Duração: 1h15m Teste 1A - Soluções 22/10/2014

Nome completo:

Número de estudante:

Este teste tem 4 questões. Responda apenas ao que lhe é pedido nos lugares indicados para o efeito. Nas questões 2 e 3(a), uma resposta certa terá a cotação máxima que lhe for atribuída e uma resposta errada perderá metade dessa cotação (desde que a nota do teste permaneça não negativa).

$$\begin{array}{c}
a \lor c \\
b \lor \neg c \\
\hline
\therefore \quad a \lor b
\end{array}$$

(a) usando uma tabela de verdade (indicando todos os valores relativos aos conectivos):

a	b	c	$(a \lor c)$	^	$(b \vee \neg c)$	\rightarrow	$(a \lor b)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
٧	F	V	V	F	F	V	V
V	F	F	V	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	F	V	V	V
F	F	V	V	F	F	V	F
F	F	F	F	F	V	V	F

(b) por contradição, isto é, assuma $\neg(a \lor b)$ e mostre que daí resulta uma contradição com as premissas.

Queremos mostrar, usando uma prova por contradição, que se $a \lor c$ e $b \lor \neg c$ forem verdadeiras então $a \lor b$ também é.

Suponhamos então, por absurdo, que $\neg(a \lor b)$ era verdadeira, isto é, $a \lor b$ era falsa. Então a e b eram simultaneamente falsas, o que implicaria na primeira premissa que c fosse verdadeira e na segunda que $\neg c$ também fosse verdadeira, o que é um absurdo pelo princípio da não contradição.

Em conclusão, $a \lor b$ é necessariamente verdadeira quando as premissas o são.

Solução alternativa:
$$(a \lor c) \land (b \lor \neg c) \land \neg (a \lor b) \equiv (a \lor c) \land (b \lor \neg c) \land \neg a \land \neg b$$

$$\equiv (a \lor c) \land \neg a \land (b \lor \neg c) \land \neg b$$

$$\equiv (\mathsf{F} \lor c \land \neg a) \land (\mathsf{F} \lor \neg c \land \neg b)$$

$$\equiv c \land \neg a \land \neg c \land \neg b \equiv \mathsf{F}.$$

- - [porque a dedução corresponde à implicação $(p \to q) \land \neg p \to \neg q$ que $\underline{\text{não \'e}}$ uma tautologia.]

 - (c) r é uma condição suficiente para q. Verifica-se r ou a negação de p.

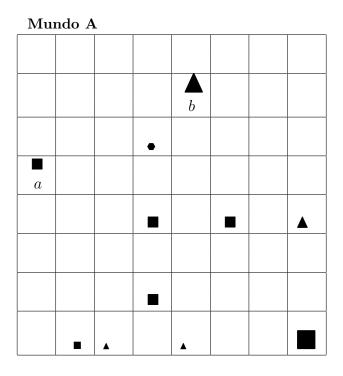
 Logo, se q não for verdadeiro, não se verifica p.

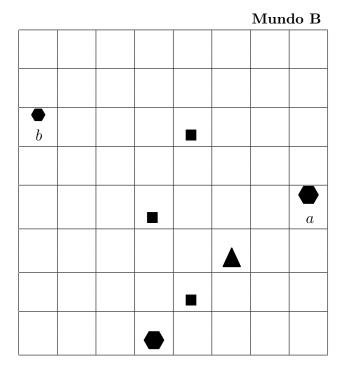
 [porque a dedução corresponde à implicação $(r \to q) \land (r \lor \neg p) \land \neg q \to \neg p$ que $\underline{\acute{e}}$ uma tautologia.]
- 3. (a) Avalie da verdade ou falsidade das seguintes cinco sentenças nos mundos A e B abaixo, preenchendo a seguinte tabela com V's (verdade) e F's (falso):

Sentenças	Mundo A	Mundo B
1. $\neg(Cube(a) \lor Small(a))$	F	V
$2. \ Cube(a) \rightarrow BackOf(a,b)$	F	V
3. $\neg (\forall x (Cube(x) \lor Tet(x) \lor Small(x)))$	F	V
$4. \ \forall x \ \forall y \ \forall z ((Cube(x) \land Between(x,y,z)) \rightarrow \neg SameSize(y,z))$	F	F
5. $\exists x \exists y \forall z (Dodec(z) \leftrightarrow z = x \lor z = y)$	V	F

(b) Traduza a fórmula 4 para Português:

Se um cubo está entre dois objectos, então estes têm tamanhos diferentes.





 ${f F}$

Dodecaedro Grande

Â

Tetraedro Grande

Cubo Grande

4. Prove, usando o método de indução matemática, que para qualquer natural $n \geq 2$,

$$\left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \dots \times \left(1 - \frac{1}{n}\right) = \frac{1}{n}.$$

Seja P(n) a identidade

$$\underbrace{\left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \dots \times \left(1 - \frac{1}{n}\right)}_{n-1 \text{ factores } (n \ge 2)} = \frac{1}{n}.$$

Queremos mostrar que P(n) é V para qualquer natural $n \geq 2$. Pelo método de indução matemática teremos que mostrar duas coisas:

(1) P(2) é V:

É evidente, pois $1 - \frac{1}{2} = \frac{1}{2}$.

(2) A implicação $P(k) \to P(k+1)$ é V para qualquer $k \geq 2$:

Suponhamos que P(k) é $\mathsf{V},$ isto é,

$$\left(1 - \frac{1}{2}\right) \times \left(1 - \frac{1}{3}\right) \times \dots \times \left(1 - \frac{1}{k}\right) = \frac{1}{k}.$$

Então

$$\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\cdots\times\left(1-\frac{1}{k}\right)\times\left(1-\frac{1}{k+1}\right) &=& \frac{1}{k}\times\left(1-\frac{1}{k+1}\right) \qquad \text{(hip. de indução)} \\ &=& \frac{1}{k}-\frac{1}{k(k+1)} \\ &=& \frac{k+1-1}{k(k+1)} \\ &=& \frac{1}{k+1}$$

o que mostra precisamente que P(k+1) também é $\mathsf{V}.$