Duração: 2h30m 9/06/2011

Soluções

1. Em cada uma das alíneas seguintes indique o valor lógico das afirmações:

(V: verdadeira; F: falsa)

V F

(a) \mathbb{N} é um subanel de $(\mathbb{Z}, +, \cdot)$. [Por exemplo, $1 \in \mathbb{N}$ mas $-1 \notin \mathbb{N}$.]

 \times

X

- (b) Os polinómios 2x e x+2 de $\mathbb{Z}_3[x]$ são primos entre si. $[2x=2(x+2)+2 \text{ pelo que } \mathrm{mdc}(2x,x+2) \text{ \'e o polinómio m\'onico de } \mathbb{Z}_3[x]$ associado de 2, ou seja, 1.]
- (c) $2x^{50} + x^{49} x^{48} + 18x^6 + 18x^5 2x 2$ é irredutível sobre \mathbb{Q} . [Porque é de grau ≥ 2 e tem uma raiz racional: -1.]
- (e) Os corpos $\mathbb{F}_{11}[x]/\langle x^2+x+4\rangle$ e $\mathbb{F}_{11}[x]/\langle x^2+1\rangle$ são isomorfos. $\boxed{\times}$ [Têm o mesmo cardinal (11²) logo são ambos isomorfos a \mathbb{F}_{11} ?.]
- 2. (a) A operação é comutativa em G:

$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b+a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \quad (*)$$

Assim, para provar que (G, \cdot) é um grupo abeliano basta verificar que é um subgrupo do grupo multiplicativo das matrizes quadradas de ordem 2 com coeficientes inteiros, o que é óbvio:

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \in G,$$

o produto de quaisquer dois elementos de G pertence a G (evidente de (*)) e, também por (*),

$$\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right]^{-1} = \left[\begin{array}{cc} 1 & -a \\ 0 & 1 \end{array}\right] \in G$$

(b) A comutatividade e associatividade da multiplicação em $\mathbb Z$ implicam imediatamente que \odot é uma operação comutativa e associativa em G. O elemento neutro de \odot é a matriz

$$\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right].$$

Finalmente, a distributividade é consequência do facto da multiplicação em \mathbb{Z} ser distributiva relativamente à adição:

$$\left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right] \odot \left(\left[\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right] \cdot \left[\begin{array}{cc} 1 & c \\ 0 & 1 \end{array}\right]\right) = \left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right] \odot \left[\begin{array}{cc} 1 & b+c \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} 1 & a(b+c) \\ 0 & 1 \end{array}\right]$$

$$\left(\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \right) \cdot \left(\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & ab \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & ac \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & ab + ac \\ 0 & 1 \end{bmatrix}$$

(c) I_n será primo se $I_n \neq G$ (portanto, se $n \neq 1)$ e

$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \odot \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \in I_n \quad \Rightarrow \quad \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \in I_n \text{ ou } \begin{bmatrix} 1 & ab \\ 0 & 1 \end{bmatrix} \in I_n$$

ou seja,

$$ab \in n\mathbb{Z} \implies a \in n\mathbb{Z} \text{ ou } b \in n\mathbb{Z}$$

isto é,

$$n \mid ab \Rightarrow n \mid a \text{ ou } n \mid b.$$

Portanto I_n é primo se e só se n é primo.

- 3. Como o polinómio é mónico, todas as raízes racionais são inteiras e divisoras de 1. Portanto as únicas possbilidades são 1 e -1. Claro que 1 nunca pode ser raiz e -1 é-o no caso de n ser ímpar. Em conclusão, se n é par f(x) não tem raízes racionais e se n é ímpar tem uma única raiz racional, -1.
- 4. (a) Seja $\theta = \sqrt{1+\sqrt{3}} \in \mathbb{R}$. Como $\theta^2 = 1+\sqrt{3}$ então $\theta^2 1 = \sqrt{3}$ e, portanto, $(\theta^2 1)^2 = 3$. Assim $\theta^4 2\theta^2 2 = 0$ pelo que θ é raiz de $x^4 2x^2 2 \in \mathbb{Q}[x]$. Este polinómio é irredutivel em $\mathbb{Q}[x]$, pelo critério de Eisenstein (tomando p = 2), e é assim o polinómio mínimo de θ sobre \mathbb{Q} .
 - (b) $[\mathbb{Q}(\theta):\mathbb{Q}]$ é igual ao grau do polinómio mínimo de θ sobre \mathbb{Q} , isto é, 4. Uma base desta extensão sobre \mathbb{Q} é então $(1, \theta, \theta^2, \theta^3)$ isto é,

$$\left(1, \sqrt{1+\sqrt{3}}, 1+\sqrt{3}, (1+\sqrt{3})\sqrt{1+\sqrt{3}}\right).$$

(c) Os elementos de $\mathbb{Q}(\sqrt{3})$ são da forma $a + b\sqrt{3}$, com $a, b \in \mathbb{Q}$. Comecemos por observar que $\theta \notin \mathbb{Q}(\sqrt{3})$:

$$\theta \in \mathbb{Q}(\sqrt{3}) \Rightarrow \exists a, b \in \mathbb{Q} : \sqrt{1 + \sqrt{3}} = a + b\sqrt{3} \Rightarrow 1 + \sqrt{3} = a^2 + 2ab\sqrt{3} + 3b^2$$

 $\Leftrightarrow 1 = a^2 + 3b^2, 1 = 2ab \Leftrightarrow a, b \neq 0, a = \frac{1}{2b}, 1 = \frac{1}{4b^2} + 3b^2 \Rightarrow 4b^2 = 1 + 12b^4$
 $\Leftrightarrow 12b^4 - 4b^2 + 1 = 0 \Leftrightarrow b^2 = \frac{4 \pm \sqrt{-32}}{24} \notin \mathbb{Q}, \text{ um absurdo!}$

Então o polinómio mínimo de θ sobre $\mathbb{Q}(\sqrt{3})$ tem grau ≥ 2 . Por outro lado, θ é raiz de $x^2 - (1 + \sqrt{3}) \in \mathbb{Q}(\sqrt{3})[x]$, pelo que é este o polinómio mínimo de θ sobre $\mathbb{Q}(\sqrt{3})$.

5. Observemos antes de mais que as unidades de D[x] são os polinómios constantes u(x) = d, com $d \in D \setminus \{0\}$ invertível. Denotemos este conjunto de polinómios por $\mathcal{U}_{D[x]}$.

Seja $p(x) \in D[x]$ um polinómio mónico de grau 2 ou 3. Se p(x) é redutível sobre D então $p(x) = q_1(x)q_2(x)$ com $q_1(x), q_2(x) \notin \mathcal{U}_{D[x]}$. Como p(x) é mónico então os coeficientes dos termos de maior grau de $q_1(x)$ e $q_2(x)$ são invertíveis, o que garante que $q_1(x)$ e $q_2(x)$ não são constantes. Assim, necessariamente um destes dois polinómios é de grau 1, da forma ax + b, com a invertível. Este polinómio tem a raiz $-a^{-1}b \in D$, que será evidentemente também raiz de p(x).

Reciprocamente, se p(x) tem uma raiz α em D então, pelo Teorema do Resto, $p(x) = (x - \alpha)q(x)$ para algum polinómio $q(x) \in D[x]$. Pela regra dos graus, q(x) tem necessariamente grau ≥ 1 , pelo que não é uma unidade de D[x]. Portanto, $(x - \alpha)q(x)$ é uma factorização não trivial de p(x) em D[x], o que mostra que este polinómio é redutível sobre D.

6. (a) É claro que α e β são simultaneamente raízes do polinómio nulo 0, donde $0 \in A$. Se $f(x), g(x) \in A$ e $t(x) \in K[x]$, então

$$(f - g)(\alpha) = f(\alpha) - g(\alpha) = 0 - 0 = 0 = f(\beta) - g(\beta) = (f - g)(\beta)$$

e

$$(f t)(\alpha) = f(\alpha) t(\alpha) = 0 t(\alpha) = 0 = f(\beta) t(\beta) = (f t)(\beta)$$

pelo que $(f-g)(x) = f(x) - g(x) \in A$ e $(f t)(x) = f(x) t(x) \in A$, o que mostra que A é um ideal de K[x].

- (b) Se $\alpha, \beta \in K$ então $h(x) = (x \alpha)(x \beta) \in K[x]$ e $h(\alpha) = h(\beta) = 0$, donde $h(x) \in A$. Portanto $\langle h(x) \rangle \subseteq A$, tendo-se $\langle h(x) \rangle = h(x)K[x]$ pois K[x] é um anel comutativo com identidade. Admitamos que $p(x) \in A$. Como $p(\alpha) = 0$ então, pelo Teorema do Resto, $x - \alpha$ divide p(x) em K[x], pelo que existe $r(x) \in K[x]$ tal que $p(x) = (x - \alpha)r(x)$. Por outro lado, $0 = p(\beta) = (\beta - \alpha)r(\beta)$ em K, com $\beta - \alpha \neq 0$, o que implica imediatamente $r(\beta) = 0$. Isto significa que $x - \beta$ divide r(x). Portanto $(x - \alpha)(x - \beta)$ divide p(x), ou seja, h(x) divide p(x). Assim, $p(x) \in h(x)K[x] = \langle h(x) \rangle$.
- (c) Como $\alpha, \beta \in \overline{K}$ então α e β são algébricos sobre K e podemos falar nos polinómios mínimos $p_{\alpha}(x)$ e $p_{\beta}(x)$ de α e β respectivamente, sobre K.

Admitamos que A é um ideal primo. Como $p_{\alpha}(\alpha) = 0 = p_{\beta}(\beta)$, então $p_{\alpha}(x)p_{\beta}(x) \in A$. Como A é primo, podemos então concluir que $p_{\alpha}(x) \in A$ ou $p_{\beta}(x) \in A$. Sem perda de generalidade, suponhamos que $p_{\alpha}(x) \in A$. Então $p_{\alpha}(\beta) = 0$. Por ser polinómio mínimo de α , $p_{\alpha}(x)$ é irredutível e mónico e sendo anulador de β tem de ser o seu polinómio mínimo. Assim, $p_{\alpha}(x) = p_{\beta}(x)$.

Reciprocamente, admitamos que $p_{\alpha}(x) = p_{\beta}(x)$. Sejam $f_1(x), f_2(x) \in K[x]$ tais que $f_1(x)f_2(x) \in A$. Então $f_1(\alpha)f_2(\alpha) = 0 = f_1(\beta)f_2(\beta)$. Logo $f_1(\alpha) = 0$ ou $f_2(\alpha) = 0$. No primeiro caso $p_{\alpha}(x)$ divide $f_1(x)$. Logo existe $r(x) \in K[x]$ tal que $f_1(x) = p_{\alpha}(x)r(x) = p_{\beta}(x)r(x)$. Portanto $f_1(\beta) = p_{\beta}(\beta)r(\beta) = 0$ on que mostra que $f_1(x) \in A$. No segundo caso, podemos mostrar de modo análogo que $f_2(x) \in A$.