Exercícios

- **1.1.** Mostre que num domínio de integridade *D*:
 - (a) $\langle a \rangle \subseteq \langle b \rangle$ sse $b \mid a$.
 - (b) $\langle a \rangle = \langle b \rangle$ sse $a \sim b$.
 - (c) $\langle a \rangle = D$ sse $a \in D^*$.
 - (d) $D[x]^* = D^*$.
- **1.2.** Mostre que num domínio de integridade *D*:
 - (a) $u \in D^*$ sse $u \mid d$ para todo o $d \in D$.
 - (b) Qualquer associado de uma unidade é uma unidade.
 - (c) Qualquer associado de um elemento irredutível é irredutível.
- 1.3. Demonstre a Proposição 1.2.
- **1.4.** Verifique que um anel (comutativo com identidade) A é um domínio de integridade se e só $ab \in \langle 0 \rangle \Rightarrow a \in \langle 0 \rangle$ ou $b \in \langle 0 \rangle$.
- **1.5.** (a) Determine as unidades do anel dos inteiros de Gauss $\mathbb{Z}[i]$.
 - (b) Verifique que $1 \pm i$ são elementos irredutíveis de $\mathbb{Z}[i]$. Observe que $2 \in \mathbb{Z}[i]$ não é irredutível em $\mathbb{Z}[i]$ apesar de o ser em \mathbb{Z} .
- **1.6.** Seja D um domínio de integridade onde é possível definir uma função $N: D \to \mathbb{N}_0$ (chamada norma) com as seguintes propriedades:
 - (1) N(a) = 0 sse a = 0.
 - (2) N(a) = 1 sse $a \in D^*$.
 - (3) N(ab) = N(a)N(b) para quaisquer $a, b \in D \setminus \{0\}$.

Mostre que todo o elemento de $D \setminus D^*$ não nulo admite uma factorização como produto de elementos irredutíveis.

- **1.7.** Considere o anel $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$ onde $d \neq 0, 1$ é livre de quadrados, isto é, para qualquer primo $p \in \mathbb{Z}$, $p^2 \nmid d$.
 - (a) Mostre que $a+b\sqrt{d}=a'+b'\sqrt{d}$ se e só se a=a' e b=b'.
 - (b) Prove que a aplicação $N: \mathbb{Z}[\sqrt{d}] \to \mathbb{N}_0$ definida por $N(a + b\sqrt{d}) = |a^2 db^2|$ é uma norma (recorde o exercício anterior).
 - (c) Conclua que em $\mathbb{Z}[\sqrt{-5}] = \mathbb{Z}[i\sqrt{5}]$ os elementos 3 e $2\pm\sqrt{-5}$ são irredutíveis.

Exercícios 27

(d) Mostre que em $\mathbb{Z}[\sqrt{-5}]$ todos os elementos admitem factorizações em irredutíveis, mas a decomposição não é, em geral, única.

- **1.8.** Seja C um corpo. Verdadeiro ou falso?
 - (a) Se $a, b, c \in C^*$ então $a \in \operatorname{mdc}(b, c)$.
 - (b) C é um DFU.
- **1.9.** Seja D um DIP e $a, b \in D$. Prove que:
 - (a) $d \in \operatorname{mdc}(a, b)$ se e só se $\langle d \rangle = \langle a, b \rangle = \langle a \rangle + \langle b \rangle$.
 - (b) $m \in \text{mmc}(a, b)$ se e só se $\langle m \rangle = \langle a \rangle \cap \langle b \rangle$.
 - (c) Se $d \in \text{mdc}(a, b)$ então existem $p, q \in D$ tais que d = pa + qb (Relação $de B\'{e}zout$).
- **1.10.** Seja D um domínio de integridade e $a_1, \ldots, a_n \in D$.
 - (a) Defina $mdc(a_1, \ldots, a_n)$ e $mmc(a_1, \ldots, a_n)$.
 - (b) Mostre que se $d' \in \operatorname{mdc}(a_1, \ldots, a_{n-1})$ e $d \in \operatorname{mdc}(d', a_n)$ então $d \in \operatorname{mdc}(a_1, \ldots, a_n)$.
 - (c) Enuncie e demonstre o resultado análogo para mmc's.
- **1.11.** Seja D um DFU e C o seu corpo de fracções. Mostre que é possível escrever qualquer elemento de C como a/b com $a,b \in D$ elementos coprimos (ou $primos\ entre\ si$, isto é, tais que $mdc(a,b)=D^*$).
- **1.12.** Seja $A = \{p(x) \in \mathbb{R}[x] : p(x) \text{ não tem monómio de grau } 1\}.$
 - (a) Verifique que A é um anel (subanel de $\mathbb{R}[x]$).
 - (b) Verifique que todos os polinómios de grau 2 ou 3 são irredutíveis em A.
 - (c) Verifique que os polinómios $x^2(x^2+x)^2$ e $x^3(x^2+x)$ não têm mdc em A. Que pode dizer do mmc?
 - (d) Prove que todo o elemento de A se factoriza como produto de irredutíveis, mas esta factorização nem sempre é única.
 - (Observação: este exercício mostra que um subanel de um DFU não é necessariamente um DFU.)
- 1.13. Prove que uma família não vazia de ideais de um DIP tem elemento maximal.
- **1.14.** Seja D um domínio de integridade.

- (a) Verifique que se $p(x) \in D[x]$ é primitivo e $q(x) \mid p(x)$, então q(x) é primitivo.
- (b) Mostre que todo o polinómio primitivo de D[x] admite factorizações em irredutíveis em D[x].
- **1.15.** Seja D um DFU, $a \in D$, com $a \neq 0$, e $p(x), q(x) \in D[x]$ tais que $q(x) \mid ap(x)$ e q(x) é primitivo. Prove que $q(x) \mid p(x)$.
- **1.16.** Seja D um DFU. Mostre que se $1 \in \operatorname{mdc}(c,d)$ e $c \mid ad$ então $c \mid a$.
- **1.17.** Prove que $\mathbb{Z}[i]$ é um domínio euclidiano. Calcule $\mathrm{mdc}(9-5i,-9+13i)$.
- **1.18.** Seja D um domínio euclidiano com função euclidiana δ .
 - (a) Prove que $a \in D$ é uma unidade se $\delta(a)$ for um mínimo do conjunto $\{\delta(x) \mid x \in D, x \neq 0\}$. Mostre que se $\delta(a) \leq \delta(ab)$ para quaisquer $a, b \in D \setminus \{0\}$, então a implicação recíproca também é verdadeira.
 - (b) Determine as unidades de $\mathbb{Z}[i]$.
- **1.19.** Seja D um domínio euclidiano com função euclidiana δ (satisfazendo $\delta(a) \le \delta(ab)$ para quaisquer $a, b \in D \setminus \{0\}$). Seja $I \ne \{0\}$ um ideal de D. Prove que se existir $a \in I$ tal que $\delta(a) = \delta(1)$, então I = D.
- **1.20.** Seja D um domínio euclidiano com função euclidiana δ (satisfazendo $\delta(a) \leq \delta(ab)$ para quaisquer $a, b \in D \setminus \{0\}$). Mostre que se n é um inteiro tal que $\delta(1) + n > 0$, então a função $\delta' \colon D \setminus \{0\} \to \mathbb{N}$ definida por $\delta'(a) = \delta(a) + n$ é também uma função euclidiana em D.
- **1.21.** Seja D um domínio euclidiano. Mostre, usando o método das divisões sucessivas (Euclides), que dados $a, b \in D$ (não simultaneamente nulos), existem $p, q \in D$ tais que $pa + qb \in \operatorname{mdc}(a, b)$.
- **1.22.** (a) Sejam A um DIP, B um domínio de integridade e $f: A \to B$ um homomorfismo sobrejectivo de anéis com $\operatorname{Nuc} f \neq 0$.
 - (i) Prove que $\operatorname{Nuc} f$ é um ideal maximal de A.
 - (ii) Conclua que B é um corpo.
 - (b) Sendo D um domínio de integridade, mostre que D[x] é um DIP se e só se D é um corpo.
- **1.23.** Prove que os anéis $\mathbb{Z}_n \oplus \mathbb{Z}_m$ e \mathbb{Z}_{nm} são isomorfos se $\mathrm{mdc}(n,m) = 1$. Mais geralmente, mostre que $\mathbb{Z}_n \oplus \mathbb{Z}_m \cong \mathbb{Z}_d \oplus \mathbb{Z}_k$ para $d = \mathrm{mdc}(n,m)$ e $k = \mathrm{mmc}(n,m)$.