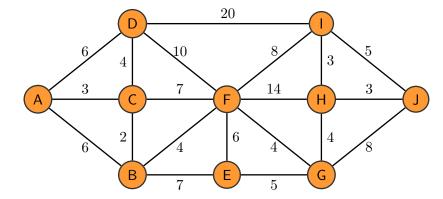
Lic.^a Eng. Informática


18/12/2013

Justifique convenientemente as suas respostas e indique os principais cálculos.

Duração: 2h00m

- 1. Usando o algoritmo de Dijkstra (explicitando os passos essenciais), determine o trajecto mais curto
 - (a) de A para J,
 - (b) de A para I,

no grafo

Será possível percorrer todas as arestas deste grafo, cada uma exactamente uma vez, iniciando o percurso em A e terminando em J?

- 2. Calcule o número de elementos dos seguintes conjuntos:
 - (a) $\{x \in \mathbb{N} \mid 0 \le x^2 < 500\}.$
 - (b) $\{5, 9, 13, \dots, 145, 149\}.$
 - (c) Conjunto de sacos de 7 peças de fruta que podem ser escolhidas de uma colecção de ameixas, bananas, laranjas, maçãs e pêras.
 - (d) Conjunto das sequências que podem ser formadas permutando entre si as letras da palavra "LETTERS".
- 3. Considere um baralho normal de 52 cartas.
 - (a) Quantas mãos de duas cartas existem?
 - (b) Quantas mãos de duas cartas com o mesmo valor existem?
 - (c) Quantas mãos de quatro cartas em que exactamente três são do mesmo naipe existem?
- 4. Calcule:
 - (a) Os primeiros 10 números naturais congruentes com 7 módulo 9.
 - (b) Os cinco primeiros números naturais congruentes com 137 módulo 11.

- (c) O primeiro natural x tal que $7x \equiv 1 \pmod{23}$.
- 5. Descodifique a mensagem "DFXULJPT", que foi encriptada com a função

$$f(p) = (7p - 1) \mod 23,$$

identificando as 23 letras do alfabeto pelos inteiros $0, 1, 2, \dots, 22$ (como mostra a figura).

A	В	С	D	\mathbf{E}	F	G	Н	Ι	J	L	Μ	N	Ο	Р	Q	R	\mathbf{S}	Τ	U	V	X	Z
‡	\updownarrow	\$																				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

- 6. Determine o número de elementos da união $A \cup B \cup C$ de três conjuntos, com 100 elementos cada, se:
 - (a) os conjuntos forem disjuntos dois a dois.
 - (b) existirem 50 elementos comuns a cada par de conjuntos e nenhum elemento na intersecção dos três.
 - (c) existirem 50 elementos comuns a cada par de conjuntos e 25 elementos na intersecção dos três.
- 7. Suponha que uma bactéria necessita de duas horas para se desenvolver, após as quais produz dois descendentes e, posteriormente, mais dois descendentes no final de cada hora subsequente. Supondo que o processo se inicia com uma única bactéria acabada de nascer, e admitindo que todos os descendentes têm o mesmo comportamento,
 - (a) liste os primeiros 6 termos da sequência do número b_n $(n \in \mathbb{N}_0)$ de bactérias existentes na colónia após n horas;
 - (b) determine (de forma explicita) o valor de b_n para qualquer n.
- 8. Num laboratório há uma célula que se divide inicialmente em 3. As células seguintes ou não se dividem ou se dividem em 2 ou em 4. A determinada altura observou-se esta cultura de células e contaram-se 102 células. Quais os números máximos e mínimos de divisões em 4 e em 2 células que poderiam ter ocorrido até então?