Raciocínio matemático, indução e recursão

- 1. Sejam p a proposição " $n \equiv_3 1$ " e q a proposição " $n^2 \equiv_3 1$ ". A implicação $p \rightarrow q$, que é "se $n \equiv_3 1$, então $n^2 \equiv_3 1$ " é verdadeira. Se q é verdadeira, ou seja, $n^2 \equiv_3 1$, decorre daí que p é verdadeira, isto é, que $n \equiv_3 1$?
- 2. Mostre que a proposição P(0) é verdadeira, para as seguintes proposições P(n):
 - (a) P(n): Se n > 1 então $n^2 > n$.
 - (b) P(n): Se a e b são inteiros positivos com $a \ge b$, então $a^n \ge b^n$.
- 3. Será correcto assumir que se $\neg p$ é verdadeira então $\neg q$ é verdadeira, usando o facto de que $p \rightarrow q$ é verdadeira?
- 4. Apresente uma prova por contradição do teorema "Se 3n+2 é ímpar, então n é ímpar."
- 5. Prove que o quadrado de um número par é par usando
 - (a) uma prova directa.
 - (b) uma prova por contradição.
- 6. Seja n um inteiro. Prove a equivalência das seguintes três proposições:

 p_1 : $n \mod 3 = 1$ ou $n \mod 3 = 2$.

 p_2 : n não é divisível por 3.

 p_3 : $n^2 \equiv_3 1$.

- 7. Prove, por indução matemática, que, para qualquer inteiro positivo n:
 - (a) A soma dos primeiros n inteiros positivos é igual a $(n^2 + n)/2$.
 - (b) $n < 2^n$.
 - (c) $n^3 n$ é divisível por 3.
 - (d) $1+2+2^2+\cdots+2^n=2^{n+1}-1$.
- 8. Para que inteiros não negativos n é válida a desigualdade $2n+3 \le 2^n$? Justifique a sua resposta usando indução matemática.
- 9. Prove, usando o método de indução matemática, que $n! < n^n$ para qualquer inteiro positivo $n \ge 2$.
- 10. Prove que para todos os números naturais $\sum_{i=0}^{n} (2i+1) = (n+1)^2$.
- 11. A seguinte "prova" por indução sobre n de que $3^n=1$ para todo o inteiro $n\geq 0$ tem um erro:

Passo inicial: $3^0 = 1$ é verdadeiro por definição de 3^0 . Hipótese de indução: $3^k = 1$ para todo o inteiro $0 \le k \le n$. Passo indutivo: $3^{n+1} = 3^{2n-(n-1)} = \frac{3^n \times 3^n}{3^{n-1}} = \frac{1 \times 1}{1} = 1$.

Em qual das seguintes hipóteses consiste o erro? (Justifique sucintamente.)

- (A) A formulação da hipótese de indução está errada.
- (B) A igualdade $3^{2n-(n-1)}=\frac{3^n\times 3^n}{3^{n-1}}$ não se verifica para todos os números naturais.
- (C) A igualdade $3^{n+1} = 3^{2n-(n-1)}$ não se verifica para todos os números naturais.
- (D) O passo indutivo não funciona para todos os $n \ge 0$ porque para n+1=1 não podemos concluir a igualdade $\frac{3^n \times 3^n}{3^{n-1}} = \frac{1 \times 1}{1}$ a partir da hipótese de indução.
- (E) O passo indutivo não funciona para todos os $n \geq 0$ porque para n+1=2 não podemos concluir a igualdade $\frac{3^n \times 3^n}{3^{n-1}} = \frac{1 \times 1}{1}$ da hipótese de indução.