Duração: 1h15m Teste A1 - Soluções 22/10/2013

Nome completo:

Número de estudante:

Este teste tem 4 questões. Responda apenas ao que lhe é pedido nos lugares indicados para o efeito. Nas questões de escolha múltipla, uma resposta certa terá a cotação máxima que lhe for atribuída e uma resposta errada perderá metade dessa cotação (desde que a nota do teste permaneça não negativa).

1. (a) Preencha a seguinte tabela de verdade, indicando <u>todos</u> os valores relativos aos conectivos $\rightarrow, \land, \lor e \leftrightarrow$:

p	q	r	$\neg p$ \wedge	$(q \to \neg r)$	V	$((p \leftrightarrow r)$	Λ	$(p \wedge \neg r))$
V	V	V	F	F	F	V	F	F
V	V	F	F	V	F	F	F	V
V	F	V	F	V	F	V	F	F
V	F	F	F	V	F	F	F	V
F	V	V	F	F	F	F	F	F
F	V	F	V	V	V	V	F	F
F	F	V	V	V	V	F	F	F
F	F	F	V	V	V	V	F	F

(b) Determine a forma normal disjuntiva que corresponde a esta tabela de verdade:

$$(\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$
 [porque a fórmula original dá precisamente V nos 3 casos $(p,q,r) = (\mathsf{F},\mathsf{V},\mathsf{F})$ ou $(p,q,r) = (\mathsf{F},\mathsf{F},\mathsf{F})$.]

2. Seleccione a opção correcta quanto à validade de cada uma das deduções seguintes:

(V: dedução válida; F: dedução falaciosa)

V F

(b) p é uma condição suficiente para q. Verifica-se p ou a negação de r.

Não se verifica q. Logo não se verifica r. \times

[porque a dedução corresponde à implicação $(p \to q) \land (p \lor \neg r) \land \neg q \to \neg r$ que <u>é</u> uma tautologia.]

3. (a) Avalie da verdade ou falsidade das seguintes cinco sentenças nos mundos A e B abaixo, preenchendo a seguinte tabela com V's (verdade) e F's (falso):

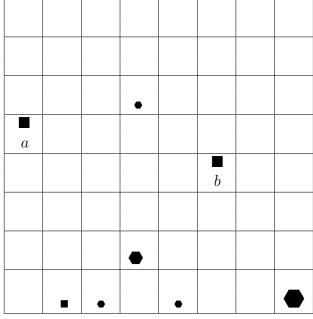
Sentenças	Mundo A	Mundo B
$Dodec(b) \rightarrow (Dodec(a) \lor Large(a))$	V	F
$\neg(Cube(a) \land Cube(b))$	F	V
$\forall x ((Cube(x) \land RightOf(b, x)) \rightarrow Small(x))$	F	V
$\exists y \forall x (Dodec(x) \to RightOf(x, y))$	V	F
$\exists x [Cube(x) \land \forall y (Dodec(y) \rightarrow \exists z (z \neq y \land (SameRow(z, y) \lor RightOf(z, x))))]$	V	V

(b) O que precisa de mudar em **A** e **B** para que as 3 primeiras fórmulas sejam <u>todas</u> verdadeiras?

Mundo A: Basta mudar a forma de a (ou alternativamente mudar a forma de b para um tetraedro e o tamanho de a para pequeno).

Mundo B: Basta mudar a forma de b para um tetraedro (ou alternativamente mudar a forma de a para um dodecaedro ou o seu tamanho para grande).

Mundo A Mundo B



		Wulldo D					
b		a				•	
	•						

▲ Tetraedro Pequeno
 ▲ Tetraedro Médio
 ▲ Tetraedro Grande

Cubo PequenoCubo MédioCubo Grande

Dodecaedro Pequeno
 Dodecaedro Médio
 Dodecaedro Grande

4. Prove, <u>usando o método de indução matemática</u>, que para qualquer natural n, a soma dos n primeiros inteiros positivos ímpares é igual a n^2 :

Seja P(n) a identidade

$$\underbrace{1 + 3 + 5 + 7 + \dots + (2n - 1)}_{n \text{ parcelas}} = n^2.$$

Queremos mostrar que P(n) é V para qualquer $n \in \mathbb{N}$. Pelo método de indução matemática teremos que mostrar duas coisas:

(1) P(1) é V:

É óbvio, pois a identidade P(1) resume-se a $1 = 1^2$.

(2) A implicação $P(k) \to P(k+1)$ é V para qualquer $k \ge 1$:

Suponhamos que P(k) é V, isto é,

$$1+3+5+7+\cdots+(2k-1)=k^2$$
.

Então

$$1+3+5+7+\cdots+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$$
,

o que mostra precisamente que P(k+1) também é V.