jp+1 → F ) and h the height of the column in F ′ at which the insertion

procedure terminates. There are two possibilities for h which the third step

of the algorithm procedure of Φ requires to consider.
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• h = 1. It means jp+1 is sited on the top of the basement element jp+1

in F and therefore ip+1 goes to the top of the basement element ip+1 in G.

Let G′ be the semi-skyline augmented filling obtained after placing ip+1 in

G. As ip+1 ≤ it, for all t, ip+1 is the bottom entry of the first column in

key(sh(G′)) whose remain entries constitute the first column of key(sh(G).

Suppose n+1−jp+1 is added to the row z of the first column in key(ωsh(F ))

by shifting all the entries above it one row up. Let ip+1 < a1 < · · · < az <

az+1 < · · · < al and b1 < b2 < · · · < n + 1 − jp+1 < bz < · · · < bl be

respectively the cell entries of the first columns in the pair key(sh(G′)),

key(ωsh(F ′)), where a1 < · · · < az < · · · < al and b1 < · · · < bz < · · · < bl

are respectively the cell entries of the first columns in the pair key(sh(G)),

key(ωsh(F )). If z = 1, as ip+1 ≤ n + 1 − jp+1 and ai ≤ bi for all 1 ≤ i ≤ l,

then key(sh(G′)) ≤ key(ωsh(F ′)). If z > 1, as ip+1 < a1 ≤ b1 < b2, we have

ip+1 ≤ b1 and a1 ≤ b2. Similarly ai ≤ bi < bi+1, and ai ≤ bi+1, for all 2 ≤ i ≤

z − 2. Moreover az−1 ≤ bz−1 < n + 1 − jp+1, therefore az−1 ≤ n + 1 − jp+1.

Also ai ≤ bi for all z ≤ i ≤ l. Hence. key(sh(G′)) ≤ key(ωsh(F ′)).

• h > 1. Place ip+1 on the top of the leftmost column of height h − 1.

This means by Lemma 1 key(sh(G′)) ≤ key(ωsh(F ′)).

”If part”. We prove the contrapositive statement. If there exists a biletter i

j

 in w such that i + j > n + 1, then at least one entry of key(sh(G))

is strictly bigger than the corresponding entry of key(ωsh(F )).

Let w =

 ip · · · i1
jp · · · j1

 be a biword in lexicographic order on the alphabet
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[n], and

 it

jt

 the first biletter in w, from right to left, with it+jt > n+1.

Set F0 = G0 := ∅, and for d ≥ 1, let (Fd, Gd) := Φ

 id · · · i1
jd · · · j1

. First ap-

ply the map Φ to the biword

 it−1 · · · i1
jt−1 · · · j1

 to obtain the pair (Ft−1, Gt−1)

of SSAFs whose right keys satisfy, by the ”only if part” of the theorem,

key(sh(Gt−1)) ≤ key(ωsh(Ft−1)). Now insert jt to Ft−1. As ik + jk ≤ n + 1,

for 1 ≤ k ≤ t− 1, ik + jk ≤ n+ 1 < it + jt, and it ≤ ik, 1 ≤ k ≤ t− 1, then

jt > jk, 1 ≤ k ≤ t − 1, and, since w is in lexicographic order, this implies

it < it−1. Therefore, jt sits on the top of the basement element jt in Ft−1 and

it sits on the top of the basement element it in Gt−1. It means that n+ 1− jt
is added to the first row and first column of key(ωsh(Ft−1)) and all entries in

this column are shifted one row up. Similarly, it is added to the first row and

first column of key(sh(Gt−1)), and all the entries in this column are shifted

one row up. As it > n + 1 − jt then the first columns of key(sh(Gt)) and

key(ωsh(Ft)) respectively, are not entrywise comparable, and we say that we

have a ”problem” in the key-pair (key(sh(Gt)), key(ωsh(Ft))). From now on,

”problem” means it > n + 1 − jt in some row of a pair of columns in the

key-pair (key(sh(Gd)), key(ωsh(Fd))), with d ≥ t. Let d ≥ t and denote by

J the column with basement jt in Fd, and by I the column with basement it

in Gd. Let |J | and |I| denote, respectively, the height of J and I, and let ri

and ki denote the number of columns of height ≥ i ≥ 1, respectively, to the

right of J and to the left of I. The classification of the ”problem” will follow

from a sequence of four claims below.
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Claim 1: Let (Fd, Gd), with d ≥ t. Then ki ≥ ri ≥ 0, for all i ≥ 1.

Proof. By induction on d ≥ t. For d = t, one has, ki = ri = 0, for all i ≥ 1.

Let d ≥ t, and suppose (Fd, Gd) satisfies ki ≥ ri ≥ 0, for all i ≥ 1. Let us

prove for (Fd+1, Gd+1). If the insertion of jd+1 terminates on a column of

height l to the left or on the top of J , then ri := ri, for all i, ki := ki, for

all i 6= l + 1, and kl+1 := kl+1 + 1, or kl+1. Thus, ki ≥ ri, for all i ≥ 1. On

the other hand, if the insertion of jd+1 terminates to the right of J , then in

Fd one has rl > rl+1, and two cases have to be considered for placing id+1 in

Gd. First, id+1 sits on the left of I and, hence, kl+1 := kl+1 + 1 ≥ rl+1 :=

rl+1 + 1, ki := ki ≥ ri := ri, for i 6= l + 1. Second, either id+1 sits on the top

of I or to the right of I, in both cases, (Fd, Gd) satisfy kl+1 = kl ≥ rl > rl+1,

and, therefore, kl+1 > rl+1. This implies for (Fd+1, Gd+1), rl+1 := rl+1 + 1,

and kl+1 := kl+1 ≥ rl+1, ki := ki ≥ ri := ri, for i 6= l + 1. The next scheme

shows all the possibilities after inserting new biletters to (Fd, Gd).

jd+1 inserts to the left
of J with height l :

1. id+1 sits on the left of I :
kl+1 := kl+1 + 1, so ki ≥ ri.X

2. id+1 sits on the top of I, ki ≥ ri.X

3. id+1 sits on the right of I : ki ≥ ri. X
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jd+1 inserts to the top
of J with height l :

1. id+1 sits on the left of I :
kl+1 := kl+1 + 1, so ki ≥ ri.X

2. id+1 sits on the top of I : ki ≥ ri.X

3. id+1 sits on the right of I : ki ≥ ri. X

jd+1 inserts to the right
of J with height l :

1. id+1 sits on the left of I :
kl+1 := kl+1 + 1, rl+1 := rl+1 + 1 so ki ≥ ri.X

2. id+1 sits on the top of I : kl = kl+1, rl > rl+1,
so kl+1 = kl ≥ rl > rl+1, kl+1 > rl+1, therefore
kl+1 > rl+1, rl+1 := rl+1 + 1, so kl+1 ≥ rl+1.X

3. id+1 sits on the right of I : kl = kl+1, rl > rl+1,
so kl+1 = kl ≥ rl > rl+1, kl+1 > rl+1, therefore
kl+1 > rl+1, rl+1 := rl+1 + 1, so kl+1 ≥ rl+1.X

Claim 2. Let (Fd, Gd), with d ≥ t. If |J | > |I|, then ki > ri ≥ 0, i =

|I|+ 1, . . . , |J |.

Proof. Since, for d = t, it holds |I| = |J |, there is a d > t where for the first

time one has |J | = |I|+ 1. We assume that, for some d > t, one has (Fd, Gd)

with |J |− |I| ≥ 1. Then, either (Fd−1, Gd−1) has |I| = |J | or |J | > |I|. In the

first case, it means that the insertion of jd has terminated on the top of J and

the cell id sits on the left of I on a column of height |J | = |I|, otherwise, it

would sit on the top of I. Then, by the previous claim, k|J |+1 := k|J |+1 + 1 >

r|J |+1 := r|J |+1. In the second case, we suppose that, (Fd−1, Gd−1) satisfies

ki > ri ≥ 0, for i = |I| + 1, . . . , |J |. Put z := |I| and h := |J |. Let us prove
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for (Fd, Gd), when |J | > |I|. If the insertion of jd terminates in a column of

height l ( 6= h− 1) to the left of J then ri := ri, for all i ≥ 1, kl+1 := kl+1 + 1,

or kl+1 and ki := ki, for i 6= l + 1, and z ≤ |I| < |J | = h, |J | − |I| ≥ 1.

Therefore, ki > ri ≥ 0, for i = |I|+ 1, . . . , |J |. If the insertion terminates on

the top of J , then |J | = h + 1, |I| = z, ri := ri, for all i ≥ 1, ki := ki, for

i = z + 1, . . . , h, and kh+1 := kh+1 + 1 > rh+1 or kh+1 := kh > rh ≥ rh+1.

Again ki > ri, for i = |I| + 1, . . . , |J | = h + 1. Finally, if the insertion

terminates to the right of J , |J | = h and three cases for the height l have to

be considered. When l < z, or l ≥ h, ri := ri < ki := ki, for i = z+1, . . . , |J |;

when l = z, then either |I| = z and kz+1 := kz+1 + 1 > rz+1 := rz+1 + 1,

ki := ki > ri := ri, z < i ≤ |J |, or z + 1 = |I| ≤ |J | and ki := ki > ri := ri,

i = z+2, . . . , |J |; and when z < l < h, then |I| = z and ri := ri, i 6= l+1, and

either kl+1 := kl+1 + 1 > rl+1 := rl+1 + 1 or kl+1 = kl > rl ≥ rl+1 := rl+1 + 1.

Henceforth ki > ri, for i = |I| + 1, . . . , |J |. The next scheme shows all the

possibilities after inserting new biletters to (Fd, Gd).

jd+1 inserts to the left
of J with height l :

1. id+1 sits on the left of I :
kl+1 := kl+1 + 1 > rl+1, so,

ki > ri for i = z + 1, . . . h.X

2. id+1 sits on the top of I
|I| := z + 1,

2.1. z = h− 1;
|I| = |J |.

2.2. z < h− 1;
ki > ri, for
i = z + 2, . . . h.X

3. id+1 sits on the right of I :
ki > ri for i = z + 1, . . . h. X
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jd+1 inserts to the top
of J with height h :

1. id+1 sits on the left of I :
|J | = h+ 1, by claim 1.1, kh+1 ≥ rh+1,
put kh+1 := kh+1 + 1, so kh+1 > rh+1,

therefore ki > ri for i = z + 1, . . . , h+ 1. X

2. id+1 sits on the top of I : impossible,
because |I| < h.X

3. id+1 sits on the right of I :
|J | = h+ 1, as kh+1 = kh, and kh > rh, so
kh+1 = kh > rh ≥ rh+1, so kh+1 > rh+1,
hence ki > ri for i = z + 1, . . . h+ 1. X
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jd+1 inserts to the right
of J with height l :

1. l < z : rl+1 := rl+1 + 1,

ki > ri for i = z + 1, . . . h.X

2. l = z

2.1. id+1 sits on the left of I :
rz+1 := rz+1 + 1, kz+1 := kz+1 + 1,

so ki > ri for i = z + 1, . . . h.X

2.2. id+1 sits
on the top of I

2.2.1. z = h− 1.
|I| = z + 1, |I| = |J |.

2.2.2. z < h− 1.
rz+1 := rz+1 + 1,
|I| := |I|+ 1, ki > ri,

for i = z + 2, . . . h.X

3. z < l ≤ h

3.1. id+1 sits on the left of I :
rl+1 := rl+1 + 1, kl+1 := kl+1 + 1,
ki > ri for i = z + 1, . . . h.X

3.2. id+1 sits on the top of I :
impossible, because l 6= z.

3.3. id+1 sits on the right of I :
kl+1 = kl > rl ≥ rl+1 + 1, so
kl+1 > rl+1 + 1, rl+1 := rl+1 + 1,
so kl+1 > rl+1, and ki > ri

for i = z + 1, . . . h.X

4. l > h : ki > ri, for i = z + 1, . . . , h.X

Claim 3: Let (Fd, Gd), with d ≥ t, be such that, for some s ≥ 1, one has

|I|, |J | ≥ s and ks = rs > 0. Then, for (Fd+1, Gd+1) there exists also a s ≥ 1

with the same properties.

Proof. Observe that, from the previous claim, ks+1 = rs+1 and |J | ≥ s + 1

only if |I| ≥ s+1. If the insertion of jd+1 terminates on the top of a column of
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height l 6= s− 1, then still |I|, |J | ≥ s and ks = rs > 0. It remains to analyse

when l = s−1 which means that the insertion of jd+1 either terminates to the

left or to the right of J . In the first case, (Fd, Gd) satisfies |J | ≥ s+ 1 (using

Remark 1), rs = rs+1, and, therefore, ks ≥ ks+1 ≥ rs+1 = rs = ks ≥ ks+1. It

implies for (Fd+1, Gd+1) that ks+1 = rs+1 > 0, |J |, |I| ≥ s + 1, and thus the

claim is true for s + 1. In the second case, (Fd, Gd) satisfies ks−1 ≥ rs−1 >

rs = ks and thus ks−1 > ks. Thereby the cell id+1 sits to the left of I and

rs := rs+1 = ks := ks+1, with |I|, |J | ≥ s. The claim is true for s. The next

scheme shows all the possibilities after inserting new biletters to (Fd, Gd).

1.jd+1 inserts to the left
of J with height l :

1.1. l = s− 1

1.1.1. id+1 sits to the left of I:
by Remark 1 rs = rs+1,
ks+1 ≤ ks = rs = rs+1 ≤ ks+1, so

ks = ks+1 = rs+1, by contrapositive

of claim 1.2, |I| ≥ |J | ≥ s+ 1
therefore claim is true for s+ 1.X

1.1.2. id+1 sits to the top of I:
impossible, because |I| ≥ s,

1.1.3.id+1 sits to the right of I:
ks = rs.X

1.2. l 6= s− 1 : rs = ks.X

2.jd+1 inserts to the top of J with height l, as
|J | ≥ s, so l 6= s− 1, and therefore ks = rs.X
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3.jd+1 inserts to the
right of J with height l

3.1. l = s− 1

3.1.1. id+1 sits to the left of I:
ks := ks + 1, rs := rs + 1,

therefore ks = rs.X

3.1.2. id+1 sits to the top of I:
impossible, because rs−1 > rs,

ks−1 = ks = rs, so rs−1 > ks−1,
contradiction by claim 1.1.

3.1.3.id+1 sits to the right of I:
impossible, the same

reason as above.

3.2. l 6= s− 1 : rs = ks.X

Next claim describes the pair (Fd, Gd) of SSAFs, for d ≥ t, when it does not

fit the conditions of Claim 3.

Claim 4. Let (Fd, Gd), with d ≥ t, be a pair of SSAFs such that, for all

i = 1, . . . , min{|I|, |J |}, ki = ri > 0 never holds. Then, |J | ≤ |I| and, there

is 1 ≤ f ≤ |J |, such that ki > ri, for 1 ≤ i < f , and ki = ri = 0, for i ≥ f .

Proof. We show by induction on d ≥ t that (Fd, Gd) either satisfy the condi-

tions of the Claim 3 or, otherwise, |J | ≤ |I| and, there is 1 ≤ f ≤ |J |, such

that ri < ki, for 1 ≤ i < f , and ki = ri = 0, for i ≥ f . For d = t, we have

|I| = |J | = 1, and ki = ri = 0, i ≥ 1. Put f := 1. Let (Fd, Gd), with d ≥ t.

If (Fd, Gd) fits the conditions of Claim 3, then (Fd+1, Gd+1) does it as well.

Otherwise, assume for (Fd, Gd), |J | ≤ |I|, and, there exists 1 ≤ f ≤ |J |, such

that ri < ki, for 1 ≤ i < f , and ki = ri = 0, for i ≥ f . We show next that

(Fd+1, Gd+1) either fits the conditions of the previous Claim 3, or, otherwise,
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it is as described in the present claim. If the insertion of jd+1 terminates

to the left of J , and id+1 sits on the top or to the right of I, still |I| ≥ |J |

and there is nothing to prove. If id+1 sits on the top of a column of height

l, to the left of I, then, since kf = 0, one has l < f , and two cases have

to be considered. When l = f − 1, it implies |I| ≥ |J | ≥ f + 1, rf = 0

and kf := 1, and (Fd+1, Gd+1) satisfies the claim for f + 1; in the case of

l < f − 1, rl+1 < kl+1 := kl+1 + 1 and still, for the same f , ki > ri, 1 ≤ i < f ,

ki = ri = 0, i ≥ f . If the insertion of jd+1 terminates on the top of J , since

k|J | = 0 and |I| ≥ |J |, then id+1 either sits on the top of I when |I| = |J |,

and still for the same f , ki > ri, 1 ≤ i < f , ki = ri = 0, i ≥ f , or sits to

the right of I, when |I| > |J |, and still |I| ≥ |J | + 1, and, for the same f ,

ki > ri, 1 ≤ i < f , ki = ri = 0, i ≥ f . If the insertion of jd+1 terminates to

the right of J on the top of a column of height l < f (recall that rf = 0),

then, since |I| > f , id+1 either sits on the left of I or to the right of I.

In the first case, if l = f − 1, one has rf := rf + 1 = kf := kf + 1 = 1,

and, therefore, we are in the conditions of Claim 3, with s = f < |J | ≤ |I|;

if l < f − 1, still rl+1 := rl+1 + 1 < kl+1 := kl+1 + 1, so ki > ri, for

1 ≤ i < f and ri = ki = 0, for i ≥ f . In the second case, it means

kl+1 = kl > rl ≥ rl+1 := rl+1 + 1 and hence kl+1 > rl+1 := rl+1 + 1, with

l + 1 < f . Similarly, ki > ri, for 1 ≤ i < f and ki = ri = 0, i ≥ f . The next

scheme shows all the possibilities after inserting new biletters to (Fd, Gd).
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jd+1 inserts to the left
of J with height l :

1. id+1 sits to

the left of I

1.1. l < f − 1,
rl+1 < kl+1 := kl+1 + 1,
|J | ≤ |I|. X

1.2. l = f − 1, |J | > f,
rf = 0, kf = 1,

put f := f + 1, f ≤ |J | ≤ |I|. X

1.3. l ≥ f, impossible.

2. id+1 sits to the top of I : ki > ri, 1 ≤ i < f,
kf = . . . k|J | = 0, |J | ≤ |I|. X

3. id+1 sits to the right of I : ki > ri, 1 ≤ i < f,
kf = . . . k|J | = 0, |J | ≤ |I|. X

jd+1 inserts to the top of J

1. id+1 sits on the left of I :
impossible, because k|J | = 0.

2. id+1 sits on the top of I : ki > ri, 1 ≤ i < f,
|J | := |J |+ 1 ≤ |I| := |I|+ 1, k|J |+1 = 0. X

3. id+1 sits on the right of I :
|I| > |J |, ki > ri, 1 ≤ i < f,
|J | := |J |+ 1 ≤ |I|, k|J |+1 = 0. X
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jd+1 inserts to the right
of J with height l < f,

because kf = 0 :

1. id+1 sits to

the left of I

1.1. l = f − 1,
rf := rf + 1 = kf := kf + 1 = 1,
put s = f, kf = rf .

1.2. l < f − 1,
rl+1 := rl+1 + 1 < kl+1 := kl+1 + 1,
ki > ri, 1 ≤ i < f,
kf = · · · = k|J | = 0. X

2. id+1 sits to the top of I : impossible,
because l < f < |J | ≤ |I|.

3. id+1 sits to
the right of I

3.1. rl+1 + 1 = kl+1, impossible,

because kl = kl+1 = rl+1 + 1 ≤ rl + 1

so kl < rl.

3.2. rl+1 + 1 < kl+1,
rl+1 := rl+1 + 1 < kl+1,
ki > ri, 1 ≤ i < f,
kf = · · · = k|J | = 0. X

Classification of the ”problem”: For any d ≥ t, either there exists s ≥ 1 such

that |J |, |I| ≥ s, rs = ks > 0; or 1 ≤ |J | ≤ |I|, and there exists 1 ≤ f ≤ |J |,

such that ki > ri, for 1 ≤ i < f , and ki = ri = 0, for i ≥ f . In the first case,

one has a ”problem” in the (rs + 1)th rows of the sth columns in the key-pair

(key(sh(Gd)), key(ωsh(Fd))). In the second case, one has a ”problem” in the

bottom of the |J |th columns.

Finally, if the second row of w is over the alphabet [m], there is no cell on

the top of the basement of F greater than m. Therefore, the shape of F has

the last n − m entries equal to zero and thus its decreasing rearrangement

is a partition of length ≤ m. Using the symmetry of Φ, the other case is
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similar.

Remark 2. 1. Given ν ∈ Nn and β ≤ ων, there exists always a pair (F,G)

of SSAFs with shapes ν and β respectively. Construct F and G as it is

explained in Lemma 2.3.

2. If the rows in w are swapped, one obtains the biword w̃ such that

Φ(w̃) = (G,F ) with key(sh(F ) ≤ key(ωsh(G)). It comes from Proposition

3 and scheme in the Figure 2.6.

Using the bijection Ψ between SSY T and SSAF and Proposition 1 one
has,

Corollary 1. Let w be a biword in lexicographic order in the alphabet [n],

and let w RSK−−−→ (P,Q). For each biletter

 i

j

 in w we have i+ j ≤ n+ 1

if and only if K+(Q) ≤ evac(K+(P )).

This result can be described in a picture.

RSK

w

i+ j ≤ n+ 1

Φ (F,G)

sh(F ) = α, sh(G) = β
β ≤ ωα

Ψ (P,Q)

K+(P ) = key(α)
K+(Q) = key(β)

β ≤ ωα
K+(Q) ≤ evac(K+(P )).

Two examples are given to illustrate Theorem 10.

Example 26. 1. Given w =

 4 6 6 7

4 1 2 1

 , Φ(w) and the key-pair
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key(sh(G))≤key(ωsh(F )) are calculated.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 7

sh(F1) = (1, 06) sh(G1) = (06, 1)

key(sh(G1)) = 7 = key(ωsh(F1))

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76

sh(F2) = (12, 05) sh(G2) = (05, 12)

key(sh(G2)) = 67 = key(ωsh(F2))

, ; ,

, ; ,
1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76
1 6

sh(F3) = (2, 1, 05) sh(G3) = (05, 2, 1)

key(sh(G3)) =
7

6 6
≤

7

6 7
= key(ωsh(F3))

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 76
1 6

4 4

sh(F4) = (2, 1, 0, 1, 03)sh(G4) = (03, 1, 0, 2, 1)

key(sh(G4)) =

7

6

4 6

≤
7

6

4 7

= key(ωsh(F4))

2. Let w =

 1 2 3 3 5 6

6 3 2 4 3 1

 , with n = 6, i2 = 5 > 6 + 1 − 3.

We calculate Φ(w) whose key-pair key(sh(G)), key(ωsh(F )) is not entrywise

comparable.

1 2 3 4 5 6 1 2 3 4 5 6
1 6

sh(F1) = (1, 05) sh(G1) = (05, 1)

key(sh(G1)) = 6 = key(ωsh(F1))

1 2 3 4 5 6 1 2 3 4 5 6
1 3 65

sh(F2) = (1, 0, 1, 03) sh(G2) = (04, 12)

key(sh(G2)) =
6

5
�

6

4
= key(ωsh(F2))

, ; ,

1 2 3 4 5 6 1 2 3 4 5 6
1 3 634 5

sh(F3) = (1, 0, 12, 02) sh(G3) = (02, 1, 0, 12)

key(sh(G3)) =

6

5

3

�

6

4

3

= key(ωsh(F3))

1 2 3 4 5 6 1 2 3 4 5 6
1 3

2
4 3

3
5 6

sh(F4) = (1, 0, 2, 1, 02) sh(G4) = (02, 2, 0, 12)

key(sh(G4)) =

6

5

3 3

�

6

4

3 4

= key(ωsh(F4))

, ; ,
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3 2 3 2

1 2 3 4 5 6 1 2 3 4 5 6
1 3 634 5

sh(F5) = (1, 0, 22, 02) sh(G5) = (02, 2, 0, 2, 1)

key(sh(G5)) =

6

5 5

3 3

�

6

4 4

3 3

= key(ωsh(F5))

1 2 3 4 5 6 1 2 3 4 5 6
1 3

3 2
4 6 3

3
5 6
2

1

sh(F6) = (1, 0, 22, 0, 1) sh(G6) = (1, 0, 2, 0, 2, 1)

key(sh(G6)) =

6

5

3 5

1 3

�

6

4

3 4

1 3

= key(ωsh(F6))

, ; ,
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3. DEMAZURE CHARACTER AND DEMAZURE ATOM

Demazure characters (or key polynomials) can be defined through Demazure
operators (or isobaric divided differences). They were introduced by De-
mazure [8] for all Weyl groups and were studied combinatorially, in the case
of Sn, by Lascoux and Schützenberger [28, 32] who produce a crystal struc-
ture. They have also decomposed Demazure characters into non-intersecting
pieces called Demazure atoms or standard basis [32].

3.1 Isobaric divided differences and the generators of the

0-Hecke algebra

Let Z[x1, . . . , xn] be the set of all polynomials in the indeterminates x1, . . . , xn
and coefficients over Z. The action of the simple transpositions si = (i i+1) of
Sn on weak compositions v = (v1, . . . , vn) ∈ Nn, siv :=(v1, . . . , vi+1, vi,. . . , vn),
for 1 ≤ i < n, induces an action of Sn on the polynomial ring Z[x1, . . . , xn]
by considering vectors v as exponents of monomials xv := xv11 x

v2
2 · · ·xvnn [29].

That is, xsiv induces the simple transposition of xi and xi+1 in the monomial
xv and, therefore, if f ∈ Z[x1, . . . , xn], sif indicates the result of the action
of si in each monomial of f .

For i = 1, . . . , n−1, define the linear operators ∂i, πi and π̂i on Z[x1, . . . , xn]
[45] by

∂i =
1− si

xi − xi+1

, (3.1)

πi = ∂ixi & π̂i := πi − 1, (3.2)

where 1 is the identity operator on Z[x1, . . . , xn]. So

πi : f 7→ πif :=
1− si

xi − xi+1

(xif) =
xif − xi+1sif

xi − xi+1

, π̂if = πif−f, 1 ≤ i < n.

(3.3)
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The operators (3.2) are called isobaric divided differences [27, 42], where
the first is the Demazure operator [8, 29, 18] for the general linear Lie algebra
gln(C). The operators (3.1) and (3.2) satisfy the relations,

∂2
i = 0

∂i∂j = ∂j∂i for |i− j| > 1 (3.4)

∂i∂i+1∂i = ∂i+1∂i∂i+1

π2
i = πi

πiπj = πjπi for |i− j| > 1 (3.5)

πiπi+1πi = πi+1πiπi+1

π̂2
i = −π̂i

π̂iπ̂j = π̂jπ̂i for |i− j| > 1 (3.6)

π̂iπ̂i+1π̂i = π̂i+1π̂iπ̂i+1,

where the last two relations in (3.4), (3.5) and (3.6) are the commutation
and braid relations of the symmetric group, and the first are called quadratic
relations.

Let w ∈ Sn and let w = siN · · · si2si1 be a reduced decomposition of w.
Define

πw = πiN · · · πi2πi1 , π̂w = π̂iN · · · π̂i2 π̂i1 . (3.7)

Since any two reduced decompositions are connected by a sequence of braid
and commutation relations the operators πw and π̂w are well defined.

Isobaric divided difference operators πi and π̂i, 1 ≤ i < n, (3.2), have an
equivalent definition

πi(x
a
i x

b
i+1m) =


xai x

b
i+1m+ (

∑a−b
j=1 x

a−j
i xb+ji+1)m, if a > b,

xai x
b
i+1m, if a = b,

xai x
b
i+1m− (

∑b−a−1
j=0 xa+j

i xb−ji+1)m, if a < b,

(3.8)

and

π̂i(x
a
i x

b
i+1m) =


(
∑a−b

j=1 x
a−j
i xb+ji+1)m, if a > b,

0, if a = b,

−(
∑b−a−1

j=0 xa+j
i xb−ji+1)m, if a < b,

(3.9)
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where m is a monomial not containing xi nor xi+1. It follows from the
definition that πi(f) = f and π̂i(f) = 0 if and only if sif = f .

The 0-Hecke algebra Hn(0) of Sn, a deformation of the group algebra
of Sn, is an associative C-algebra generated by T1, . . . , Tn−1 satisfying the
commutation and the braid relations of the symmetric group Sn, and the
quadratic relation T 2

i = Ti for 1 ≤ i < n. Setting T̂i := Ti − 1, for 1 ≤ i < n,
one obtains another set of generators of the 0-Hecke algebra Hn(0).

The sets {Tσ : σ ∈ Sn} and {T̂σ : σ ∈ Sn} are both linear basis for

Hn(0), where Tσ := TiN · · ·Ti2Ti1 and T̂σ := T̂iN · · · T̂i2T̂i1 , for any reduced
expression siN · · · si2si1 in Sn [5]. Demazure operators (3.8) and bubble sort
operators (1.6) satisfy the same relations as Ti, and, similarly, isobaric divided

difference operators (3.9) and T̂i. Thus the 0-Hecke algebra Hn(0) of Sn may
be viewed as an algebra of operators realised either by any of the two isobaric
divided differences (3.2), or by bubble sort operators (1.6), swapping entries i
and i+1 in a weak composition α, if αi > αi+1, and doing nothing, otherwise.
The two families {πσ : σ ∈ Sn} and {π̂σ : σ ∈ Sn} are therefore both linear
basis for Hn(0), and from the relation π̂i = πi − 1, the change of basis from
one to the other is given by a sum over the Bruhat order in Sn, precisely
[26, 43],

πσ =
∑
θ≤σ

π̂θ, π̂σ =
∑
θ≤σ

(−1)`(θ)−`(σ)πθ. (3.10)

3.2 Demazure characters, Demazure atoms and sorting

operators

Let λ ∈ Nn be a partition and α a weak composition in the Sn-orbit of λ.
Write α = σλ, where σ is a minimal length coset representative of Sn/stabλ.
The key polynomial [32, 45] or Demazure character [8, 18] in type A, corre-
sponding to the dominant weight λ and permutation σ, is the polynomial in
Z[x1, . . . , xn] indexed by the weak composition α ∈ Nn, defined by

κα := πσx
λ. (3.11)

If β is a rearrangement of α, the set of monomials which appears in the
Demazure characters κα and κβ may in general intersect nontrivially. If
β ≤ α then the set of monomials in κβ is a subset of the monomials in κα.
For example when n = 4 and λ = (2, 1, 1, 0) one has, (2, 1, 1, 0) < (2, 1, 0, 1) <



84 3. Demazure Character and Demazure atom

(2, 0, 1, 1), in the Bruhat order and

κ2011 = π2π3(x2110) = π2κ2101 = π2(x2110 + x2101) = x2110 + x2101 + x2011,

and

κ2101 = π3(x2110) = x2110 + x2101.

The monomials in κ2101 also appear in κ2011. This motivates replacing the
operator πi with π̂i = πi− 1 in the previous example π̂2π̂3(x2110) = x2011 and
leads to the following definition.

The standard basis [28, 32] or Demazure atom [40] is

κ̂α := π̂σx
λ. (3.12)

Due to (3.10), the Demazure atom κ̂α consists of all monomials in κα which
do not appear in κβ for any β < α. Thereby, key polynomials (3.11) are
decomposed into Demazure atoms [32, 29],

κα =
∑
β≤α

κ̂β. (3.13)

Key polynomials {κα : α ∈ Nn} and Demazure atoms {κ̂α : α ∈ Nn} form
a linear Z-basis for Z[x1, . . . , xn] [45]. The change of basis from the first to the
second is expressed in (3.13). The operators πi act on key polynomials κα via
elementary bubble sorting operators on the entries of the weak composition
α [45],

πiκα =

{
κsiα if αi > αi+1

κα if αi ≤ αi+1

. (3.14)

The general description of the action of the Isobaric divided differences on
κα and κ̂α [42] is given by,

π̂iκ̂α =


κ̂siα if αi > αi+1

0 if αi = αi+1

−κ̂α if αi < αi+1

(3.15)

π̂iκα =

{
κsiα − κα if αi > αi+1

0 if αi ≤ αi+1
(3.16)
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πiκ̂α =


κ̂siα + κ̂α if αi > αi+1

κ̂α if αi = αi+1

0 if αi < αi+1

(3.17)

The property (3.14) allows a recursive definition of key polynomials [29].
For α ∈ Nn, the key polynomial κα is κα = xα, if α is a partition. Otherwise,
κα = πiκsiα, where αi+1 > αi, for some i. The key polynomial κα is symmetric
in xi and xi+1 if and only if αi+1 ≥ αi, and therefore it lifts the Schur
polynomial sα+(x), κα = sα+(x), when α1 ≤ · · · ≤ αn.

3.3 Crystals and combinatorial descriptions of Demazure

characters and Demazure atoms

In [32] Lascoux and Schützenberger have given a combinatorial version for
Demazure operators πi and π̂i in terms of crystal (or coplactic) operators fi,
ei to produce a crystal graph on Bλ, the set of SSYTs with entries ≤ n and
shape λ [19, 20, 31].

A SSYT can be uniquely recovered from its column word. To describe
the action of the crystal operators fi and ei, 1 ≤ i < n, on T ∈ Bλ, change
all i, in the column word of T , to right parentheses ”)” and i + 1 to left
parentheses ”(”. Ignore all other entries and match the parentheses in the
usual manner to construct a subword )r (s of unmatched parentheses. If
there is no unmatched right parentheses, that is, r = 0, then fi is not defined
in T and put fi(T ) = 0; if there is no unmatched left parentheses, that is,
s = 0, then ei is not defined in T , and put ei(T ) = 0. Otherwise, either r > 0
and replace the rightmost unmatched right parenthesis by a left parenthesis
to construct )r−1 (s+1, or s > 0 and replace the leftmost unmatched left
parenthesis by a right parenthesis to construct )r+1 (s−1. Next, in either
cases, convert the parentheses back to i and i + 1 and recover the ignored
entries. The resulting word defines the semi-standard Young tableau fi(T )
or ei(T ). For convenience, we extend fi and ei to Bλ ∪ {0} by setting them
to map 0 to 0.

Example 27. Let T be a SSYT with col(T ) = 5321 431 42 43 4. Ignoring

all the entries different from 3 and 4. One gets 3434434. Applying twice the

operator e3 gives,
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3434434

e3

3433434

e3

3433433

)()(()( )())()( )())())
.

Hence e2
3(col(T )) = 532143132433.

Kashiwara and Nakashima [20, 23] have given to Bλ a Uq(gln)-crystal
(quantum group of the gln(C)) structure. We view crystals as special graphs.
The crystal graph on Bλ is a coloured directed graph whose vertices are the
elements of Bλ, and the edges are coloured with a colour i, for each pair of
crystal operators fi, ei, such that there exists a coloured i-arrow from the
vertex T to T ′ if and only if fi(T ) = T ′, equivalently, ei(T

′) = T . We refer to
[22, 16, 33] for details. Start with the Yamanouchi tableau Y := key(λ) and
apply all the crystal operators fi’s until each unmatched i has been converted
to i+1, for 1 ≤ i < n [20, 22] (see Example 28 and Figure 3.1). The resulting
set is Bλ.

From the definition of this graph, in each vertex there is at most one
incident arrow of colour i, and at most one outgoing arrow of colour i. Hence,
the crystal Bλ is the disjoint union of connected components of colour i,

P1
i→ · · · i→ Pk, called i-strings, of lengths k− 1 ≥ 0, for any i, 1 ≤ i < n. A

SSYT P1, satisfying ei(P1) = 0, is said to be the head of the i-string, and, in
the case of fi(Pk) = 0, Pk is called the end of the i-string.

Example 28. The crystal graph Bλ=310. The 1 and 2-strings are represented

in black and red colours respectively.
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2
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Given α in the Sn-orbit of λ, the Demazure crystal Bα is viewed as a
certain subgraph of the crystal Bλ which can be defined inductively [21, 34]
as Bα = {Y } if α = λ, otherwise

Bα = {fki (T ) : T ∈ Bsiα, k ≥ 0, ei(T ) = 0} \ {0}, if αi+1 > αi. (3.18)

(When α is the reverse of λ, one has Bωλ = Bλ.) In fact Bα (3.18) is well
defined, it does not depend on the reduced expression for σ. More generally,
write α = siN . . . si2si1λ, with (iN , . . . , i2, i1) a reduced word, then apply the
crystal operator fi1 to Y until each unmatched i1 has been converted to i1+1,
then apply similarly fi2 to each of the previous Young tableaux until each
unmatched i2 has been converted to i2 + 1, and continue this procedure with
fi3 , . . . , fiN . Therefore, Bα ={fmNiN

. . . fm1
i1

(Y ) : mk ≥ 0}\{0}. See Example
29.

Let T ∈ Bλ, and fsi(T ) := {fmi (T ) : m ≥ 0} \ {0}. (If fi(T ) = 0,
fsi(T ) = {T}.) If P is the head of an i-string S ⊆ Bλ, S = fsi(P ). We
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abuse notation and say the Demazure operator πi (3.8) sends the head of an
i-string to the sum of all elements of the string [32, 21],

πi(x
P ) =

∑
T∈S

xT , and πi(
∑
T∈S

xT ) = πi(x
P ). (3.19)

(Since ei(P ) = 0, the number of unmatched i is equal to the difference
between the number of i+ 1 and the number of i in P . So S contains all the
tableaux which appear in the πi(x

P ) by using equation 3.8. For example if we
consider the lowest 2-string of Example 28, then π2(x031) = x031+x022+x013 =∑

T∈S x
T and since πiπi = πi, then πi(

∑
T∈S x

T ) = πi(x
P ).)

If β ≤ α, then Bβ ⊆ Bα. Let siα < α, equivalently, αi < αi+1. For any
i-string S ⊆ Bλ, either Bsiα∩S = Bα∩S is empty, or Bsiα∩S =Bα∩S = S,
or Bsiα ∩ S is only the head of S in which case S ⊆ Bα. Since Bλ is the
disjoint union of i-strings, from these string properties, and (3.19), one has
for any i-string S

∑
T∈Bα∩S

xT = πi(
∑

T∈Bsiα∩S

xT ); and
∑
T∈Bα

xT = πi(
∑

T∈Bsiα

xT ). (3.20)

Henceforth, κα = πiκsiα, if αi < αi+1, and κα = πiN · · · πi1xλ for any reduced
word (iN , . . . , i1) such that siN · · · si1λ = α.

Next proposition is a consequence of the properties of i-strings.

Proposition 10. Let T be a SSYT, K+(T ) = key(siγ), and γi 6= γi+1. If

fi(T ) 6= 0, either K+(fi(T )) = key(siγ) or K+(fi(T )) = key(γ). Moreover

K+(fi(T )) = key(γ) only if γi < γi+1.

Example 29. The Demazure crystal Bs2s1λ with λ = (3, 1, 0).
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1 3 3
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2

1 2 2
2

f1

f1

f2

f2

f2

f2

f2

f2

κ103(x1, x2, x3) = π2π1(x310)

= π2(x220 + x130 + x310)

= x220 + x130 + x310 + x301 + x211

+x202 + x121 + x112 + x103

=
∑

T∈B1,0,3
xT

Set B̂α:= Bα \
⋃
β<αBβ. Then Bα =

⊎
β≤α B̂β.

In Example 29, with α = (1, 0, 3) = s2s1(3, 1, 0), the component B̂s2s1(3,1,0)

= Bs2s1(3,1,0) \ (Bs1(3,1,0)∪ Bs2(3,1,0)) consists of the two lowest red strings,
starting in the black string, minus their heads.

Again, we abuse notation and say the action of the Demazure operator
π̂i (3.9) on the head P of an i-string S is the same as πi minus the head of
S, and, thus, π̂i(x

P ) = 0 if S = {P}, and π̂i(x
P ) =

∑
T∈fsi (P )\{P}(x

T ). From

the string property, one still has,
∑

T∈B̂α x
T = π̂i(

∑
T∈B̂siα

xT ).

Henceforth, κ̂α = π̂iκ̂siα, if αi < αi+1, and κ̂α = π̂iN · · · π̂i1xλ with
siN · · · si1 a minimal length representative modulo the stabiliser of α. For
instance, κ̂(1,0,3) =

∑
T∈B̂(1,0,3)

xT = π̂2π̂1x
(3,1,0) = π̂2x

(2,2,0) + π̂2x
(1,3,0)=

x(2,1,1) + x(2,0,2) + x(1,2,1) + x(1,1,2) + x(1,0,3). See Example 30.

Example 30. The component B̂s2s1(3,1,0) = Bs2s1(3,1,0) \ (Bs1(3,1,0)∪Bs2(3,1,0)).



90 3. Demazure Character and Demazure atom

1 1 3
3

1 3 3
3

1 1 3
2

1 3 3
2

1 2 3
2

f2

f2

f2

Lascoux and Schützenberger have characterised the SSYTs in B̂α [32] as

those whose right key is key(α), precisely the unique key tableau in B̂α. The
Demazure crystal Bα consists of all Young tableaux in Bλ with right key
bounded by key(α).

Theorem 11. (Lascoux, Schützenberger [28, 32]) The Demazure atom κ̂σλ =

π̂σx
λ is the sum of the weight monomials of all SSYTs with entries ≤ n whose

right key is equal to key(σλ), with σ a minimal length coset representative

modulo the stabiliser of λ.

We may put together the three combinatorial interpretations of Demazure
characters and Demazure atoms

κ̂α =
∑
T∈B̂α

xT =
∑

T∈SSY Tn
K+(T )=key(α)

xT =
∑

F∈SSAFn
sh(F )=α

xF ,

κα =
∑
T∈Bα

xT =
∑

T∈SSY Tn
K+(T )≤key(α)

xT =
∑

F∈SSAFn
sh(F )≤α

xF .

In particular, the sum of the weight monomials over all crystal graph Bλ

gives the Schur polynomial sλ, and thus Demazure atoms decompose Schur
polynomials in Z[x1, . . . , xn]. Notice that the Demazure atom κ̂α is precisely
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the Êα(x, 0, 0) defined in (2.3).

κ̂α =
∑

F∈SSAFn
sh(F )=α

xF = Êα(x, 0, 0)

Example 28 exhibits a crystal graph associated to the partition λ =
(3, 1, 0) which does not have repeated components. To have a general crys-
tal graph we can consider the crystal graph associated to the partition
λ = (3, 2, 2, 0) with two equal components. Figures 3.1 shows the crystal
graph corresponding to partition λ = (3, 2, 2, 0). In this Figure key tableaux
are defined by all rearrangements of (3, 2, 2, 0) and its number is |S4|/|stabλ|,
one is in the top of the crystal graph and the others are located at the end
of each thick string. Consider the thick strings of Bλ without the tableaux
which are not the head or the tail of such strings. Replace the key tableaux
with their contents which are rearrangements of (3, 2, 2, 0). Flipping up side
down, the resulting figure is the bubble sorting graph or left weak Bruhat
graph on Snλ shown in Figure 1.1.
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Fig. 3.1: The crystal graph Bλ corresponding to the partition λ = (3, 2, 2, 0)
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3.4 An analogue of crystal operator

In [40] there is an interpretation of crystal operator fi for SSAF from which
we can derive a crystal graph where the vertices are SSAFs. Mason has
defined the map Θi : SSAFn → SSAFn, 1 ≤ i ≤ n, such that the following
diagram commutes for all semi-standard Young tableaux in SSYTn

F

T

F ′

T ′

Θi

fi

Ψ Ψ

where F, F ′ ∈ SSAFn and T, T ′ ∈ SSY Tn. The map Θi acts in the following
way [Proposition 4.1, [40]]. First match any pair i and i + 1 which occur
in the same row of F and remove these entries from the reading word of
F. Next apply the parenthetical matching procedure of [32] as described in
the previous section, to the read(F ) to determine which of the remaining
occurrences of i and i+ 1 are unmatched. In other words, replace each i+ 1
by a left (open) parenthesis ”(” and each i by a right (closed) parenthesis
”)” and match left and right parenthesis. Pick the rightmost unmatched i.
Convert it to an i + 1. (If there is no unmatched i, then Θi(F ) = 0. The
result is a collection of row entries which differ from those of read(F ) in
precisely one entry. Now apply procedure ρ−1 described in Section 2.4 to the
rows from lowest to highest. For example if we consider the SSAF F and the
operator Θ1 as below

1 2 3
1
1
1

2

then read(F ) = 1 1 12 after matching 1 and 2 we get, 1 2 12 and then
applying procedure ρ−1 to the collection of row entries gives

1 2 3
1 2

2
1
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Next example shows the crystal graph of the Example 28 translated to oper-
ators Θis and SSAFs. For convenience, we extend Θi to Bλ ∪ {0} by setting
it to map 0 to 0.

Example 31. The crystal graph in terms of operators Θi, corresponding to

partition λ = (3, 1, 0).
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Θ1

Θ1

Θ1

Θ1

Θ1

Θ1

Θ1

Θ1

Θ1

Θ2

Θ2

Θ2

Θ2

Θ2

Θ2

Θ2

Θ2

Θ2

Next proposition is the translation of the Proposition 10 in terms of SSAF.
The first part of the proposition also appears in [40].
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Proposition 11. For each SSAF F with sh(F ) = γ, and γi 6= γi+1. If

Θi(F ) 6= 0, either sh(Θi(F )) = γ or sh(Θi(F )) = siγ. Moreover sh(Θi(F )) =

siγ only if γi > γi+1.



96 3. Demazure Character and Demazure atom



4. EXPANSIONS OF CAUCHY KERNELS OVER

TRUNCATED STAIRCASES

In this chapter we use Theorem 10 to give an expansion of the Cauchy kernel∏
(i,j)∈λ (1 − xiyj)

−1, when λ is a staircase or a truncated staircase, in the
basis of the Demazure characters and the basis of the Demazure atoms. This
expansion, in particular, covers the Cauchy identity, when λ is a rectangle.
The expansion implies a Lascoux’s expansion formula [30], when specialised
to staircases or truncated staircases, and make explicit, in the latter, the
tableaux in the Demazure crystal defining the Demazure characters and the
Demazure atoms in the expansion.

4.1 Cauchy identity and Lascoux’s non-symmetric Cauchy

kernel expansions

Given n ∈ N positive, let m and k be fixed positive integers where 1 ≤ m ≤ n,
1 ≤ k ≤ n. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sequences
of indeterminates. The well-known Cauchy identity expresses the Cauchy
kernel

∏k
i=1

∏m
j=1(1− xiyj)−1 as a sum of products of Schur polynomials sµ+

in (x1, x2, . . . , xk) and (y1, y2, . . . , ym),

∏
(i,j)∈(mk)

(1−xiyj)−1 =
k∏
i=1

m∏
j=1

(1−xiyj)−1 =
∑
µ+

sµ+(x1, . . . , xk)sµ+(y1, . . . , ym),

(4.1)
over all partitions µ+ of length ≤ min{k,m}. Using either the RSK corre-
spondence [24] or the Φ correspondence, the Cauchy formula (4.1) can be
interpreted as a bijection between monomials on the left hand side and pairs
of SSYTs or SSAFs on the right. As the basis of key polynomials lifts the
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Schur polynomials w.r.t. the same list of indeterminates, the expansion (4.1)
can also be expressed in the two bases of key polynomials. Assuming k ≤ m,
we may write (4.1) as∑

µ+∈Nk
sµ+(x1, . . . , xk)s(µ+,0m−k)(y1, . . . , ym)

=
∑
µ+∈Nk

∑
µ∈Skµ+

κ̂µ(x)κ(0m−k,ωµ+)(y) =
∑
µ∈Nk

κ̂µ(x)κ(0m−k,ωµ+)(y). (4.2)

(Since we are dealing with two sequences of indeterminates x and y, it is
convenient to write κα(x) and κα(y) instead of κα. Similarly for Demazure
atoms.)

We now replace in the Cauchy kernel the rectangle (mk) by the truncated
staircase λ = (mn−m+1,m− 1, . . . , n− k + 1), with 1 ≤ m ≤ n, 1 ≤ k ≤ n,
and n+ 1 ≤ m+ k, as shown in the green diagram below

k

n

m

If n+ 1 = m+k, we recover the rectangle shape (mk). When m = n = k,
one has the staircase partition λ = (n, n− 1, . . . , 2, 1), that is, the cells (i, j)
in the NW-SE diagonal of the square diagram (nn) and below it, and thus
(i, j) ∈ λ if and only if i+ j ≤ n+ 1.

Lascoux has given the following expansion for the non-symmetric Cauchy
kernel over staircases, using double crystal graphs in [30], and also in [11],
based on algebraic properties of Demazure operators,∏

i+j≤n+1
1≤i, j≤n

(1− xiyj)−1 =
∑
ν∈Nn

κ̂ν(x)κων(y), (4.3)

where κ̂ and κ are the two families of key polynomials in x and y respectively,
and ω is the longest permutation of Sn.
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In [30], Lascoux extends (4.3) to an expansion of
∏

(i,j)∈λ(1 − xiyj)
−1,

over any Ferrers shape λ, by considering ρ(λ) = (t, t− 1, . . . , 1), the biggest
staircase contained in λ. Take any cell in the staircase (t+ 1, t, . . . , 1) which
does not belong to λ. The SW-NE diagonal passing through this cell cuts
the diagram of λ/ρ, consisting of the cells in λ not in ρ, into two pieces that
are called respectively the North-West part and the South-East part of λ/ρ.
Fill now each cell of row r ≥ 2 of the North-West part with the number
r−1. Similarly, fill each cell of column c ≥ 2 of the South-East part with the
number c − 1. Reading the columns of the North-West part, from right to
left, top to bottom, and interpreting r as the simple transposition sr, gives a
reduced decomposition of a permutation σ(λ,NW ); similarly, reading rows,
from right to left, and from top to bottom, of the South-East part, gives a
permutation σ(λ, SE). The example 7 in Section 1.5 is shown the σ(λ, SE),
where λ = (mn−m+1,m − 1, . . . , n − k + 1), and 1 ≤ k ≤ m ≤ n, and
n− k ≤ m− 1. These two permutations depend indeed on the choice of the
cell cutting the diagram λ/ρ.

Theorem 12. [[30] Theorem 7] Let λ be a partition in Nn, ρ(λ) = (t, t −

1, . . . , 1) the maximal staircase contained in the diagram of λ, and σ(λ,NW ),

σ(λ, SE) the two permutations obtained by cutting the diagram of λ/ρ as

explained above. Then∏
(i,j)∈λ

(1− xiyj)−1 =
∑
µ∈Nt

(πσ(λ,NW )κ̂µ(x))(πσ(λ,SE)κωµ(y)). (4.4)

For our truncated staircases λ the formula (4.4) translates to∏
(i,j)∈λ
k≤m

(1− xiyj)−1 =
∑
µ∈Nk

κ̂µ(x)(πσ(λ,SE)κωµ(y)); (4.5)

∏
(i,j)∈λ
m≤k

(1− xiyj)−1 =
∑
µ∈Nm

(πσ(λ,NW )κ̂µ(x))κωµ(y). (4.6)

Indeed (4.6) is just (4.5), with x and y swapped, followed by a change from
the basis (3.13) of Demazure characters to the basis of Demazure atoms∏

(i,j)∈λ
m≤k

(1− xiyj)−1 =
∏

(j,i)∈λ
m≤k

(1− xiyj)−1 =
∑
µ∈Nm

κ̂µ(y)πσ(λ,SE)κωµ(x)
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=
∑
µ∈Nm

κ̂µ(y)πσ(λ,NW )κωµ(x) =
∑
µ∈Nm

κ̂µ(y)πσ(λ,NW )

∑
β≤ωµ

κ̂β(x)

=
∑
µ∈Nm

∑
β∈Nm
β≤ωµ

κ̂µ(y)πσ(λ,NW )κ̂β(x) =
∑
β∈Nm

∑
µ∈Nm
µ≤ωβ

κ̂µ(y)πσ(λ,NW )κ̂β(x)

=
∑
β∈Nm

πσ(λ,NW )κ̂β(x)
∑
µ∈Nm
µ≤ωβ

κ̂µ(y) =
∑
β∈Nm

πσ(λ,NW )κ̂β(x)κωβ(y).

Next we give a bijective proof of (4.5) and compute the Demazure charac-
ter πσ(λ,SE) κωµ(y) by making explicit the Young tableaux in the Demazure
crystal.

4.2 Our expansions

We now use the bijection in Theorem 10 to give an expansion of the non-
symmetric Cauchy kernel for the shape λ = (mn−m+1,m− 1, . . . , n− k + 1),
where 1 ≤ m ≤ n, 1 ≤ k ≤ n, and n + 1 ≤ m + k, which includes, in
particular, the rectangle (4.1), the staircase (4.3), and implies the truncated
staircases (4.5).

The generating function for the multisets of ordered pairs of positive
integers {(a1, b1), (a2, b2), . . . , (ar, br)}, r ≥ 0, where (ai, bi) ∈ λ, that is,
ai + bi ≤ n + 1, 1 ≤ ai ≤ k, 1 ≤ bi ≤ m, 1 ≤ i ≤ r, weighted by the
contents ((α, 0n−k); (δ, 0n−m)) ∈Nk × Nm, with αj the number of i’s such
that ai = j, and δj the number of i’s such that bi = j, is∏

(i,j)∈λ

(1− xiyj)−1 =
∑

{(ai,bi)}ri=1
r≥0

xa1yb1 · · ·xarybr =
∑

{(ai,bi)}ri=1
r≥0

xαyδ.

Each multiset {(a1, b1), (a2, b2), . . . , (ar, br)}, r ≥ 0, and, hence, each mono-
mial xa1 yb1 · · · xarybr , r ≥ 0, is in one-to-one correspondence with the lexi-
cographically ordered biword

(
br ··· b1
ar ··· a1

)
in the product of alphabets [m]× [k],

which is bijectively mapped by Φ into the pair (F,G) of SSAFs such that F
has entries in {a1, . . . , ar}, G has entries in {b1, . . . , br}, and their shapes
sh(F ) = µ ∈ Nk, and sh(G) = β ∈ Nm, in a same Sn-orbit, satisfy
(β, 0n−m) ≤ (0n−k, ωµ) with ω the longest permutation in Sk. (For r = 0,
put F = G = ∅.) Thereby, xa1yb1 · · ·xarybr = xFyG, for all r ≥ 0. Assume
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k ≤ m. Since (µ, 0n−k), (β, 0n−m) are in a same Sn-orbit, (µ+, 0m−k) =
β+ ∈ Nm. We may write then∏

(i,j)∈λ

(1− xiyj)−1 =
∑
µ∈Nk

∑
F,G∈SSAFn

sh(G)=β∈Nm, sh(F )=µ

(β,0n−m)≤(0n−k,ωµ)

xFyG (4.7)

=
∑
µ∈Nk

 ∑
F∈SSAFn
sh(F )=µ

xF


 ∑

β∈Nm
(β,0n−m)≤(0n−k,ωµ)

∑
G∈SSAFn
sh(G)=β

yG



=
∑
µ∈Nk


∑

P∈SSY Tn
sh(P )=µ+

K+(P )=key(µ)

xP




∑
β∈Nm

(β,0n−m)≤(0n−kωµ)

∑
Q∈SSY Tn
sh(Q)=µ+

K+(Q)=key(β)

yQ


=

∑
µ∈Nk

κ̂µ(x)
∑

Q∈B
(0n−k,ωµ)

entries≤m

yQ. (4.8)

Let ν := (µ, 0n−k). Recall that B(0m−k,ωµ+,0n−m) = B(µ+,0m−k), with ω the
longest permutation of Sk, is the crystal graph consisting of all SSYTs with
shape (µ+, 0m−k) and entries less or equal than m. Henceforth, one has∑

Q∈Bων
entries≤m

yQ =
∑

Q∈Bων∩B(0m−k,ωµ+,0n−m)

yQ, (4.9)

the weight polynomial of all SSYTs in the Bων with entries less or equal than
m, equivalently, of all SSYTs with entries ≤ m and shape µ+ whose right key
is bounded by key(0n−k, ωµ). It is also equivalent to consider all SSAFs such
that the shape has zeros in the last n−m entries, and is bounded by ων. Next,
we determine the Demazure crystal B(0m−k,α,0n−m) = Bων ∩ B(0m−k,ωµ+,0n−m)

where α ∈ Nk. This shows that (4.9) is a key polynomial and describes its
indexing weak composition. (See also Example 32.)
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Lemma 2. Let γ ∈ Nn such that γ+ = (η, 0n−m) is a partition of length

≤ m ≤ n. Consider the sequence of positive integers 1 ≤ iM , . . . , i1 < n (not

necessarily a reduced word of Sn) such that κγ(y) = πiM · · · πi1y(η,0n−m). If

js, . . . , j1 is the subsequence consisting of elements ≥ m, it holds

∑
Q∈Bγ

entries≤m

yQ =
∑

Q∈Bγ∩B(ωη,0n−m)

yQ = πiM · · · π̃js · · · π̃j1 · · · πi1y(η,0n−m), (4.10)

where the tilde means omission, and ω is the longest permutation of Sm.

Proof. Notice that Bγ ∩B(ωη,0n−m) =Bγ ∩Bη. If n = m or γ has the last

n−m entries equal to zero, then γ ≤ (ωη, 0n−m), Bγ ⊆ Bη, and 1 ≤ iM , . . . ,

i1 < m. Henceforth,
∑
Q∈Bγ

entries≤m

yQ =
∑
Q∈Bγ

yQ = κγ(y). Otherwise, Bγ ∩Bη

is obtained from Bγ deleting all the vertices consisting of all SSYTs with

entries > m, and, therefore, all i-edges incident on them (either getting in

or out), in particular, those with i ≥ m. From the combinatorial interpre-

tation of Demazure operators πi, (3.18), (3.20), this means we are deleting

in πiM · · · πi2πi1y(η,0n−m) the action of the Demazure operators πi for i ≥ m,

and, thanks to (3.14), one still has a key polynomial, precisely, (4.10).

We now calculate the indexing weak composition of the key polynomial
(4.10) in the case η = (µ+, 0m−k) and γ = ων, and, therefore, the key
polynomial (4.9). For λ = (mn−m+1,m − 1, . . . , n − k + 1), where 1 ≤ k ≤
m ≤ n, and n− k ≤ m− 1, one has the shape below where

σ(λ, SE) =

k−(n−m)−1∏
i=1

(si+n−k−1 . . . si)
n−m∏
i=0

(sm−1 . . . sk−(n−m)+i)
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1 2

. .
.

.
.
.

n-k

.
.
.

...

...

k-

n+m

k . . . m-1

.

.

.

m-1

m

k

.

Proposition 12. Let 1 ≤ k ≤ m ≤ n, and n −m + 1 ≤ k. Given µ ∈ Nk,

let α = (α1, . . . , αk) ∈ Nk such that for each i = k, . . . , 1, the entry αi is

the maximum element among the last min{i, n−m+ 1} entries of ωµ after

deleting αj, for i < j ≤ k. Then∑
Q∈Bων

entries≤m

yQ =
∑

Q∈Bων∩B(0m−k,ωµ+,0n−m)

yQ =
∑

Q∈B
(0m−k,α,0n−m)

yQ

= πσ(λ,SE)κ(ωµ,0n−k)(y) = κ(0m−k,α,0n−m)(y). (4.11)

In particular, when m = n, then α = ωµ; and when m+ k = n+ 1, α = ωµ+

and κ(0m−k,ωµ+,0n−m)(y) = s(µ+,0m−k)(y1, . . . , ym) is a Schur polynomial.

Proof. Recalling the action of Demazure operators πi on key polynomials via

bubble sorting operators on their indexing weak compositions (3.14), and

since ων = (0n−k, ωµ), one may write,

κων(y) =

k−(n−m)−1∏
i=1

(πi+n−k−1 . . . πi)

.
n−m∏
i=0

(πm−1+i . . . πk−(n−m)+i)κ(ωµ,0n−k)(y). (4.12)

From Lemma 2, with η = (µ+, 0m−k) and γ = ων, omitting in (4.12) the
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operators with indices ≥ m, one has∑
Q∈Bων

entries≤m

yQ =
∑

Q∈Bων∩B(µ+,0m−k)

yQ = πσ(λ,SE)κ(ωµ,0n−k)(y)

=

k−(n−m)−1∏
i=1

(πi+n−k−1 . . . πi) (4.13)

.
n−m∏
i=0

(πm−1 . . . πk−(n−m)+i)κ(ωµ,0n−k)(y) (4.14)

= κ(0m−k,α,0n−m)(y). (4.15)

The Demazure operators in (4.14) act as bubble sorting operators on the weak

composition (ωµ, 0n−k), shifting m− k times to the right the last n−m+ 1

entries of ωµ, and sorting them in ascending order. Next, the operators (4.13)

act similarly on the resulting vector ignoring the entry m, then ignoring the

entry m − 1, and so on. Thus the weak composition indexing the new key

polynomial κ(0m−k,α,0n−m) (4.15) is such that α = (α1, . . . , αk), where for each

i = k, . . . , 1, αi is the maximum element of the last min{i, n−m+ 1} entries

of ωµ after deleting αj, for i < j ≤ k.

Therefore, for λ = (mn−m+1,m−1, . . . , n−k+ 1), where 1 ≤ k ≤ m ≤ n,
and n+ 1 ≤ m+ k, (4.8) can be written explicitly as∏

(i,j)∈λ
k≤m

(1− xiyj)−1 =
∑
µ∈Nk

κ̂µ(x)πσ(λ,SE)κωµ(y) =
∑
µ∈Nk

κ̂µ(x)κ(0m−k,α)(y).(4.16)

Then ∏
(i,j)∈λ
m≤k

(1− xiyj)−1 =
∏

(j,i)∈λ
m≤k

(1− xiyj)−1 =
∑
µ∈Nm

κ̂µ(y)πσ(λ,SE)κωµ(x)

=
∑
µ∈Nm

κ̂µ(y)πσ(λ,NW )κωµ(x) =
∑
µ∈Nm

κ̂µ(y)κ(0k−m,α′)(x), (4.17)



4.2. Our expansions 105

where α′ is defined similarly as above, swapping k with m in Proposition 12.
In identity (4.16) when m = n, one has for λ = (n, n−1, . . . , n−k+ 1), with
1 ≤ k ≤ n,

∏
(i,j)∈λ

(1− xiyj)−1 =
∑
µ∈Nk

ν=(µ,0n−k)

κ̂ν(x)κων(y).

(Similarly, for k = n, in identity (4.17).) In particular, if m = n = k (λ = λ),
we recover (4.3) from both previous identities. When n + 1 = m + k, from
Proposition 12, identity (4.16) becomes (4.2), and hence we recover identity
(4.1) with k ≤ m. Similarly, (4.17) leads to (4.1) with m ≤ k.

Example 32. Let n = 5, k = 4 ≥ m = 3, µ = (1, 1, 2), and ν = (1, 1, 2, 0, 0).

The black and blue tableaux constitute the vertices of the Demazure crys-

tal Bων = B(0,0,2,1,1) = Bs2s1s3s2s4s3(2,1,1,0,0). One has π2π1π3π2π3x
(2,1,1,0,0)=

π2π1π2π3x
(2,1,1,0,0)= κ(0,1,2,1,0)(x). (The shortest element in the coset s2s1s3s2

s3 < s2 > is s2s1 s2s3.) The black and the red tableaux are the vertices of

the crystal B(0,ωµ+,0) = B(0,1,1,2,0) = Bs1s2s3s2s1ν+. The intersection Bων ∩

B(0,ωµ+,0) consists of the black tableaux which constitute the vertices of the

Demazure crystal B(0,α,0) = B(0,1,2,1,0) = Bs2s1s2s3(2,1,1,0,0), with α defined in

Proposition 12. (Note that the crystal graph has not all the edges represented.

Only those of the words under consideration.)
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5. A COMBINATORIAL PROOF FOR THE LASCOUX’S

CAUCHY KERNEL EXPANSION OVER FERRERS

SHAPES

In this chapter we give a combinatorial proof for the Lascoux’s non-symmetric
Cauchy kernel expansion over an arbitrary Ferrers shapes, in the cases, of one
and two non-consecutive boxes above the staircase, and an idea in the general
case. The proof is given in the framework of Fomin’s growth diagrams for
generalized Robinson- Schensted-Knuth correspondences. The strategy is to
reduce the problem of a Ferrers shape to that of a staircase, contrary to the
approach of the previous section where the smallest staircase containing our
shape has been considered.

5.1 An interpretation of crystal operators in terms of growth

diagrams

In Section 3.3 we have defined crystal operators er, fr on a column word of a
SSYT. In fact they can be defined on any word over alphabet [n]. For details
see [31]. First we recall the crystal operator er on a word with an example.
Consider the word u = 34263443411, over the alphabet [7] and operator e3.
Ignoring all the entries different from 3 and 4, one gets 3434434. Applying
twice the operator e3 gives,

3434434

e3

3433434

e3

3433433

Hence e2
3(u) = 34263343311. Consider now the following biword in lexico-

graphic order where all the biletters

(
i
j

)
satisfy i+j ≤ 7+1 except

(
5
4

)
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with 5 + 4 > 7 + 1

w =

(
1 1 2 2 3 3 4 5 5 6 7
3 4 2 6 3 4 4 3 4 1 1

)
.

Recalling the representation of a biword in a rectangle defined in Section
1.10, we represent the biword w in the Ferrers shape λ = (7, 6, 5, 5, 3, 2, 1) by

putting a cross × in the cell (i, j) of λ if

(
j
i

)
is a biletter of w.

×
×

×

×

×
× ×

×
×

× ×

λ = (7, 6, 5, 5, 3, 2, 1)

Fig. 5.1: Reperesentation of a biword in a Ferrers shape

The biword w can be recovered, from this representation, by scanning
the columns of the Ferrers shape λ, left to right, and bottom to top. Let
ρ(λ) = (7, 6, . . . , 1) be the biggest staircase inside of λ. The green box of

λ corresponds to the green biletter

(
5
4

)
of w where 4 + 5 > 7 + 1, and,

therefore, its representation is not inside the staircase ρ(λ).
Let us consider a non-staircase Ferrers shape, λ = (λ1, . . . , λr, λr+1, λr+2,

. . . , λn) where λr+2 < λr+1 = λr, 1 ≤ r < n, and ρ(λ), the biggest staircase
inside of λ. Let w be a biword in the lexicographic order represented in the
Ferrers shape λ. We introduce an operation Υr in the rows r and r+ 1 of λ,
which consists of matching crosses in rows r and r+1, and then sliding down
the unmatched crosses from row r + 1 to row r. The objective is to put all
the crosses outside of ρ(λ) into inside. This slide of crosses translates to the
action of the operator er, as long as it is possible, on the second row of the
biword w. The operation Υr is the analogue of applying m times the crystal
operator er, to the second row of w, where m is the number of unmatched
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r + 1 in the second row of w. Therefore, we also write Υrw to mean the
biword obtained by applying m times the crystal operator er, to the second
row of w, where m is the number of unmatched r + 1 in the second row of
w. We scan from right to left and match the crosses in rows r and r+ 1 that

are situated in the following way:
×
× where the cross of the row r + 1 is

the closest NW unmatched cross of the cross of the row r. Next move all the
unmatched crosses of the row r + 1 to the row r.

×
×
× ×

×
×

× ×
×

××
×
××

−→
Υr

1

3

1

4

3

3

3

4

4

4

5

3

5

4
( ) ←−

Υr

f 2
r

−→ 1

3

1

4

3

3

3

3

4

4

5

3

5

3
( )

The action of the crystal operator fr on the biword w is defined by the action
of fr on the second row.

The new set of cells of λ, defined by the crosses, yields a new biword Υrw,
scanning λ along columns from left to right and bottom to top. The biword
Υrw is obtained from the biword w by applying the crystal operator er as
long as it is possible to the second row of the biword w.

×
×

×

×

×
××
×
×

×× →
Υ3 ×

×

×

×

××
×
××

××

(
1

3

1

4

2

2

2

6

3

3

3

4

4

4

5

3

5

4

6

1

7

1
) →

Υ3

(
1

3

1

4

2

2

2

6

3

3

3

3

4

4

5

3

5

3

6

1

7

1
)

Consider now the two 01-fillings of the biwords w and Υrw represented in
the Ferrers shapes λ, and apply the backward local rules to them, as defined
in sections 1.11 and 2.10. Notice that in the 01-filling of Υrw, we match a
cross of row r + 1 with a cross to the SE, in row r, such that in these two
rows there is no unmatched cross in a column between them.
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These two growth diagrams have the same bottom sequences of partitions
and the left sequences are different only in the partitions associated to the
rows r and r + 1. It is proved in [31] that the bottom sequence is preserved
by the operations er and fr, when the entries of the first row of the biword
w are distinct. In the 01-filling we have standardized the first row of the
biword w thus the bottom sequence is preserved, and therefore the same
happens when the first row of the biword has repeated letters. Let wr and
w̃r be the biwords that are obtained from w and Υrw, after deleting all the
biletters whose second rows are different from r and r+1. The translation of
the movement of the cells in the Ferrers shape to the 01-filling is as follows:
in the 01-filling of wr, move up, without changing of columns, the matched
crosses of row r+1, say s crosses, to the top most s rows such that they form
SW chain. Then slide down the remaining unmatched crosses, from row r+1
to row r, without changing of columns, such that these crosses and all the
crosses of row r form a SW chain. The result is the 01-filling corresponding
to w̃r.

×
×
× ×

×
×

× ×
×

××
×
××−→

Υr

1
3

1
4

3
3

3
4

4
4

5
3

5
4

( )
−→←−
Υr

f 2
r

1
3

1
4

3
3

3
3

4
4

5
3

5
3

( )

×

×

×

×
×

×

×

wr

→
Υr

×

×

×
×

×

×
×

w̃r

It is clear that the longest SW chain in the first k columns, from right to
left, of the 01-filling of wr and of w̃r, has length equal to the total number
of crosses in rows r and rows r + 1, of those columns, minus the number of
matched crosses in row r + 1, of those columns.
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Theorem 5 implies that the bottom sequences in growth diagrams cor-
responding to wr and w̃r are the same and therefore bottom sequences of
growth diagrams corresponding to w and w̃ are also the same and the SSAFs
corresponding to those partitions are also the same. Recall Section 2.10.

1
3

1
4

3
3

3
4

4
4

5
3

5
4

( )
1
3

1
4

3
3

3
3

4
4

5
3

5
3

( )→
Υ3

×

×

×

×
×

×

×

wr

52

42
41
4
3
2
1
∅

42 41 41 31 21 2 1 ∅

→
Υ3

×

×

×
×

×

×
×

w̃r

52

42
32
22
21
2
1
∅

42 41 41 31 21 2 1 ∅

3 4
3
3

4
4
3

4
4

Θ2
3

F

3 4
3
3
3
3
3

4
4

F̃

1 2 3 4 5
4
1

5
5
3
3
1

G = G̃

Recall from Section 3.3 that the operator Θr has the same behaviour as the
operator fr and then we have F = Θ2

rF̃ . The next scheme shows the relation
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between the action of crystal operator fr, its analogue Θr, the RSK and the
analogue of RSK.

w̃ =

 a

er(b)



w =

 a

b



(P̃ , Q)

(P,Q)

(F̃ , G)

(F,G)

RSK Φ

RSK Φ

fr Θr

If F is SSAF, put ΥrF such that Θm
r (ΥrF ) = F where m is the number of

unmatched r+1 in the row reading of the SSAF F . Equivalently, if F = Ψ(P )
with P a SSYT, then ΥrF = Ψ(emr P ) where m is the number of unmatched
r + 1 in P .

Next theorem is therefore a consequence of our discussion.

Theorem 13. Let w be a biword in lexicographic order. If Φ(w) = (F,G)

then Φ(Υrw) = (ΥrF ,G).

Example 33. The procedure of passing from a biword to SSAF.

(
1

3

1

4

2

2

2

6

3

3

3

4

4

4

5

3

5

4

6

1

7

1
→
Υ3

) (
1

3

1

4

2

2

2

6

3

3

3

3

4

4

5

3

5

3

6

1

7

1
)

×
×

×

×

×
× ×

×
×

× ×

→
Υ3

×
×

×

×

××
×
××

× ×
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×

×

×

×

×

×
×

×

×

×
×

∅
1
1

11
21
31
41

411
421

521
531

5311
5321

12212222
1

32
1

42
1

42
11

52
11

52
21

53
21

∅

→
Υ3

×

×

×

×

×
×

×

×
×

×
×

∅
1
1

11
21

211
221
321
421

521
531

5311
5321

12212222
1

32
1

42
1

42
11

52
11

52
21

53
21

∅

1 2 3 4 5 6 7
1
1

3
3
2

4
3

4
4
4

6

F

1 2 3 4 5 6 7
2
1
1

4 5
5
3
3
2

7
6

G

1 2 3 4 5 6 7
1
1

3
3
3
3
3

4
4
2

6

F̃

1 2 3 4 5 6 7
2
1
1

4 5
5
3
3
2

7
6

G̃

sh(F ) = (2, 0, 3, 5, 0, 1, 0) G = G̃ sh(F̃ ) = (2, 0, 5, 3, 0, 1, 0)

Theorem 14. Let λ be a Ferrers shape where λr = λr+1 > λr+2 ≥ 0, for

some r ≥ 1. Let w be a biword consisting of a multiset of cells of λ containing

the cell (r + 1, λr+1). Let Φ(w) = (F,G). If sh(F ) = ν then νr < νr+1 and

sh(ΥrF ) = srν. Moreover, Υrw does not contain the biletter
(
λr+1

r+1

)
and

therefore fits the Ferrers shape λ with the cell (r + 1, λr+1) deleted.

Proof. Let s := λr+1. There is at least one cross in the position (r + 1, s) of

the Ferrers shape λ. As λr+1 = λr > λr+2 there is no cross in the row r to the

right of it. If we consider the growth diagram corresponding to the biword w
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with backward local rules, since λr = λr+1 > λr+2 the cross corresponding to

biletter

 s

r+1

 is the rightmost cross between all crosses corresponding to

the rows bigger or equal than r, applying backward local rules gives that the

partition corresponding to the row r+ 1, which appears in the left line of the

growth diagram, has one more component than the upper partition in the

left line of the growth diagram. The SSAF corresponding to that partition

has a cell in the top of the basement r + 1. If there is no new component in

the partitions corresponding to the row r, which appear in the left line of the

growth diagram, then in the SSAF there is no cell in the top of the basement

r. Therefore if sh(F ) = α, then αr < αr+1. If there is a new component

in a partition associated to the row r, which appears in the left line of the

growth diagram, as the cross that creates the new component, is to the left

of the cross associated to biletter

 s

r+1

, the new component can not

be bigger or equal than the component associated to the biletter

 s

r+1

,

and therefore αr < αr+1.

Now consider the growth diagram with backward local rules correspond-

ing to the 01-filling of the biword Υrw, as the cross corresponding to biletter s

r+1

 is always unmatched, then it moves down so there are just matched

crosses in the row r + 1. If the partitions corresponding to the row r + 1 do

not have the new component, as the rightmost cross between all crosses cor-

responding to the rows bigger or equal than r, is associated to the row r, then

the partition corresponding to the row r has at least one more component
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than the partitions corresponding to the lines above. In the SSAF this means

that there is a cell in the top of the basement r, and there is no cell in the

top of the basement r + 1. If the partitions corresponding to the row r + 1

have the new component, as there are just matched crosses in the row r+ 1,

it means that if there is chain of crosses corresponding to the row r+ 1, then

there is a chain with same length corresponding to the row r. This implies

that the height of the columns r and r + 1 in SSAF will be the same, say

l, in some point. After that if some component l increases to l + 1 in some

partition below the thick line row r+1, then in the SSAF the new cell goes to

the top of the column r, because we always choose the leftmost position for

new cells. As the number of crosses in the row r is bigger than the number

of crosses in the row r + 1, so the height of the column r is bigger than the

height of the column r + 1, in SSAF. Since the partitions that we get at the

end of the row r in both growth diagrams should be the same, the difference

between F and ΥrF is in the columns r and r + 1. So if sh(ΥrF ) = ν, then

sh(F ) = srν and νr > νr+1.

Example 33 illustrates Theorem 14. Transposing the Ferrers shape λ
means to swap the first row and the second row of the biword w and to
transpose the growth diagram of the 01-filling of w with backward local rules.
Therefore the move of crosses on rows can be translated to a move of crosses
on columns. As a consequence of the symmetry of the growth diagram we
have the following versions of Theorem 13 and Theorem 14.

Swap the rows of w and then rearrange it in lexicographic order. This
new biword is denoted by w∗. Let Υ∗rw := Υrw

∗.

Corollary 2. If Φ(w) = (F,G) then Φ(Υ∗rw) = (F,ΥrG).

Corollary 3. Let λ be a Ferrers shape and let λ = (λ′1, λ
′
2, . . . , λ

′
λ1

) be the

conjugate of λ where λ′r = λ′r+1 > λ′r+2. Let w be a biword consisting of a
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multiset of cells of λ containing the cell (λ′r+1, r + 1). Let Φ(w) = (F,G).

If sh(G) = ν then νr < νr+1 and sh(ΥrG) = srν. Moreover, Υ∗rw does not

contain the biletter
(
r+1
λ′r+1

)
and therefore fits the Ferrers shape λ with the cell

(λ′r+1, r + 1) deleted.

As a consequence of Proposition 11 and property of r-string one has,

Proposition 13. Let F be a SSAF with shape ν, and νr < νr+1, for some

r ≥ 1. Then sh(ΥrF ) = srν.

5.2 A combinatorial proof for the Lascoux’s Cauchy kernel

expansion for some Ferrers shapes

We recall the Theorem 12 duo to Lascoux and bring the combinatorial proof
for that. We also recall the permutations σ(λ,NW ) and σ(λ, SE) for the
Ferrers diagram λ in the figure 5.2 as below, Then σ(λ,NW ) = s3s4 and

4
3

3
4
4

5

Fig. 5.2: The separation of the Ferrers shape λ = 65221 into NW and SE parts

σ(λ, SE) = s4s3s5s4. In general these two permutations depend on the
choice of the cell cutting the diagram λ/ρ, and there can be several ways to
get Fλ from Fρ.

Theorem 15. (Theorem 12) Let λ be a partition, ρ(λ) = (m, . . . , 1) the

maximal staircase contained in the diagram of λ, and σ(λ,NW ), σ(λ, SE)



5.2. A combinatorial proof for the Lascoux’s Cauchy kernel 117

the two permutations obtained by cutting the diagram of λ/ρ as explained

above. Then

Fλ(x, y) =
∏

(i,j)∈λ

(1− xiyj)−1 =
∑
ν∈Nm

(πσ(λ,NW )κ̂ν(x))(πσ(λ,SE)κων(y)), (5.1)

where the sum is over all ν ∈ Nm.

We discuss now some cases of this identity.
Case 1. Staircase partition

If the Ferrers shape is a staircase partition then πσ(λ,NW ) = πσ(λ,SE) = id,
and then Theorem 10 proves the identity (5.1), using the analogue of RSK.

Case 2. The boxes outside the biggest staircase are only in a
NW or SE part
We give the details for one extra box and some details for two non-consecutive
extra boxes in order to make clear the general case. Suppose that there is
just one extra box above staircase partition in the position (r+ 1, e+ 1), for
r, e ≥ 0. If r or e are zero, it means that the extra box is in the first row
or in the first column of staircase partition. In this case there is just one
possibility for identity (5.1). If r and e are different from zero, it means that
the extra box is not in the first row or in the first column of the staircase
partition. So there are two possibilities for identity (5.1). Depending on our
choice of movement we can use Theorem 14 or Corollary 3 to find a proof for∏

(i,j)∈λ

(1− xiyj)−1 =
∑
ν∈Nn

πrκ̂ν(x)κων(y) (5.2)

or ∏
(i,j)∈λ

(1− xiyj)−1 =
∑
ν∈Nn

κ̂ν(x)πeκων(y) (5.3)

We consider equation (5.2). Write∏
(i,j)∈λ

(1− xiyj)−1 =
∑
c≥0

(it,jt)∈λ\(r+1,e+1)

xi1yj1 · · ·xicyjc

+
∑
d>0

∑
c≥0

(it,jt)∈λ\(r+1,e+1)

xi1yj1 · · ·xicyjcxdr+1y
d
e+1.
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To each monomial xi1yj1 · · · xicyjc we associate the pair (F,G). As the bi-

word corresponding to these monomials are in the staircase partition, using

Theorem 10 one gets, sh(G) ≤ ωsh(F ). From now on all the (it, jt) belong to

the maximum staircase partition contained in the partition λ. To avoid cum-

bersome notation we shall write xi1yj1 · · ·xicyjc :=

(
j1 . . . jc
i1 . . . ic

)
. Using

Theorem 14 one gets,∏
(i,j)∈λ

(1− xiyj)−1 =
∑
c≥0

xi1yj1 · · ·xicyjc +
∑
c≥0

∑
d>0

xi1yj1 · · ·xicyjcxdr+1y
d
e+1

:=
∑
c≥0

 j1 . . . jc

i1 . . . ic

+
∑
c≥0

∑
d>0

 j1 . . . (e+ 1)d . . . jc

i1 . . . (r + 1)d . . . ic


=

∑
ν∈Nn

sh(F )=ν
sh(G)≤ων

xF yG +
∑
ν∈Nn

νr<νr+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(ΥrF )=srν
sh(G)≤ωsrν
sh(G)�ων

xF yG (5.4)

Using the fact that if νr < νr+1 then ων < ω(srν), one gets,∑
ν∈Nn

sh(F )=ν
νr<νr+1

sh(G)≤ων<ω(srν)

xFyG =
∑
ν∈Nn
θr>θr+1

sh(F )=srθ
sh(G)≤ω(srθ)<ωθ

xFyG.

Hence, ∑
ν∈Nn

sh(F )=ν
sh(G)≤ων

xFyG =
∑
ν∈Nn

νr≥νr+1

sh(F )=ν
sh(G)≤ων

xFyG +
∑
ν∈Nn

νr>νr+1

sh(F )=srν
sh(G)≤ω(srν)<ων

xFyG,

and therefore

(5.4) =
∑
ν∈Nn

νr≥νr+1

sh(F )=ν
sh(G)≤ων

xFyG +
∑
ν∈Nn

νr>νr+1

sh(F )=srν
sh(G)≤ω(srν)<ων

xFyG +
∑
ν∈Nn

νr>νr+1

sh(F )=srν
sh(G)≤ων

sh(G)�ω(srν)

xFyG
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=
∑
ν∈Nn

νr≥νr+1

sh(F )=ν
sh(G)≤ων

xFyG +
∑
ν∈Nn

νr>νr+1

sh(F )=srν
sh(G)≤ων

xFyG.

Note that equation (3.17) implies that∑
ν∈Nn

πrκ̂ν(x)κων(y) =
∑
ν∈Nn

νr≥νr+1

κ̂ν(x)κων(y) +
∑
ν∈Nn

νr>νr+1

κ̂srν(x)κων(y). (5.5)

Therefore

(5.4) =
∑
ν∈Nn

νr≥νr+1

sh(F )=ν
sh(G)≤ων

xF yG +
∑
ν∈Nn

νr>νr+1

sh(F )=srν
sh(G)≤ων

xF yG =
∑
ν∈Nn

νr≥νr+1

κ̂ν(x)κων(y)

+
∑
ν∈Nn

νr>νr+1

κ̂srν(x)κων(y) =
∑
ν∈Nn

πrκ̂ν(x)κων(y)

The equation (5.3) can be obtained by either conjugating the Ferrers shape
λ or using Corollary 3 instead of Theorem 14 and change from the basis
(3.13) of Demazure characters to the basis of Demazure atoms.

Now suppose that there are two extra boxes above staircase partition in
the positions (r+ 1, e+ 1) and (t+ 1, l+ 1), where r < t and l < e as below:

t + 1

r + 1

l + 1 e + 1

Using two times Theorem 14 one gets,∏
(i,j)∈λ

(1− xiyj)−1 =
∑
c≥0

xi1yj1 · · ·xicyjc +
∑
c≥0

∑
d>0

xi1yj1 · · ·xicyjcxdr+1y
d
e+1

+
∑
c≥0

∑
d′>0

xi1yj1 · · ·xicyjcxd
′
t+1y

d′
l+1 +

∑
c≥0

∑
d,d′>0

xi1yj1 · · ·xicyjcxdr+1y
d
e+1x

d′
t+1y

d′
l+1
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:=
∑
c≥0

 j1 . . . jc

i1 . . . ic

+
∑
c≥0

∑
d>0

 j1 . . . (e+ 1)d . . . jc

i1 . . . (r + 1)d . . . ic



+
∑
c≥0

∑
d>0

 j1 . . . (l + 1)d
′
. . . jc

i1 . . . (t+ 1)d
′
. . . ic



+
∑
c≥0

∑
d,d′>0

 j1 . . . (l + 1)d
′
. . . (e+ 1)d . . . jc

i1 . . . (t+ 1)d
′
. . . (r + 1)d . . . ic


=

∑
ν∈Nn

(F,G)∈SSAF
sh(F )=ν
sh(G)≤ων

xF yG +
∑
ν∈Nn

νr<νr+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(ΥrF )=srν
sh(G)≤ωsrν
sh(G)�ων

xF yG

+
∑
ν∈Nn
νt<νt+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(ΥtF )=stν
sh(G)≤ωstν
sh(G)�ων

xF yG

+
∑
ν∈Nn
νt<νt+1
νr<νr+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(ΥrΥtF )=srstν
sh(G)≤ωsrstν
sh(G)�ωstν
sh(G)�ωsrν

xF yG

=
∑
ν∈Nn

νr≥νr+1

νt≥νt+1

∑
(F,G)∈SSAF
sh(F )=ν
sh(G)≤ων

xF yG +
∑
ν∈Nn

νr>νr+1

νt≥νt+1

∑
(F,G)∈SSAF
sh(F )=srν
sh(G)≤ων

xF yG

+
∑
ν∈Nn
νt>νt+1

νr≥νr+1

∑
(F,G)∈SSAF
sh(F )=stν
sh(G)≤ων

xF yG +
∑
ν∈Nn
νt>νt+1
νr>νr+1

∑
(F,G)∈SSAF
sh(F )=srstν
sh(G)≤ων

xF yG
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=
∑
ν∈Nn
νt≥νt+1

νr≥νr+1

κ̂ν(x)κων(y) +
∑
ν∈Nn
νt≥νt+1
νr>νr+1

κ̂srν(x)κων(y) +
∑
ν∈Nn
νt>νt+1

νr≥νr+1

κ̂stν(x)κων(y)

+
∑
ν∈Nn
νt>νt+1
νr>νr+1

κ̂srstν(x)κων(y) =
∑
ν∈Nn
νt>νt+1
νr>νr+1

(κ̂ν(x) + κ̂srν(x))κων(y)

+
∑
ν∈Nn
νt>νt+1
νr=νr+1

κ̂ν(x)κων(y) +
∑
ν∈Nn
νt>νt+1
νr>νr+1

(κ̂stν(x) + κ̂srstν(x))κων(y)

+
∑
ν∈Nn
νt>νt+1
νr=νr+1

κ̂stν(x)κων(y) +
∑
ν∈Nn
νt=νt+1
νr>νr+1

(κ̂ν(x) + κ̂srν(x))κων(y) +
∑
ν∈Nn
νt=νt+1
νr=νr+1

κ̂ν(x)κων(y)

=
∑
ν∈Nn
νt>νt+1

πrκ̂ν(x)κων(y) +
∑
ν∈Nn
νt>νt+1

πrκ̂stν(x)κων(y) +
∑
ν∈Nn
νt=νt+1

πrκ̂ν(x)κων(y)

=
∑
ν∈Nn
νt>νt+1

πr(κ̂ν(x) + κ̂stν(x))κων(y) +
∑
ν∈Nn
νt=νt+1

πrκ̂ν(x)κων(y)

=
∑
ν∈Nn

πrπtκ̂ν(x)κων(y)

Notice that if two extra boxes are consecutive then in order to apply Theorem
14 we should first consider the upper extra box.

The next equation can be obtained by either conjugating the Ferrers
shape λ or using Corollary 3 instead of Theorem 14 and change from the
basis (3.13) of Demazure characters to the basis of Demazure atoms.∏

(i,j)∈λ

(1− xiyj)−1 =
∑
ν∈Nn

κ̂ν(x)πlπeκων(y).
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Before going to the next step let us calculate the action of πi on the κ̂ν(x),
by using several times the equation (5.5).∑

ν∈Nn
πrk . . . πr2πr1κ̂ν(x) =

=
∑
ν∈Nn

νri≥νri+1

1≤i≤k

κ̂ν(x) +
∑

1≤i≤k

∑
ν∈Nn

νri>νri+1

νrj≥νrj+1 j<i

(sriν)rt≥(sriν)rt+1 i<t≤k

κ̂sriν(x)

+
∑

1≤i<j≤k

∑
ν∈Nn

νri>νri+1

(sriν)rj>(sriν)rj+1

νrp≥νrp+1 p<i

(sriν)rt≥(sriν)rt+1 i<t<j

(srj sriν)rl≥(srj sriν)rl+1 j<l≤k

κ̂srj sriν(x) + · · ·+

∑
ν∈Nn

νr1>νr1+1

...
(srk−1

...sr1ν)rk>(srk−1
...sr1ν)rk+1

κ̂srk ...sr1ν(x)

In general if there are k extra boxes in positions (r1 + 1, e1 + 1), . . . (rk +
1, ek + 1), such that we can consider them in the NW part of Ferrers shape
λ, i.e there is an empty box above staircase that is below them, or the first
row has no box of the biggest staircase to its right. We proceed as follows:
we read, column wise, extra boxes from left to right and bottom to top, to
guarantee that we are able to use Theorem 14. It means that (r1 + 1, e1 + 1)
is the lowest extra box in the leftmost column contains the extra boxes. See
Figure 5.3.

This reading implies that each time we create the new box above staircase,

in the new Ferrers shape we have λs = λs+1 > λs+2, where s + 1 is the row

the new box just created. Using several times Theorem 14, one has,∏
(i,j)∈λ

(1− xiyj)−1 =
∑
c≥0

xi1yj1 · · ·xicyjc
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← ← ← ←

Fig. 5.3: the order of appearing the extra boxes

+
∑

1≤f≤k

∑
c≥0

∑
df>0

xi1yj1 · · ·xicyjcx
df
rf+1y

df
ef+1

+
∑

1≤f<h≤k

∑
c≥0

∑
df ,dh>0

xi1yj1 · · ·xicyjcx
df
rf+1y

df
ef+1x

dh
rh+1y

dh
eh+1

+ · · ·+
∑
c≥0

∑
d1,...,dk>0

xi1yj1 · · ·xicyjcx
d1
r1+1y

d1
e1+1 . . . x

dk
rk+1y

dk
ek+1

=
∑
c≥0

 j1 . . . jc

i1 . . . ic

+
∑

1≤f≤k

∑
c≥0

∑
df>0

 j1 . . . (ef + 1)df . . . jc

i1 . . . (rf + 1)df . . . ic



+
∑

1≤f<h≤k

∑
c≥0

∑
df ,dh>0

 j1 . . . (eh + 1)dh . . . (ef + 1)df . . . jc

i1 . . . (rh + 1)dh . . . (rf + 1)df . . . ic



+ · · ·+
∑
c≥0

∑
d1,...,dk>0

 j1 . . . (ek + 1)dk . . . (e1 + 1)d1 . . . jc

i1 . . . (rk + 1)dk . . . (r1 + 1)d1 . . . ic



=
∑
ν∈Nn

∑
(F,G)∈SSAF
sh(F )=ν
sh(G)≤ων

xF yG +
∑

1≤i≤r

∑
ν∈Nn

νri<νri+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(ΥriF )=sriν

sh(G)≤ωsriν
sh(G)�ων

xF yG
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+ · · ·+
∑
ν∈Nn

νrk<νrk+1,

(srkν)rk−1
<(srkν)rk−1+1

...
(sr2 ...srkν)r1<(sr2 ...srkν)r1+1

∑
(F,G)∈SSAF
sh(F )=ν

sh(Υr1 ...ΥrkF )=sr1 ...srkν

sh(G)≤ωsr1 ...srkν
sh(G)�ωsr1 ...ŝri ...srkν 1≤i≤k

xF yG

=
∑
ν∈Nn

νri≥νri+1

1≤i≤k

∑
(F,G)∈SSAF
sh(F )=ν
sh(G)≤ων

xF yG +
∑

1≤i≤k

∑
ν∈Nn

νri>νri+1

νrj≥νrj+1 j<i

(sriν)rt≥(sriν)rt+1 i<t≤k

∑
(F,G)∈SSAF
sh(F )=sriν

sh(G)≤ων

xF yG

+ · · ·+
∑
ν∈Nn

νr1>νr1+1

...
(srk−1

...sr1ν)rk>(srk−1
...sr1ν)rk+1

∑
(F,G)∈SSAF

sh(F )=srk ...sr1ν

sh(G)≤ων

xF yG

=
∑
ν∈Nn

νri≥νri+1

1≤i≤k

κ̂ν(x)κων(y) +
∑

1≤i≤k

∑
ν∈Nn

νri>νri+1

νrj≥νrj+1 j<i

(sriν)rt≥(sriν)rt+1 i<t≤k

κ̂sriν(x)κων(y)

+ · · ·+
∑
ν∈Nn

νr1>νr1+1

...
(srk−1

...sr1ν)rk>(srk−1
...sr1ν)rk+1

κ̂srk ...sr1ν(x)κων(y)

=
∑
ν∈Nn

πrk . . . πr1 κ̂ν(x)κων(y)

If we conjugate the Ferrers shape then the extra boxes are in the SE part
of Ferrers shape. It means that there is an empty box above staircase which
is above all of the extra boxes. We read, row wise, the extra boxes from
bottom to top and left to right, (r′1 + 1, e′1 + 1), . . . (r′k + 1, e′k + 1). It means
that (r′1 +1, e′1 +1) is the leftmost extra box in the lowest row containing the
extra boxes. This reading implies that each time we create the new box above
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staircase, in the new Ferrers shape we have, λ′s = λ′s+1 > λ′s+1, where s + 1
is the column that new box is created. The next equation can be obtained
by either conjugating the Ferrers shape λ or using Corollary 2 instead of
Theorem 13 and change from the basis (3.13) of Demazure characters to the
basis of Demazure atoms.∏

(i,j)∈λ

(1− xiyj)−1 =
∑
ν∈Nn

κ̂ν(x)πe′k . . . πe′1κων(y)

Note that the strict truncated staircase studied in the Chapter 4 is included
in this approach by considering the biggest staircase inside the Ferrers shape.
Hear we work with the biggest staircase contained in the Ferrers shape and
try to reduce the extra boxes into staircase but in the Chapter 4 we work
with the smallest staircase that contains the Ferrers shape.

Case 3. The boxes outside the biggest staircase are in NW and

SE parts

Now for the arbitrary Ferrers shapes, depending on our choice of row move-

ments or column movements, we can mix Theorem 14 and Corollary 3 several

times to arrive to the staircase partition. Suppose extra boxes in positions

(r1 + 1, e1 + 1), . . . (rk + 1, ek + 1) are those with row movement and extra

boxes in positions (rk+1 + 1, ek+1 + 1), . . . (rk′ + 1, ek′ + 1) are those with col-

umn movement. Then using k times Theorem 14 and k′ times Corollary 3

we obtain,

∏
(i,j)∈λ

(1− xiyj)−1 =
∑
c≥0

xi1yj1 · · ·xicyjc

+
∑

1≤f≤k′

∑
c≥0

∑
df>0

xi1yj1 · · ·xicyjcx
df
rf+1y

df
ef+1

+
∑

1≤f<h≤k′

∑
c≥0

∑
df ,dh>0

xi1yj1 · · ·xicyjcx
df
rf+1y

df
ef+1x

dh
rh+1y

dh
eh+1
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+ · · ·+
∑
c≥0

∑
d1,...,d′k>0

xi1yj1 · · ·xicyjcx
d1
r1+1y

d1
e1+1 . . . x

dk′
rk′+1y

dk′
e′k+1

=
∑
c≥0

 j1 . . . jc

i1 . . . ic

+
∑

1≤f≤k′

∑
c≥0

∑
df>0

 j1 . . . (ef + 1)df . . . jc

i1 . . . (rf + 1)df . . . ic



+
∑

1≤f<h≤k′

∑
c≥0

∑
df ,dh>0

 j1 . . . (eh + 1)dh . . . (ef + 1)df . . . jc

i1 . . . (rh + 1)dh . . . (rf + 1)df . . . ic



+ · · ·+
∑
c≥0

∑
d1,...,d′k>0

 j1 . . . (e′k + 1)dk′ . . . (e1 + 1)d1 . . . jc

i1 . . . (r′k + 1)dk′ . . . (r1 + 1)d1 . . . ic



=
∑
ν∈Nn

πrk . . . πr1 κ̂ν(x)
∑
β≤ων

πek′ . . . πek+1
κ̂β(y)

=
∑
ν∈Nn

πrk . . . πr1 κ̂ν(x)πek′ . . . πek+1

∑
β≤ων

κ̂β(y)

=
∑
ν∈Nn

πrk . . . πr1 κ̂ν(x)πek′ . . . πek+1
κων(y)

.
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