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ABSTRACT

Uniform structures for frames and their generalizations (quasi-uniformities and

nearnesses) are the subject of this thesis. Weil’s notion of entourage is extended to

this framework and it is proved that this is a basic concept on which that structures

may be axiomatized. On the other hand, it is shown that uniform frames may also

be described by gauge structures, that is, certain families of metric diameters.
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INTRODUCTION

Mathematics place too much importance on

the theorems people prove, and not enough on

the definitions they devise. (The relative impor-

tance we ascribe is clear: theorems often have

people’s names attached; definitions rarely do).

Yet it is definitions that give us the concepts that

make thinking effective and make the theorems

possible.

— S. Maurer

Sometimes I don’t understand how people

came across the concept of “fun”; it was proba-

bly only abstracted as an opposite to sadness.

— F. Kafka

In the thirties, Stone presented in the famous papers [71] and [72] two revolu-

tionary ideas. Firstly, he concluded that ideals are very important in lattice theory, by

showing that Boolean algebras are actually special instances of rings: the concept of

Boolean algebra is equivalent to a certain type of ring — nowadays called Boolean ring.

vii



INTRODUCTION

Afterwards, following his maxim “one must always topologize” [73], he linked topology

to lattice theory by establishing a representation theorem for Boolean algebras:

Every Boolean algebra is isomorphic to the Boolean algebra of open-closed

sets of a totally disconnected compact Hausdorff space (or, in other words,

compact zero-dimensional Hausdorff spaces).

This theorem has had a great influence in many areas of modern mathematics (the

reader may see a detailed description of it in the book [43] by Johnstone), namely

in the study of topological concepts from a lattice theoretical point of view, initiated

with Wallman in 1938 and followed with McKinsey and Tarski (1944), Nöbeling (1954),

Lesieur (1954), Ehresmann (1957), Dowker and Papert (1966), Banaschewski (1969),

Isbell (1972), Simmons (1978), Johnstone (1981), Pultr (1984), among others.

Ehresmann and Bénabou were the first (in 1957) to look at complete lattices with

an appropriate distributive law — finite meets distribute over arbitrary joins — as

“generalized” topological spaces. They called these lattices local lattices, meanwhile,

named “frames” after Dowker and Papert.

Frame theory is lattice theory applied to topology. This approach to topology takes

the lattices of open sets as the basic notion — it is a “pointfree topology”. There, one

investigates typical properties of lattices of open sets that can be expressed without

reference to points.

Usually one thinks of frames as generalized spaces:

“The generalized spaces will be called locales. “Generalized” is imprecise,

since arbitrary spaces are not determined by their lattices of open sets;

but the “insertion” from spaces to locales is full and faithful on Hausdorff

spaces” (Isbell [39]).

Nevertheless, the frame homomorphisms — which should preserve finite meets and

arbitrary joins — may only be interpreted as “generalized continuous maps” when

considered in the dual category. Isbell, in his celebrated paper of 1972 “Atomless

parts of spaces”, was the first to stress this and to point out the need for a separate

terminology for the dual category of frames, whose objects he named “locales”, as cited

above.

viii



INTRODUCTION

Johnstone in [43], [44] and [45] gives us a detailed account of these historical de-

velopments and of the advantages of this new way of doing topology as opposed to the

classical one. As Isbell states in his review of [45] in “Zentralblatt für Mathematik”,

“this paper is an argument that topology is better modeled in the category

of locales than in topological spaces or another of their variants, with indi-

cation of how the millieu should be regarded and supporting illustrations”.

Frame theory has the advantage that many results which require the Axiom of Choice

(or some of its variants) in the topological setting may be proved constructively in

the frame setting. Examples are the Tychonoff Theorem [42], the construction of the

Stone-Čech compactification [8] or the construction of the Samuel compactification

[10]. By that reason, locales are the “right” spaces for topos theory [53].

Sometimes the frame situation differs from the classical one. In general, when

this happens, the frame situation is more convenient. For example, coproducts of

paracompact frames are paracompact [39] while products of paracompact spaces are

not necessarily paracompact. Another example: coproducts of regular frames preserve

the Lindelöf property [17], products of regular spaces do not.

One may also look to frames as the type of algebras behind the “logic of verifiable

sentences”. This is the approach of Vickers in “Topology via Logic” [74]:

“The traditional — spatial — motivation for general topology and its ax-

ioms relies on abstracting first from Euclidean space to metric spaces, and

then abstracting out, for no obvious reason, certain properties of their open

sets. I believe that the localic view helps to clarify these axioms, by inter-

preting them not as set theory (finite intersections and arbitrary unions),

but as logic (finite conjunctions and arbitrary disjunctions: hence the ti-

tle)”.

...“I have tried to argue directly from these logical intuitions to the topolog-

ical axioms, and to frames as the algebraic embodiment of them”.

The study of structured frames started with Isbell [39], who considered the no-

tion of frame uniformity in the form of a system of covers, later developed by Pultr
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INTRODUCTION

in [63] and [64], who also defined metric diameters for frames, using them in analogy

with pseudometrics in the spatial setting. Subsequently, Frith [29] studied uniform-like

structures from a more categorical point of view, introducing in frame theory other

topological structures such as quasi-uniformities and proximities. Most of these con-

cepts are formulated in terms of covers, and indeed Frith even stated that

“families of covers constitute the only tool that works for frames” [29].

Nevertheless, Fletcher and Hunsaker [23] recently presented an equivalent notion of

frame uniformity in terms of certain families of maps from the frame into itself.

This dissertation has its origin in the following suggestion of Professor Bernhard

Banaschewski:

“We usually consider uniformities given by covers, as done by Tukey for

spaces, but there should also be a theory (deliberately put aside by Isbell in

“Atomless parts of spaces”) of uniformities by entourages, in the style of

Bourbaki”.

So, the study of structured frames via entourages in the style of Weil is the subject

of this thesis. We begin with uniform structures (Chapter I) and in Chapters III and IV

we investigate the corresponding natural generalizations of quasi-uniform and nearness

structures. In parallel, with the aim of completing for frames a picture analogous to

the one for spaces, we characterize uniform structures in terms of “gauge structures”,

that is, families of metric diameters satisfying certain axioms.

The language of this thesis is almost entirely algebraic and we never employ the

geometric approach made possible by the language of locales. This point of view is

corroborated by Madden [54]:

“There are differing opinions about this, and I appreciate that there are

some very good reasons for wanting to keep the geometry in view. On the

other hand, the algebraic language seems to me, after much experimenta-

tion, to afford the simplest and most streamlined presentation of results.

Also, I think readers will not have much difficulty finding the geometric in-

terpretations themselves, if they want them. After all, this ultimately comes

down to just “reversing all the arrows” ”.

x



INTRODUCTION

Throughout this dissertation we also adopt the categorical point of view. The

language of category theory has proved to be an adequate tool in the approach to the

type of conceptual problems we are interested in, namely in the selection of the best

axiomatizations for some frame structures and in the study of the relationship between

them. Furthermore, this insight allows us to understand and to put in perspective

the real meaning of these approaches. As Herrlich and Porst state in the preface to

“Category Theory at Work”:

“Some mathematical concepts appear to be “unavoidable”, e.g. that of nat-

ural numbers. For other concepts such a claim seems debatable, e.g., for

the concepts of real numbers or of groups. Other concepts — within cer-

tain limits — seem to be quite arbitrary, their use being based more on

historical accidents than on structural necessities. A good example is the

concept of topological spaces: compare such “competing” concepts as metric

spaces, convergence spaces, pseudotopological spaces, uniform spaces, near-

ness spaces, frames respectively locales, etc. What are the structural “ne-

cessities” or at least “desirabilities”? Category theory provides a language

to formulate such questions with the kind of precision needed to analyse ad-

vantages and disadvantages of various alternatives. In particular, category

theory enables us to decide whether certain mathematical “disharmonies”

are due to inherent structural features or rather to chance ocurrences, and

in the latter case helps to “set things right” ”.

This is the point of view adopted in this work as well as in the articles [59], [60], and

[61] on which it relies. Another thread of our work is the search, in each setting, for an

adjunction between structured versions of the “open” and “spectrum” functors. These

functors acted as a categorical guide of the accuracy of the choosen axiomatizations.

We describe now this thesis in more detail:

Chapter 0 introduces well-known basic definitions and results needed in the body

of the dissertation.

Chapter I, which is the core of this work, presents a theory of frame uniformities in

the style of Weil (Section 4) which is equivalent to the ones of Isbell [39] and Fletcher
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INTRODUCTION

and Hunsaker [23], as is proved in Theorem 5.14. The chapter ends with an application

of this theory to the study, in the setting of frames, of an important theorem of the

theory of uniform spaces, due to Efremovič. Our approach via entourages reveals to be

the right language to yield the result analogous to the one of Efremovič in the context

of frames.

After Chapter I it would be natural to investigate the non-symmetric structures

(as well as the nearness structures) that arise from our theory of uniformities. However

the existence of another characterization of uniform spaces due to Bourbaki [14] and

the notion of metric diameter introduced by Pultr [64] lead us to investigate a way of

describing frame uniformities in terms of those diameters. This is what it is done in

the beginning of Chapter II. As an aplication of this characterization, inspired by the

paper [2] of Adámek and Reiterman, it is shown in Corollary 4.20 that the category

of uniform frames is fully embeddable in a (final and universal) completion of the

category of metric frames. Therefore, metric frames provide a categorical motivation

for uniform frames.

In Chapters III and IV we come back to the main stream of our work. The third

section of Chapter III contains the axiomatization of a theory of quasi-uniformities via

Weil entourages. Theorem 4.15 shows that this is an equivalent theory to the existing

one in the literature.

In the final chapter we proceed to another level of generality by studying near-

ness structures in frames using Weil entourages. In this case the corresponding spatial

structures, which seem unnoticed so far, appear as a topic worthy of study. Although

distinct from the classical nearness spaces of Herrlich [33], this class of spaces forms a

nice topological category (Proposition 5.1) which unifies several topological and uni-

form concepts (Propositions 5.4, 5.5, 5.6, 5.8 and Corollary 5.15). The notion of Weil

entourage is therefore a basic topological concept by means of which various topolog-

ical ideas may be expressed. In the last section we study proximal frames. Theorem

6.10 gives a new characterization of this type of frames in terms of Weil entourages.

The infinitesimal relations of Efremovič [19] are also studied in the context of frames

and the chapter ends with a remark which once more exhibits the adequacy of Weil

entourages to bring out the meaning, in the context of frames, of the spatial results
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INTRODUCTION

formulated in terms of entourages.

At the end of each chapter there is a section with additional references and com-

ments.

An appendix (on page 141) contains two diagrams which summarize the relations

between the various categories of spaces and frames presented along the text. We

also list categories (page 151), symbols (page 153) and definitions (page 157) used

throughout.

Our concern in relating the concepts introduced here with the ones already existing

in the literature as well as in motivating the ideas developed in frames with the spatial

situations, justifies the extensive bibliography included.

Proofs of already known results will usually be ommited.

We think that all results included in Chapters I, II, III and IV for which no reference

is given are original.

In general, choice principles as the Axiom of Choice or the Countable Dependent

Axiom of Choice are used without mention.

xiii



CHAPTER 0

PRELIMINARIES

This chapter is a summary of the relevant background from the literature which

will be required in the remaining chapters. All results are well known. Our main

reference for information on frames is [43], and on category theory [52] and [1].

Any introductory text such as, for instance, [77] is a good reference for topology.

1. Frames and topological spaces

In the same way as the notion of Boolean algebra appears as an abstraction of

the power set P(X) of a set X, the notion of frame arises as an abstraction from the

topology T of a topological space (X, T ): a frame is a complete lattice L satisfying

the distributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}

for all x ∈ L and S ⊆ L. A frame homomorphism is a map between frames which

preserves finitary meets (including the unit, or top, 1) and arbitrary joins (including the

zero, or bottom, 0). Observe that the lattice structure of a frame does not differ from

that of a complete Heyting algebra since, by the Freyd’s Adjoint Functor Theorem,

a complete lattice satisfies the above distributive law if and only if it is an Heyting

algebra.

1



PRELIMINARIES

The category of frames and frame homomorphisms will be denoted by Frm.

As we pointed above, the motivating examples of frames are topologies: for every

topological space (X, T ) the lattice T of open sets of (X, T ), where the join operator is

the union and the meet operator is the interior of the intersection, is a frame. Any frame

of this type is called spatial. There are non-spatial frames: any non-atomic complete

Boolean algebra is not a topology of some set. Nevertheless there is an important

relationship between frames and topological spaces which we describe below. The

category of topological spaces and continuous maps will be denoted by Top.

Definitions 1.1.

(1) The contravariant functor Ω : Top −→ Frm which assigns to each topologi-

cal space (X, T ) its frame T of open sets and to each continuous function f :

(X, T ) −→ (X ′, T ′) the frame map Ω(f) : T ′ −→ T given by Ω(f)(U) = f−1(U),

where U ∈ T ′, is called the open functor from Top to Frm.

(2) Let L be a frame. The spectrum of L is the set ptL of all frame homomorphisms

p : L −→ 2 (2 denotes the two-point frame {0, 1}), the so-called points of L, with

the spectral topology TptL = {Σx : x ∈ L} where Σx = {p ∈ ptL | p(x) = 1}. The

contravariant functor Σ : Frm −→ Top which assigns to each frame its spectrum

Σ(L) = (ptL, TptL) and to each frame map f : L −→ L′ the continuous map

Σ(f) : Σ(L′) −→ Σ(L) given by Σ(f)(p) = p ·f , where p is a point of L′, is called

the spectrum functor from Frm to Top.

Theorem 1.2. (Papert and Papert [58], Isbell [39]) The open and spectrum functors

and the natural transformations

η : 1Top −→ ΣΩ and ξ : 1Frm −→ ΩΣ

given by

η(X,T )(x)(U) =







1 if x ∈ U

0 if x 6∈ U

and

ξL(x) = Σx,

2



1. Frames and topological spaces

define a dual adjunction between the category of topological spaces and the category of

frames.

This dual adjunction restricts to a dual equivalence between the full subcategories

of sober spaces [43] and spatial frames, and this is the “largest” duality contained in

the given dual adjunction since these are the fixed objects of the adjunction. One may

think of frames as generalized topological spaces, taking into account that a topological

space is essentially determined by the frame of its open sets when it is sober but, beyond

that point, spaces and frames diverge.

Since Ω is contravariant, when thinking topologically on frames one usually works

in the dual category of Frm, called the category Loc of locales. Now Ω : Top −→ Loc

and Σ : Loc −→ Top are covariant. Throughout this thesis, however, we shall always

stay in Frm.

We list some notions and properties of frames that will be relevant in the sequel.

A subset M of a frame L is a subframe of L if 0, 1 ∈ M and M is closed under

finite meets and arbitrary joins.

A frame L is called:

• compact if 1 =
∨

S implies 1 =
∨

S′ for some finite S′ ⊆ S;

• regular if, for every x ∈ L, x =
∨

{y ∈ L | y ≺ x}, where y ≺ x means that

y ∧ z = 0 and x ∨ z = 1 for some z ∈ L. In terms of the pseudocomplement

y∗ :=
∨

{z ∈ L | z ∧ y = 0},

this is equivalent to saying that y∗ ∨ x = 1.

• normal if x∨ y = 1 implies the existence of u and v in L satisfying u∧ v = 0 and

x ∨ u = 1 = y ∨ v.

Note that, for any topological space (X, T ), the frame Ω(X, T ) is compact, regular

or normal if and only if (X, T ) is, respectively, compact, regular or normal in the usual

topological sense.

Further, any compact regular frame is normal.

3



PRELIMINARIES

In any frame the DeMorgan formula

(

∨

i∈I

xi

)∗

=
∧

i∈I

x∗i

holds.

For infima we have only the trivial inequality

∨

i∈I

x∗i ≤

(

∧

i∈I

xi

)∗

.

Note also that in case f : L −→ L′ is a frame homomorphism we have only the

trivial inequality f(x∗) ≤ f(x)∗. Clearly, if L is a Boolean frame, that is, a Boolean

algebra, the equality f(x∗) = f(x)∗ holds for all x ∈ L. Note that a frame L is Boolean

if and only if x ∨ x∗ = 1 for every x ∈ L or, equivalently, x∗∗ = x for every x ∈ L.

2. Biframes and bitopological spaces

Similarly, as topological spaces motivate frames, bitopological spaces (first studied

by Kelly [47]) motivate the notion of biframe. This idea is due to Banaschewski,

Brümmer and Hardie [7]. A biframe is a triple (L0, L1, L2) in which L0 is a frame and

L1 and L2 are subframes of L0 such that each element of L0 is the join of finite meets

from L1 ∪L2. A biframe map f : (L0, L1, L2) −→ (L′
0, L

′
1, L

′
2) is a frame map from L0

to L′
0 which maps Li into L′

i (i ∈ {1, 2}).

We denote the categories of bitopological spaces and bicontinuous maps and of

biframes and biframe maps by BiTop and BiFrm, respectively. The dual adjunction

between topological spaces and frames may be extended to one between bitopological

spaces and biframes [7]:

• The contravariant open functor Ω : BiTop −→ BiFrm assigns to each bitopological

space (X, T1, T2) the biframe (T1∨T2, T1, T2) where T1∨T2 is the coarsest topology

finer than T1 and T2. For a bicontinuous map f : (X, T1, T2) −→ (X ′, T ′
1 , T

′
2 ),

Ω(f) : Ω(X ′, T ′
1 , T

′
2 ) −→ Ω(X, T1, T2) is given by Ω(f)(U) = f−1(U) for U ∈

T ′
1 ∨ T

′
2 .

4



3. Quotients of frames

• The contravariant spectrum functor Σ : BiFrm −→ BiTop is defined as follows:

for a biframe L = (L0, L1, L2), Σ(L) = (ptL0, {Σx : x ∈ L1}, {Σy : y ∈ L2})

where each Σx, for x ∈ L1 ∪ L2, is the set {p ∈ ptL0 : p(x) = 1}. For a biframe

map f : L −→ L′, the bicontinuous map Σ(f) : Σ(L′) −→ Σ(L) is given by

Σ(f)(ξ) = ξ · f .

• These functors define a dual adjunction between BiTop and BiFrm, with the

adjunction units

η(X,T1,T2) : (X, T1, T2) −→ ΣΩ(X, T1, T2)

and

ξ(L0,L1,L2) : (L0, L1, L2) −→ ΩΣ(L0, L1, L2)

given by

η(X,T1,T2)(x)(U) =







1 if x ∈ U

0 if x 6∈ U

and

ξ(L0,L1,L2)(x) = Σx.

For more details on biframes see [7] and [69].

3. Quotients of frames

Since a frame is an algebraic structure, there is a convenient way of constructing

frame quotients as quotients by congruences ([42], [48]):

Let R be a binary relation on a frame L. An element x ∈ L is R-saturated if, for

every y, z, w in L,

y ∧ w ≤ x⇐⇒ z ∧ w ≤ x

whenever (y, z) ∈ R. We are using the terminology of [49]; these are the R-coherent

elements for Kř́ıž [48] and the R-compatible elements for Banaschewski [3]. Meets of

R-saturated elements are R-saturated and hence one can define a map κ : L −→ L

being κ(x) the least R-saturated element above x. Put L/R := κ(L).

5



PRELIMINARIES

Theorem 3.1. (Kř́ıž [48])

(a) L/R endowed with the meets from L and joins defined by
⊔

i∈I xi = κ(
∨

i∈I xi) is

also a frame and κ : L −→ L/R is a frame homomorphism such that κ(x) = κ(y)

whenever (x, y) ∈ R.

(b) If f : L −→ L′ is a frame homomorphism such that (x, y) ∈ R implies f(x) =

f(y), then there is exactly one frame homomorphism g : L/R −→ L′ such that

g · κ = f .

4. Down-sets and filters

For a subset A of a preordered set (L,≤), let

↓A := {x ∈ L | x ≤ a for some a ∈ A}

and

↑A := {x ∈ L | a ≤ x for some a ∈ A}.

The set A is said to be a down-set (respectively, an upper-set) of L if ↓ A = A

(respectively, ↑A = A). Since the intersection of two down-sets is a down-set, the set

D(L) of all down-sets of L is a complete lattice (it is even a frame).

We shall denote by [x, y] the intersection ↑{x} ∩ ↓{y}.

Assuming that (L,≤) has finite meets (in particular, containing a unit 1), a subset

F of L is a filter of (L,≤) if it is an upper-set closed under finite meets (in particular,

containing the unit 1). A subset F ′ of a filter F is a basis of F if ↑ F ′ = F . A set

F ′ ⊆ L is a filter for some filter on L if and only if for every x, y ∈ F ′ there exists

z ∈ F ′ such that z ≤ x∧ y. In this case the filter generated by F ′, that is, the filter for

which F ′ is a basis, is the set ↑F ′.
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5. Binary coproducts of frames

Let L1 and L2 be frames. Recall (cf., e.g., [17] or [43]) that the coproduct of frames

L1 and L2

L1
uL1−→L1 ⊕ L2

uL2←−L2

can be constructed as follows: take the cartesian product L1×L2 with the usual order.

One obtains L1 ⊕ L2 as the frame D(L1 × L2)/R where R consists of all pairs of the

type
(

↓{(x, 0)}, ∅
)

,
(

↓{(0, y)}, ∅
)

,
(

↓
{

(
∨

S, y)
}

,
⋃

s∈S

↓
{

(s, y)
}

)

and
(

↓
{

(x,
∨

S)
}

,
⋃

s∈S

↓
{

(x, s)
}

)

.

Equivalently, defining a C-ideal of L1 × L2 as a down-set A ⊆ L1 × L2 satisfying

{x} × S ⊆ A ⇒
(

x,
∨

S
)

∈ A

and

S × {y} ⊆ A ⇒
(

∨

S, y
)

∈ A,

since the intersection of C-ideals is again a C-ideal, the set of all C-ideals of L1 × L2

is a frame in which
∧

i∈I

Ai =
⋂

i∈I

Ai

and
∨

i∈I

Ai =
⋂

{B | B is a C-ideal and
⋃

i∈I

Ai ⊆ B};

this is the frame L1 ⊕ L2. Observe that the case S = ∅ implies that every C-ideal

contains the C-ideal ↓ (1, 0) ∪ ↓ (0, 1), which we shall denote by OL1⊕L2 (or just by

O whenever there is no ambiguity). This is the zero of L1 ⊕ L2. Obviously, each

↓ (x, y) ∪ O is a C-ideal. It is denoted by x ⊕ y. Finally put uL1(x) = x ⊕ 1 and

uL2(y) = 1⊕ y. The following clear facts are useful:

7
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• For every E ∈ L1 ⊕ L2, E =
∨

{x ⊕ y | (x, y) ∈ E}, and so the C-ideals of the

type x⊕ y generate by joins the frame L1 ⊕ L2;

• x⊕ y = O if and only if x = 0 or y = 0;

•
∨

{x⊕ s | s ∈ S} = x⊕ (
∨

S) and
∨

{s⊕ y | s ∈ S} = (
∨

S)⊕ y;

•
⋂

{s⊕ t | s ∈ S, t ∈ T} = (
∧

S)⊕ (
∧

T );

• x ≤ y and z ≤ w imply x⊕ z ⊆ y ⊕ w;

• O 6= x⊕ y ⊆ z ⊕ w implies x ≤ z and y ≤ w.

Note that L1 ⊕ 2 is isomorphic to L1: consider the coproduct diagram

L1
1
−→L1

σ
←−2

where σ is the unique morphism 2 −→ L1. Under this isomorphism the element x⊕ 1

is identified with x and x⊕ 0 with 0.

For any frame homomorphisms fi : Li −→ L′
i, (i ∈ {1, 2}), we write f1 ⊕ f2 for

the unique morphism from L1 ⊕ L2 to L′
1 ⊕ L′

2 that makes the following diagram

commutative

-

-

?
�

�

??
L′

1 L′
1 ⊕ L

′
2

L1 ⊕ L2L1 L2

L′
2

uL′
1

uL1

f1

uL′
2

uL2

f2f1 ⊕ f2

Obviously,

(f1 ⊕ f2)

(

∨

γ∈Γ

(xγ ⊕ yγ)

)

=
∨

γ∈Γ

(

f1(xγ)⊕ f2(yγ)
)

.
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6. Galois connections

We end this chapter with a notion that the reader already met, at least in the

setting of partially ordered sets. A Galois connection between partially ordered sets A

and B is defined as a pair (f, g) of order-preserving maps f : B −→ A and g : A −→ B

with the property that, for all a ∈ A and b ∈ B,

f(b) ≤ a if and only if b ≤ g(a).

The latter condition is equivalent to

f · g ≤ 1A and 1B ≤ g · f.

If we view A,B in the standard way as categories (see MacLane [52]) and f, g as

functors, a Galois connection expresses an adjunction between A and B: (f, g) is a

Galois connection if and only if g is left adjoint to f (and, in this case, one writes

g ⊣ f).

Unfortunately most of the interesting results about Galois connections are no longer

valid for adjoint situations. Nevertheless for the following level of generality the inter-

esting properties of Galois connections remain valid (see [36]):

Let A and B be concrete categories and let G : A −→ B and F : B −→ A be

concrete functors; the pair (F,G) is called a Galois correspondence provided that

F ·G ≤ 1A and 1B ≤ G · F.

Notes on Chapter 0:

(1) We cite the first chapter of Stone Spaces [43] as a reference for the basic

notions of Lattice Theory we use throughout. The Compendium of Contin-

uous Lattices [31] is also a useful reference for the type of lattice theoretical

results we work with.

(2) The adjunction of Theorem 1.2 was first constructed in the Seminar of Er-

hesmann (1958) by Papert and Papert [58] and later developed by Isbell in

[39].
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(3) The description of factorization of frames and Theorem 3.1 are due to Kř́ıž

[48]. The main idea of his approach belongs to Johnstone [42] who formulated

the theorem in a slightly less general way.
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CHAPTER I

WEIL UNIFORM FRAMES

It is well known that a uniformity on a set X may be described in any of three

equivalent ways: as a family of reflexive binary relations (“entourages”) on X,

as a family of covers (“uniform covers”) of X, or as a family of pseudometrics

(“gauges”) on X.

In pointfree topology, the notion of uniformity — in the form of a system

of covers — was introduced by Isbell in [39], and later developed by Pultr in

[63] and [64]. Since there is a current interest in uniform frames, it would seem

desirable to complete the picture for frames, that is, to have characterizations of

frame uniformities that are analogous to those spatial ones given in terms of Weil

entourages and pseudometrics. This is the main motivation for this thesis.

Recently, another equivalent notion of frame uniformity was given by Fletcher

and Hunsaker in [23], which they called “entourage uniformity”. The purpose of

this first chapter is to present another characterization of frame uniformities in the

style of Weil. We formulate and investigate a definition of entourage uniformity —

alternative to that one of Fletcher and Hunsaker — which, in our opinion, is more

likely to the Weil pointed entourage uniformity, since it is expressed in terms of

coproducts of frames (i.e., products of locales). We identify this new notion with

the existing ones by proving the (concrete) isomorphism between the respective

categories.

11



WEIL UNIFORM FRAMES

1. Uniform spaces

Uniformities on a set X were introduced in the thirties by André Weil, in terms of

subsets of X ×X containing the diagonal

∆X := {(x, x) : x ∈ X},

called “entourages” or “surroundings”. The classical account of this subject is in

Chapter II of Bourbaki [15].

Definitions 1.1. (Weil [76]) Let X be a set.

(a) A subset E of X ×X is called an entourage of X if it contains the diagonal ∆X .

(b) A uniformity on X is a set E of entourages of X such that:

(UW1) E is a filter of the complete lattice (WEnt(X),⊆) of all entourages of X;

(UW2) for each E ∈ E there exists F ∈ E such that the entourage

F ◦ F := {(x, y) ∈ X ×X | there is z ∈ X such that (x, z), (z, y) ∈ F}

is contained in E;

(UW3) for every E ∈ E the set

E−1 := {(x, y) ∈ X ×X | (y, x) ∈ E}

is also in E .

The pair (X, E) is then called a uniform space.

(c) A map f : (X, E) −→ (X ′, E ′), where (X, E) and (X ′, E ′) are uniform spaces, is

uniformly continuous if, for every E ∈ E ′, (f × f)−1(E) ∈ E .

A basis of a uniformity E is a subfamily E ′ of E such that ↑ E ′ = E . A collection

E ′ of entourages of X is therefore a basis of some uniformity if and only if it is a filter

basis of (WEnt(X),⊆) satisfying (UW2) and the condition

for every E ∈ E ′ there exists F ∈ E ′ such that F−1 ⊆ E.

12
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If (X, E) is a uniform space a topology TE on X (the uniform topology) is defined

as follows:

A ∈ TE if for every x ∈ A there exists E ∈ E such that E[x] := {y ∈ X |

(x, y) ∈ E} ⊆ A.

For A,B ⊆ X, we write A
E
<B if E ◦ (A × A) ⊆ B × B for some E ∈ E . Since

A × A ⊆ E ◦ (A × A), the order relation
E
< is stronger than the inclusion ⊆. The

following result is well known:

Proposition 1.2. (Weil [76]) Let (X, E) be a uniform space. Then, for every A ∈ TE ,

A =
⋃

{B ∈ TE | B
E
<A}.

There is another equivalent axiomatization of the notion of uniformity, due to

Tukey [75], in which the basic term is the one of “uniform cover” of X:

Definitions 1.3. (Tukey [75]) Let X be a set.

(a) A subset U of P(X) is a cover of X if
⋃

U∈U U = X. For A ⊆ X,

st(A,U) :=
⋃

{U ∈ U | U ∩A 6= ∅}

is called the star of A in U . A cover U refines a cover V, and in this case one

writes U ≤ V, if for each U ∈ U there exists V ∈ V such that U ⊆ V .

(b) A covering uniformity on X is a set µ of covers of X such that:

(U1) µ is a filter of the preordered set (Cov(X),≤) of all covers of X;

(U2) for each U ∈ µ there is V ∈ µ such that the cover

V∗ := {st(V,V) | V ∈ V}

refines U .

A basis of a covering uniformity µ is a subfamily µ′ of µ such that ↑ µ′ = µ.

Evidently, µ′ is a basis for some covering uniformity if and only if it is a filter basis of

(Cov(X),≤) such that, for every U ∈ µ′, there exists V ∈ µ′ satisfying V∗ ≤ U .

13
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Theorem 1.4. (Tukey [75]) The family µ of all uniform covers of a uniform space

(X, E), that is, the family of all covers refined by a cover of the form {E[x] for some

E ∈ E and x ∈ X, is a filter basis for a covering uniformity on X.

Conversely, given any covering uniformity µ on a set X, the family of all sets

⋃

U∈U

(U × U),

for U ∈ µ, is a basis for a uniformity on X, whose uniform covers are precisely the

elements of µ.

From a categorical point of view this means that there is a concrete isomorphism

between the category of uniform spaces of Weil and the category of uniform spaces of

Tukey (which are concrete categories over the category of sets). Informally, this means

that the description of these “structured sets”, although distinct, are essentially the

same and we may substitute one structure for the other with no problem.

Thus the uniform covers also describe a uniformity and one may define a uniform

space as a pair (X,µ) formed by a set X and a family µ of covers of X satisfying

axioms (U1) and (U2) of Definition 1.3.

With this language, the uniform topology induced by (X,U) is the set of all A ⊆ X

such that for every x ∈ A there exists U ∈ µ satisfying st(x,U) ⊆ A. Proposition 1.2

has now the following formulation:

Proposition 1.5. (Tukey [75]) Let (X,µ) be a uniform space given in terms of covers

and let Tµ be the associated topology on X. Then, for every A ∈ Tµ, A =
⋃

{B ∈ Tµ |

B
µ
<A}, where B

µ
<A means that there is U ∈ µ such that st(B,U) ⊆ A.

A map f : (X,µ) −→ (X ′, µ′), where (X,µ) and (X ′, µ′) are uniform spaces, is

uniformly continuous if and only if, for every U ∈ µ′,

f−1[U ] := {f−1(U) | U ∈ U}

belongs to µ.
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2. Covering uniform frames

It was Tukey’s approach to uniform spaces via covers that was first studied in the

pointfree context of frames. In [39] Isbell introduced uniformities on frames, as the pre-

cise translation into frame terms of Tukey’s notion of a uniformity of a space expressed

in terms of open covers, later developed in detail by Pultr ([63], [64]). Subsequently,

Frith [29] studied uniform-type structures from a more categorical point of view, also

making use of frame covers.

From here on throughout the remainder of this thesis, L will always denote a frame.

A set U ⊆ L is a cover of L if
∨

x∈U x = 1. For x ∈ L, the element

st(x, U) :=
∨

{y ∈ U | y ∧ x 6= 0}

is called the star of x in U . The set of covers of L can be preordered: a cover U refines

a cover V , written U ≤ V , if for each x ∈ U there is y ∈ V with x ≤ y. This is a

preordered set with meets and joins: take for U ∧ V the cover {x ∧ y | x ∈ U, y ∈ V }

and for U ∨ V just the union U ∪ V .

For each family U of covers of L let us consider the order relation in L defined by

x
U
< y (read “x is U-strongly below x”) if there is U ∈ U such that st(x, U) ≤ y.

Note that these orders are indeed stronger than ≤ because x ≤ st(x, U) for every cover

U .

Definition 1.3 and Proposition 1.5 motivate the notion of uniform frame:

Definitions 2.1. (Isbell [39])

(a) Let L be a frame. A family U of covers of L is a uniformity basis provided that:

(U1) U is a filter basis of the preordered set (Cov(L),≤) of all covers of L;

(U2) every U ∈ U has a star-refinement, i.e., for every U ∈ U there is V ∈ U

with

V ∗ := {st(x, V ) | x ∈ V } ≤ U ;

(U3) for every x ∈ L, x =
∨

{y ∈ L | y
U
< x}.
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A uniformity on L is a filter U of covers of L generated by some uniformity basis.

The pair (L,U) is then called a uniform frame.

(b) Let (L,U) and (L′,U ′) be uniform frames. A frame homomorphism f : L −→ L′

is a uniform homomorphism if, for every U ∈ U , f(U) = {f(x) | x ∈ U} ∈ U ′.

We denote by UFrm the category of uniform frames and uniform homomorphisms.

The category UFrm can be related to the category Unif of uniform spaces and

uniformly continuous maps via the open and spectrum functors [29]:

• The open functor Ω : Unif −→ UFrm assigns to each uniform space (X,µ) the

uniform frame (Tµ,UTµ), where Tµ is the topology induced by µ and UTµ is the

collection of the Tµ-open covers of µ. If f : (X,µ) −→ (X ′, µ′) is uniformly

continuous, then Ω(f) : Ω(X ′, µ′) −→ Ω(X,µ) defined by Ω(f)(U) = f−1(U) is

a uniform homomorphism.

• The spectrum functor Σ : UFrm −→ Unif assigns to each uniform frame (L,U)

the uniform space (ptL, µptL), being µptL the filter of covers of ptL generated by
{

{Σx : x ∈ U} | U ∈ U
}

, where Σx = {p ∈ ptL | p(x) = 1} as defined previously.

If f : (L,U) −→ (L′,U ′) is a uniform homomorphism then Σ(f) : Σ(L′,U ′) −→

Σ(L,U), given by Σ(f)(p) = p · f , is uniformly continuous.

Theorem 2.2. (Frith [29]) The two above contravariant functors Ω and Σ define a

dual adjunction, with the adjunction units

η(X,µ) : (X,µ) −→ ΣΩ(X,µ) and ξ(L,U) : (L,U) −→ ΩΣ(L,U)

given by η(X,µ)(x)(U) = 1 if and only if x ∈ U and ξ(L,U)(x) = Σx.

3. Entourage uniform frames

In [39] the author also suggested a theory of frame uniformities by entourages but,

intentionally, put it aside:
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“Entourages ought to work, but not in the present state of knowledge of

product locales”.

In a recent article [23] Fletcher and Hunsaker were the first to approach this problem

and presented a new theory of uniformities, which they proved to be equivalent to the

covering one, and where the basic term is the one of “entourage” which names certain

maps from the frame into itself. Let us briefly recall it:

Let O(L) be the collection of all order-preserving maps from L to L. The pair

(O(L),≤) where ≤ is defined pointwisely, that is,

e ≤ f ≡ ∀ x ∈ L e(x) ≤ f(x)

is a frame; the join ∨ and the meet ∧ are also defined pointwisely:

(e ∨ f)(x) = e(x) ∨ f(x) and (e ∧ f)(x) = e(x) ∧ f(x) for every x ∈ L.

If e ∈ O(L) and x ∈ L, then x is e-small if x ≤ e(y) whenever x ∧ y 6= 0. A map e of

O(L) is an entourage of L if the set of all e-small elements of L is a cover. Note that,

in this case, x ≤ e(x) for every x ∈ L (and, consequently, en ≤ en+1, for every natural

n) . Indeed, we have

x = x ∧
∨

{y ∈ L | y is e-small} =
∨

{x ∧ y | y is e-small and x ∧ y 6= 0} ≤ e(x).

For any setM of entourages of L and x, y ∈ L, the relation x
M
<y means that there

exists e ∈M with e(x) ≤ y. Obviously, x
M
<y implies x ≤ y.

Definitions 3.1. (Fletcher and Hunsaker [23])

(a) Let L be a frame. A family M of entourages of L is an entourage uniformity

basis provided that:

(UE1) for any e, f ∈ M there exists a join-homomorphism g ∈ M such that

g ≤ e ∧ f ;

(UE2) for each e ∈M there is f ∈M such that f · f ≤ e;

(UE3) for every e ∈M and x, y ∈ L, x ∧ e(y) = 0 if and only if e(x) ∧ y = 0;
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(UE4) for every x in L, x =
∨

{y ∈ L | y
M
<x}.

A subsetM of O(L) is called an entourage uniformity on L if it is generated by

an entourage uniformity basisM′, i.e.,

M = {e ∈ O(L) | there is f ∈M′ such that f ≤ e}.

The pair (L,M) is then called an entourage uniform frame.

(b) Let (L,M) and (L′,M′) be entourage uniform frames. An entourage uniform

homomorphism f : (L,M) −→ (L′,M′) is a frame map f : L −→ L′ such that,

for every e ∈M, there exists g ∈M′ with g · f ≤ f · e.

The category of entourage uniform frames and entourage uniform homomorphisms

will be denoted by EUFrm.

4. Weil uniform frames

Now, following the hint of Isbell [39], let us present an alternative approach to

entourage uniformities, expressed in terms of the coproduct L ⊕ L, showing this way

that entourages in the style of Weil do work in the pointless context.

Consider the cartesian product L×L with the usual order. If A and B are down-sets

of L× L, we denote by A ·B the set

{(x, y) ∈ L× L | there is z ∈ L \ {0} such that (x, z) ∈ A and (z, y) ∈ B}

and by A ◦B the C-ideal generated by A ·B.

The operation ◦ (which in general is not commutative) is associative and so brack-

eting is unnecessary for repeated compositions such as

An = A ◦A ◦ · · · ◦A (n factors).

Further we have:

For any A ∈ D(L× L), A−1 := {(x, y) ∈ L× L | (y, x) ∈ A} and A is symmetric if

A = A−1. The element

∨

{y ∈ L | (y, y) ∈ A, y ∧ x 6= 0}
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will be denoted by st(x,A). In the following proposition we list some obvious properties

of these operators.

Proposition 4.1. Let x, y ∈ L and A,B ∈ D(L× L). Then:

(a) (x⊕ y)−1 = y ⊕ x;

(b) (A ◦B)−1 = B−1 ◦A−1;

(c) A ◦ O = O ◦A = O;

(d) st(x,A)⊕ y ⊆ A ◦ (x⊕ y) and x⊕ st(y,A) ⊆ (x⊕ y) ◦A.

The map

k0 : D(L× L) −→ D(L× L)

A 7−→
{

(x,
∨

S) | {x} × S ⊆ A
}

⋃

{

(
∨

S, y) | S × {y} ⊆ A
}

is a prenucleus, that is, for all A,B ∈ D(L × L), A ⊆ k0(A), k0(A) ∩ B ⊆ k0(A ∩ B)

and k0(A) ⊆ k0(B) whenever A ⊆ B. Consequently (cf. [4])

Fix(k0) := {A ∈ D(L× L) | k0(A) = A} = L⊕ L

is a closure system, and the associated closure operator is then given by

k(A) =
⋂

{B ∈ L⊕ L | A ⊆ B},

which is the C-ideal generated by A. The following technical lemma will play a crucial

role in the sequel.

Lemma 4.2. Let A,B ∈ D(L× L). Then:

(a) k(A) ◦ k(B) = A ◦B;

(b) k(A−1) = k(A)−1.
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Proof.

(a) It suffices to show that k(A) · k(B) ⊆ k(A ·B). For this, consider the non-empty

set

IIE = {E ∈ D(L× L) | A ⊆ E ⊆ k(A), E ·B ⊆ k(A ·B)}

and let us prove that k0(E) ∈ IIE whenever E ∈ IIE.

So, consider (x, y) ∈ k0(E) ·B and z 6= 0 such that (x, z) ∈ k0(E) and (z, y) ∈ B.

If (x, z) = (x,
∨

S) for some S with {x} × S ⊆ E, there is a non-zero s ∈ S such

that (x, s) ∈ E and (s, y) ∈ B and, therefore, (x, y) ∈ E · B ⊆ k(A · B). On the

other hand, if (x, z) = (
∨

S, z) for some S with S × {z} ⊆ E, (s, y) ∈ E · B for

every s ∈ S and, therefore, (x, y) ∈ k0(E ·B) ⊆ k(A ·B).

Moreover, for any non-void IIF ⊆ IIE,
⋃

F∈IIF F ∈ IIE, since (
⋃

F∈IIF F ) ·B ⊆
⋃

F∈IIF(F ·

B). Therefore S =
⋃

E∈IIEE belongs to IIE, i.e., IIE has a largest element S. But

k0(S) ∈ IIE so S = k0(S), i.e., S is a C-ideal. Hence k(A) = S ∈ IIE and,

consequently, k(A) ·B ⊆ k(A ·B). By symmetry, A · k(B) ⊆ k(A ·B).

In conclusion, we have k(A) · k(B) ⊆ k(A · k(B)) ⊆ k2(A · B) = k(A · B), as

desired.

(b) Consider A ∈ D(L× L) and let

IIE = {E ∈ D(L× L) | A−1 ⊆ E ⊆ k(A−1), E ⊆ k(A)−1}.

The set IIE is non-empty and k0(E) ∈ IIE whenever E ∈ IIE. Moreover, for any

non-void IIF ⊆ IIE,
⋃

F∈IIF F ∈ IIE. Therefore IIE has a largest element S which

must be k(A−1) since S = k0(S) and A−1 ⊆ S ⊆ k(A−1). This says that

k(A−1) ⊆ k(A)−1. Since A is arbitrary, k(A)−1 ⊆ k(A−1), i.e., k(A−1) = k(A)−1.

The map k can also be constructed from k0, by transfinite induction over the class

Ord of ordinals:

If one defines, for each A ∈ D(L× L) and each ordinal β,

• k0
0(A) = A,
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• kβ0 (A) = k0(k
α
0 (A)) if β = α+ 1,

• kβ0 (A) =
∨

{kα0 (A) | α < β} if β is a limit ordinal,

then

k =
∨

β∈Ord

kβ0 .

Thus, the preceding lemma can be proved by transfinite induction. The approach we

followed (inspired by [4] and [5]) avoids the use of ordinals.

Definition 4.3. We define a Weil entourage of L as an element E of L⊕L for which

there exists a cover U of L satisfying

∨

x∈U

(x⊕ x) ⊆ E.

This is equivalent to saying that

{x ∈ L | (x, x) ∈ E}

is a cover of L.

The collection WEnt(L) of all Weil entourages of L may be partially ordered by

inclusion. This is a complete lattice.

Proposition 4.4. Let E be a Weil entourage. Then:

(a) for any x ∈ L, x ≤ st(x,E);

(b) En ⊆ En+1 for every natural n;

(c) for any A ∈ D(L× L), A ⊆ (E ◦A) ∩ (A ◦ E).

Proof.

(a) Consider x ∈ L. We have

x = x ∧
∨

{y ∈ L | (y, y) ∈ E} =
∨

{x ∧ y | (y, y) ∈ E, x ∧ y 6= 0} ≤ st(x,E).

(b) It suffices to prove that E ⊆ E2.

Consider (x, y) ∈ E. By (a), y ≤ st(y,E). But, by Proposition 4.1 (d), x ⊕

st(y,E) ⊆ (x⊕ y) ◦ E ⊆ E2. Consequently, (x, y) ∈ E2.
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(c) Let (x, y) ∈ A. The cases x = 0 or y = 0 are trivial. If x, y 6= 0, since

x =
∨

{x ∧ z | (z, z) ∈ E, x ∧ z 6= 0} and, for any (z, z) ∈ E with x ∧ z 6= 0,

(z, y) ∈ E ◦A, we have, by definition of C-ideal, that (x, y) ∈ E ◦A.

Similarly, A ⊆ A ◦ E.

Let E be a set of Weil entourages. By definition, we write x
E
<y whenever E ◦ (x⊕

x) ⊆ y ⊕ y for some E ∈ E .

Definition 1.1 and Proposition 1.2 suggests us the introduction of the following

definitions:

Definitions 4.5.

(a) Let L be a frame and let E ⊆ WEnt(L). We say that the pair (L, E) is a Weil

uniform frame if:

(UW1) E is a filter of (WEnt(L),⊆);

(UW2) for each E ∈ E there is F ∈ E such that F ◦ F ⊆ E;

(UW3) for any E ∈ E , E−1 is also in E ;

(UW4) for any x ∈ L, x =
∨

{y ∈ L | y
E
<x}.

We say in these circumstances that the family E is a Weil uniformity on L. A

Weil uniformity basis is just a filter basis of some Weil uniformity.

(b) Let (L, E) and (L′, E ′) be Weil uniform frames. A Weil uniform homomorphism

f : (L, E) −→ (L′, E ′) is a frame map f : L −→ L′ such that (f ⊕ f)(E) ∈ E ′

whenever E ∈ E .

These are the objects and morphisms of the category WUFrm.

It is useful to note that the symmetric Weil entourages E of E form a basis for

E . In fact, if E ∈ E then E−1 ∈ E so E ∩ E−1 is a symmetric Weil entourage of E

contained in E.

In case E is a Weil uniformity the order relation
E
< may be expressed in several

equivalent ways:
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Proposition 4.6. Let E be a Weil uniformity on L and let x, y ∈ L. The following

assertions are equivalent:

(i) x
E
<y;

(ii) (x⊕ x) ◦ E ⊆ y ⊕ y, for some E ∈ E;

(iii) E ◦ (x⊕ 1) ⊆ y ⊕ 1, for some E ∈ E;

(iv) (1⊕ x) ◦ E ⊆ 1⊕ y, for some E ∈ E;

(v) st(x,E) ≤ y, for some E ∈ E.

Proof. We only prove that statements (i) and (v) are equivalent because the proofs

that each one of (ii), (iii) and (iv) is equivalent to (v) are similar.

(i) ⇒ (v): For any z with (z, z) ∈ E and z ∧ x 6= 0, the pair (z, x) belongs to

E ◦ (x⊕ x) ⊆ y ⊕ y. Therefore z ≤ y.

(v) ⇒ (i): In order to show that x
E
<y it suffices to prove that F ◦(x⊕x) ⊆ y⊕y for

any symmetric F ∈ E such that F 2 ⊆ E. So, consider a, b, c ∈ L such that (a, b) ∈ F ,

(b, c) ≤ (x, x) and a, b, c 6= 0. Then (a, b) ∈ F 2 and, by the symmetry of F , (b, a) ∈ F 2,

which forces (a ∨ b, a ∨ b) ∈ F 2 ⊆ E, as (a, a) and (b, b) also belong to F 2. Thus

(a ∨ b, a ∨ b) ∈ E and, therefore, a ≤ st(x,E), since (a ∨ b) ∧ x ≥ b 6= 0. Hence a ≤ y

and c ≤ x ≤ st(x,E) ≤ y which implies that (a, c) ∈ y ⊕ y.

In particular, it follows from this proposition that
E
< is stronger than ≤. We call

E
< the strong inclusion for E , and when x

E
<y we say that x is E-strongly below y.

Remark 4.7. Trivially, x
E
<y also implies that E ◦ (1⊕x) ⊆ 1⊕y for some E ∈ E (al-

though the reverse implication is not true). Therefore, condition (UW4) of Definition

4.5 could be formulated in the following equivalent way:

For each J ∈ L ⊕ L, J =
∨

{I ∈ L ⊕ L | I
E
⊑J}, where I

E
⊑J means that

E ◦ I ⊆ J for some E ∈ E .

Indeed, for every J =
∨

γ∈Γ(aγ ⊕ bγ) ∈ L⊕ L, we have

aγ ⊕ bγ =

(

∨

{x ∈ L | x
E
<aγ}

)

⊕

(

∨

{y ∈ L | y
E
<bγ}

)

=
∨

{x⊕ y | x
E
<aγ , y

E
<bγ},
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since, for every γ ∈ Γ, aγ =
∨

{x ∈ L | x
E
<aγ} and bγ =

∨

{y ∈ L | y
E
<bγ}. But x

E
<aγ

and y
E
<bγ imply, respectively, that E1 ◦ (x⊕ 1) ⊆ aγ ⊕ 1 and E2 ◦ (1⊕ y) ⊆ 1⊕ bγ , for

some E1, E2 ∈ E ; thus

E ◦ (x⊕ y) ⊆
(

E ◦ (x⊕ 1)
)

∩
(

E ◦ (1⊕ y)
)

⊆ (aγ ⊕ bγ),

for E = E1 ∩ E2 ∈ E . Consequently,

∨

{x⊕ y | x
E
<aγ , y

E
<bγ} ⊆

∨

{I ∈ L⊕ L | I
E
⊑(aγ ⊕ bγ)}.

Conversely, for every x ∈ L,

x⊕ 1 = {I ∈ L⊕ L | I
E
⊑(x⊕ 1)} ≤

(

∨

{y ∈ L | y
E
<x}

)

⊕ 1,

because I
E
⊑(x⊕1) implies that, for every (a, b) ∈ I, a

E
<x, i.e., I ⊆ (

∨

{y ∈ L | y
E
<x})⊕1.

Hence x ≤
∨

{y ∈ L | y
E
<x}.

The order
E
< has the same nice properties as its corresponding order

U
< for covering

uniformities:

Proposition 4.8. Assume that E is a basis for a filter of (WEnt(L),⊆). Then the

relation
E
< is a sublattice of L× L satisfying the following properties:

(a) for any x, y, z, w in L, x ≤ y
E
<z ≤ w implies x

E
<w;

(b) x
E
<y implies x ≺ y.

Furthermore, we have:

(c) if E is a basis for a Weil uniformity, the relation
E
< interpolates, that is, there

exists z ∈ L such that x
E
<z

E
<y whenever x

E
<y;

(d) for any morphism f : (L, E) −→ (L′, E ′) of WUFrm, if x
E
<y then f(x)

E ′

<f(y).

Proof. If E1 ◦ (x1 ⊕ x1) ⊆ y1 ⊕ y1 and E2 ◦ (x2 ⊕ x2) ⊆ y2 ⊕ y2 with E1, E2 ∈ E then,

immediately,

(E1 ∩ E2) ◦ (x1 ∧ x2 ⊕ x1 ∧ x2) ⊆
(

E1 ◦ (x1 ⊕ x1)
)

∩
(

E2 ◦ (x2 ⊕ x2)
)

⊆ (y1 ⊕ y1) ∩ (y2 ⊕ y2)

⊆ (y1 ∧ y2)⊕ (y1 ∧ y2).
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Since E is a filter basis, there exists F ∈ E such that F ⊆ E1∩E2, and so x1∧x2
E
<y1∧y2

whenever x1
E
<y1 and x2

E
<y2. On the other hand, if st(x1, E1) ≤ y1 and st(x2, E2) ≤ y2

for E1, E2 ∈ E , then st(x1 ∨ x2, E1 ∩ E2) ≤ y1 ∨ y2 because

st(x1 ∨ x2, E1 ∩ E2) ≤ st(x1, E1) ∨ st(x2, E2).

Hence, x1
E
<y1 and x2

E
<y2 imply that x1∨x2

E
<y1∨y2 and the relation

E
< is a sublattice

of L× L. Obviously 0
E
<0 and 1

E
<1 so this sublattice is bounded.

(a) It is obvious.

(b) Let E ∈ E be such that E ◦ (x⊕ x) ⊆ y ⊕ y. Then st(x,E) ≤ y. Also

1 =
∨

{w ∈ L | (w,w) ∈ E} = st(x,E) ∨
∨

{w ∈ L | (w,w) ∈ E,w ∧ x = 0}.

Denote
∨

{w ∈ L | (w,w) ∈ E,w ∧ x = 0} by z. Since z ∧ x = 0 and z ∨ y ≥

z ∨ st(x,E) = 1, z separates x and y.

(c) Suppose that x
E
<y. Then there is some E ∈ E with st(x,E) ≤ y. Consider

F ∈ E satisfying F 2 ⊆ E. Of course, x
E
<st(x, F ). We claim that st(x, F )

E
<y.

Since st(x, F 2) ≤ st(x,E) ≤ y, it suffices to show that st(st(x, F ), F ) ≤ st(x, F 2),

which is always true for any C-ideal F :

In fact, st(st(x, F ), F ) =
∨

{y ∈ L | (y, y) ∈ F, y ∧ st(x, F ) 6= 0}. Consider y ∈ L

with (y, y) ∈ F and y ∧ st(x, F ) 6= 0. Then there is z ∈ L such that (z, z) ∈ F ,

z ∧ x 6= 0 and z ∧ y 6= 0. Therefore (y, y ∧ z) ∈ F and (y ∧ z, z) ∈ F thus

(y, z) ∈ F 2. Similarly, (z, y) ∈ F 2. Also (y, y), (z, z) ∈ F 2. But F 2 is a C-ideal

so (y∨z, y∨z) ∈ F 2. In conclusion, (y∨z, y∨z) ∈ F 2 and (y∨z)∧x ≥ z∧x 6= 0,

hence y ≤ st(x, F 2) and st(st(x, F ), F ) ≤ st(x, F 2) as we claimed.

(d) Assume that E ◦ (x⊕ x) ⊆ y ⊕ y for some E ∈ E . An application of Lemma 4.2

(a) yields

(f ⊕ f)(E) ◦ (f(x)⊕ f(x)) =

(

⋃

(a,b)∈E

(f(a)⊕ f(b))

)

◦ (f(x)⊕ f(x)).

If (x′, y′) ≤ (f(a), f(b)) for some (a, b) ∈ E, (y′, z′) ≤ (f(x), f(x)) and x′, y′, z′ 6=

0, then f(b∧x) 6= 0. Thus b∧x 6= 0 and (a, x) ∈ E ◦(x⊕x) ⊆ y⊕y, i.e., a, x ≤ y.
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So, (f ⊕ f)(E) ◦ (f(x)⊕ f(x)) ⊆ f(y)⊕ f(y). Since (f ⊕ f)(E) ∈ E ′ we conclude

that f(x)
E ′

<f(y).

In particular, it follows from (b) that L is necessarily a regular frame. From (c) it

follows that, under the Countable Dependent Axiom of Choice, L is completely regular.

We proceed to consider some examples of Weil uniform frames.

Examples 4.9.

(a) Let (L, d) be a metric frame (see Section II.2 of this thesis or, for more informa-

tion, [64]). For any real ǫ > 0 let Eǫ =
∨

{x⊕ x | d(x) < ǫ}. The family (Eǫ)ǫ>0

is a basis for a Weil uniformity on L.

(b) For every (Weil) uniform space (X, E), let TE be the topology induced by E on

X and consider the collection of all Weil entourages
∨

x∈X(E[x] ⊕ E[x]), with

E ∈ E . Immediately, for any E,F ∈ E ,

∨

x∈X

(

(E ∩ F )[x]⊕ (E ∩ F )[x]
)

⊆

(

∨

x∈X

(E[x]⊕ E[x])

)

∩

(

∨

x∈X

(F [x]⊕ F [x])

)

.

Furthermore, for any E,F ∈ E with F symmetric and F 2 ⊆ E,

(

∨

x∈X

(F [x]⊕ F [x])

)

◦

(

∨

x∈X

(F [x]⊕ F [x])

)

⊆
∨

x∈X

(E[x]⊕ E[x]),

and
(

∨

x∈X

(F [x]⊕ F [x])

)

◦ (V ⊕ V ) ⊆ U ⊕ U

whenever U, V ⊆ X and E ◦ (V ×V ) ⊆ U ×U . Therefore the above collection of

Weil entourages is a basis for a Weil uniformity ETE on TE .

(c) Let B be a complete Boolean algebra. For each b ∈ B, the C-ideal

Eb = (b⊕ b) ∨ (b∗ ⊕ b∗)

is a Weil entourage of B. By Lemma 4.2 (a),

Eb ◦ Eb = ((b⊕ b) ∪ (b∗ ⊕ b∗)) ◦ ((b⊕ b) ∪ (b∗ ⊕ b∗)).
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Then, easily, Eb ◦ Eb = Eb. Similarly, Eb ◦ (b ⊕ b) = b ⊕ b, that is, b is

{Eb}-strongly below b. Hence, we have a subbasis for a Weil uniformity on

B, i.e., taking all finite meets of Weil entourages of this type, we form a basis for

a Weil uniformity.

(d) In the same way that the categorical notion of group [52] in the category of

topological spaces yields the topological groups, it defines the “localic groups”

[40] in the category of locales. So, a localic group is a cogroup in the category

of frames, that is, a frame L endowed with a multiplication µ : L −→ L⊕ L, an

inverse ı : L −→ L and a unit point ε : L −→ 2 satisfying the identities

(µ⊕ 1L) · µ = (1L ⊕ µ) · µ,

(ε⊕ 1L) · µ = 1L = (1L ⊕ ε) · µ

and

∇ · (ı⊕ 1L) · µ = ∇ · (1L ⊕ ı) · µ = σ · ε,

where ∇ : L⊕ L −→ L is the codiagonal and σ is the morphism 2 −→ L. Note

that the usual properties for groups

ε · ı = ε,

ı · ı = ı

and

µ · ı = τ · (ı⊕ ı) · µ,

where τ is the unique map from L ⊕ L to L ⊕ L satisfying τ · uL = u′L and

τ · u′L = uL (uL and u′L are the injections of the coproduct), are also valid here.

These groups have Weil uniformities that arise in a similar way as in the spatial

setting of topological groups. For any x ∈ L such that ε(x) = 1 put

Elx := (1L ⊕ ı)(µ(x)) and Erx := (ı⊕ 1L)(µ(x)).

Proposition 4.10. E l := {Elx | x ∈ L, ε(x) = 1} and Er := {Erx | x ∈ L, ε(x) =

1} are bases for Weil uniformities.
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Proof. We only show that Er is a Weil uniformity basis. The proof for E l is

similar.

Each Erx is a Weil entourage because ∇ · (ı ⊕ 1L) · µ(x) = 1. In fact, any

C-ideal A satisfying ∇(A) = 1 is a Weil entourage: if A =
∨

γ∈Γ(aγ ⊕ bγ) and

∇(A) =
∨

γ∈Γ(aγ ∧ bγ) = 1 then {aγ ∧ bγ | γ ∈ Γ} is a cover of L and
∨

γ∈Γ(aγ ∧

bγ ⊕ aγ ∧ bγ) ⊆ A.

Obviously, Erx ∩ E
r
y = Erx∧y. Since ε(x ∧ y) = 1 whenever ε(x) = ε(y) = 1, Er is

a filter basis of (WEnt(L),⊆).

The symmetry is a consequence of the fact that, for every x, (Erx)
−1 = Erı(x)

which we prove next. Put µ(x) =
∨

γ∈Γ(xγ ⊕ yγ). Then Erx =
∨

γ∈Γ(ı(xγ)⊕ yγ).

On the other hand, since µ ·ı = τ ·(ı⊕ı) ·µ, we have µ(ı(x)) =
∨

γ∈Γ(ı(yγ)⊕ı(xγ))

and, therefore, Erı(x) =
∨

γ∈Γ(yγ ⊕ ı(xγ)).

Now, consider Erx with ε(x) = 1. We have

ε = 12 ⊕ ε = (12 ⊕ ε) · (ε⊕ 1L) · µ = (ε⊕ ε) · µ.

Thus (ε ⊕ ε) · µ(x) = 1, that is,
∨

{ε(a) ⊕ ε(b) | (a, b) ∈ µ(x)} = 1. Therefore

there is some (a, b) ∈ µ(x) with ε(a) = ε(b) = 1. Also (a ∧ b, a ∧ b) ∈ µ(x) and

ε(a ∧ b) = 1. Denote a ∧ b by y. We claim that Ery ◦E
r
y ⊆ E

r
x. In fact Ery ◦E

r
y is

the Weil entourage

(

∨

(a,b)∈µ(y)

(ı(a)⊕b)

)

◦

(

∨

(a,b)∈µ(y)

(ı(a)⊕b)

)

=

(

⋃

(a,b)∈µ(y)

(ı(a)⊕b)

)

◦

(

⋃

(a,b)∈µ(y)

(ı(a)⊕b)

)

.

Take (ı(a), b) with (a, b) ∈ µ(y) and (ı(c), d) with (c, d) ∈ µ(y) such that b∧ı(c) 6=

0. From the inclusion y ⊕ y ⊆ µ(x) it follows that

µ(y)⊕ µ(y) ⊆ (µ⊕ µ)(µ(x)) = (1L ⊕ µ⊕ 1L) · (µ⊕ 1L) · (µ(x)).

Therefore

a⊕ b⊕ c⊕ d ⊆ (1L ⊕ µ⊕ 1L) · (µ⊕ 1L) · (µ(x)).

Applying 1L ⊕∇ · (1L ⊕ ı)⊕ 1L to both sides we get

a⊕ (b ∧ ı(c))⊕ d ⊆ (1L ⊕ σ ⊕ 1L) · (µ(x)) =
∨

(a,b)∈µ(x)

(a⊕ 1L ⊕ b).
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Since b ∧ ı(c) 6= 0, then (a, d) ∈ µ(x) and (ı(a), d) ∈ Erx. Hence Ery ◦ E
r
y ⊆ E

r
x.

Finally, let us check the admissibility condition (UW4). From the identity (1L⊕

ε) · µ = 1L, it follows that, for every x ∈ L,

x =
∨

{a⊕ε(b) | a⊕b ⊆ µ(x)} =
∨

{a ∈ L | ∃b ∈ L : ε(b) = 1 and a⊕b ⊆ µ(x)},

so it remains to show that a is Er-strongly below x whenever there is some b ∈ L

satisfying ε(b) = 1 and a⊕ b ⊆ µ(x). By Proposition 4.6 it suffices to prove that

st(a,Erb ) ≤ x. So, assume (c, c) ∈ Erb and c ∧ a 6= 0. Then ı(c) ⊕ c ⊆ µ(b). On

the other hand, a⊕ b ⊆ µ(x). Consequently,

a⊕ b⊕ a ⊆ (µ⊕ 1L)(x⊕ a)

⇒ a⊕ µ(b)⊕ a ⊆ (1L ⊕ µ⊕ 1L) · (µ⊕ 1L)(x⊕ a)

⇒ a⊕ ı(c)⊕ a ⊆ (1L ⊕ µ⊕ 1L) · (µ⊕ 1L)(x⊕ a).

By the associativity of µ,

(1L ⊕ µ⊕ 1L) · (µ⊕ 1L) =
(

(1L ⊕ µ) · µ
)

⊕ 1L

=
(

(µ⊕ 1L) · µ
)

⊕ 1L

= (µ⊕ 1L ⊕ 1L) · (µ⊕ 1L).

Thus,

a⊕ ı(c)⊕ c⊕ a ⊆ (µ⊕ 1L ⊕ 1L) · (µ⊕ 1L)(x⊕ a).

Applying (∇ · (1L ⊕ ı))⊕ 1L ⊕ 1L to both sides we get

a ∧ c⊕ c⊕ a ⊆ (σ · ε⊕ 1L ⊕ 1L) · (µ⊕ 1L)(x⊕ a)

= ((σ · ε⊕ 1L) · µ⊕ 1L)(x⊕ a)

= (((σ ⊕ 1L) · (ε⊕ 1L) · µ)⊕ 1L)(x⊕ a)

= (σ ⊕ 1L ⊕ 1L)(x⊕ a).

But σ ⊕ 1L(x) = 1 ⊕ x so (a ∧ c) ⊕ c ⊕ a ⊆ 1 ⊕ x ⊕ a. Since a ∧ c 6= 0, we

finally obtain c⊕ a ⊆ x⊕ a. In conclusion, for every (c, c) ∈ Erb with c ∧ a 6= 0,

c⊕ a ⊆ x⊕ a. Hence st(a,Erb )⊕ a ⊆ x⊕ a and st(a,Erb ) ≤ x.
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We point out that, as for topological groups, the map ı is a Weil uniform frame

isomorphism between the two structures: ı is a frame isomorphism, and, for any

x ∈ L,

(ı⊕ ı)(Erx) = (ı⊕ ı)(ı⊕ 1L)(µ(x)) = (1L ⊕ ı)(µ(x)) = Elx.

The open and spectrum functors may be adapted to this setting and act as a

categorical guide of the correctness of the notion of Weil uniform frame. It suffices

to define the open functor Ω : Unif −→ WUFrm by assigning to each uniform space

(X, E) the Weil uniform frame Ω(X, E) = (TE , ETE ) of Example 4.9 (b) and to each

uniformly continuous map f : (X, E) −→ (X ′, E ′) the Weil uniform homomorphism

Ω(f) : Ω(X ′, E ′) −→ Ω(X, E) defined by Ω(f)(U) = f−1(U).

On the other way round, let (L, E) be a Weil uniform frame. For each E ∈ E , let

ΣE :=
⋃

(x,y)∈E

(Σx × Σy),

and denote by EptL the family of entourages of ptL each of which contains some member

of {ΣE | E ∈ E}.

Proposition 4.11. For (L, E) ∈WUFrm, Σ(L, E) = (ptL, EptL) is a uniform space.

Proof. Each ΣE is in fact an entourage since
∨

{x ∈ L | (x, x) ∈ E} = 1 implies that,

for every p ∈ ptL,
∨

{p(x) | (x, x) ∈ E} = 1, i.e., that there is some (x, x) ∈ E with

p(x) = 1.

The symmetry of EptL is a consequence of the fact that (ΣE)−1 = ΣE−1 .

Let E,F ∈ E ; trivially, ΣE ∩ ΣF = ΣE∩F and E ⊆ F implies ΣE ⊆ ΣF . Thus

{ΣE | E ∈ E} is a filter basis of (WEnt(L),⊆).

Finally, suppose F 2 ⊆ E ∈ E . Then ΣF ◦ ΣF ⊆ ΣE . To see this, suppose

(p, q), (q, r) ∈ ΣF and (x, y), (x′, y′) ∈ F with p(x) = 1, r(y′) = 1 and q(y) = q(x′) = 1.

Then x′ ∧ y 6= 0 so (x, y′) ∈ F 2 ⊆ E and (p, r) ∈ ΣE .

Lemma 4.12. Suppose that f : L −→ L′ is a frame map and let E ∈ L⊕ L. Then

⋃

(x,y)∈f⊕f(E)

(Σx × Σy) ⊆
⋃

(x,y)∈E

(Σf(x) × Σf(y)).
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4. Weil uniform frames

Proof. This lemma can be proved in a very similar way to Lemma 4.2; just consider

the set

IIE =

{

V ∈ D(L′ × L′) | U ⊆ V ⊆ k(U),
⋃

(x,y)∈V

(Σx × Σy) ⊆
⋃

(x,y)∈E

(Σf(x) × Σf(y))

}

where

U =
⋃

(x,y)∈E

(f(x)⊕ f(y)) ∈ D(L′ × L′),

and check that U ∈ IIE, k0(V ) ∈ IIE whenever V ∈ IIE and
⋃

i∈I Vi ∈ IIE whenever all Vi

belong to IIE. The essencial fact that makes things work is the observation that p ∈ Σxi

for some i ∈ I whenever p ∈ Σx and x =
∨

i∈I xi.

For any Weil uniform homomorphism f : (L, E) −→ (L′, E ′) define

Σ(f) : Σ(L′, E ′) −→ Σ(L, E)

by Σ(f)(p) = p · f .

Proposition 4.13. Σ(f) is uniformly continuous.

Proof. Let E ∈ E . Then

(Σ(f)× Σ(f))−1(ΣE) = {(p, q) ∈ ptL× ptL | (p · f, q · f) ∈ ΣE}

= {(p, q) ∈ ptL× ptL | ∃(x, y) ∈ E : p ∈ Σf(x), q ∈ Σf(y)}.

An application of Lemma 4.12 yields

(

Σ(f)× Σ(f)
)−1

(ΣE) ⊇ Σ(f⊕f)(E) ∈ EptL′ .

Hence
(

Σ(f)× Σ(f)
)−1

(ΣE) ∈ EptL′ .

In conclusion, Σ is a contravariant functor from WUFrm to Unif.

Theorem 4.14. The contravariant functors Ω and Σ constructed above define a dual

adjunction between the categories Unif and WUFrm.
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Proof. For any uniform space (X, E) let η(X,E) : (X, E) −→ ΣΩ(X, E) be defined by

η(X,E)(x)(U) = 1 if and only if x ∈ U . We check that η(X,E) is uniformly continuous.

Consider E ∈ E and let E be the Weil entourage
∨

x∈X(E[x]⊕E[x]) of ptTE . It suffices

to verify that (η(X,E) × η(X,E))
−1(ΣE) ∈ E . An easy computation is sufficient:

(η(X,E) × η(X,E))
−1(ΣE) =

{

(x, y) |
(

η(X,E)(x), η(X,E)(y)
)

∈
⋃

(U,V )∈E

(ΣU × ΣV )

}

= {(x, y) | ∃(U, V ) ∈ E : x ∈ U, y ∈ V }

⊇ E.

Since, for every f : (X, E) −→ (X ′, E ′), η(X′,E ′)(f(x)) = η(X,E)(x)·Ω(f), the maps η(X,E)

define a natural transformation η : 1Unif −→ ΣΩ. Besides, each morphism η(X,E) is

universal from (X, E) to Σ. Let f : (X, E) −→ Σ(L,F) be a uniformly continuous

map. Then there is a unique morphism f : (L,F) −→ Ω(X, E) in WUFrm such that

the diagram

-

?

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

Σ(L,F)

ΣΩ(X, E)(X, E)
η(X,E)

Σ(f)
f

commutes. Indeed, if one requires that, for every x ∈ X, Σ(f) · η(X,E)(x) = f(x), then,

necessarily, for every x ∈ X and a ∈ L, x ∈ f(a) if and only if f(x)(a) = 1, that is,

for every a ∈ L, f(a) must be equal to f−1(Σa) ∈ TE . Furthermore, this f is a Weil

uniform homomorphism. Obviously, it is a frame map. For any Weil entourage F ∈ F ,

if we consider a symmetric G ∈ F such that G2 ⊆ F then E := (f × f)−1(ΣG) ∈ E .

Thus, in order to prove that (f ⊕ f)(F ) is a Weil entourage of Ω(X, E), we only have

to show that
∨

x∈X(E[x]⊕ E[x]) ⊆ (f ⊕ f)(F ). We have for each x ∈ X

E[x] =

{

y ∈ X | (f(x), f(y)) ∈
⋃

(a,b)∈G

(Σa × Σb)

}
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=

{

y ∈ X | (x, y) ∈
⋃

(a,b)∈G

(f(a)× f(b))

}

=
⋃

{

f(b) | (a, b) ∈ G, x ∈ f(a)
}

.

On the other hand, for any (a, b), (c, d) ∈ G with x ∈ f(a) ∩ f(b),

(

f(b), f(d)
)

∈ (f ⊕ )f(G) ◦ (f ⊕ f)(G) ⊆ (f ⊕ f)(G2)

so

(E[x], E[x]) ∈ (f ⊕ f)(G2) ⊆ (f ⊕ f)(F ).

In conclusion, we have a dual adjunction, being η(X,E) one of the adjunction units.

The other is given by

ξ(L,E) : (L, E) −→ ΩΣ(L, E)

x 7−→ Σx.

5. The isomorphism between the categories UFrm, WUFrm

and EUFrm

The functor Ψ : UFrm −→ WUFrm

Let U be a cover of L. We say that x ∈ L is U -small if x ≤ st(z, U) whenever

x ∧ z 6= 0, and that a pair (x, y) ∈ L × L is U -small if x ∨ y ≤ st(z, U) whenever

x ∧ z 6= 0 and y ∧ z 6= 0. Note that this does not imply that x and y are U -small.

However, (x, x) is U -small if and only if x is U -small.

Now, let U be a family of covers of L. For each U ∈ U consider the Weil entourage

EU :=
∨

x∈U

(x⊕ x),

and denote the set {EU | U ∈ U} by EU .

In the following lemma we conclude that one can control in terms of U -smallness

the elements that go inside the Weil entourage EU . This result will play a crucial role

in our conclusion that Weil entourages also characterize frame uniformities.
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Lemma 5.1. For U ∈ Cov(L), if (x, y) ∈ EU then (x, y) is U -small.

Proof. Since EU is symmetric it suffices to show that x ≤ st(z, U) whenever (x, y) ∈

EU and y ∧ z 6= 0. But this is consequence of the following result:

EU ◦ (x1 ⊕ x2) ⊆ st(x1, U)⊕ st(x2, U) for every x1, x2 ∈ L. (5.1.1)

In fact, by 5.1.1, EU ◦ (z ⊕ z) ⊆ st(z, U) ⊕ st(z, U) thus (x, z) ∈ st(z, U) ⊕ st(z, U),

because (x, y ∧ z) ∈ EU and (y ∧ z, z) ∈ z ⊕ z.

So, let us show 5.1.1:

According to Lemma 4.2 (a),

EU ◦ (x1 ⊕ x2) =
(

⋃

z∈U

(z ⊕ z)
)

◦ (x1 ⊕ x2).

Consider (a, b) ∈
⋃

z∈U (z⊕z) and (b, c) ∈ x1⊕x2 with a, b, c 6= 0. We have (a, b) ≤ (z, z)

for some z ∈ U and z ∧ x1 ≥ b 6= 0. Then a ≤ z ≤ st(x1, U) ≤ y1 and, on the other

hand, c ≤ x2 ≤ st(x2, U) ≤ y2, thus (a, c) ∈ st(x1, U)⊕ st(x2, U).

Remark 5.2. In the sequel, we only need the following particular case of Lemma 5.1:

Let U be a cover of L. If (x, x) ∈ EU then x is U -small.

We are now able to prove that EU is a Weil uniformity basis whenever U is a

uniformity basis.

Proposition 5.3. Let U be a uniformity basis on a frame L. Then EU is a Weil

uniformity basis on L.

Proof. Let EU , EV ∈ EU . TakeW ∈ U such thatW ≤ U∧V . Clearly EW ⊆ EU∩EV ,

thus EU is a filter basis of Weil entourages of L.

Consider EU ∈ EU , and take V ∈ U such that V ∗ ≤ U . Then EV ◦ EV ⊆ EU :

By Lemma 4.2 (a) it follows that

EV ◦ EV =

(

⋃

x∈V

(x⊕ x)

)

◦

(

⋃

x∈V

(x⊕ x)

)

.
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5. The isomorphism between the categories UFrm, WUFrm and EUFrm

Let (a, b) ≤ (x, x) and (b, c) ≤ (y, y) where x, y ∈ V and b 6= 0. Then x ∧ y 6= 0,

a ≤ x ≤ st(x, V ) and c ≤ y ≤ st(x, V ). As st(x, V ) ∈ V ∗ ≤ U , this says that there is

u ∈ U such that a ≤ u and c ≤ u and, consequently, that (a, c) ∈ EU .

The symmetry condition (UW3) is obviously satisfied since each EU is symmetric.

Finally, let us check the admissibility condition (UW4). Assume x ∈ L. By hy-

pothesis, x =
∨

{y ∈ L | y
U
< x}. We check (UW4) by showing that, for any y ∈ L

satisfying y
U
< x, y

EU
< x. So, consider y ∈ L with y

U
< x and take U ∈ U satisfying

st(y, U) ≤ x. We claim that st(y,EU ) ≤ x. Consider (z, z) ∈ EU such that z ∧ y 6= 0.

By Remark 5.2, z is U -small thus z ≤ st(y, U) ≤ x. Hence st(y,EU ) ≤ x.

In the sequel, for every uniformity U , ψ(U) denotes the Weil uniformity generated

by EU . The correspondence (L,U) −→ (L,ψ(U)) is functorial. Indeed, it is the function

on objects of a functor Ψ : UFrm −→WUFrm whose function on morphisms is described

in the following proposition:

Proposition 5.4. Let (L,U) and (L′,U ′) be uniform frames and let f : (L,U) −→

(L′,U ′) be a uniform homomorphism. Then f : (L,ψ(U)) −→ (L′, ψ(U ′)) is a Weil

uniform homomorphism.

Proof. It is obvious since, for every U ∈ U ,

(f ⊕ f)(EU ) =
∨

x∈U

(f(x)⊕ f(x)) = Ef [U ].

Example 5.5. The Weil uniformities which we considered in localic groups (Example

4.9 (d)) are the Weil uniformities induced, via functor Ψ, by the left and right unifor-

mities of [40] (Proposition 3.2) whose bases are given by, respectively,

U = {U(x) | ε(x) = 1}, where U(x) = {y ∈ L | y ⊕ ı(y) ⊆ µ(x)},

and

V = {V (x) | ε(x) = 1}, where V (x) = {y ∈ L | ı(y)⊕ y ⊆ µ(x)}.

Let us see, for example, that EV = {EV (x) | ε(x) = 1} and Er generate the same Weil

uniformity. Of course, EV (x) =
∨

{y ⊕ y | ı(y) ⊕ y ⊆ µ(x)} is contained in Erx =

(ı⊕ 1L) ·µ(x). On the other hand, for every x ∈ L, let y ∈ L be such that (Ery)
2 ⊆ Erx,
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and consider the symmetric Weil entourage Ery∧ı(y) = Ery ∩E
r
ı(y) = Ery ∩ (Ery)

−1. Then

Ery∧ı(y) is contained in EV (x): for (a, b) ∈ Ery∧ı(y) with a, b 6= 0, (b, a) ∈ Ery∧ı(y) and

(a, a), (b, b) ∈ (Ery∧ı(y))
2, so (a∨b, a∨b) ∈ (Ery∧ı(y))

2 ⊆ Erx. Thus (a∨b)⊕(a∨b) ⊆ EV (x)

and, therefore, (a, b) ∈ EV (x).

The functor Φ : WUFrm −→ EUFrm

Let E ⊆ L ⊕ L. For each E ∈ E define eE : L −→ L by eE(x) = st(x,E) and

denote the set {eE | E ∈ E} by ME . It is obvious that each eE preserves arbitrary

joins and that it is an entourage of L whenever E is a Weil entourage because x is

eE-small provided that (x, x) ∈ E.

Proposition 5.6. Let E be a Weil uniformity basis on a frame L. Then ME is an

entourage uniformity basis on L.

Proof. Let us check conditions (UE1)-(UE4) of Definition 3.1.

(UE1) Let eE , eF ∈ ME . In order to prove that ME is a filter basis just take eG,

for some Weil entourage G such that G ⊆ E ∩ F .

(UE2) For eE ∈ME consider F ∈ E such that F 2 ⊆ E. In the proof of Proposition

4.8 (c) we observed that st(st(x, F ), F ) ≤ st(x, F 2). Hence e2F ≤ eE .

(UE3) Let E ∈ E and x, y ∈ L. Then we have that

x ∧ eE(y) = 0⇔
∨

{x ∧ u | (u, u) ∈ E and u ∧ y 6= 0} = 0, (5.6.1)

and, analogously,

eE(x) ∧ y = 0⇔
∨

{y ∧ u | (u, u) ∈ E and u ∧ x 6= 0} = 0. (5.6.2)

Obviously 5.6.1 and 5.6.2 are equivalent.

(UE4) It is trivial, since y
E
<x if and only if y

ME

< x.

In what follows, if E is a Weil uniformity on L, then φ(E) denotes the entourage

uniformity generated byME . The correspondence (L, E) 7−→ (L, φ(E)) is functorial:
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Proposition 5.7. Let (L, E) and (L′, E ′) be Weil uniform frames and let f : (L, E)

−→ (L′, E ′) be a Weil uniform homomorphism. Then f : (L, φ(E)) −→ (L′, φ(E ′)) is

an entourage uniform homomorphism.

Proof. Let eE ∈ ME , where E ∈ E . Take a symmetric F ∈ E such that F 2 ⊆ E.

Since f is a Weil uniform homomorphism, (f ⊕ f)(F ) ∈ E ′. In order to show that

f : (L, φ(E)) −→ (L′, φ(E ′)) is uniform it suffices to show that e(f⊕f)(F ) · f ≤ f · eE .

So, fix x ∈ L and take y ∈ L′ such that (y, y) ∈ (f ⊕ f)(F ) and y ∧ f(x) 6= 0.

Then (y, y ∧ f(x)) ∈ (f ⊕ f)(F ) and (y ∧ f(x), f(x)) ∈ f(x)⊕ f(x), and, consequently,

(y, f(x)) ∈ (f ⊕ f)(F ) ◦ (f(x)⊕ f(x)). Further, since F is of the form
∨

γ∈Γ(aγ ⊕ bγ),

for some subset {(aγ , bγ) | γ ∈ Γ} of L× L, we have that

(f ⊕ f)(F ) ◦ (f(x)⊕ f(x)) =

(

(f ⊕ f)

(

∨

γ∈Γ

(aγ ⊕ bγ)

)

)

◦ (f(x)⊕ f(x))

= k

(

⋃

γ∈Γ

(f(aγ)⊕ f(bγ))

)

◦ k

(

↓(f(x), f(x))

)

,

so, by Lemma 4.2 (a),

(f ⊕ f)(F ) ◦ (f(x)⊕ f(x)) =

(

⋃

γ∈Γ

(f(aγ)⊕ f(bγ))

)

◦ ( ↓(f(x), f(x))).

But
(

⋃

γ∈Γ

(f(aγ)⊕ f(bγ))

)

◦ ( ↓(f(x), f(x)))

is contained in (f · eE)(x)⊕ f(x):

For any

(a, b) ∈

(

⋃

γ∈Γ

(f(aγ)⊕ f(bγ))· ↓(f(x), f(x))

)

\ O,

there exist c ∈ L \ {0} and γ ∈ Γ such that (a, c) ≤ (f(aγ), f(bγ)) and (c, b) ≤

(f(x), f(x)). It follows that a ≤ f(aγ ∨ bγ) and, therefore, that a ≤ (f · eE)(x).

Indeed, (aγ ∨ bγ) ∧ x 6= 0 because f(bγ ∧ x) ≥ c 6= 0 and, by the symmetry of F ,

(aγ ∨ bγ , aγ ∨ bγ) ∈ F
2 ⊆ E.

In conclusion, we have that

(y, f(x)) ∈ (f ⊕ f)(F ) ◦ f(x)⊕ f(x) ⊆ (f · eE)(x)⊕ f(x).
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Hence y ≤ (f · eE)(x) which implies that e(f⊕f)(F )(f(x)) ≤ f(eE(x)), as required.

We shall denote the functor defined above by Φ.

The functor Θ : EUFrm −→ UFrm

For each entourage e of L let Ue be the cover of all e-small elements of L.

Proposition 5.8. (Fletcher and Hunsaker [23]) Let M be an entourage uniformity

basis on a frame L. Then UM := {Ue | e ∈M} is a uniformity basis on L.

Proof. (U1) Consider Ue, Uf ∈ UM and let g ∈ M such that g ≤ e ∧ f . Then it is

obvious that Ug ≤ Ue ∧ Uf .

(U2) Let Ue ∈ UM and take f ∈ M such that f3 ≤ e. We claim that U∗
f ≤ Ue.

Consider st(x, Uf ) ∈ U∗
f . It suffices to show that st(x, Uf ) is e-small. So, consider

z ∈ L such that z ∧ st(x, Uf ) 6= 0. Then there is y ∈ Uf with y ∧ x 6= 0 and y ∧ z 6= 0.

The f -smallness of x and y implies then that x ≤ f2(z). Therefore, for every y′ ∈ Uf

such that y′ ∧ x 6= 0 we have y′ ≤ f(x) ≤ f3(z) ≤ e(z).

(U3)
∨

{y ∈ L | y
UM

< x} is always below x because y
UM

< x implies y ≤ x. In order

to conclude that x ≤
∨

{y ∈ L | y
UM

< x} it suffices to prove that y
M
< x implies y

UM

< x.

Let e ∈M with e(y) ≤ x. Then, immediately, z ≤ e(y) ≤ x for every z ∈ Ue such that

z ∧ y 6= 0, that is, st(y, Ue) ≤ x.

In the sequel, if M is an entourage uniformity, θ(M) denotes the uniformity gen-

erated by UM.

On the other hand, with respect to morphisms we have:

Proposition 5.9. (Fletcher and Hunsaker [23]) Let (L,M) and (L′,M′) be entourage

uniform frames and let f : (L,M) −→ (L′,M′) be an entourage uniform homomor-

phism. Then f : (L, θ(M)) −→ (L′, θ(M′)) is a uniform homomorphism.

Proof. Let U ∈ θ(M) and let e ∈ M such that Ue3 ≤ U . By hypothesis, there

exists g ∈ M′ with g · f ≤ f · e. We show that Ug ≤ f [Ue3 ]. Let x be a non-zero
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g-small element of L′. Since f [Ue] is a cover of L′, there exists y ∈ Ue satisfying

x ∧ f(y) 6= 0. Consequently, x ≤ g · f(y) ≤ f · e(y). But, as can be easily proved, the

fact that y is e-small implies that e(y) is e3-small. In conclusion, Ug ≤ f [Ue3 ] ≤ f [U ]

and f [U ] ∈ θ(M′).

We have this way a functor EUFrm −→ UFrm which we denote by Θ.

The isomorphism

Finally, let us show that the functors Ψ,Φ and Θ define an isomorphism between

the categories UFrm, WUFrm and EUFrm.

Lemma 5.10. For any cover U of L we have that:

(a) U ≤ UeEU
;

(b) UeEU
≤ U∗.

Proof.

(a) Let x ∈ U . For any y ∈ L satisfying x∧y 6= 0, since (x, x) ∈ EU , x ≤ st(y,EU ) =

eEU
(y), that is, x is eEU

-small and, therefore, x ∈ UeEU
.

(b) For any non-zero eEU
-small member x of L, there exists y ∈ U such that x∧y 6= 0.

Then x ≤ st(y,EU ). But, for every (z, z) ∈ EU , z is U -small, so z ≤ st(y, U) in

case z ∧ y 6= 0. This means that st(y,EU ) ≤ st(y, U). Hence x ≤ st(y, U) ∈ U∗.

The corresponding property for Weil entourages is the following:

Lemma 5.11. For any symmetric Weil entourage E of L we have that:

(a) E ⊆ EUe
E2

;

(b) EUeE
⊆ E2.
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Proof.

(a) Consider (x, y) ∈ E \ O. Then (x ∨ y, x ∨ y) ∈ E2 because (x, y), (y, x), (x, x)

and (y, y) belong to E2. Since every member of E2 with equal coordinates is

eE2-small, (x ∨ y, x ∨ y) ∈ EUe
E2

and, consequently, (x, y) ∈ EUe
E2

.

(b) Let us verify that
⋃

{x⊕ x | x is eE-small } ⊆ E2

or, which is the same, that (x, x) ∈ E2 whenever x is eE-small. Consider x 6= 0,

eE-small. We have that x ≤
∨

{z ∈ L | (z, z) ∈ E, z∧x 6= 0}. Since x is eE-small,

we get x ≤ eE(z) =
∨

{y ∈ L | (y, y) ∈ E, y∧z 6= 0}, for any z such that (z, z) ∈ E

and x∧ z 6= 0. For each y in this set we have that (z, z∧ y), (z∧ y, y) ∈ E, which

implies that (z, y) ∈ E2. Therefore (z, x) ∈ E2 and, consequently, (x, x) ∈ E2.

Finally, for entourages we have:

Lemma 5.12. Let f be a symmetric entourage of L. Then:

(a) e ≤ eEU
e3

;

(b) eEUe
≤ e.

Proof.

(a) By definition, for any x ∈ L, eEU
e3

(x) = st(x,EU
e3

). On the other hand,

e(x) = e
(

∨

{x ∧ y | y is e-small }
)

=
∨

{e(x ∧ y) | y is e-small and x ∧ y 6= 0}.

Consider any e-small element y such that x∧y 6= 0. Evidently e(x∧y) is e3-small

so
(

e(x∧ y), e(x∧ y)
)

∈ EU
e3
. Since e(x∧ y)∧ (x∧ y) = x∧ y 6= 0, it follows that

e(x ∧ y) ≤ eEU
e3

(x ∧ y) ≤ eEU
e3

(x).

Hence e(x) ≤ eEU
e3

(x).

(b) By Remark 5.2, y is Ue-small whenever (y, y) ∈ EUe . Therefore

eEUe
=
∨

{y ∈ L | (y, y) ∈ EUe , y ∧ x 6= 0} ≤ st(x, Ue) ≤ e(x).
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Proposition 5.13. Let U , E and M denote, respectively, a uniformity, a Weil uni-

formity and an entourage uniformity on L. Then θφψ(U) = U , ψθφ(E) = E and

φψθ(M) =M.

Proof. We first show that θφψ(U) = U . The uniformity θφψ(U) has {Ue | e ∈ φψ(U)}

as a basis. It suffices to prove that this is a basis for E , which is a consequence of

Lemma 5.10: by (a), {Ue | e ∈ φψ(U)} ⊆ U , and, by (b), for any U ∈ U there is some

V ∈ U such that UeEV
⊆ U .

Similarly, Lemma 5.11 implies that the basis {EU | U ∈ θφ(E)} of ψθφ(E) is also

a basis for E , which proves the second equality, and Lemma 5.12 implies that the

basis {eE | E ∈ ψθ(M)} of φψθ(M) is also a basis for M, which proves the equality

φψθ(M) =M.

In summary, it follows from Propositions 5.4, 5.7, 5.9 and 5.13 that:

Theorem 5.14. The categories UFrm, WUFrm and EUFrm are isomorphic.

6. An application: a theorem of Efremovič for uniform

spaces in pointfree context

As it is the case for the several ways of endowing a set with a topological structure,

sometimes one of the notions of cover, entourage or Weil entourage is more suitable

than another for a particular use. We end the chapter with an illustration of this. We

take the liberty of using either (Weil entourage or covering) approach to the problem

at hand. This free movement between uniformities allows greater flexibility.

In [20] (cf. also Lemma 12.17 and Theorem 12.18 of [56]) Efremovič proved that,

in the realm of uniform spaces,

if two uniformities of countable type on the same set have the same Samuel

compactification, they are equal.

Our purpose in this section is to prove the following theorem:
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Theorem 6.1. If two uniformities of countable type on the same frame have the same

totally bounded coreflection, they are equal.

Recall that a uniform frame is totally bounded if its uniformity has a basis of

finite covers. Totally bounded uniform frames are coreflective in UFrm; the totally

bounded coreflection of a uniform frame (L,U) is constructed as follows: let U# be

the filter of (Cov(L),≤) generated by the finite covers of U . The pair (L,U#) is a

uniform frame and it is the totally bounded coreflection of (L,U), the coreflector map

(L,U#) −→ (L,U) being the identity map of the underlying frames(cf. [10]).

The Samuel compactification of a uniform frame (L,U) — i.e., its compact regular

coreflection (which was firstly constructed by Banaschewski and Pultr in [10]) — can

be described in the following way: take the frame R(L,U) of all regular ideals of L

(an ideal I of L is regular whenever x ∈ I implies that x
U
< y for some y ∈ I). Since

R(L,U) is a compact regular frame, it has a unique uniformity UR(L,U) generated by

all its finite covers. Moreover, the join map
∨

: R(L,U) −→ L taking each regular

ideal to its join is a uniform homomorphism from (R(L,U),UR(L,U)) to (L,U). The

pair (R(L,U),UR(L,U)) is the Samuel compactification of (L,U) and the join map is

the coreflector map (for the details consult [10]).

But, as it is well-known:

Proposition 6.2. Two uniform frames with the same underlying frame have the same

totally bounded coreflection whenever they have the same Samuel compactification.

Then, immediately, one gets from Theorem 6.1 the frame version of that result of

Efremovič:

Corollary 6.3. If two uniformities of countable type on the same frame have the

same Samuel compactification, they are equal.

The proofs

First, let us prove Proposition 6.2:
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Assume that (L,U) and (L,V) are two uniform frames with the same Samuel

compactification and consider a cover U in U#. Then there is a finite refinement

V ∈ U# of U . For each x ∈ V ,

⇓x := {y ∈ L | y
U
< x} ∈ R(L,U)

and, by the finiteness of V ,
∨

{⇓x | x ∈ V } = L ( see [10]), that is, {⇓x | x ∈ V } is a

finite cover of R(L,U). Therefore

{⇓x | x ∈ V } ∈ UR(L,U) = UR(L,V).

But
∨

: (R(L,V),UR(L,V)) −→ (L,V#)

is uniform thus {
∨

⇓x | x ∈ V } ∈ V#, that is, V ∈ V#.

In conclusion, U also belongs to V# and, therefore, U# ⊆ V#. Similarly, V# ⊆ U#.

Now, let us prove Theorem 6.1:

Consider two uniform frames, (L,U) and (L,V), defined in covering terms, with

countable bases and the same totally bounded coreflection, and let (Un)n∈IN be a

descending basis for U , i.e., such that Un+1 ⊆ Un for every natural n.

Suppose V 6⊆ U . Then ψ(V) 6⊆ ψ(U) (otherwise V = θφψ(V) ⊆ θφψ(U) = U).

Let V ∈ V such that EV /∈ ψ(U), that is, EUn 6⊆ EV for all n. Then, take

(an, bn) ∈ EUn \ EV , for each n; further, take covers W1,W2 and Y in V such that

W ∗
1
∗ ≤ V , W ∗

2
∗ ≤ W1 and Y ∗∗ ≤ W2. Note that an and bn are non-zero since

(an, bn) /∈ EV . For each n,

an = an ∧ 1 =
∨

{an ∧ y | y ∈ Y, an ∧ y 6= 0};

by definition of C-ideal, (an, bn) /∈ EV implies that there is y1
n ∈ Y such that an∧y

1
n 6= 0

and (an ∧ y
1
n, bn) /∈ EV . Put

cn := an ∧ y
1
n.

Similarly there is, for each n, some y2
n ∈ Y such that (cn, bn ∧ y

2
n) /∈ EV . Put

dn := bn ∧ y
2
n.
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So, for every n ∈ IN, (cn, dn) ∈ EUn \ EV and cn, dn ∈↓Y .

Let

S := {cn, dn | n ∈ IN}.

The following auxiliary result will be useful in the sequel.

Lemma 6.4. There exists an infinite subset I of IN such that

(

∨

i∈I

st(ci,W2)

)

∧

(

∨

i∈I

st(di,W2)

)

= 0.

Proof.

Case I: For some x ∈ S, T := S ∩ {y ∈ L | (y, x) ∈ EW1} is infinite.

Then, either {i ∈ IN | ci ∈ T} or {i ∈ IN | di ∈ T} is infinite and this provides

the desired set I. In fact, assume that I = {i ∈ IN | ci ∈ T} is infinite (the case of

{i ∈ IN | di ∈ T} being infinite can be proved in a similar way, by symmetry). We

must show that, for any i, j ∈ I,

st(ci,W2) ∧ st(dj ,W2) = 0.

To see this consider i and j in I and suppose (for a contradiction) that there is a pair

(c, d) ∈ W2 ×W2 satisfying c ∧ ci 6= 0, d ∧ dj 6= 0 and c ∧ d 6= 0. Then (c, c) and

(d, d) belong to EW2 and, consequently, (d, c) ∈ EW2 ◦ EW2 . Further, as i and j are

supposed to be in I, (ci, x) and (cj , x) belong to EW1 . Since x is non-zero and the

Weil entourage EW1 is symmetric, (ci, cj) ∈ EW1 ◦ EW1 . On the other hand, from

the facts that Y ≤ W2, ci ≤ y1
i ∈ Y and dj ≤ y2

j ∈ Y , it follows that (ci, ci) and

(dj , dj) are both in EW2 and, therefore, that (c, ci) and (dj , d) belong to EW2 ◦ EW2 .

Thus (dj , ci) ∈ E
4
W2
⊆ EW1 . But (ci, cj) ∈ E

2
W1

so (dj , cj) ∈ E
3
W1
⊆ EV , which is a

contradiction.

Case II: Each S ∩ {y ∈ L | (y, x) ∈ EW1} is finite.

The pair (c1, d1) does not belong to EV so c1 and d1 are not EW1-near, that is,

(c1, d1) /∈ EW1 . Define i1 := 1. The hypotheses that S ∩ {y ∈ L | (y, c1) ∈ EW1}

and S ∩ {y ∈ L | (y, d1) ∈ EW1} are finite imply the existence of a natural i such

that ci, di /∈ S ∩ {y ∈ L | (y, c1) ∈ EW1} and ci, di /∈ S ∩ {y ∈ L | (y, d1) ∈ EW1},

44



6. An application: a theorem of Efremovič for uniform spaces in pointfree context

i.e., that none of c1, d1, ci, di are EW1-near. Define i2 as the first natural in that

conditions. Repeating inductively this reasoning, we obtain a sequence (in)n∈IN where

in+1 is the first natural k such that none of ci1 , di1 , . . . , cin , din , ck, dk are EW1-near.

This determines the set I:

For every i, j ∈ I,

st(ci,W2) ∧ st(dj ,W2) =
∨

{c ∧ d | c, d ∈W2, c ∧ ci 6= 0, d ∧ dj 6= 0}.

But, as we observed in the previous case, if there is a pair (c, d) ∈W2 ×W2 satisfying

c ∧ ci 6= 0, d ∧ dj 6= 0 and c ∧ d 6= 0, then (dj , ci) ∈ EW1 , i.e., dj and ci are EW1-near,

which is contradictory with the definition of I.

Now, resuming the proof of Theorem 6.1, let W0 be the set defined by the following

three elements:
∨

i∈I

st(ci,W2),

∨

i∈I

st(di,W2)

and
∨

{

st(x, Y ) | x ∈ L \
{

z ∈ L : z ∧
∨

i∈I

(st(ci, Y ) ∨ st(di, Y )) 6= 0
}

}

.

Let us show that Y ≤W0:

Consider a non-zero y ∈ Y . If

y ∈ L \

{

z ∈ L : z ∧
∨

i∈I

(st(ci, Y ) ∨ st(di, Y )) 6= 0

}

then

y ≤ st(y, Y )

≤
∨

{

st(x, Y ) | x ∈ L \
{

z ∈ L : z ∧
∨

i∈I

(st(ci, Y ) ∨ st(di, Y )) 6= 0
}

}

∈W0.

Otherwise,

y ∧
∨

i∈I

(

st(ci, Y ) ∨ st(di, Y )
)

6= 0,
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i.e., there is some i ∈ I such that y ∧ st(ci, Y ) 6= 0 or y ∧ st(di, Y ) 6= 0. Let us assume

that y ∧ st(ci, Y ) 6= 0 (the other case can be treated in a similar way). Then there is

y in Y satisfying y ∧ ci 6= 0 and y ∧ y 6= 0. Let Y ′ be the cover

Y ∪ {y1 ∨ y2 | y1, y2 ∈ Y, y1 ∧ y2 6= 0}.

Then y ∨ y ∈ Y ′ and (y ∨ y) ∧ ci 6= 0 so

y ≤ y ∨ y ≤ st(ci, Y
′) ≤ st(y1

i , Y
′).

But, as one can easily observe, for any cover Y , Y ≤ Y ′ ≤ Y ∗, so, in this case, we may

conclude that Y ′∗ ≤ Y ∗∗ ≤W2. Thus, there is w ∈W2 such that y ≤ w. Hence

y ≤ w ≤ st(ci,W2) ≤
∨

i∈I

st(ci,W2) ∈W0.

In conclusion, W0 is a finite cover of V.

Moreover
(

∨

i∈I

st(ci,W0)

)

∧

(

∨

i∈I

st(di,W0)

)

= 0 :

For any i, j ∈ I,

st(ci,W0) ∧ st(dj ,W0) =
∨

{u ∧ v | u, v ∈W0, u ∧ ci 6= 0, v ∧ dj 6= 0}.

On the other hand, if u ∈ W0 and u ∧ ci 6= 0, then u must be equal to
∨

i∈I st(ci,W2)

because

• u =
∨

j∈I st(dj ,W2) would imply, due to the definition of the set I in Lemma 6.4,

that ci ∧ u = 0, which would be a contradiction;

• u =
∨

{

st(x, Y ) | x ∈ L \
{

z ∈ L : z ∧
∨

i∈I(st(ci, Y ) ∨ st(di, Y )) 6= 0
}

}

would

imply the existence of x in

L \
{

z ∈ L : z ∧
∨

i∈I

(st(ci, Y ) ∨ st(di, Y )) 6= 0
}

satisfying ci ∧ st(x, Y ) 6= 0 or, equivalently, st(ci, Y )∧ x 6= 0, which would imply

x ∧
∨

i∈I

(st(ci, Y ) ∨ st(di, Y )) 6= 0,

a contradiction.
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Similarly, if v ∈W0 and v ∧ dj 6= 0 then v =
∨

i∈I st(di,W2). So, u ∧ v = 0 for any

u, v ∈W0 such that u ∧ ci 6= 0 and v ∧ dj 6= 0, and the proof of the desired equality is

done.

Finally, let us conclude the proof of the theorem. The cover W0 is finite so it

belongs to the totally bounded coreflection V# of V. By hypothesis, V# = U# ⊆ U .

Hence W0 ∈ U . Consequently, there is some n ∈ IN with Un ≤W0 and
(

∨

i∈I

st(ci,W0)

)

∧

(

∨

i∈I

st(di,W0)

)

≥

(

∨

i∈I

st(ci, Un)

)

∧

(

∨

i∈I

st(di, Un)

)

,

which is a contradiction because, for any n ∈ IN,
(

∨

i∈I

st(ci, Un)

)

∧

(

∨

i∈I

st(di, Un)

)

6= 0 :

In fact, for every n ∈ IN there is some i ∈ I with i ≥ n. Consider m ∈ IN such that

U∗
m

∗ ≤ Ui and j ∈ I with j ≥ m. Then, since (cj , dj) ∈ EUj
, (cj∨dj , cj∨dj) ∈ EUj

◦EUj
.

But EUj
◦ EUj

≤ EU∗
j
. Therefore (cj ∨ dj , cj ∨ dj) ∈ EU∗

j
≤ EU∗

m
, which implies that

cj ∨ dj ∈ UEU∗
m
≤ U∗

m
∗. Consequently, cj ∨ dj ∈ Ui ≤ Un. Hence

(

∨

i∈I

st(ci, Un)

)

∧

(

∨

i∈I

st(di, Un)

)

≥ cj ∨ dj 6= 0.

Notes on Chapter I:

(1) We point out that viewing the categories UFrm, WUFrm and EUFrm as con-

crete categories over the category of sets, the isomorphisms of Theorem 5.14

are concrete.

The same happens with all categorical isomorphisms that we shall present

in the remaining chapters.

(2) Section 6 is an illustration of the way our language of Weil entourages is very

convenient and manageable when trying to mimic in frames spatial results.

So, in spite of, as for spaces, the covering approach revealed to have many

advantages and to be easier to handle with, there are circumstances where

the approach via Weil entourages is useful. Undoubtedly, the claim of Frith
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[29] that “covers constitute the only tool that works for frames” is not true.

Perhaps the claim of Isbell [39] that, for uniform spaces, Tukey’s approach

is most convenient “nine-tenths of the time” is also the right one for frames,

and Section 6 is part of the remaining one-tenth.

I would like to stress the decisive influence in the demonstration of Theorem

6.1 of a proof for the corresponding result for spaces that was presented

to me by Professor Bernhard Banaschewski, whom I am indebted for the

suggestion which is in the origin of Section 6.

(3) Another characterization of uniform spaces exists; such a description was

given by Bourbaki in [14] in terms of pseudometrics. In the next chapter

we shall pursue this approach from the pointless point of view and conclude

that, as it happens with the other approaches, this one is also feasible in

frames.

(4) After concluding the axiomatization of the category of Weil uniform frames,

it is natural to search for the right generalizations of “Weil quasi-uniformity”

and “Weil nearness” and to establish their links to the corresponding notions

in the literature. We investigate these problems in Chapters III and IV.
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CHAPTER II

UNIFORM FRAMES

IN THE SENSE OF BOURBAKI

One of the most important results of the theory of uniform spaces states that

any uniform cover in a uniform space can be “aproximated” by a pseudometric

(see e.g. [77], Lemma 38.1). Thus every uniformity on a set X gives rise to a

family of pseudometrics on X, and, moreover, this family of pseudometrics can be

used to recover the original uniformity. From this, it follows that uniform spaces

can be described in terms of those families of pseudometrics which are usually

called “gauge structures”. Such a description was given by Bourbaki in [14]. The

efficiency of this tool can be observed in [32].

The aim of this chapter is to extend gauge structures to frames. The classical

pseudometric is here replaced by the notion of metric diameter of Pultr [64]. We

characterize gauge structures for frames as families of metric diameters which

completely describe frame uniformities, showing that this alternative approach to

uniform frames also works for frames. As an application of this new description

for uniform frames we show that there exists a final completion ([2], [35]) of the

category of metric frames which contains an isomorphic copy of the category of

uniform frames, providing a categorical link between metric and uniform frames,

and extending the corresponding result of Adámek and Reiterman [2] for spaces.
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1. Gauge spaces

Recall that a pseudometric on a set X is a function ρ from X×X into IR, satisfying,

for all x, y, z ∈ X:

(a) ρ(x, y) ≥ 0;

(b) ρ(x, x) = 0;

(c) ρ(x, y) = ρ(y, x);

(d) ρ(x, y) ≤ ρ(x, z) + ρ(z, y).

So, a pseudometric differs from a metric only in that x is not necessarily equal to y

whenever ρ(x, y) = 0.

Uniformities on a set X can be completely described by collections G of pseudo-

metrics on X [14], called gauge structures, satisfying:

(UP1) if ρ1, ρ2 ∈ G then

ρ1 ∨ ρ2 : X ×X −→ IR

(x, y) 7−→ max(ρ1(x, y), ρ2(x, y))

also belongs to G;

(UP2) if ρ is a pseudometric and

∀ǫ > 0 ∃δ > 0 ∃ρ′ ∈ G : ρ′(x, y) < δ ⇒ ρ(x, y) < ǫ,

then ρ ∈ G.

In fact, defining a gauge space as a pair (X,G) for X a set and G a gauge structure

on X, and a gauge homomorphism f : (X,G) −→ (X ′,G′) between gauge spaces

as a map f : X −→ X ′ such that, for every ρ ∈ G′, the pseudometric σ on X

given by σ(x, y) = ρ(f(x), f(y)) belongs to G, the category of gauge spaces and gauge

homomorphisms is isomorphic to Unif ([14], [22]).

With the help of some results of Pultr ([64], [67]) one can present a similar approach

to uniform frames. This approach will enable us to conclude that the category of

uniform frames is fully embeddable in a (universal) final completion of the category of

metric frames (Section 4).
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2. Metric frames

The way of extending the metric structure to frames, due to Pultr [64], uses the

notion of diameter — an extension of the classical distance function — instead of the

metric, that we recall briefly in the sequel (for more details, see [9], [67] and [68]).

Let L be a frame. A prediameter on L is a map d : L −→ [0,+∞] such that

(D1) d(0) = 0,

(D2) d(x) ≤ d(y) if x ≤ y, and

(D3) d(x ∨ y) ≤ d(x) + d(y) if x ∧ y 6= 0.

Recall the notation

st(x, U) :=
∨

{y ∈ U | y ∧ x 6= 0},

for subsets U of L and x ∈ L. Obviously

st
(

∨

i∈I

xi, U
)

=
∨

i∈I

st(xi, U),

and hence st( , U) : L −→ L has a right adjoint αU given by

αU (x) =
∨

{y ∈ L | st(y, U) ≤ x}.

For any prediameter d on L and any ǫ > 0, let Udǫ denote the set

{x ∈ L | d(x) < ǫ}.

A prediameter d on L is said to be compatible if

(D4) for each x ∈ L, x ≤
∨

{y ∈ L | y
d
<x},

where y
d
<x means that st(y, Udǫ ) ≤ x for some ǫ > 0. It is easy to check that d is

compatible if and only if, for each x ∈ L, we have x ≤
∨

{αUd
ǫ
(x) | ǫ > 0}. In the

sequel we shall denote αUd
ǫ

simply by αdǫ .

A star-prediameter is a prediameter that satisfies
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(⋆) if S ⊆ L is strongly connected (i.e., x ∧ y 6= 0 for every x, y ∈ S), then

d(
∨

S) ≤ 2 sup{d(x) | x ∈ S}.

A prediameter is metric if

(M) for any α < d(x) and ǫ > 0, there exist y, z ≤ x such that d(y), d(z) < ǫ and

α < d(y ∨ z).

Condition (M) implies (⋆). In fact, (M) even implies the property

(⋆′) for each x ∈ L and each S ⊆ L such that x ∧ y 6= 0 for all y ∈ S

d(x ∨
∨

S) ≤ d(x) + sup{d(y) + d(z) | y, z ∈ S, y 6= z},

which is stronger than (⋆).

A prediameter which, moreover, satisfies

(D5) for each ǫ > 0, Udǫ is a cover of L,

is called a diameter. The diameters naturally generalize the usual notion of the di-

ameter of subsets of metric spaces. Note that when d is a compatible diameter the

equality holds in (D4).

If L is the topology of some topological space (X, T ), the compatible metric diam-

eters d on L correspond exactly to the metrizations ρ of (X, T ) via the relations

d(U) = sup{ρ(x, y) | x, y ∈ U}

and

ρ(x, y) = inf{d(U) | x, y ∈ U}.

A prediametric frame is a pair (L, d), where d is a compatible prediameter on the

frame L. The pair (L, d) is a star-diametric frame if d is a compatible star-diameter.

A metric frame is a pair (L, d), where d is a compatible metric diameter on L.

For prediametric frames (L1, d1) and (L2, d2), a frame homomorphism f : L1 −→ L2

is called uniform if, for each ǫ > 0, there exists δ > 0 such that Ud2δ ≤ f [Ud1ǫ ]. Thus we

have the category of prediametric frames. The category of star-diametric frames and
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uniform homomorphisms will be denoted by ⋆-DFrm. Its full subcategory of metric

frames will be denoted by MFrm.

The category ⋆-DFrm is epireflective in the category of star-prediametric frames.

The reflection is described as follows:

Let (L, d) be a star-prediametric frame and consider the relation R generated by

all pairs (
∨

Udǫ , 1) with ǫ > 0. On L/R consider the diameter

d(x) = inf{d(y) | x ≤ κ(y)}

induced by d. The projection κ : (L, d) −→ (L/R, d) is the reflector morphism.

Given a star-diameter d on L, we denote by
∼
d the metric diameter given by

∼
d(x) = inf

ǫ>0
sup{d(y ∨ z) | y, z ≤ x, d(y), d(z) ≤ ǫ},

which is the unique metric diameter such that 1
2d ≤

∼
d ≤ d ([67], Proposition 3.4).

Moreover, st(x, U
∼

d
ǫ ) = st(x, Udǫ ), for every x ∈ L and ǫ > 0 thus

∼
d is compatible

whenever d is.

Let d be a compatible metric diameter on L. Since ǫ ≤ δ implies that Udǫ ⊆ Udδ ,

(D4) and (D5) say that the family {Udǫ | ǫ > 0} satisfies axioms (U1) and (U3) of

Definition I.2.1. This is actually a uniformity since (Udǫ )∗ ≤ Ud3ǫ. Conversely, any

uniformity with a countable basis is obtained in this way from a compatible metric

diameter, and hence a frame has a compatible metric diameter if and only if it has a

uniformity with a countable basis.

Finally, let us recall the following way of constructing binary coproducts of metric

frames [68]:

Let (L1, d1) and (L2, d2) be metric frames. On the frame D(L1 × L2) of all

down-sets of the cartesian product (with the usual order) L1×L2, consider the relation

R′ generated by all pairs
(

⋃

ǫ>0

↓(αd1ǫ (x), αd2ǫ (y)), ↓(x, y)

)

,

(

↓(S1 × {y}), ↓(
∨

S1, y)
)

and
(

↓({x} × S2), ↓(x,
∨

S2)
)

,
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with x ∈ L1, y ∈ L2, S1 ⊆ L1 and S2 ⊆ L2, and denote κ( ↓ (x, y)), which coincides

with ↓(x, y) ∪ OL1×L2 , by x⊕ y.

Let L1 ⊕
′ L2 := D(L1 × L2)/R

′. The elements x ⊕ y generate by joins L1 ⊕
′ L2.

The maps u′L1
: L1 −→ L1 ⊕

′ L2 and u′L2
: L2 −→ L1 ⊕

′ L2 given by, respectively,

u′L1
(x) = x⊕ 1 and u′L2

(x) = 1⊕ x are frame homomorphisms. The relation

d′12(X) = inf{max(d1(x), d2(y)) | X ⊆ x⊕ y}

defines a compatible star-prediameter on L1 ⊕
′ L2. Then

(L1, d1)
u′

L1−→(L1 ⊕
′ L2, d

′
12)

u′
L2←−(L2, d2)

is the coproduct of (L1, d1) and (L2, d2) in the category of star-prediametric frames;

for any fL1 : (L1, d1) −→ (M,d) and fL2 : (L2, d2) −→ (M,d) the unique f from

(L1 ⊕
′ L2, d

′
12) into (M,d) such that f · u′L1

= fL1 and f · u′L2
= fL2 is given by

f(x⊕ y) =
∨

ǫ>0

(

fL1(α
d1
ǫ (x)) ∧ fL2(α

d2
ǫ (y))

)

.

Now taking the reflection (L1⊕L2, d12) of (L1⊕
′L2, d

′
12) in ⋆-DFrm and the extensions

uL1 : (L1, d1) −→ (L1 ⊕ L2, d12) and uL2 : (L2, d2) −→ (L1 ⊕ L2, d12) of u′L1
and u′L2

by the reflection morphism, we have the coproduct of (L1, d1) and (L2, d2) in ⋆-DFrm.

Finally

(L1, d1)
uL1−→

(

L1 ⊕ L2,
∼
d12

)

uL2←−(L2, d2)

is the coproduct of (L1, d1) and (L2, d2) in MFrm.

3. Gauge frames

Lemma 3.1. Let d1 and d2 be two star-diameters on a frame L. Then

d1 ∨ d2 : L −→ [0,+∞]

x 7−→ max(d1(x), d2(x))

is a star-diameter.

Proof. Conditions (D1), (D2), (D3) and (⋆) are trivially satisfied. To check condition

(D5) just observe that, for any ǫ > 0, Ud1∨d2ǫ = Ud1ǫ ∩ U
d2
ǫ = Ud1ǫ ∧ U

d2
ǫ .
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A word of warning: d = d1 ∨ d2 is not necessarily metric, even if d1 and d2 are

metric. Nevertheless, we can take the associated metric diameter
∼
d that we shall

denote by d1 ⊔ d2.

Definition 3.2. We say that a non-empty collection G of metric diameters on L is a

gauge structure if it satisfies the following conditions:

(UP1) for every d1, d2 ∈ G, d1 ⊔ d2 ∈ G;

(UP2) if d is a metric diameter and

∀ǫ > 0 ∃δ > 0 ∃d′ ∈ G : Ud
′

δ ⊆ U
d
ǫ ,

then d ∈ G;

(UP3) for every x ∈ L, x =
∨

{y ∈ L | y
G
<x}, where y

G
<x means that there are d ∈ G

and ǫ > 0 such that st(y, Udǫ ) ≤ x.

Proposition 3.3. Let U be a uniformity on L. The family ψ(U) := {dα | α ∈ Λ}

of all metric diameters such that, for every α ∈ Λ and ǫ > 0, Udα
ǫ ∈ U , is a gauge

structure on L.

Proof. (UP1) Let α, β ∈ Λ and ǫ > 0. Since Udα
ǫ ∧ U

dβ
ǫ ≤ U

dα⊔dβ
ǫ , U

dα⊔dβ
ǫ ∈ U .

Hence dα ⊔ dβ ∈ ψ(U).

(UP2) Assume d is a metric diameter such that

∀ǫ > 0 ∃δ > 0 ∃dα ∈ ψ(U) : Udα

δ ⊆ U
d
ǫ .

Then Udǫ ∈ U for any ǫ > 0, i.e., d ∈ ψ(U).

(UP3) Let x ∈ L. By hypothesis, x =
∨

{y ∈ L | y
U
<x}. So, it suffices to

show that y
U
<x implies y

ψ(U)
< x. Consider U ∈ U such that st(y, U) ≤ x and take

inductively U1, U2, . . . , Un, . . . in U such that U1 = U and U∗
n+1 ≤ Un. The family

{U1, U2, . . . , Un, . . .} generates a uniformity with a countable basis. So, according to

Theorem 4.6 of [64], there is a metric diameter d in ψ(U) such that Udǫ ⊆ U for some

ǫ > 0. Hence st(y, Udǫ ) ≤ st(y, U) ≤ x.

55



UNIFORM FRAMES IN THE SENSE OF BOURBAKI

Note that the reverse

y
ψ(U)
< x implies y

U
<x

is obviously true.

Proposition 3.4. Let G be a gauge structure on L. The family

BG := {Udǫ | d ∈ G, ǫ > 0}

is a basis for a uniformity φ(G) on L.

Proof. (U1) For ǫ, δ > 0 and d1, d2 ∈ G take γ = min( ǫ2 ,
δ
2). Immediately,

Ud1⊔d2γ ⊆ Ud1ǫ ∩ U
d2
δ = Ud1ǫ ∧ U

d2
δ

and Ud1⊔d2γ ∈ BG so Ud1ǫ ∧ U
d2
δ ∈ φ(G).

(U2) Let us show that, for any d ∈ G and ǫ > 0, Udǫ has a star-refinement; we do

this by proving that
(

Udǫ
3

)∗
≤ Udǫ . Consider x ∈ Udǫ

3
and choose y0 ∈ U

d
ǫ
3

such that

y0 ∧ x 6= 0. The set

S = {y ∨ y0 | y ∈ U
d
ǫ
3
, y ∧ x 6= 0}

is strongly connected and st(x, Udǫ
3
) =

∨

S. Thus

d(st(x, Udǫ
3
)) ≤ 2 sup{d(x) | x ∈ S} < ǫ,

so st(x, Udǫ
3
) ∈ Udǫ .

(U3) It is obvious, since x
G
<y if and only if x

φ(G)
< y.

In other words,

φ(G) = {U ∈ P(X) | ∃d ∈ G ∃ ǫ > 0 : Udǫ ≤ U}

is a uniformity on L.

Theorem 3.5. There is a one-to-one correspondence between the set of uniformities

on L and the set of gauge structures on L.
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Proof. We first show that ψφ(G) ⊆ G, for any gauge structure G. If d ∈ ψφ(G) then

Udǫ ∈ φ(G), for every ǫ > 0, i.e., for every ǫ > 0 there exist δ > 0 and d′ ∈ G such that

Ud
′

δ ⊆ U
d
ǫ . Hence d ∈ G. The inclusion G ⊆ ψφ(G) is trivial.

On the other hand, for any uniformity U , the inclusion φψ(U) ⊆ U is obvious. The

reverse inclusion is a consequence of Theorem 4.6 of [64]: given U ∈ U take inductively

U1, U2, . . . , Un, . . . in U such that U1 = U and U∗
n+1 ≤ Un, and according to Theorem

4.6 of [64] the metric diameter d in ψ(U) such that Udǫ ⊆ U for some ǫ > 0. Hence

U ∈ φψ(U).

In conclusion, we can treat gauge structures as uniformities.

Naming the pairs (L,G) for L a frame and G a gauge structure on L as gauge frames

we have a bijection between uniform frames and gauge frames. With respect to this

bijection, uniform homomorphisms correspond precisely to the gauge homomorphisms,

i.e., to the frame maps f : L −→ L′ between gauge frames (L,G) and (L′,G′) such

that, for every ǫ > 0 and d ∈ G, there exist δ > 0 and d′ ∈ G′ satisfying Ud
′

δ ≤ f [Udǫ ].

The category of gauge frames and gauge homomorphisms is therefore (concretely)

isomorphic to Unif.

Gauge structures clearify the nature of the generalization from metric frames to

uniform frames: a metric frame is a frame with a uniformity (gauge structure) gener-

ated by a single diameter.

It is worthwhile recording the following obvious fact:

Remark 3.6. For any gauge frame (L,G), (L,
⊔

d∈G d) is a metric frame.

4. An application: UFrm is fully embeddable in a final

completion of MFrm

We now turn to the description of a universal final completion of MFrm which

contains an isomorphic copy of UFrm.

We start by doing a brief digression about the categorical notions and results we

shall need, with the aim of making this dissertation the most possible self-contained.
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Let (A, | · | : A −→ X ) be a concrete category over the base category X . An

A-sink (Ai
fi−→A)i∈I is called final provided that an X -morphism f : |A| −→ |B| is an

A-morphism whenever each composite f · |fi| : |Ai| −→ |B| is an A-morphism. An

A-morphism is final if it is final as a singleton sink.

Given a family ∆ of sinks in the base category X , the final sinks (fi)i∈I of A such

that (|fi|)i∈I ∈ ∆ will be referred to as final ∆-sinks.

Definitions 4.1. (1) (Herrlich [35]) A concrete category A over X is called finally

complete provided that, for any family (Ai)i∈I of A-objects, indexed by some class I,

and any sink (|Ai|
fi−→ X)i∈I in X , there exists a final sink (Ai

gi−→ A)i∈I in A with

|A| = X and |gi| = fi for every i ∈ I.

A concrete category A− over X is a final completion of A if it is finally complete

and there is a full embedding A →֒ A−. If, furthermore,

(a) A is closed under final sinks in A− (i.e., for each final sink (Ai
gi−→ A)i∈I in A−,

A belongs to A whenever all Ai belong to A) and

(b) for each finally complete category B and each concrete functor F : A −→ B

preserving final sinks, there exists a unique (up-to natural isomorphism) functor

F− : A− −→ B preserving final sinks,

A− is said to be a universal final completion of A.

(2) (Ehresmann [21]) More generally, let ∆ be a collection of sinks in the base

category X . A final completion A− of A is a ∆-universal final completion of A provided

that:

(a) A is closed under final ∆-sinks in A−;

(b) for each finally complete category B and each concrete functor F : A −→ B

preserving final ∆-sinks there exists a unique (up-to natural isomorphism) functor

F− : A− −→ B preserving final ∆-sinks.

Definitions 4.2. (Ehresmann [21]) Let ∆ be a collection of sinks in the base category

X .

(1) An X -sink σ = (|Ai|
fi−→X)i∈I is called ∆-complete if:

58



4. An application: UFrm is fully embeddable in a final completion of MFrm

(a) for every A-morphism f : A −→ Ai, the maps |A|
|f |
−→|Ai|

fi−→X belong to σ;

(b) for every X -morphism f : |B| −→ X and every final ∆-sink (Bj
gj
−→B)j∈J such

that the maps |Bj |
|gj |
−→|B|

f
−→X belong to σ, the map f belongs to σ.

(2) An homomorphism of ∆-complete sinks

f : (|Ai|
fi−→X)i∈I −→ (|Bj |

gj
−→Y )j∈J

is an X -morphism f : X −→ Y such that, for every i ∈ I, f · fi ∈ (gj)j∈J .

Theorem 4 of [21] states that the conglomerate of ∆-complete sinks of X and the

conglomerate of ∆-complete sink homomorphisms form a category, that we shall denote

by ∆-CS(A,X ). It also states that this category is a ∆-universal final completion of

A. However, Adámek and Reiterman in [2] show that ∆-CS(A,X ) is not always a

legitimated category and present sufficient conditions for ∆-CS(A,X ) to be in fact a

category. Evidently, under these conditions ∆-CS(A,X ) is also a concrete category

over X .

Recall from [2] that, assuming X has a factorization system (E ,M), A is said to

be cohereditary if every E-morphism e : |A| −→ X is a final morphism of A.

Theorem 4.3. (Adámek and Reiterman [2]) Let X be a category with a factoriza-

tion system (E ,M), M-wellpowered, and let ∆ be a collection of sinks containing all

E-morphisms (considered as singleton sinks). Then, for every fibre-small cohereditary

concrete category A over X , ∆-CS(A,X ) is a category.

Remark 4.4. The proof of Theorem 4.3 is based in the following fact, which is a

consequence of the coheredity of A and the inclusion E ⊆ ∆:

Let σ = (|Ai|
fi−→X)i∈I be a ∆-complete sink of X and let mi · ei be the

(E ,M)-factorization of fi. Denoting by σ′ the sink (mi)i∈I , σ is precisely the sink

of all composites of A-morphisms with the members of σ′.

Therefore, under the conditions of Theorem 4.3, the proof presented in [21] that

∆-CS(A,X ) is a ∆-universal final completion of A is valid.
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Theorem 4.5. (Ehresmann [21], Adámek and Reiterman [2]) Let X be a category

with a factorization system (E ,M), M-wellpowered, and let ∆ be a collection of sinks

containing all E-morphisms (considered as singleton sinks). Then each fibre-small

cohereditary concrete category A over X has a fibre-small ∆-universal final completion,

which is the category ∆-CS(A,X ).

The category MFrm of metric frames is concrete over Frm and, since Frm is an

algebraic category, the classRegEpi of regular epimorphisms (i.e., surjective maps) and

the class Mono of monomorphisms (i.e., injective maps) form a factorization system

(RegEpi,Mono) (see e.g. [43]). Clearly Frm is a Mono-wellpowered category. On

the other hand, MFrm is fibre-small and cohereditary: any compatible metric diameter

d on L induces, in any frame quotient M of L (i.e., any surjective homomorphism

e : L −→M), a compatible metric diameter d (cf. Propositions 2.11 and 2.12 of [68]);

the proof that e : (L, d) −→ (M,d) is a final morphism of MFrm is straightforward.

Thus, we can apply Theorem 4.5 to MFrm and conclude that, for every ∆ containing

the regular epimorphisms, the category ∆-CS(MFrm,Frm) is a ∆-universal final com-

pletion of MFrm. Our goal now is to prove that, for ∆ the class of all finite episinks,

this category contains an isomorphic copy of the category UFrm of uniform frames.

We start by presenting a different description of the category ∆-CS(A,X ) of The-

orem 4.3.

Proposition 4.6. Under the conditions of Theorem 4.3, there is a one-to-one corre-

spondence between the fiber of X on ∆-CS(A,X ), for every X -object X, and the class

of all sinks σ = (|Ai|
mi−→X)i∈I such that:

(S1) mi ∈M, for every i ∈ I;

(S2) an M-morphism Y
m
−→X belongs to σ whenever there exist i ∈ I and g ∈ A

with m = mi · |g|;

(S3) for each final ∆-sink (Ai
fi−→B)i∈I and for each f : |B| −→ X such that

the M-part of the (E ,M)-factorization of f · |fi| belongs to σ, the M-part of the

(E ,M)-factorization of f belongs to σ.

Proof. For σ = (|Ai|
fi−→X)i∈I in ∆-CS(A,X ) take σ′ = (|A′

i|
mi−→X)i∈I , where mi is
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4. An application: UFrm is fully embeddable in a final completion of MFrm

the M-part of the (E ,M)-factorization of fi. By Remark 4.4, σ′ satisfies conditions

(S2) and (S3).

Conversely, for σ′ = (|A′
i|
mi−→X)i∈I satisfying (S1), (S2) and (S3), take the sink σ

of all composites of morphisms of A with the members of σ′. This is a ∆-complete

sink; indeed:

(a) For every A-morphism f : A −→ Ai, if fi : |Ai| −→ X belongs to σ we may

write fi = mi · |ti| where mi ∈ σ
′ and ti ∈ A. Factorizing fi · |f | = m′

i · e
′
i, there is a

(unique) morphism g such that the following diagram commutes:

-

-

? ?
@

@@R
��

�

�
��	

|A′| X

|Ai||A|

|A′
i|

m′
i

|f |

e′i fi

mig

ti

Since ti · f ∈ A and e′i is final, g ∈ A. Therefore, by (S2), m′
i ∈ σ

′, so fi · |f | ∈ σ.

(b) For every X -morphism f : |B| −→ X and every final ∆-sink (Bj
gj
−→B)j∈J such

that every f · |gj | ∈ σ, i.e., f · |gj | = mj · |tj | for some mj ∈ σ
′ and tj ∈ A, if we factorize

f = m · e, then, applying (S3), m ∈ σ′ so f ∈ σ.

Remark 4.4 implies that these two correspondences are mutually inverse.

The sinks defined in the previous proposition will be referred to asM-∆-complete

sinks.

The following proposition characterizes the morphisms of ∆-CS(A,X ) in terms of

M-∆-complete sinks and has a straightforward proof.

Proposition 4.7. Let σ1 = (|Ai|
fi−→X)i∈I and σ2 = (|Bj |

gj
−→Y )j∈J belong to

∆-CS(A,X ) and let σ′1 = (|A′
i|
mi−→X)i∈I and σ′2 = (|B′

j |
uj
−→Y )j∈J be the two cor-

responding M-∆-complete sinks. An X -morphism f : X −→ Y is a morphism of

∆-CS(A,X ) if and only if, for every i ∈ I, the M-part of f ·mi belongs to σ′2.
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In conclusion:

Proposition 4.8. The category ∆-CS(A,X ) is isomorphic to the category

M-∆-CS(A,X ) of M-∆-complete sinks and maps defined in Proposition 4.7.

Next we describe how to induce, in any frame L, a gauge structure from a

Mono-∆-complete sink.

Proposition 4.9. Let M be a subframe of L. If d is a star diameter on M then

◦
d(x) = inf{d(y) | y ∈M,x ≤ y}

defines a star-diameter on L.

Proof. The proof that
◦
d is a diameter is straightforward. Let us verify the property

(⋆). Let S ⊆ L be strongly connected. For any ǫ > 0 and s ∈ S there is ys ∈ M with

d(ys) <
◦
d(s) + ǫ and s ≤ ys. Clearly SM = {ys | s ∈ S} is strongly connected thus

◦
d(
∨

S) ≤ d(
∨

SM ) ≤ 2 sup{d(ys) | s ∈ S} < 2 sup{
◦
d(s) | s ∈ S}+ ǫ.

So,
◦
d(
∨

S) ≤ 2 sup{
◦
d(s) | s ∈ S}.

However
◦
d is not necessarily metric, even if d is.

Remark 4.10. As before, there is a unique metric diameter
∼
d on L such that 1

2

◦
d ≤

∼
d ≤

◦
d and st(x, U

∼

d
ǫ ) = st(x, U

◦

d
ǫ ) for every x ∈ L and ǫ > 0.

For any diameter d on L let Ld denote the subframe

{

x ∈ L | x =
∨

{y ∈ L | y
d
<x}

}

of L. Note that, for any x ∈ L,
∨

{y ∈ L | y
d
<x} ∈ Ld. Indeed, denoting

∨

{y ∈ L |

y
d
<x} by xd we have that xd =

∨

{y ∈ L | y
d
<xd}: if there is ǫ > 0 with st(y, Udǫ ) ≤ x

then

st
(

st(y, Udǫ
2
), Udǫ

2

)

≤ st(y, Udǫ ) ≤ x,
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that is,

st(y, Udǫ
2
)
d
<x

and so st(y, Udǫ
2
) ≤ xd.

Therefore we may consider the map fd : L −→ Ld given by fd(x) = xd which is a

surjective frame homomorphism. By Propositions 2.9 and 2.11 of [68]

d(x) = inf{d(y) | x ≤ fd(y)}

defines a metric diameter on Ld whenever d is a metric diameter on L. Observe that,

due to the particular definitions of Ld and fd, d is the restriction of d to Ld. Moreover,

we have:

Proposition 4.11. Let d be a metric diameter on L. Then (Ld, d) is a metric frame.

Proof. It remains to be proved the compatibility of d. Let x ∈ Ld. Then x =
∨

{y ∈

L | y
d
<x}. Since x = fd(x) we have

x =
∨

{fd(y) | y ∈ L, y
d
<x} ≤

∨

{fd(y) | y ∈ L, fd(y)
d
<x} =

∨

{z ∈ Ld | z
d
<x}.

But, for any z ∈ Ld and ǫ > 0, st(z, Udǫ ) ≤ st(z, Udǫ ) so

z
d
<x implies z

d
<x,

and, consequently, x ≤
∨

{z ∈ Ld | z
d
<x} ≤ x.

Corollary 4.12. Let d be a metric diameter on L. Then:

(a) for any x ∈ L and ǫ > 0, there exists y ∈ Ld such that x ≤ y and d(y) < d(x)+ǫ.

(b)
◦

d = d.

Proof.

(a) For any x ∈ L and ǫ > 0, since d is a diameter on Ld, we have that

x = x ∧
∨

{a ∈ Ld | d(a) <
ǫ

2
}

=
∨

{x ∧ a | a ∈ Ld, x ∧ a 6= 0, d(a) <
ǫ

2
}

≤
∨

{a ∈ Ld | x ∧ a 6= 0, d(a) <
ǫ

2
}
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Then
∨

{a ∈ Ld | x ∧ a 6= 0, d(a) <
ǫ

2
} ∈ Ld

is the desired element y. In fact, using property (⋆′), d(y) = d(x ∨ y) ≤ d(x) +

sup{d(a1) + d(a2) | a1, a2 ∈ Ld, a1 6= a2, a1 ∧ x 6= 0, a2 ∧ x 6= 0, d(a1), d(a2) <

ǫ
2} < d(x) + ǫ.

(b) For any x ∈ L,

◦

d(x) = inf{d(y) | y ∈ Ld, x ≤ y}

= inf{d(y) | y ∈ Ld, x ≤ y},

thus
◦

d(x) ≥ d(x). The equality follows immediately from (a).

From (a) it also follows that the relation
d
< is the restriction of

d
< to Ld.

Corollary 4.13. Let G be a gauge structure on L. For any d ∈ G, the inclusion

(Ld, d) →֒ (L,
⊔

d∈G d) is a uniform homomorphism of metric frames.

Proof. Let us show that, for any ǫ > 0 and d ∈ G,

U

⊔

d∈G
d

ǫ
4

≤ Udǫ .

Assume x ∈ L is such that (
⊔

d∈G d)(x) <
ǫ
4 . Thus d(x) < ǫ

2 . This yields, via Corollary

4.12 (a), the existence of y ∈ Ld satisfying d(y) = d(y) < d(x) + ǫ
2 < ǫ and x ≤ y.

Hence x ≤ y ∈ Udǫ .

Let M be a subframe of L. For any metric diameter d on M it is obvious that
◦
d = d. Moreover:

Proposition 4.14. Let M be a subframe of L. For any compatible metric diameter

d on M , L∼

d
= M .

Proof. Consider x ∈ L∼

d
. Let us start by proving that, for any y ∈ L such that y

∼

d
<x,

there exists z ∈M satisfying

y ≤ z

∼

d
<x :
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By hypothesis, there is some ǫ > 0 with st(y, U
∼

d
ǫ ) ≤ x. Also

y = y ∧
∨

{z′ ∈M | d(z′) <
ǫ

2
} ≤

∨

{z′ ∈M | z′ ∧ y 6= 0, d(z′) <
ǫ

2
} ∈M.

The element

z :=
∨

{z′ ∈M | z′ ∧ y 6= 0, d(z′) ≤
ǫ

2
}

is the element in M we are looking for. In fact, st(z, U
∼

d
ǫ
2
) ≤ st(y, U

∼

d
ǫ ): consider w ∈ L

with w∧z 6= 0 and
∼
d(w) < ǫ

2 . Then there exists z′ ∈M such that z′∧w 6= 0, z′∧y 6= 0

and d(z′) < ǫ
2 . Therefore w ≤ z′ ∨ w, (z′ ∨ w) ∧ y 6= 0 and

∼
d(z

′ ∨ w) ≤
∼
d(z

′) +
∼
d(w) = d(z′) +

∼
d(w) < ǫ.

Hence, in conclusion, st(z, U
∼

d
ǫ
2
) ≤ st(y, U

∼

d
ǫ ) ≤ x, i.e.,

y ≤ z

∼

d
<x.

Now, the conclusion that L∼

d
⊆M follows immediately; for any x ∈ L∼

d
,

x =
∨

{y ∈ L | y

∼

d
<x} =

∨

{z ∈M | z

∼

d
<x} ∈M.

Conversely, consider x ∈ M . Since x =
∨

{y ∈ M | y
d
<x}, we only have to check

that

y
d
<x implies y

∼

d
<x

in order to conclude that x ∈ L∼

d
. So, suppose that st(y, Udǫ ) ≤ x for some ǫ > 0.

Then st(y, U
∼

d
ǫ
4
) ≤ x because st(y, U

∼

d
ǫ
4
) ≤ st(y, Udǫ ): for any z ∈ L such that z ∧ y 6= 0

and
∼
d(z) < ǫ

4 there exists, by Corollary 4.12 (a), w ∈ L∼

d
such that z ≤ w and

∼
d(w) <

∼
d(z) + ǫ

4 <
ǫ
2 . We have already proved that L∼

d
⊆M so w ∈M . On the other

hand, w ∧ y 6= 0 and 1
2d(w) = 1

2

◦
d(w) ≤

∼
d(w) < ǫ

2 , i.e., w ≤ st(y, Udǫ ).

Note that from Remark 4.10 it follows that L◦

d
= L∼

d
.

We say that a sink

(|(Mi, di)|
mi−→L)i∈I
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of Mono-∆-CS(MFrm,Frm) is a weak gauge Mono-∆-complete sink if L is generated

by
⋃

i∈I mi(Mi). We denote by di the compatible metric diameter on mi(Mi) — which

is a subframe of L isomorphic toMi — induced by di. Accordingly, L∼

di

= mi(Mi) ∼= Mi

by Proposition 4.14.

Lemma 4.15. Let σ = (|(Mi, di)|
mi−→L)i∈I ∈ Mono-∆-CS(MFrm,Frm). For every

i, j ∈ I there is k ∈ I such that

∀ǫ > 0 ∃δ > 0 : U
∼

dk

δ ⊆ U
∼

di⊔
∼

dj
ǫ .

Proof. Denote
∼
di ⊔

∼
dj by d. We start by proving that, for any x ∈ mi(Mi),

st(x, Udǫ ) ≤ st(x, Udi
4ǫ ):

For any y ∈ L such that y ∧ x 6= 0 and d(y) < ǫ, we have that 1
2(

∼
di ∨

∼
dj)(y) < ǫ,

which implies that
∼
di(y) < 2ǫ and

◦
di < 4ǫ. This means that there is z ∈ mi(Mi) with

y ≤ z and di(z) < 4ǫ.

From that inequality it follows that, for any x, y ∈ mi(Mi), y
di

<x implies y
d
<x and,

consequently, that mi(Mi) ⊆ Ld. Similarly mj(Mj) ⊆ Ld. It is now very easy to

see that (Mi, di)
mi−→(Ld, d) and (Mj , dj)

mj
−→(Ld, d) are uniform frame homomorphisms.

Consider the coproduct

(Mi, di)
ui−→(Mi ⊕Mj ,

∼
dij)

uj
←−(Mj , dj)

of (Mi, di) and (Mj , dj) in MFrm. Then there exists a unique uniform frame homo-

morphism f such that the diagram

-

?

Q
Q

Q
Q

Q
Q

Q
Q

Q
Qs

�
�

�
�

�
�

�
�

�
�

�+
(Ld, d)

(Mi ⊕Mj ,
∼
dij)(Mi, di) (Mj , dj)

ui uj

f
mi mj

is commutative.

Lastly we consider the (RegEpi,Mono)-factorization of f in MFrm ([68], Proposi-

tion 4.10)
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- - (Ld, d)(Mi ⊕Mj ,
∼
dij) (M,dM )

ue

Since (ui, uj) is a finite final epi-sink (cf. Section 10 of [1]), we may conclude from

condition (S3) that the frame map

m : |(M,dM )|
u
−→|(Ld, d)| →֒ L

belongs to σ and, therefore, that there is k ∈ I such that
∼
dM =

∼
dk. This k fulfils the

condition of the lemma. In fact,

∀ǫ > 0 U
∼

dM
ǫ
4
⊆ U

∼

di⊔
∼

dj
ǫ :

Consider x ∈ L such that
∼
dM (x) < ǫ

4 . Since 1
2

◦
dM ≤

∼
dM it suffices to show that

1
2(

◦
di ∨

◦
dj)(x) ≤

◦
dM (x). By definition

◦
dM (x) = inf{dM ([X]M ) | X ∈Mi ⊕Mj , x ≤ u([X]M ) = f(X)}

so we only have to prove that

if X ∈Mi ⊕Mj and x ≤ f(X) then
1

2
(
◦
di ∨

◦
dj)(x) ≤ dM ([X]M ). (4.15.1)

But

dM ([X]M ) = inf{
∼
dij(Y ) | Y ∈Mi ⊕Mj , [X]M ≤ [Y ]M}

and 1
2dij ≤

∼
dij , thus the condition 4.15.1 holds if, whenever Y ∈Mi⊕Mj and x ≤ f(Y ),

(
◦
di ∨

◦
dj)(x) ≤ dij(Y ). Since

dij(Y ) = inf{d′ij(Z) | Z ∈Mi ⊕
′ Mj , Y ≤ [Z]Mi⊕Mj

},

this is a consequence of Lemma 4.16 below.

Lemma 4.16. Let (Mi, di) and (Mj , dj) be metric frames and consider

X =
∨

γ∈Γ

(xγ ⊕ yγ) ∈Mi ⊕
′ Mj .

Then

d′ij(X) ≥ (
◦
di ∨

◦
dj)(

∨

γ∈Γ

(xγ ∧ yγ)).

67



UNIFORM FRAMES IN THE SENSE OF BOURBAKI

Proof. We may assume without loss of generality that, for every γ ∈ Γ, (xγ , yγ) 6∈ O.

If X ⊆ x⊕y then, for every γ ∈ Γ, (xγ , yγ) ≤ (x, y) thus
∨

γ∈Γ xγ ≤ x and
∨

γ∈Γ yγ ≤ y.

Therefore

max(di(x), dj(y)) ≥ max(di(
∨

γ∈Γ

xγ), dj(
∨

γ∈Γ

yγ))

for any (x, y) ∈Mi ×Mj such that X ⊆ x⊕ y. Hence

d′ij(X) ≥ max



di
(

∨

γ∈Γ

xγ
)

, dj
(

∨

γ∈Γ

yγ
)



 ≥

(

◦
di ∨

◦
dj

)





∨

γ∈Γ

(xγ ∧ yγ)



 .

Theorem 4.17. Given a weak gauge Mono-∆-complete sink

σ = (|(Mi, di)|
mi−→L)i∈I ,

the family Γ(σ) of all metric diameters d′ on L such that, for every ǫ > 0, there exist

i ∈ I and δ > 0 satisfying U
∼

di

δ ⊆ U
d′

ǫ is a gauge structure on L.

Proof. (UP1) Consider d′1, d
′
2 ∈ Γ(σ). For each ǫ > 0, there are i1, i2 ∈ I and

δ1, δ2 > 0 such that U

∼

di1
δ1
⊆ U

d′1
ǫ and U

∼

di2
δ2
⊆ U

d′2
ǫ . Take δ = min(δ1, δ2). Then

U

∼

di1
⊔

∼

di2
δ
2

≤ U

∼

di1
δ ∧ U

∼

di2
δ ≤ U

d′1
ǫ ∧ U

d′2
ǫ ≤ U

d′1⊔d
′
2

ǫ .

Now, using Lemma 4.15, it follows that d′1 ⊔ d
′
2 ∈ Γ(σ).

(UP2) Let d be a metric diameter on L such that

∀ǫ > 0 ∃δ > 0 ∃d′ ∈ Γ(σ) : Ud
′

δ ⊆ U
d
ǫ .

Since d′ ∈ Γ(σ), there exist γ > 0 and i ∈ I such that Udi
γ ⊆ Ud

′

δ so Udi
γ ⊆ Udǫ and

d ∈ Γ(σ).

(UP3) This condition follows immediately from the fact that σ is a weak gauge

Mono-∆-complete sink.

If we consider, for each frame L, the set of all gauge structures on L ordered by

inclusion and the set of allMono-∆-complete sinks also ordered by inclusion, Theorem

4.17 gives us an order-preserving map Γ from the partially ordered set of weak gauge

Mono-∆-complete sinks to the partially ordered set of gauge structures on L.

For any metric diameter d on L let us denote by md the frame monomorphism

Ld →֒ L.

68



4. An application: UFrm is fully embeddable in a final completion of MFrm

Theorem 4.18. Assume that ∆ is the class of all finite episinks and let (L,G) be a

gauge frame. The sink

Υ(G) :=

{

|(M,d)|
m
−→L | m ∈Mono and there are d′ ∈ G and

f : (M,d) −→ (Ld′ , d′) in MFrm such that md′ · |f | = m

}

is a weak gauge Mono-∆-complete sink.

Proof. Conditions (S1) and (S2) are obviously satisfied. Let us check condition (S3):

Consider the following commutative diagram

-

-

? ?

PPPPPPPq

�������)
|(M ′

i , d
′
i)| L

|(M,d)||(Mi, di)|

|(M ′, d′)|

mi

|fi|

ei f

e

m

where (fi)i∈I is a final ∆-sink andmi·ei andm·e are the (RegEpi,Mono)-factorizations

of, respectively, f · |fi| and f . We need to show that m ∈ Υ(G) whenever every mi

belongs to Υ(G). So, assume that each mi belongs to Υ(G), i.e., that there are d′′i ∈ G

and gi : (M ′
i , d

′
i) −→ (Ld′′

i
, d′′i ) ∈ MFrm such that md′′

i
· |gi| = mi:

-

-

? ?

PPPPPPPq

�������)
|(M ′

i , d
′
i)| L

|(M,d)||(Mi, di)|

|(M ′, d′)|

mi

|fi|

ei f

e

m

|(Ld′′
i
, d′′i )|

|gi| md′′
i

J
J

J
J

J
J

J
JĴ 


















�
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Since G is a gauge structure and I is finite, d′′ :=
⊔

i∈I d
′′
i ∈ G. In order to show

that m ∈ Υ(G), it suffices to prove that there exists g : (M ′, d′) −→ (Ld′′ , d′′) in MFrm

such that md′′ · |g| = m:

-

-

? ?

PPPPPPPq

�������)
|(M ′

i , d
′
i)| L

|(M,d)||(Mi, di)|

|(M ′, d′)|

e

mmi

|fi|

ei f

|(Ld′′
i
, d′′i )|

|gi| md′′
i

J
J

J
J

J
J

J
JĴ 



















�

|(Ld′′ , d′′)|

|g|

md′′

?@
@

@
@

@
@

@
@@I

Let us see first that M ′ ⊆ Ld′′ :

Considering x ∈ M ′, since M ′ = f(M), we may write x = f(y) for some y ∈ M .

But (fi)i∈I is an epi-sink because (fi)i∈I belongs to ∆, so M =
∨

i∈I fi(Mi). Therefore,

m can be written as
∨

i∈I fi(yi) for some family {yi | i ∈ I} (where each yi belongs to

Mi). Hence

x =
∨

i∈I

(f · fi(yi)) =
∨

i∈I

(mi · ei(yi)) =
∨

i∈I

(mdi
· gi · ei(yi)) ∈

∨

i∈I

Ld′′
i
⊆ Ld.

Now let us prove that the inclusion g : M ′ →֒ Ld is a uniform homomorphism from

(M ′, d′) into (Ld′′ , d′′). By Corollary 4.13,

md′′
i

: (Ld′′
i
, d′′i ) −→ (L,

⊔

d∈G

d)

is a uniform homomorphism. Therefore, for each i ∈ I,

md′′ · g · e · fi = f · fi = md′′
i
· gi · ei

is uniform. Then g · e · fi is uniform. Hence, by the finality of (fi)i∈I and e, g is

uniform.
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Since every md belongs to Υ(G) and, G satisfying (UP3), L =
∨

d∈G Ld, Υ(G) is

weak gauge.

So, for any frame L we have an order-preserving map Υ from the partially ordered

set of gauge structures on L to the partially ordered set of weak gauge

Mono-∆-complete sinks on L.

We are at last ready to settle the embedding of UFrm in a ∆-universal final com-

pletion of MFrm.

Theorem 4.19. Suppose that ∆ is the class of all finite episinks in Frm. For every

frame L, Γ and Υ define a Galois connection Γ ⊣ Υ between the partially ordered set of

gauge structures and the partially ordered set of weak gauge Mono-∆-complete sinks.

Moreover ΓΥ = 1.

Proof. Let us prove first that ΓΥ(G) = G for any gauge G on L. In order to prove

that d ∈ G whenever d ∈ ΓΥ(G) it suffices to show that, for any ǫ > 0, there are γ > 0

and d′ ∈ G such that Ud
′

γ ⊆ U
d
ǫ . So, consider ǫ > 0. Then there exist δ > 0 and

mǫ : |(Mǫ, dǫ)| −→ L

in Υ(G) satisfying U
∼

dǫ

δ ⊆ U
d
ǫ . Since mǫ ∈ Υ(G) there are d′ǫ and

fǫ : (Mǫ, dǫ) −→ (Ld′ǫ , d
′
ǫ)

in MFrm for which the diagram

-

@
@@R

@
@@R �

���
L|(Mǫ, dǫ)|

|(Ld′ǫ , d
′
ǫ)|

mǫ

|fǫ| md′ǫ

is commutative. The uniformity of fǫ implies that, for any δ > 0, there is δ′ > 0

satisfying U
d′ǫ
δ′ ⊆ fǫ[U

dǫ

δ ]. Let γ = δ′

2 . We claim that U
d′ǫ
γ ⊆ U

∼

dǫ

δ : for any x ∈ U
d′ǫ
γ

there exists, by Corollary 4.12 (a), y ∈ Ld′ǫ with x ≤ y and d′ǫ < d′ǫ(x) + γ < δ′.

Consequently, there exists z ∈Mǫ such that y ≤ fǫ(z) and dǫ(z) < δ. Then
∼
dǫ (x) ≤

◦
dǫ

(x) ≤ dǫ(z) < δ.
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In conclusion, U
d′ǫ
γ ⊆ U

∼

dǫ

δ ⊆ U
d
ǫ as required.

Conversely, if d ∈ G then md ∈ Υ(G) so
∼

d∈ ΓΥ(G). By Corollary 4.12 (b),
∼

d=
◦

d= d

so d ∈ ΓΥ(G).

Finally, let us prove that σ ⊆ ΥΓ(σ) for every weak gaugeMono-∆-complete sink

σ on L. For each

|(M,d)|
m
−→L

in σ, the diameter
∼
d belongs to Γ(σ). By Proposition 4.14, L∼

d
= m(M). Since

1

2
d =

1

2

◦
d ≤

∼
d ≤

◦
d ≤ d,

then

(M,d)
m
−→(L∼

d
,
∼
d) ∈ MFrm,

which shows that m ∈ ΥΓ(σ).

It follows that, for every frame L, ΥΓ is a closure operator on the partially

ordered set of weak gauge Mono-∆-complete sinks on L, assigning to every weak

gauge Mono-∆-complete sink σ on L what we shall call its gauge closure σ−; then

the restriction of Γ to the weak gauge Mono-∆-complete sinks σ on L for which

σ− = σ is a bijection between these sinks and the gauge structures on L. We call

these sinks the gauge Mono-∆-complete sinks and we consider the category of gauge

Mono-∆-complete sinks as the full subcategory of Mono-∆-CS(MFrm,Frm) whose

objects are the gauge Mono-∆-complete sinks.

Since under this bijection the morphisms of Mono-∆-CS(MFrm,Frm) between

gauge Mono-∆-complete sinks correspond precisely to the gauge homomorphisms,

we have:

Corollary 4.20. The category UFrm is isomorphic to the category of gauge

Mono-∆-complete sinks of MFrm (for ∆ the class of finite episinks) and, therefore,

the category UFrm is fully embeddable in a final completion of MFrm, universal with

respect to the class ∆ of finite episinks.
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We end this chapter with some remarks.

Let us replace the condition

(UP2′) if d is a metric diameter and there exists d′ ∈ G such that

∀ǫ > 0 ∃δ > 0 : Ud
′

δ ⊆ U
d
ǫ , then d ∈ G,

for the condition (UP2) in Definition 3.2 and call the resulting structure a weak gauge

structure on the frame L.

The image by Υ of a weak gauge structure on L is still a weak gauge

Mono-∆-complete sink.

Conversely, we have that:

Proposition 4.21. For any weak gauge Mono-∆-complete sink on L

σ = (|(Mi, di)|
mi−→L)i∈I ,

the subfamily Γ′(σ) :=

{

∼
di| i ∈ I

}

of Γ(σ) is a weak gauge structure on L.

Proof. (UP2′) Let d be a metric diameter and suppose that there is d′ ∈ Γ′(σ) such

that

∀ǫ > 0 ∃δ > 0 : Ud
′

δ ⊆ U
d
ǫ .

Then y
d′

< x whenever y
d
< x so Ld ⊆ Ld′ and the inclusion (Ld, d) →֒ (Ld′ , d′) is

uniform. But d′ ∈ Γ′(σ) thus there is |(Mi, di)|
mi−→L in σ such that d′ =

∼
di. By

Proposition 4.14, (Mi, di) ∼= (Ld′ , d′) so, applying (S2), |(Ld, d)| −→ L belongs to σ

and, consequently,

d =
◦

d =
∼

d ∈ Γ′(σ).

(UP1) Consider
∼
di,

∼
dj ∈ Γ′(σ). Lemma 4.15 guarantees the existence of k ∈ I such

that

∀ǫ > 0 ∃δ > 0 : U
∼

dk

δ ⊆ U
∼

di⊔
∼

dj
ǫ .

Then, by (UP2′) above,
∼
di ⊔

∼
dj ∈ Γ′(σ).

The proof of (UP3) is obvious.
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Adapting the proof of Theorem 4.19 to this setting, we can conclude that Γ′Υ =

1 and ΥΓ′ = 1. So, we have an isomorphism between the category of weak gauge

frames (whose morphisms are the gauge homomorphisms) and the full subcategory of

Mono-∆-CS(MFrm,Frm) of weak gauge Mono-∆-complete sinks.

Note that, in the particular case of σ being a gaugeMono-∆-complete sink, Γ′(σ)

and Γ(σ) coincide. Indeed, whenever σ = σ−,

Γ′(σ) = Γ′(σ−) = Γ′ΥΓ(σ) = Γ(σ).

The following diagram summarizes our conclusions:

-

�

-

�

6

6 6

⋃ ⋃

⋃

gauge framesUFrm ∼=

weak
gauge frames

Υ

E

Γ

Υ

Γ′

(isomorphism)

(isomorphism)

gauge

Mono-∆-complete sinks

weak gauge

Mono-∆-complete sinks

Mono-∆-CS(MFrm,Frm)∆ =finite episinks
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Notes on Chapter II:

(1) An interesting question is whether the notion of weak gauge

Mono-∆-complete sink is stronger than the notion of Mono-∆-complete

sink, that is, whether the full embedding E of the diagram above is really

strict.

(2) Gauge structures could be defined as collections of star-diameters satisfying

axioms (UP2), (UP3) and

(UP1′) d1 ∨ d2 ∈ G whenever d1, d2 ∈ G.

In fact, it can be proved — similarly to the proof of Theorem 3.5 — that the

partially ordered set of gauge structures on a frame L (in this sense) is also

isomorphic to the partially ordered set of uniformities on L.

(3) The knowledge of some facts about coproducts of frames and about C-ideals

generated by down-sets revealed to be the crucial point in the proof that

Weil entourages do work for uniform frames.

Here, the conclusion that gauge structures may be also viewed from the

“pointless point of view” relies on the remarkable work of Pultr on metric

frames ([64], [65], [67], [68]).

75



UNIFORM FRAMES IN THE SENSE OF BOURBAKI

76



CHAPTER III

WEIL QUASI-UNIFORM FRAMES

The classical theory of quasi-uniform spaces — as opposed to the theory of

uniform spaces — is usually presented in the literature in terms of entourages

[28]: a quasi-uniformity on a set is defined by dropping the symmetry axiom from

the set of axioms of Weil for a uniform space. This is a theory which has achieved

much success (as a justification for this statement see, for example, [28] and [50]).

The goal of this chapter is to present an easily applicable theory of frame

quasi-uniformities that emerges from the theory of frame uniformities we in-

troduced in Chapter I. Further, we show that this theory of frame quasi-uni-

formities is equivalent to the one established (via covers) by Frith [29]. Con-

sequently, our category of quasi-uniform frames is also isomorphic to the category

QEUFrm of quasi-uniform frames of Fletcher, Hunsaker and Lindgren [27].

1. Quasi-uniform spaces

Quasi-uniform spaces were first defined by Nachbin in terms of entourages by drop-

ping the symmetry requirement of uniform spaces.

Definition 1.1. (Nachbin [55]) Let X be a set and let E be a family of entourages

of X. The pair (X, E) is a quasi-uniform space provided that:

(QUW1) E is a filter with respect to ⊆;
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(QUW2) for each E ∈ E there is F ∈ E such that F ◦ F ⊆ E.

A map f from a quasi-uniform space (X, E) to a quasi-uniform space (X ′, E ′) is

called uniformly continuous if (f × f)−1(E) ∈ E whenever E ∈ E ′. We denote the

category of quasi-uniform spaces and uniformly continuous maps by QUnif.

A cover-like approach for quasi-uniform spaces was given by Gantner and Steinlage

[30]. A conjugate pair of covers (briefly, conjugate cover) of a set X is a subset U of

P(X)× P(X) satisfying

⋃

{U1 ∩ U2 | (U1, U2) ∈ U} = X.

The conjugate cover U is called strong if, in addition,

U1 ∩ U2 6= ∅ whenever (U1, U2) ∈ U and either U1 6= ∅ or U2 6= ∅.

Let U and V be conjugate covers. Usually, one writes U ≤ V if for each (U1, U2) ∈ U ,

there is (V1, V2) ∈ V with U1 ⊆ V1 and U2 ⊆ V2.

Definition 1.2. (Gantner and Steinlage [30]) A non-empty family µ of conjugate

covers of a set X is a covering quasi-uniformity on X provided that:

(QU1) if U ∈ µ, V is a conjugate cover of X and U ≤ V then V ∈ µ;

(QU2) for every U ,V ∈ µ there exists a strong conjugate cover W ∈ µ such that

W ≤ {(U1 ∩ V1, U2 ∩ V2) | (U1, U2) ∈ U , (V1, V2) ∈ V};

(QU3) for each U ∈ µ there is V ∈ µ such that

V∗ := {(st1(V1,V), st2(V2,V)) | (V1, V2) ∈ V} ≤ U

where, for each V ⊆ X,

st1(V,V) :=
⋃

{V ′
1 | (V

′
1 , V

′
2) ∈ V and V ′

2 ∩ V 6= ∅}

and

st2(V,V) :=
⋃

{V ′
2 | (V

′
1 , V

′
2) ∈ V and V ′

1 ∩ V 6= ∅}.

In [30], the authors proved that these two approaches are equivalent.

We refer the reader to Fletcher and Lindgren [28] for a general reference on

quasi-uniform spaces.
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2. Covering quasi-uniform frames

In the same way that bitopological spaces play a natural role in the study of

quasi-uniform spaces ([51]), quasi-uniform frames lend themselves naturally to the

consideration of biframes.

The following definitions and notations are transcribed from [29].

Let B = (B0, B1, B2) be a biframe. A subset U of B1 × B2 is called a conjugate

cover of B if
∨

{u1 ∧ u2 | (u1, u2) ∈ U} = 1.

A conjugate cover U is strong if, for every (u1, u2) ∈ U , u1∧u2 6= 0 whenever u1∨u2 6= 0.

We recall some additional definitions. If U and V are conjugate covers of B, the

relation U ≤ V means that, for every (u1, u2) ∈ U , there is (v1, v2) ∈ V such that

u1 ≤ v1 and u2 ≤ v2. With relation to this preorder,

{(u1 ∧ v1, u2 ∧ v2) | (u1, u2) ∈ U, (v1, v2) ∈ V },

which is clearly a conjugate cover, is the meet U ∧V of the conjugate covers U and V .

For any conjugate cover U of B and any x ∈ B0,

st1(x, U) :=
∨

{u1 | (u1, u2) ∈ U, u2 ∧ x 6= 0}

and

st2(x, U) :=
∨

{u2 | (u1, u2) ∈ U, u1 ∧ x 6= 0}.

Finally, U∗ stands for the conjugate cover

{

(

st1(u1, U), st2(u2, U)
)

| (u1, u2) ∈ U

}

.

Note that, for every x ∈ B0 and i ∈ {1, 2} [29]:

• x ≤ sti(x, U);

• sti(sti(x, U), U) ≤ sti(x, U
∗).

Definition 2.1. (Frith [29]) A family U of conjugate covers of a biframe B is a

quasi-uniformity on B provided that:
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(QU1) U is a filter with respect to the preorder ≤ and the family of strong members

of U is a basis for this filter;

(QU2) for every U ∈ U there exists V ∈ U such that V ∗ ≤ U ;

(QU3) for each x ∈ Bi (i ∈ {1, 2}), x =
∨

{y ∈ Bi | y
U
< ix}, where y

U
< ix means that

there is U ∈ U such that sti(y, U) ≤ x.

A quasi-uniform frame is a pair (B,U) where B is a biframe and U is a

quasi-uniformity on B. Let (B,U) and (B′,U ′) be quasi-uniform frames. A uniform

homomorphism f : (B,U) −→ (B′,U ′) is a biframe map f : B −→ B′ such that, for

every U ∈ U ,

f [U ] := {(f(u1), f(u2)) | (u1, u2) ∈ U} ∈ U
′.

The category of quasi-uniform frames and uniform homomorphisms will be denoted

by QUFrm.

3. Weil quasi-uniform frames

In the spatial setting, by dropping the symmetry axiom one gets the notion of

quasi-uniformity. Here, in the pointfree context, after dropping the symmetry axiom

one must observe the following: the equivalence between conditions (i) and (ii) of

Proposition I.4.6 is no longer valid and so, in the place of
E
< , we have two order

relations,

x
E
<1y ≡ E ◦ (x⊕ x) ⊆ y ⊕ y, for some E ∈ E ,

and

x
E
<2y ≡ (x⊕ x) ◦ E ⊆ y ⊕ y, for some E ∈ E ,

which in turn give rise, as we shall see, to two subframes of L,

L1 :=

{

x ∈ L | x =
∨

{y ∈ L | y
E
<1x}

}

and

L2 :=

{

x ∈ L | x =
∨

{y ∈ L | y
E
<2x}

}

,
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that correspond, in the spatial case, to the two topologies defined by the quasi-uni-

formity.

Note that
E
<2 is the order

E−1

<1 where E−1 is the conjugate {E−1 | E ∈ E} of E .

For every x ∈ L and every C-ideal E, we denote the elements

∨

{y ∈ L | (y, z) ∈ E, z ∧ x 6= 0},

∨

{y ∈ L | (z, y) ∈ E, z ∧ x 6= 0}

and
∨

{y ∈ L | (y, y) ∈ E, y ∧ x 6= 0}

by, respectively, st1(x,E), st2(x,E) and st(x,E). For every x, y ∈ L and every E,F ∈

L⊕ L, we have:

• st1(x,E) ∧ y = 0 if and only if x ∧ st2(y,E) = 0;

• st1(st1(x,E), F ) ≤ st1(x, F ◦ E) and st2(st2(x,E), F ) ≤ st2(x,E ◦ F ).

It is also easy to conclude that, for every x ∈ L and every Weil entourage E of L,

x ≤ st(x,E) ≤ st1(x,E) ∧ st2(x,E).

Proposition 3.1. Assume that E is a basis for a filter of (WEnt(L),⊆). Then, for

i ∈ {1, 2}, the relations
E
< i are sublattices of L× L satisfying the following properties:

(a) for any x, y, z, w in L, x ≤ y
E
< iz ≤ w implies x

E
< iw;

(b) x
E
< iy if and only if, for some E ∈ E, sti(x,E) ≤ y;

(c) x
E
< iy implies x ≺ y;

(d) Li is a subframe of L.

Proof. The proof that each
E
< i defines a sublattice of L × L is similar to the proof

of the correlated property of
E
< in Proposition 4.8 of Chapter I.

(a) It is obvious.
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(b) If E ◦ (x⊕ x) ⊆ y ⊕ y and (a, b) ∈ E with b ∧ x 6= 0, then, since (a, b ∧ x) ∈ E

and (b ∧ x, b ∧ x) ∈ x ⊕ x, (a, b ∧ x) ∈ y ⊕ y, and, consequently, a ≤ y. Therefore

st1(x,E) ≤ y.

Conversely, consider (a, b) ∈ E and (b, c) ≤ (x, x) with b 6= 0. Then (a, c) ∈ y ⊕ y;

indeed, a ≤ st1(x,E) ≤ y and c ≤ x ≤ st1(x,E) ≤ y.

(c) From (b) it follows that st(x,E) ≤ y whenever x
E
< iy. It suffices now to recall

the proof of Proposition I.4.8.

(d) Since each
E
< i is a sublattice of L×L and, by (c), x

E
< iy implies x ≤ y, it is an

immediate corollary of property (a).

Remark 3.2. A straightforward calculation (analogous to the proof of (b) above)

shows that:

• x
E
<1y is also equivalent to the existence of some E ∈ E such that E◦(x⊕1) ⊆ y⊕1;

• similarly, x
E
<2y if and only if (1⊕ x) ◦ E ⊆ 1⊕ y for some E ∈ E .

In order to state the appropriate definition of Weil quasi-uniformity, we have to

replace the condition that (L,L1, L2) is a biframe for the admissibility condition (UW4)

of Definition I.4.5:

Definition 3.3. A family E of Weil entourages of a frame L is a Weil quasi-uniformity

if it satisfies the following conditions:

(QUW1) E is a filter of (WEnt(L),⊆);

(QUW2) for each E ∈ E there exists F ∈ E such that F ◦ F ⊆ E;

(QUW3) (L,L1, L2) is a biframe.

A Weil quasi-uniformity basis is a set E of Weil entourages such that ↑E is a Weil

quasi-uniformity. Therefore, E is a Weil quasi-uniformity basis if and only if it is a

basis of a filter of (WEnt(L),⊆) satisfying conditions (QUW2) and (QUW3).

A Weil quasi-uniform frame is just a pair (L, E) constituted of a frame L and a

Weil quasi-uniformity E on L. Let (L, E) and (L′, E ′) be Weil quasi-uniform frames. A

82



4. The isomorphism between the categories QUFrm and WQUFrm

Weil uniform homomorphism f : (L, E) −→ (L′, E ′) is a frame map f : L −→ L′ such

that (f ⊕ f)(E) ∈ E ′ whenever E ∈ E . These are the objects and the morphisms of

the category QWUFrm.

Remarks 3.4. (a) In case the Weil quasi-uniformity E is symmetric, i.e., has a basis

of symmetric Weil entourages, the relations
E
<1 and

E
<2 are the same and coincide with

the relation
E
< of Chapter I. Thus L1 = L2 and, therefore, the condition (QUW3) means

that L = L1 = L2 or, which is the same, that, for every x ∈ L, x =
∨

{y ∈ L | y
E
<x}.

In conclusion, it happens here the same as for spaces: a family of Weil entourages is a

Weil uniformity if and only if it is a symmetric Weil quasi-uniformity.

(b) If E is a Weil quasi-uniformity on L, then its conjugate E−1 is also a Weil

quasi-uniformity on L.

(c) Because of the risk of boring the reader, we dispense with the description of the

obvious adaptation of the dual adjunction of Theorem I.4.14 to the categories QUnif

and QWUFrm.

4. The isomorphism between the categories QUFrm and

WQUFrm

The following lemma, of the same flavour of Lemma 4.2 of Chapter I, will be

essencial in the sequel.

Lemma 4.1. Let A ∈ D(L × L) and let x ∈ L. For each i ∈ {1, 2}, sti(x, k(A)) =

sti(x,A).

Proof. We only prove the lemma for i = 1 since the proof for i = 2 is similar.

Let A ∈ D(L× L) and consider the non-empty set

IIE = {E ∈ D(L× L) | A ⊆ E ⊆ k(A), st1(x,E) = st1(x,A)}.

If E ∈ IIE then also k0(E) ∈ IIE:

Clearly, it suffices to check that st1(x, k0(E)) ≤ st1(x,E). Let (a, b) ∈ k0(E) with

b ∧ x 6= 0. If (a, b) = (a,
∨

S) for some S with {a} × S ⊆ E, there is a non-zero
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s ∈ S such that s ∧ x 6= 0 and (a, s) ∈ E, and therefore a ≤ st1(x,E). Otherwise, if

(a, b) = (
∨

S, b) for some S with S×{b} ⊆ E, then, immediately, a =
∨

S ≤ st1(x,E).

Besides, for any non-empty IIF ⊆ IIE,
⋃

F∈IIF F ∈ IIE because

st1(x,
⋃

F∈IIF

F ) =
∨

F∈IIF

st1(x, F ).

Therefore T :=
⋃

E∈IIEE belongs to IIE, i.e., IIE has a largest element T . But then, as we

proved above, k0(T ) ∈ IIE so T = k0(T ), i.e., T is a C-ideal. Hence k(A) = T ∈ IIE and,

consequently, st1(x, k(A)) = st1(x,A).

Proposition 4.2. Let U be a quasi-uniformity on a biframe (B0, B1, B2). For each

conjugate cover U define EU := k(U). Then EU = {EU | U ∈ U} is a Weil

quasi-uniformity basis on B0.

Proof. It is obvious that every element of EU is a Weil entourage since

∨

{x | (x, x) ∈ k(U)} ≥
∨

{u1 ∧ u2 | (u1, u2) ∈ U}.

Let EU1 , EU2 ∈ EU and take U ∈ U such that U ≤ U1∧U2. Clearly EU ⊆ EU1∩EU2 ,

thus EU is a filter basis of Weil entourages of B0.

Consider EU ∈ EU and take V ∈ U such that V ∗ ≤ U . Then EV ◦ EV ⊆ EU :

An application of Lemma I.4.2 yields EV ◦EV = ↓V ◦ ↓V . Let (x, y) ≤ (v1, v2) ∈ V

and (y, z) ≤ (v′1, v
′
2) ∈ V with x, y, z 6= 0. As x ≤ v1 ≤ st1(v1, V ), z ≤ v′2 ≤ st2(v2, V )

and (st1(v1, V ), st2(v2, V )) ∈ V ∗, this says that there is a pair (u1, u2) ∈ U such that

(x, z) ≤ (u1, u2), and, consequently, that (x, z) ∈ EU .

Finally, (B0, B
1
0 , B

2
0) is a biframe:

By hypothesis

Bi ⊆
{

x ∈ B0 | x =
∨

{y ∈ Bi | y
U
< ix}

}

.

Moreover, by Lemma 4.1, y
U
< ix means that there is U ∈ U such that sti(y, k(U)) ≤ x,

which, as we already observed, is equivalent to y
EU
< ix. Therefore

Bi ⊆
{

x ∈ B0 | x =
∨

{y ∈ Bi | y
EU
< ix}

}

.
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Now, since (B0, B1, B2) is a biframe and, for i ∈ {1, 2},

Bi
0 = {x ∈ B0 | x =

∨

{y ∈ Bi | y
EU
< ix}}

is a subframe of B0 (Proposition 3.1 (d)), it easily follows that (B0, B
1
0 , B

2
0) is a biframe.

Let E be a Weil quasi-uniformity on L. Since, for any E ∈ E and x ∈ L, sti(x,E)

may not belong to Li, let us introduce in L⊕ L the relations
E
⊑i for i ∈ {1, 2}:

For every I, J ∈ L⊕ L,

I
E
⊑1J ≡ E ◦ I ⊆ J for some E ∈ E

and

I
E
⊑2J ≡ I ◦ E ⊆ J for some E ∈ E .

These relations are stronger than the inclusion ⊆. In fact, for every E ∈ E and

I ∈ L ⊕ L, I ⊆ (E ◦ I) ∩ (I ◦ E) as we now prove; for any (x, y) ∈ I we may write

x =
∨

{x∧ z | (z, z) ∈ E, x∧ z 6= 0}, and, moreover, for any z such that (z, z) ∈ E and

x∧z 6= 0, (x∧z, x∧z) ∈ E and (x∧z, y) ∈ I. Thus (x, y) ∈ E ◦ I. Similarly I ⊆ I ◦E.

Hence I ⊆ (E ◦ I) ∩ (I ◦ E), as we claimed.

Further, for each i ∈ {1, 2}, we also need the following operator on E :

inti(E) :=
∨

{I ∈ L⊕ L | I
E
⊑iE}.

Proposition 4.3. Let E be a Weil quasi-uniformity on L. For i ∈ {1, 2} and for any

E ∈ E, we have that:

(a) inti(E) ⊆ E ⊆ inti(E
2);

(b) for every x ∈ L, sti(x, inti(E)) ∈ Li.

Proof. (a) It is trivial.

(b) In order to show that

st1(x, int1(E)) ≤
∨

{

y ∈ L | y
E
<1st1(x, int1(E))

}
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it suffices to prove that

int1(E) ◦ (x⊕ 1) ⊆
∨

{y ∈ L | y
E
<1st1(x, int1(E))} ⊕ 1 (cf. Remark 3.2).

By Lemma I.4.2,

int1(E) ◦ (x⊕ 1) =
⋃

{I ∈ L⊕ L | I
E
⊑1E} ◦ ↓(x, 1).

If (b, c) ≤ (x, 1), b 6= 0, (a, b) ∈ I and there is F ∈ E such that F ◦ I ⊆ E, then for

any G ∈ E such that G2 ⊆ F we have that G ◦ I ⊆ int1(E), since G ◦ I
E
⊑1E. Then, a

straightforward calculation shows that

G ◦ (a⊕ a) ⊆ st1(x, int1(E))⊕ st1(x, int1(E)),

i.e., that a
E
<1st1(x, int1(E)). Hence

(a, c) ∈
∨

{y ∈ L | y
E
<1st1(x, int1(E))} ⊕ 1.

By (a) each inti(E) is a Weil entourage. Note that, for i = 1 and i = 2, {inti(E) |

E ∈ E} is a basis for E .

Remark 4.4. Proposition 4.3 also enables us to conclude that condition (QUW3)

of Definition 3.3 can be stated as a condition of admissibility of a uniformity on L;

in fact, it is equivalent to saying that the filter E generated by {E ∩ E−1 | E ∈ E} is

admissible, i.e., that, for every x ∈ L, x =
∨

{y ∈ L | y
E
<x}:

If E is admissible and x ∈ L, then x =
∨

S where S = {y ∈ L | y
E
<x}. For any

y ∈ S there exist Ey ∈ E and Ey ∈ E such that Ey ◦(y⊕y) ⊆ x⊕x and Ey∩E
−1
y ⊆ Ey.

Consider Fy ∈ E such that F 2
y ⊆ Ey and denote the intersection Fy ∩ F

−1
y ∈ E by F y.

An easy computation shows that F
2
y ⊆ Ey so inti(F

2
y) ⊆ inti(Ey) (i ∈ {1, 2}). Thus

we have

x =
∨

S ≤
∨

y∈S

(st1(y, F y) ∧ st2(y, F y))

≤
∨

y∈S

(st1(y, int1(F
2
y)) ∧ st2(y, int2(F

2
y)))

≤
∨

y∈S

(st1(y, int1(Ey)) ∧ st2(y, int2(Ey))).
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Now
∨

y∈S

(st1(y, int1(Ey)) ∧ st2(y, int2(Ey))) ≤ x

because Ey ◦ (y⊕ y) ⊆ x⊕ x. Then, since sti(y, inti(Ey)) ∈ L
i (i ∈ {1, 2}), (L,L1, L2)

is a biframe. Conversely, for any x ∈ L, we may write x =
∨

γ∈Γ(x1
γ ∧ x

2
γ) for {x1

γ | γ ∈

Γ} ⊆ L1 and {x2
γ | γ ∈ Γ} ⊆ L2. But, for any γ ∈ Γ,

x1
γ =

∨

{y ∈ L | y
E
<1 x

1
γ}

and

x2
γ =

∨

{y ∈ L | y
E
<2 x

2
γ},

so it suffices to prove that y1 ∧ y2
E
< x1 ∧ x2 whenever y1

E
<1 x1 and y2

E
<2 x2 which

is an easy-to-prove statement: if E ◦ (y1 ⊕ y1) ⊆ x1 ⊕ x1 and (y2 ⊕ y2) ◦ F ⊆ x2 ⊕ x2

then F−1 ◦ (y2 ⊕ y2) ⊆ x2 ⊕ x2 so

(E ∩ F )−1 ◦ (y1 ∧ y2 ⊕ y1 ∧ y2) ⊆ x1 ∧ x2 ⊕ x1 ∧ x2.

In summary, as it happens with uniform spaces, if (L, E) is a Weil quasi-uniform

frame, the coarsest Weil quasi-uniformity E on L that contains E ∪E−1 is a uniformity

and has the family {E ∩ E−1 | E ∈ E} as basis.

Definition 4.5. Suppose that E is a Weil entourage of L. We say that an element

x of L is E-small if x ≤ st(y,E) whenever x ∧ y 6= 0.

For each Weil entourage E define

UE :=

{

(

st1(x, int1(E)), st2(x, int2(E))
)

| x is an E-small member of L

}

.

Proposition 4.6. Let (L, E) be a Weil quasi-uniform frame. For each x ∈ L and

each E ∈ E we have that:

(a) sti(x, UE) ≤ sti(x,E
3) (i ∈ {1, 2});

(b) sti(x,E) ≤ sti(x, UE2) (i ∈ {1, 2}).
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Proof. (a) Fix i ∈ {1, 2}. Let z be an E-small element such that stj(z, intj(E))∧x 6=

0, (j ∈ {1, 2}; j 6= i). Then z ∧ sti(x, intj(E)) 6= 0 and, due to the E-smallness,

z ≤ st(sti(x, intj(E)), E) ≤ sti(sti(x,E), E) ≤ sti(x,E
2).

Hence sti(z, inti(E)) ≤ sti(x,E
3), and, consequently,

∨

{

sti(z, intiE) | z is E-small, stj(z, intjE) ∧ x 6= 0, (j ∈ {1, 2}; j 6= i)

}

≤ sti(x,E
3),

that is, sti(x, UE) ≤ sti(x,E
3).

(b) Let (a, b) ∈ E auch that b ∧ x 6= 0. We may write

a =
∨

{a ∧ z | (z, z) ∈ E2, a ∧ z 6= 0}.

Observe that
(

st1(a ∧ z, int1(E
2)), st2(a ∧ z, int2(E

2))
)

∈ UE2

whenever (z, z) ∈ E2 and a ∧ z 6= 0. But

x ∧ st2(a ∧ z, int2(E
2)) =

∨

{x ∧ d | (c, d) ∈ int2(E
2), c ∧ a ∧ z 6= 0}

≥
∨

{x ∧ d | (c, d) ∈ E, c ∧ a ∧ z 6= 0}

≥ x ∧ b 6= 0

so the desired inequality is proved.

Given a Weil quasi-uniformity E on L, let us denote the set {UE | E ∈ E} by UE .

Proposition 4.7. UE is a basis of strong conjugate covers for a quasi-uniformity on

(L,L1, L2).

Proof. By Proposition 4.3 (b) each UE is a subset of L1 × L2. Moreover, it is a

strong conjugate cover:

•
∨

{st1(x, int1(E)) ∧ st2(x, int2(E)) | x is E-small} ≥
∨

{x ∈ L | x is E-small}

≥
∨

{x ∈ L | (x, x) ∈ E} = 1;
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• if

st1(x, int1(E)) ∨ st2(x, int2(E)) 6= 0

then x 6= 0 so

st1(x, int1(E)) ∧ st2(x, int2(E)) 6= 0.

For E,F ∈ E , we have that UG ≤ UE ∧ UF for any G ∈ E such that G ⊆ E ∩ F

(clearly, x is E-small and F -small whenever it is G-small).

Now let us check conditions (QU2) and (QU3) of Definition 2.1:

(QU2) Consider UE ∈ UE and take F ∈ E such that F 8 ⊆ E. Then U∗
F ≤ UE :

Let x be an F -small member of L. We have that st1(st1(x, int1(F )), UF ) is equal

to
∨

{st1(z, int1(F )) | z is F -small, st2(z, int2(F )) ∧ st1(x, int1(F )) 6= 0}.

Since

st2(z, int2(F )) ∧ st1(x, int1(F )) 6= 0

is equivalent to

z ∧ st1(st1(x, int1(F )), int2(F )) 6= 0

and z is F -small,

z ≤ st(st1(st1(x, int1(F )), int2(F )), F ) ≤ st1(st1(st1(x, F ), F ), F ).

It follows that

st1(z, int1(F )) ≤ st1(z, F ) ≤ st1(x, F
4) ≤ st1(x, int1(E)).

In summary, we have just proved that st1(st1(x, int1(F )), UF ) ≤ st1(x, int1(E)).

Similarly, one proves that st2(st2(x, int2(F )), UF ) ≤ st2(x, int2(E)).

(QU3) Let x ∈ L1. Then x =
∨

{y ∈ L | y
E
<1x}. We check (QU3) by showing that,

for any y ∈ L satisfying y
E
<1x, there is y′ ∈ L1 such that y ≤ y′

UE

<1x. So, consider

y ∈ L with y
E
<1x and take F,G ∈ E such that G16 ⊆ F and F 3 ⊆ E (where E ∈ E

satisfies st1(y,E) ≤ x). Since y ≤ st1(y, int1(G)) ∈ L1, we only need to check that

st1(st1(y, int1(G)), UG2) ≤ x:
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Since

st1 (st1(y, int1(G)), UG2) ≤ st1 (st1(y,G), UG2)

≤ st1 (st1(y, UG2), UG2)

≤ st1(y, UG2
∗)

and, by the above proof of (QU2), UG2
∗ ≤ UG16 , we have

st1 (st1(y, int1(G)), UG2) ≤ st1(y, UG2
∗) ≤ st1(y, UF ) ≤ st1(y, F

3) ≤ st1(y,E) ≤ x,

as we claimed.

Lemma 4.8. Let (L,U) be a quasi-uniform frame. For any strong conjugate cover V

in U , we have that:

(a) V ≤ UEV ∗ ;

(b) UEV
≤ V ∗∗.

Proof. (a) Let (v1, v2) ∈ V with v1∨v2 6= 0. Of course, v1∧v2 6= 0 and (v1∧v2, v1∧v2) ∈

EV ⊆ EV ∗ , so v1 ∧ v2 is EV ∗-small and

(

st1(v1 ∧ v2, int1(EV ∗)), st2(v1 ∧ v2, int2(EV ∗))

)

∈ UEV ∗ .

Easily one can deduce that EV ◦ EV ⊆ EV ∗ , so EV ⊆ inti(EV ∗) (i ∈ {1, 2}). Con-

sequently,

(v1, v2) ≤

(

st1(v1 ∧ v2, EV ), st2(v1 ∧ v2, EV )

)

≤

(

st1(v1 ∧ v2, int1(EV ∗)), st2(v1 ∧ v2, int2(EV ∗))

)

.

(b) For any non-zero EV -small element x of L, there exists a pair (v1, v2) ∈ V such

that x ∧ v1 ∧ v2 6= 0, by definition of conjugate cover. Obviously

x ≤ st(v1 ∧ v2, EV ) ≤ st1(v1, EV ) ∧ st2(v2, EV ) = st1(v1, V ) ∧ st2(v2, V ).

Thus

sti(x, V ) ≤ sti(sti(vi, V ), V ) ≤ sti(sti(vi, V ), V ∗) (i ∈ {1, 2}),
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so
(

st1(x, int1(EV )), st2(x, int2(EV ))
)

≤
(

st1(x, V ), st2(x, V )
)

≤
(

st1(st1(v1, V ), V ∗), st2(st2(v2, V ), V ∗)
)

∈ V ∗∗.

Lemma 4.9. Let (L, E) be a Weil quasi-uniform frame. For any F ∈ E, we have that:

(a) F ⊆ EU
F2 ;

(b) EUF
⊆ F 3.

Proof. (a) Let (x, y) ∈ F . Writing y in the form

∨

{y ∧ z | (z, z) ∈ F 2, y ∧ z 6= 0},

it suffices to verify that

(x, y ∧ z) ∈ k(UF 2) whenever (z, z) ∈ F 2 and y ∧ z 6= 0. (4.9.1)

But as x ≤ st1(z, F ) ≤ st1(z, int1(F
2)), y∧ z ≤ z ≤ st2(z, int2(F

2)) and z is F 2-small,

then 4.9.1 holds.

(b) Let us verify that UF ⊆ F 3 or, which is the same, that (x,w) ∈ F 3 whenever

(x, y) ∈ int1(F ), (z, w) ∈ int2(F ), y∧s 6= 0, z∧s 6= 0, and s is F -small. The F -smallness

of s implies that s ≤ st(z, F ) ≤ st1(z, F ), so y ∧ st1(z, F ) 6= 0, i.e., st2(y, F ) ∧ z 6= 0.

But (x, st2(y, F )) ∈ F 2 and (z, w) ∈ F , thus (x,w) ∈ F 3.

Let U and E be, respectively, a quasi-uniformity on L and a Weil quasi-uniformity

on L. In the sequel, ψ(U) denotes the Weil quasi-uniformity generated by EU and ψ′(E)

denotes the quasi-uniformity for which UE is a basis.

Proposition 4.10. ψ′ψ(U) = U and ψψ′(E) = E.

Proof. We first show that ψ′ψ(U) = U . The set {UE | E ∈ ψ(U)} is a basis for the

quasi-uniformity ψ′ψ(U). It suffices now to observe that it is a basis for U , which is a

91



WEIL QUASI-UNIFORM FRAMES

consequence of Lemma 4.9: by (a), {UE | E ∈ ψ(U)} ⊆ U , and, by (b), for any V ∈ U

there is some V ′ ∈ U such that UEV ′ ⊆ V .

Similarly, Lemma 4.8 implies that the basis {EU | U ∈ ψ
′(E)} of ψψ′(E) is also a

basis for E , which proves the second equality.

The correspondence (L,U) 7−→ (L,ψ(U)) is functorial. Indeed, it is the function

on objects of a functor from QUFrm into WQUFrm whose function on morphisms is

described in the following proposition:

Proposition 4.11. Let (L,U) and (L′,U ′) be quasi-uniform frames and let f : (L,U)

−→ (L′,U ′) be a uniform homomorphism. Then f : (L,ψ(U)) −→ (L′, ψ(U ′)) is a Weil

uniform homomorphism.

Proof. Let us show that (f ⊕ f)(E) ∈ ψ(U ′), for every E ∈ ψ(U). So, let E be a

C-ideal containing k(U), for some U ∈ U . By hypothesis, f [U ] ∈ U ′. It suffices now to

show that k(f [U ]) ⊆ (f ⊕ f)(E), which is trivial since (f(u1), f(u2)) ∈ (f ⊕ f)(E) for

every (u1, u2) ∈ U .

On the other hand, the correspondence (L, E) 7−→ (L,ψ′(E)) defines a functor from

WQUFrm to QUFrm as we shall see in the sequel.

Lemma 4.12. Let f : (L, E) −→ (L′, E ′) be a Weil uniform homomorphism. Then,

for any x, y ∈ L and i ∈ {1, 2}, f(x)
E ′

< if(y) whenever x
E
< iy.

Proof. The case x = 0 is trivial. If x is non-zero, since (f ⊕ f)(E) ∈ E ′ for every

E ∈ E , it suffices to check that

(f ⊕ f)(E) ◦ (f(x)⊕ f(x)) ⊆ f(y)⊕ f(y)

whenever E ∈ E is such that E ◦ (x⊕ x) ⊆ y ⊕ y. But

(f ⊕ f)(E) =
∨

{f(a)⊕ f(b) | (a, b) ∈ E}.

Apply Lemma 4.2 of Chapter I; it follows that

(f ⊕ f)(E) ◦ (f(x)⊕ f(x)) =





⋃

(a,b)∈E

(f(a)⊕ f(b))



 ◦ ↓(f(x), f(x)).
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If (c, d) ∈ f(a) ⊕ f(b) for some (a, b) ∈ E, (d, e) ∈↓ (f(x), f(x)) and d 6= 0, then, in

case c 6= 0 (the case c = 0 is obvious), we have that b ∧ x 6= 0, and, consequently, that

(a, x) ∈ E ◦ (x⊕ x) ⊆ y ⊕ y. Hence a ≤ y and x ≤ y, which imply that c ≤ f(y) and

e ≤ f(y), i.e., that (c, e) ∈ f(y)⊕ f(y).

Lemma 4.13. Suppose that f : L −→ L′ is a frame homomorphism. Then, for every

x ∈ L and E ∈ L⊕ L, sti(f(x), (f ⊕ f)(E)) ≤ f(sti(x,E)) for i ∈ {1, 2}.

Proof. Let

E =
∨

(a,b)∈E

(a⊕ b).

We have that

st1(f(x), (f ⊕ f)(E)) = st1

(

f(x),
∨

(a,b)∈E

(f(a)⊕ f(b))

)

= st1

(

f(x),
⋃

(a,b)∈E

(f(a)⊕ f(b))

)

(by Lemma 4.1)

=
∨

{f(a) | (a, b) ∈ E, f(b) ∧ f(x) 6= 0}

≤ f
(

∨

{a | (a, b) ∈ E, b ∧ x 6= 0}
)

= f(st1(x,E)).

The proof for i = 2 is similar.

Proposition 4.14. Let (L, E) and (L′, E ′) be Weil quasi-uniform frames and let f :

(L, E) −→ (L′, E ′) be a Weil uniform homomorphism. Then f : (L,ψ′(E)) −→

(L′, ψ′(E ′)) is a uniform homomorphism.

Proof. By Lemma 4.12, f is a biframe map. Indeed, for any a ∈ Li,

f(a) =
∨

{f(b) | b ∈ L, b
E
< ia}

thus

f(a) ≤
∨

{

f(b) | f(b)
E ′

< if(a)

}

≤
∨

{

x ∈ L′ | x
E ′

< if(a)

}

,

that is, f(a) ∈M i.
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Our goal is to show that, for any F ∈ E , f [UF ] belongs to ψ′(E ′):

Consider G ∈ E such that G6 ⊆ F . Then EUG
∈ ψψ′(E) = E , so (f ⊕ f)(EUG

) ∈ E ′

by hypothesis. Since E ′ = ψψ′(E ′), we may take V ∈ ψ′(E ′) such that EV ⊆ (f ⊕

f)(EUG
). We may assume, without loss of generality, that V is strong. In order to

show that f [UF ] ∈ ψ′(E ′) we prove that V ≤ f [UF ]. Assume that (v1, v2) ∈ V with

v1 ∧ v2 6= 0. Then there is a pair (x, y) ∈ UG such that v1 ∧ v2 ∧ f(x) ∧ f(y) 6= 0.

Consequently,

v1 ≤ st1(f(x ∧ y), V ) = st1(f(x ∧ y), EV ) ≤ st1
(

f(x ∧ y), (f ⊕ f)(EUG
)
)

,

and then, from Lemma 4.13, we deduce that

v1 ≤ f(st1(x ∧ y,EUG
)).

Whence, due to Lemma 4.9 (b),

v1 ≤ f(st1(x ∧ y,G
3)) ≤ f(st1(x ∧ y, int1(F ))).

Analogously,

v2 ≤ f(st2(x ∧ y, int2(F ))).

On the other hand, since

(x ∧ y, x ∧ y) ∈ EUG
⊆ G3 ⊆ F,

the element x ∧ y is F -small, and, in conclusion, we have

(v1, v2) ≤
(

f(st1(x ∧ y, int1(F ))), f(st2(x ∧ y, int2(F )))
)

∈ f [UF ].

In summary, it follows from Propositions 4.10, 4.11 and 4.14 that:

Theorem 4.15. The categories WQUFrm and QUFrm are isomorphic.
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Notes on Chapter III:

(1) In [25], [26] and [27] Fletcher, Hunsaker and Lindgren studied the theory of

frame quasi-uniformities that arises from the theory of entourage uniform

frames of Fletcher and Hunsaker [23]. The corresponding category QEUFrm

is also isomorphic to QWUFrm, as we pointed out in the introduction to this

chapter.

(2) Besides covers and entourages, a quasi-uniformity on a set may be described

in terms of “quasi-pseudometrics” (non-symmetric pseudometrics) [30]. So

there are characterizations of quasi-uniformities that are analogous to those

of uniformities which are given in terms of uniform covers, entourages and

pseudometrics. To complete the similar picture for frames it seems that one

needs to know what may be used in frames in analogy with quasi-pseudo-

metrics in the spatial setting, that is, one needs a theory of “non-symmetric

diameters”. This question is under consideration.
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CHAPTER IV

WEIL NEARNESS SPACES

AND WEIL NEARNESS FRAMES

The purpose of this chapter is to present the notion of Weil nearness frame and

its links with nearness frames and Weil nearness spaces (i.e., the spaces that arise

as the natural notion of spatial nearness via entourages). These spaces, although

distinct from the classical nearness spaces of Herrlich, form a nice topological

category. It is shown that, in the realm of Weil nearness spaces, it is possible to

consider several spaces of topological nature such as, for example, the symmetric

topological spaces, the proximal spaces or the uniform spaces. Weil’s concept

of entourage is, therefore, a basic topological concept by means of which several

topological notions or ideas can be expressed.

We also study some aspects of proximal frames using Weil entourages.

1. Nearness spaces

Topological spaces are the result of the axiomatization of the concept of nearness

between a point x and a set A (expressed by the relation x ∈ cl(A)). On the other hand,

proximal spaces are obtained by an axiomatization of the concept of nearness between

two sets A and B (usually denoted by AδB, i.e., “A is near B” [56]) and contigual

spaces express the concept of nearness between the elements of a finite family of sets
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A (usually denoted by σ(A) [41]).

The concept of nearness space was introduced by Herrlich [33] as an axiomatization

of the concept of “nearness of an arbitrary collection of sets” A (usually denoted by

A ∈ ξ, i.e., “A is near” [33]), with the goal of unifying several types of topological

structures; as the author says in [34]:

“The aim of this approach is to find a basic topological concept — if possible

intuitively accessible — by means of which any topological concept or idea

can be expressed”.

There are other (equivalent) axiomatizations of the category of nearness spaces and

nearness maps [34]. Here, we prefer to use the one given in terms of covers.

Definitions 1.1. (Herrlich [34]) Let X be a set and let µ be a non-empty family of

covers of X. Consider the following axioms:

(N1) if U ∈ µ, V ∈ P(X) and U ≤ V then V ∈ µ;

(N2) if U ,V ∈ µ then U ∧ V ∈ µ;

(N3) if U ∈ µ then

intµU := {intµU | U ∈ U} ∈ µ,

where, for every U ⊆ X,

intµU := {x ∈ X | {U,X \ x} ∈ µ}.

The family µ is called a prenearness structure on X if it satisfies (N1); µ is called a

seminearness structure on X if it satisfies (N1) and (N2) and it is called a nearness

structure on X if it fulfils (N1), (N2) and (N3). The pair (X,µ) is called a prenearness

space (respectively, seminearness space, nearness space) if µ is a prenearness (respect-

ively, seminearness, nearness) structure on X.

If (X,µ) and (X ′, µ′) are prenearness spaces, a function f : X −→ X ′ is called a

nearness map f : (X,µ) −→ (X ′, µ′) from (X,µ) to (X ′, µ′) if f−1 preserves nearness

covers, that is, if U ∈ µ′ implies f−1[U ] ∈ µ.
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Let us denote by PNear the category of prenearness spaces and nearness maps and

by SNear and Near the full subcategories of PNear of, respectively, seminearness spaces

and nearness spaces.

Remarks 1.2.

(a) If µ is a prenearness on X then intµ is an operator on P(X) satisfying:

(T0) x ∈ intµ(X \ {y}) if and only if y ∈ intµ(X \ {x});

(T1) intµ(X) = X;

(T2) intµ(A) ⊆ A;

(T3) intµ(A) ⊆ intµ(B) whenever A ⊆ B.

In case µ is a seminearness then intµ also satisfies the axiom

(T4) intµ(A ∩B) = intµ(A) ∩ intµ(B).

Finally, if µ is a nearness, intµ satisfies in addition the axiom

(T5) intµ(intµ(A)) = intµ(A).

Thus any nearness structure onX induces onX a topology satisfying axiom (T0),

that is, a symmetric topology. These topological spaces are usually known as

symmetric topological spaces or R0-spaces. We shall denote the full subcategory

of Top formed by these spaces by R0Top.

When (X,µ) is only a seminearness space then intµ is not necessarily an interior

operator but it only defines a closure space in the sense of Čech [16]. The

seminearness spaces are the “quasi-uniform spaces” of Isbell [38]. The category

SNear is isomorphic to the category of “merotopic spaces” and “merotopic maps”

of Katětov [46].

(b) Since (N3) is implied by the star-refinement condition (U2) of Definition I.1.3,

the category of uniform spaces is a full subcategory of the category of nearness

spaces. Herrlich [34] proved that Near is a topological category — as well as

PNear and SNear — and that the categories of symmetric topological spaces,
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uniform spaces, proximal spaces and contigual spaces are nicely embedded in

Near as bireflective (the case of uniform spaces, proximal spaces and contigual

spaces) or bicoreflective (the case of symmetric topological spaces) subcategories.

2. Covering nearness frames

The concept of nearness frame was introduced by Banaschewski and Pultr [12] as

a generalization of uniform frames: nearness frames are uniform frames without the

star-refinement property (U2). Their motivation is that some situations in uniform

frames naturally lead to the consideration of nearnesses.

Definition 2.1. (Banaschewski and Pultr [12]) Let L be a frame and let U ⊆ Cov(L).

The pair (L,U) is a nearness frame if:

(N1) U is a filter of (Cov(L),≤);

(N2) for any x ∈ L, x =
∨

{y ∈ L | y
U
< x}.

These are the objects of the category NFrm, whose morphisms — the uniform

homomorphisms — are the frame maps f : (L,U) −→ (L′,U ′) such that f [U ] ∈ U ′

whenever U ∈ U .

The corresponding spatial notion is the following:

(2.1.1) The topological spaces (X, T ) supplied with a filter µ of T -open covers

of X such that, for any U ∈ T and x ∈ U , there exist V ∈ T and U ∈ µ

with x ∈ V and st(V,U) ⊆ U .

In fact, adapting here the open and spectrum functors in the obvious way we have

a dual adjunction (the open functor assigning to each space (X, T , µ) of 2.1.1, the

nearness frame (T , µ) and the spectrum functor assigning to each nearness frame (L,U)

the space (ptL, TptL, µptL).

The spaces of 2.1.1 are not Herrlich’s nearness spaces; any nearness µ for a space

(X, T , µ) of 2.1.1 is a nearness in the sense of Herrlich but the converse is not true.
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A characterization of the nearness spaces of Herrlich that correspond to those spaces

was given recently by Hong and Kim:

Definition 2.2. (Hong and Kim [37]) Given subsets A and B of a nearness space

(X,µ), A <µ B means that {X \ A,B} ∈ µ. A nearness space (X,µ) is said to be

framed if, for every x ∈ X and A ⊆ X such that {x} <µ A, there exists a subset B of

X such that {x} <µ B <µ A.

Since, for every space (X, T , µ) defined in 2.1.1, Tµ = T , it is easy to prove that

the category of these spaces — where the morphisms are the maps f : (X, T , µ) −→

(X ′, T ′, µ′) for which f−1[U ] ∈ µ whenever U ∈ µ′ — is isomorphic to the category

FrNear of framed nearness spaces and nearness maps. Moreover:

Theorem 2.3. (Hong and Kim [37]) The category FrNear is a bireflective subcategory

of Near and it is dually equivalent with the full subcategory SpNFrm of spatial nearness

frames of NFrm.

In summary, we have:

-

�

-

�

6

6

bireflective

full embedding

monoreflective

full embedding

⋃

⋃

FrNear

FrNear

Near

Ω

pt

Ω

pt

dual

adjunction

dual

equivalence

NFrm

SpNFrm
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3. Weil nearness frames

We now embark on the study of the natural notion of nearness that arises as a

generalization of our notion of Weil uniformity.

Definitions 3.1.

(1) A Weil nearness on L is a family E of Weil entourages such that:

(NW0) E−1 ∈ E for every E ∈ E ;

(NW1) E is a filter of (WEnt(L),⊆);

(NW2) for every x ∈ L, x =
∨

{y ∈ L | y
E
<x}.

(2) A Weil nearness frame is just a pair (L, E) where L is a frame and E is a Weil

nearness on L. The morphisms of the category WNFrm of Weil nearness frames —

the Weil uniform homomorphisms — are the frame maps f : (L, E) −→ (L′, E ′)

such that f ⊕ f preserves nearness entourages, i.e., (f ⊕ f)(E) ∈ E ′ whenever

E ∈ E .

Remark 3.2. As the refinement condition (UW2) is no longer valid in a Weil near-

ness E , x
E
<y is not equivalent to st(x,E) ≤ y for some E ∈ E . Now we only have:

x
E
<y ⇔ ∃E ∈ E : st1(x,E) ≤ y

⇔ ∃E ∈ E : st2(x,E) ≤ y

⇒ ∃E ∈ E : st(x,E) ≤ y.

The latter condition still implies x ≺ y. Thus L is regular whenever it has a Weil

nearness. The reverse implication is also true: take E = WEnt(L); if x ≺ y then,

using Lemma 4.2 of Chapter I, one can easily prove that
(

(x∗ ⊕ x∗) ∨ (y ⊕ y)

)

◦ (x⊕ x) ⊆ y ⊕ y

and then, as (x∗ ⊕ x∗) ∨ (y ⊕ y) ∈ E , x
E
< y.

In conclusion, as for nearnesses, a frame L has a Weil nearness if and only if it is

regular.
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The correspondence Ψ, that we introduced in Chapter I in order to establish an

isomorphism between the categories of uniform frames and Weil uniform frames, and

its inverse Ψ−1 also work for the corresponding categories of nearness structures (the

nearness frames of Banaschewski and Pultr and our Weil nearness frames):

(L,U) ∈ NFrm
Ψ
7−→

{

∨

x∈U

(x⊕ x) | U ∈ U
}

forms a basis

for a Weil nearness on L,

(L, E) ∈WNFrm
Ψ−1

7−→
{

{x ∈ L | x⊕ x ⊆ E} | E ∈ E
}

forms a basis

for a nearness on L.

These correspondences constitute a Galois connection between the partially ordered

sets (by inclusion) of, respectively, nearnesses and Weil nearnesses on L: 1 ≤ ΨΨ−1

and Ψ−1Ψ ≤ 1. This Galois connection induces a “maximal” isomorphism between the

partially ordered set of Weil nearnesses E on L satisfying the condition

∀ E ∈ E ∃ F ∈ E : F ⊆
∨

(x,x)∈E

(x⊕ x)

and the partially ordered set of nearnesses U on L satisfying the condition

∀ U ∈ U ∃ V ∈ U :

(

x⊕ x ⊆
∨

x∈V

(x⊕ x) ⇒ ∃ u ∈ U : x ≤ u

)

.

Therefore, our bijection between Weil uniform frames and uniform frames can not be

lifted up to nearnesses. For that reason we do not know whether WNFrm is isomorphic

to NFrm.

4. Weil nearness spaces

We proceed to discuss the following problems:

Which is the right spatial concept in analogy with the choosen notion of

Weil nearness frame? May this concept be expressed in terms of Weil’s

entourages for sets?
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Definitions 4.1. Let (X, T ) be a topological space.

(1) For any entourage E of X and any x ∈ X let

E[x] = {y ∈ X | (x, y) ∈ E}.

We denote by intT (E) (or, briefly, by int(E) whenever no ambiguity arises) the

subset
{

(x, y) ∈ X ×X | x ∈ intT (E−1[y]), y ∈ intT (E[x])
}

of E. We say that E is an interior entourage if int(E) is still an entourage of X.

(2) An entourage E of X is open if int(E) = E.

The following proposition is obvious.

Proposition 4.2. Let E be an entourage of a topological space (X, T ).

(a) The following assertions are equivalent:

(i) E is interior;

(ii) E contains some open entourage;

(iii) for every x ∈ X, x ∈ intT (E[x]) ∩ intT (E−1[x]).

(b) The following assertions are equivalent:

(i) E is open;

(ii) for every x ∈ X, E[x] and E−1[x] are open.

Any Weil nearness on the frame T of open sets of a topological space (X, T ) is a

set E of open entourages of (X, T ) such that

(Fr0) E−1 ∈ E for every E ∈ E ,

(Fr1) E is a filter (with respect to ⊆),

(Fr2) for every U ∈ T and for every x ∈ U there exist V ∈ T and E ∈ E such that

x ∈ V and E ◦ (V × V ) ⊆ U × U ,
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since condition (Fr2) is just the pointwise formulation of the admissibility condition

(NW2) for Weil nearness frames. We call the topological spaces (X, T ) endowed with

a symmetric filter of open entourages of (X, T ) satisfying condition (Fr2) framed Weil

nearness spaces. The morphisms of the category FrWNear of framed Weil nearness

spaces are the maps

f :
(

(X, T ), E
)

−→
(

(X ′, T ′), E ′
)

for which (f × f)−1(E) ∈ E for any E ∈ E ′.

On the reverse direction, for the same reason, any framed Weil nearness on (X, T )

is a Weil nearness on the frame T , so that the spatial and frame notions coincide in

this context. Therefore, the notion of framed Weil nearness space is the right spatial

analogue of the frame concept of Weil nearness.

The open and spectrum functors of Section I.4 determine contravariant functors

between FrWNear and WNFrm, but in order to get a dual adjunction we have to

extend the classes of morphisms to, respectively, all continuous maps and all frame

homomorphisms, because the proof in Theorem 4.14 of Chapter I that f is uniform

depends on the refinement condition (UW2).

Let us see how framed Weil nearness spaces can be equated within the framework

of a generalization of Weil’s uniform spaces.

Definitions 4.3. Let X be a set and let E be a non-empty set of entourages of X.

Consider the following axioms:

(NW0) E−1 ∈ E for every E ∈ E ;

(NW1) E ⊆ F , E ∈ E ⇒ F ∈ E ;

(NW2) E ∩ F ∈ E for every E,F ∈ E ;

(NW3) for every E ∈ E ,

{

(x, y) ∈ X ×X | x ∈ intE(E−1[y]), y ∈ intE(E[x])
}

∈ E ,

where, for any A ⊆ X,

intE(A) = {x ∈ X | ∃E ∈ E : E[x] ⊆ A}.
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E is called a Weil prenearness on X if it satisfies (NW0) and (NW1); E is called

a Weil seminearness on X if it satisfies (NW0), (NW1) and (NW2) and it is called a

Weil nearness on X if it fulfils (NW0), (NW1), (NW2) and (NW3). The pair (X, E) is

called a Weil prenearness space (respectively, Weil seminearness space, Weil nearness

space) if E is a Weil prenearness (respectively, Weil seminearness, Weil nearness) on

X.

A Weil nearness map is just a map f : (X, E) −→ (X ′, E ′) between Weil prenearness

spaces for which (f × f)−1(E) ∈ E for every E ∈ E ′.

We denote by PWNear the category of Weil prenearness spaces and Weil nearness

maps and by SWNear and WNear its full subcategories of, respectively, Weil seminear-

ness spaces and Weil nearness spaces.

Remarks 4.4. (a) If (X, E) is a Weil prenearness space then intE is an operator on

P(X) satisfying the following axioms:

(T1) intE(X) = X,

(T2) intE(A) ⊆ A for every A ⊆ X,

(T3) A ⊆ B ⇒ intE(A) ⊆ intE(B).

If (X, E) is a Weil seminearness space then, in addition, intE satisfies the following

axioms

(T4) intE(A ∩B) = intE(A) ∩ intE(B);

(T0) x ∈ intE(X \ {y})⇔ y ∈ intE(X \ {x}).

Finally, if (X, E) is a Weil nearness space, then intE also satisfies the axiom

(T5) intE(intE(A)) = intE(A).

Thus any Weil nearness structure E on X induces on X a symmetric topology TE .

Axiom (NW3) says that intTE (E) ∈ E whenever E ∈ E .

(b) The Weil seminearness spaces are the “semiuniform spaces” of Čech [16]. In

this case intE may not be an interior operator; it only defines a closure operator in the

sense of Čech [16].
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4. Weil nearness spaces

(c) In the presence of (NW0), (NW1) and (NW2), condition (NW3) is equivalent

to the following one:

(NW3′) for every E ∈ E ,
{

(x, y) ∈ X ×X | y ∈ intE(E[x])
}

∈ E .

(d) Every uniform space is a Weil nearness space since the refinement condition

∀E ∈ E ∃F ∈ E : F ◦ F ⊆ E

implies condition (NW3).

The category SWNear is bicoreflective in PWNear. If (X, E) is a Weil prenearness

space and ES is the set of all entourages of X which contain the intersection of a finite

number of elements of E , then 1X : (X, ES) −→ (X, E) is the bicoreflection of (X, E)

with respect to SWNear.

The category WNear is bireflective in SWNear. For (X, E) ∈ SWNear define, for

every ordinal α, the operator intα on P(X) by

• int0(A) = A,

• intα(A) = intβ(A) \ {x ∈ intβ(A) | ∀E ∈ E E[x] ∩ (X \A) 6= ∅} if α = β + 1,

• intα(A) =
⋂

β<α int
β(A) if α is a limit ordinal.

Then

int(A) :=
⋂

α∈Ord

intα(A)

is the “largest” operator on P(X) satisfying axioms (T0), (T1), (T2), (T3), (T4) and

(T5) and so it defines a symmetric topology T on X. Putting

EN := {E ⊆ X ×X | intT (E) ∈ E},

1X : (X, E) −→ (X, EN ) is the bireflection of (X, E) with respect to WNear.
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From now on, for subsets A and B of a set X, we denote the set

(X \A×X \A) ∪ (B ×B)

by EXA,B (or, briefly, by EA,B whenever there is no ambiguity). The set EX{x},B will be

denoted by EXx,B (or Ex,B).

Given subsets A and B of a Weil nearness space (X, E), we write A <E B whenever

EA,B ∈ E .

Lemma 4.5. Let (X, E) ∈WNear. For any x ∈ X and A,B ⊆ X, the following hold:

(a) x <E A if and only if x ∈ intTE (A);

(b) if B <E A then B ⊆ intTE (A).

Proof. (a) If x <E A just take Ex,A ∈ E . Since Ex,A[x] ⊆ A then x ∈ intTE (A).

Conversely, if E[x] ⊆ A and E ∈ E consider F = E ∩ E−1 . It is clear that F ⊆ Ex,A.

Hence Ex,A ∈ E .

(b) It is obvious, because EB,A[x] ⊆ A for any x ∈ B.

Theorem 4.6. Suppose that
(

(X, T ), E
)

is a framed Weil nearness space and let E

be the filter of (WEnt(X),⊆) generated by E. Then:

(a) TE = TE = T ;

(b) (X, E) is a Weil nearness space satisfying the condition

x <E A⇒ ∃B ⊆ X : x <E B <E A.

Proof. (a) Let A ∈ T and x ∈ A. By assumption, there are V ∈ T and E ∈ E such

that x ∈ V and E ◦ (V × V ) ⊆ A×A. Then E−1[x] ⊆ A, so x ∈ intTE (A) and A ∈ TE .

Conversely, if A ∈ TE , there is, for each x ∈ A, Ex ∈ E with Ex[x] ⊆ A. Therefore

A =
⋃

{Ex[x] | x ∈ A} ∈ T .

108



4. Weil nearness spaces

Finally, let us prove the equality T = TE . The inclusion T ⊆ TE is obvious because

E ⊆ E . The reverse inclusion TE ⊆ T is also evident: for any x ∈ A, where A ∈ TE ,

there is Ex ∈ E such that Ex[x] ⊆ A. But each Ex contains some F x in E , thus

A =
⋃

{F x[x] | x ∈ A} ∈ T .

(b) The proof that (X, E) is a Weil nearness space is trivial.

Assume x <E A, i.e., x ∈ intT
E
(A). Then x ∈ intT (A). By hypothesis, there are

B ∈ T and E ∈ E such that x ∈ B and E ◦ (B × B) ⊆ intT (A) × intT (A). Since V

is open, x <E B. In order to prove that B <E A it suffices to check that EB,A ∈ E .

So, consider F = E ∩E−1 ∈ E ⊆ E . We have that F ◦ (B ×B) ⊆ A×A. Since F is a

symmetric entourage of X,

F ◦ (B ×B) ⊆ A×A⇔ F ⊆ (X \B ×X \B) ∪ (A×A).

Hence EB,A ∈ E .

Theorem 4.7. Let (X, E) be a Weil nearness space satisfying axiom

(NW4) x <E A⇒ ∃B ⊆ X : x <E B <E A,

and let
◦
E= {intTE (E) | E ∈ E} be the set of open entourages in E. Then

(

(X, TE),
◦
E
)

is a framed Weil nearness space.

Proof. Since (int(E))−1 = int(E−1), (Fr0) is satisfied.

Axiom (Fr1) is a consequence of the fact that int(E1) ∩ int(E2) = int(E1 ∩ E2).

Let us check axiom (Fr2): consider U ∈ TE and x ∈ U . Then, by Lemma 4.5,

x <E U so, by assumption, there is some B ⊆ X such that x <E B <E U . Take

V = intTE (B). The fact x <E B means that x ∈ V . On the other hand, B <E U

means that EB,U ∈ E . Let E = intTE (EB,U ) ∈
◦
E . We have

E ◦ (V × V ) ⊆ (X \B ×X \B ∪ U × U) ◦ (B ×B)

⊆ U × U.
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Corollary 4.8. The category FrWNear is isomorphic to the full subcategory

WNear(NW4) of WNear of the Weil nearness spaces satisfying (NW4).

Proof. For any morphism f : (X, E) −→ (X ′, E ′) of WNear(NW4),

(f × f)−1(int(E)) ⊆ int((f × f)−1(E)).

Therefore f :
(

(X, TE),
◦
E
)

−→
(

(X ′, TE ′),
◦

E ′
)

belongs to FrWNear. The converse is also

true.

Now the existence of the isomorphism is an immediate corollary of Theorems 4.6

and 4.7 and of the following obvious facts:

•
◦

E= E for any framed Weil nearness E ;

•
◦
E = E for any Weil nearness E satisfying (NW4).

In the sequel we shall identify WNear(NW4) as FrWNear.

5. The category WNear as a unified theory of (symmet-

ric) topology and uniformity

Proceeding with the study of Weil nearness spaces, we are now naturally led to

ask:

How do Weil nearness spaces relate with the classical nearness spaces of

Herrlich ([33], [34])?

The classical correspondence between uniform covers and uniform entourages still

works for these spaces:
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Nearness spaces Weil nearness spaces

(X,µ)
Ψ
−→ {

⋃

U∈U (U × U) | U ∈ µ

}

forms a basis for

a Weil nearness on X

{

{E[x] : x ∈ X} | E ∈ E

}

Ψ−1

←− (X, E)

forms a basis for

a nearness on X

It also works for morphisms. These functors define a Galois correspondence (ΨΨ−1 ≤ 1

and Ψ−1Ψ ≤ 1) which is an isomorphism precisely when restricted to uniformities.

In spite of not having an equivalence between the two notions, our category of Weil

nearness spaces still have the nice categorical properties that Herrlich was looking for

when searching for a good axiomatization of nearness ([33], [34]).

For example:

Proposition 5.1. The category WNear is a well-fibred topological category over the

category Set of sets.

Proof. The well-fibreness is obvious: for any set X, the class of all Weil nearness

spaces (X, E) with underlying set X is a set and there exists exactly one Weil nearness

space with underlying set X whenever X is of cardinality at most one.

It remains to show that the forgetful functor WNear
| · |
−→ Set is topological, i.e.,

that every | · |-structured source
(

X
fi−→ |Xi, Ei|

)

i∈I
has a unique | · |-initial lift

(

(X, E)
fi−→ (Xi, Ei)

)

i∈I
.

Consider

B =

{ n
⋂

j=1

(fij × fij )
−1(Ej) | n ∈ IN, ij ∈ I, Ej ∈ Eij

}

∪ {X ×X}.

111



WEIL NEARNESS SPACES AND WEIL NEARNESS FRAMES

This is a basis for a Weil nearness E on X. We only verify axiom (NW3) — by checking

the equivalent condition (NW3′) of Remark 4.4 (c) — since the others are obviously

satisfied. So, let us check that

n
⋂

j=1

(fij × fij )
−1
(

{(x, y) ∈ Xj ×Xj | y ∈ intEj
(Ej [x])}

)

is included in
{

(x, y) ∈ X ×X | y ∈ intE
(

(
n
⋂

j=1

(fij × fij )
−1(Ej))[x]

)

}

for n ∈ IN, ij ∈ I and Ej ∈ Eij . If

(x, y) ∈
n
⋂

j=1

(fij × fij )
−1
(

{(a, b) ∈ Xj ×Xj | b ∈ intEj
(Ej [a])}

)

then, for every j ∈ {1, . . . , n}, fij (y) ∈ intEj
(Ej [fij (x)]), that is, for every j ∈

{1, . . . , n} there is Fj ∈ Ej such that Fj [fij (y)] ⊆ Ej [fij (x)]. On the other hand,

(x, y) ∈

{

(a, b) ∈ X ×X | b ∈ intE

(

(

n
⋂

j=1

(fij × fij )
−1(Ej)

)

[a]

)

}

if and only if there is some E ∈ E for which E[y] ⊆
(

⋂n
j=1(fij × fij )

−1(Ej)
)

[x], i.e., if

and only if there are k1, . . . , km ∈ I and El ∈ Ekl
(l ∈ {1, . . . ,m}) such that

(

m
⋂

l=1

(fkl
× fkl

)−1(El)
)

[y] ⊆
(

n
⋂

j=1

(fij × fij )
−1(Ej)

)

[x].

Putting m := n, k1 := i1, . . . , km := in and El := Fl, for l ∈ {1, . . . , n}, we have, for

every z ∈
(

⋂n
j=1(fij × fij )

−1(Fj)
)

[y], fij (z) ∈ Fj [fij (y)] for any j ∈ {1, . . . , n}. Since

Fj [fij (y)] ⊆ Ej [fij (x)], we conclude that, for every j ∈ {1, . . . , n}, (fij (x), fij (z)) ∈ Ej ,

i.e., that

z ∈
(

n
⋂

j=1

(fij × fij )
−1(Ej)

)

[x].

In conclusion, B is a basis for a Weil nearness on X. It is clear that this is the least

nearness E on X for which every (X, E)
fi−→ (Xi, Ei) is a Weil nearness map.

As we shall see in the sequel, the category WNear also unifies several types of topo-

logical structures such as symmetric topological spaces, proximal spaces and uniform

spaces.

112



5. The category WNear as a unified theory of (symmetric) topology and uniformity

Symmetric topological spaces

Lemma 5.2. In a symmetric topological space (X, T ) the following assertions are

equivalent:

(i) x ∈ intT (A);

(ii) Ex,A is an interior entourage of (X, T ).

Proof. (i)⇒(ii): Of course, if x ∈ intT (A), Ex,A is a symmetric entourage of X.

Since

Ex,A[y] =



















A if y = x

X if y ∈ A \ {x}

X \ {x} if y ∈ X \A

we have

intT (Ex,A[y]) =



















intT (A) if y = x

X if y ∈ A \ {x}

intT (X \ {x}) if y ∈ X \A

so it remains to show that y ∈ intT (X \{x}) whenever y ∈ X \A. This is an immediate

consequence of the symmetry of (X, T ):

y ∈ X \A ⇒ A ⊆ X \ {y}

⇒ x ∈ intT (X \ {y})

⇒ y ∈ intT (X \ {x}).

(ii)⇒(i): It is obvious.

The implication (ii)⇒(i) can be generalized in the following way:

Lemma 5.3. Given two subsets A and B of a symmetric topological space (X, T ), if

EB,A is an interior entourage of (X, T ), then B ⊆ intT (A).

Proof. For every b ∈ B, b ∈ intT (EB,A[b]). Since B ⊆ A, EB,A[b] = A. Hence

b ∈ intT (A).
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Proposition 5.4. The set E of all interior entourages of a symmetric topological

space (X, T ) is a Weil nearness on X satisfying in addition the axiom

(NW5) E ∈ E whenever intT (E) is an entourage of X,

and the topology induced by E coincides with T .

Proof. The fact that E is a Weil nearness on X satisfying (NW5) is obvious. Let us

prove that T coincides with the topology induced by E , i.e., that for any subset A of

X,

intT (A) = {x ∈ X | ∃E ∈ E : E[x] ⊆ A}.

For x ∈ intT (A), consider the entourage Ex,A, which, by Lemma 5.2, belongs to E .

Of course, Ex,A[x] = A. Conversely, if there is some E ∈ E with E[x] ⊆ A, then

x ∈ intT (E[x]) ⊆ intT (A).

Proposition 5.5. If E is a Weil nearness on a set X satisfying (NW5), there exists

precisely one symmetric topology T on X such that E is the set of all interior entourages

of (X, T ).

Proof. Take for T the topology TE induced by E . We already observed that TE is

a symmetric topology on X. By (NW5), E contains all interior entourages of (X, TE).

The reverse inclusion follows from (NW3): take E ∈ E ; then int(E) belongs to E and,

in particular, it is an entourage. Hence E is an interior entourage.

The uniqueness of T is a corollary of the previous proposition.

The preceding propositions show that symmetric topological spaces can be always

identified as Weil nearness spaces satisfying axiom (NW5).

Proposition 5.6. Suppose f : (X, T ) −→ (X ′, T ′) is a map between symmetric

topological spaces and let E(X,T ) (respectively, E(X′,T ′)) denote the set of all interior

entourages of (X, T ) (respectively, (X ′, T ′)). The following conditions are equivalent:

(i) f is continuous;
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5. The category WNear as a unified theory of (symmetric) topology and uniformity

(ii) E ∈ E(X′,T ′) implies (f × f)−1(E) ∈ E(X,T ).

Proof. (i)⇒(ii): Let E ∈ E(X′,T ′) and let F = (f × f)−1(E). We have

intT (F [x]) = intT (f−1(E[f(x)])).

Besides

f−1(intT ′(E[f(x)])) ⊆ intT (f−1(E[f(x)]))

because

f−1(intT ′(E[f(x)])) ⊆ f−1(E[f(x)])

and, by hypothesis, f−1(intT ′(E[f(x)])) ∈ T . But E is interior. In particular, for

every x ∈ X, f(x) ∈ intT ′(E[f(x)]), that is, x ∈ f−1(intT ′(E[f(x)])). Therefore

x ∈ intT (F [x]). Similarly, x ∈ intT (F−1[x]). Hence F ∈ E(X,T ).

(ii)⇒(i): Suppose V ∈ T ′ and let v ∈ V . Then, by Lemma 5.2, EX
′

v,V ∈ E(X′,T ′).

Thus (f × f)−1(EX
′

v,V ) ∈ E(X,T ), that is, EX
f−1(v),f−1(V ) ∈ E(X,T ). By Lemma 5.3,

f−1(v) ⊆ intT (f−1(V )) for every v ∈ V . Consequently,

f−1(V ) =
⋃

v∈V

f−1(v) ⊆ intT (f−1(V )),

i.e., f−1(V ) ∈ T .

It follows from Propositions 5.4, 5.5 and 5.6 that the category WNear(NW5) of Weil

nearness spaces satisfying (NW5) is isomorphic to the category of symmetric topolog-

ical spaces. We have now an alternative way of equipping a set with the structure of a

symmetric topological space: by prescribing the set of interior entourages. Moreover:

Proposition 5.7. The category WNear(NW5) is a bicoreflective subcategory of WNear.

Proof. Given a Weil nearness space (X, E), let ET denote the set of all interior

entourages of (X, TE). We already know that (X, ET ) is a Weil nearness space satis-

fying (NW5). Furthermore, for any morphism f : (X, E) −→ (X ′, E ′) in WNear, f is

continuous from (X, TE) to (X ′, TE ′) so, by Proposition 5.6, f : (X, ET ) −→ (X ′, E ′T ) is
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also in WNear. We get this way a functor

T : WNear −→ WNear(N5)

(X, E) 7−→ (X, ET )
(

(X, E)
f
−→ (X ′, E ′)

)

7−→

(

(X, ET )
f
−→ (X ′, E ′T )

)

.

This is the coreflector functor. Since E ⊆ ET , id : (X, ET ) −→ (X, E) is in WNear. This

is the coreflection map for (X, E).

Uniform spaces

We observed in 4.4 that the category Unif is a full subcategory of WNear. Further-

more, the following holds:

Proposition 5.8. The category Unif is bireflective in WNear.

Proof. For any (X, E) ∈WNear let

EU = {E ∈ E | ∃(En)n∈IN in E such that E1 = E and E2
n+1 ⊆ En for each n ∈ IN}.

Obviously, (X, EU ) is a uniform space and 1X : (X, E) −→ (X, EU ) is in WNear. This is

the bireflection map. In fact, for any f : (X, E) −→ (X ′, E ′) in WNear with (X ′, E ′) ∈

Unif, f : (X, EU ) −→ (X ′, E ′) is uniformly continuous: for any E ∈ E ′, as (X ′, E ′) is

uniform, there is a family (En)n∈IN in E ′ with En = E and E2
n+1 ⊆ En for every n ∈ IN.

Take the family
(

(f×f)−1(En)
)

n∈IN
which is in E . This shows that (f×f)−1(E) ∈ EU .

Proximal spaces

Historically, the first axiomatization of proximal spaces was given by Efremovič in

[19], in terms of the proximal (or infinitesimal) relation “A is near B” (usually denoted

by AδB [56]) for subsets A and B of any set:

Definitions 5.9. (Efremovič [19], [20]; cf. Naimpally and Warrack [56])

(1) Let X be a set and let δ be a binary relation on P(X). The pair (X, δ) is a

proximal space provided that δ is an infinitesimal relation on X, i.e.:
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(I1) AδB implies BδA;

(I2) Aδ(B ∪ C) if and only if AδB or AδC;

(I3) AδB implies A 6= ∅ and B 6= ∅;

(I4) A/δB implies the existence of a subset C of X such that A/δC and (X \C)/δB;

(I5) AδB whenever A ∩B 6= ∅.

(2) Let (X1, δ1) and (X2, δ2) be two proximal spaces. A function f : X1 −→ X2 is

an infinitesimal map if, for every A,B ⊆ X, Aδ1B implies f(A)δ2f(B).

(3) Proximal spaces and infinitesimal maps are the objects and morphisms of the

category Prox.

It is well-known that the category Prox is isomorphic to the category TBUnif of

totally bounded uniform spaces and uniformly continuous maps and that TBUnif is

bireflective in Unif. Thus, since the considered categories are topological, we have by

Proposition 5.8:

Proposition 5.10. Prox is, up to isomorphism, a bireflective subcategory of WNear.

Let us present, in the sequel, another way of concluding Proposition 5.10 which

yields as a corollary a characterization of proximal spaces in terms of Weil nearnesses.

We shall use the following alternative axiomatization of proximal spaces (cf. Naimpally

and Warrack [56] or Smirnov [70]):

Theorem 5.11. (Efremovič [20]) The category Prox is isomorphic to the category

whose objects are the pairs (X,≪), where X is a set and ≪ is a binary relation on

P(X) satisfying

(P1) X ≪ X and ∅ ≪ ∅,

(P2) A≪ B implies A ⊆ B,

(P3) A ⊆ B ≪ C ⊆ D implies A≪ D,
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(P4) A≪ C and B ≪ C imply A ∪B ≪ C,

(P5) A≪ B and A≪ C imply A≪ B ∩ C,

(P6) if A≪ B there exists a subset C of X such that A≪ C ≪ B,

(P7) A≪ B implies X \B ≪ X \A,

and whose morphisms are the functions f : (X1,≪1) −→ (X2,≪2) for which

f−1(A)≪1 f
−1(B) whenever A≪2 B.

The relations ≪ and the morphisms defined in 5.11 are usually called proximities

and proximal maps, respectively.

A straightforward verification shows that, in case (X, E) ∈ FrWNear, <E is a prox-

imity on X.

We consider the converse problem of endowing a proximal space with a (functorial)

framed Weil nearness structure.

Lemma 5.12. Let (X,≪) be a proximal space.

(a) If A≪ C ≪ B then (EA,C ∩ EC,B) ◦ (EA,C ∩ EC,B) ⊆ EA,B.

(b) If E =
⋂n
i=1EAi,Bi

, E′ =
⋂n
i=1ECi,Di

and, for every i ∈ {1, . . . , n}, Ai ≪ Ci ≪

Di ≪ Bi, then, for every x ∈ X, E′[x]≪ E[x].

(c) If
⋂n
i=1EAi,Bi

⊆ EA,B and, for every i ∈ {1, . . . , n}, Ai ≪ Bi, then A≪ B.

Proof. (a) Let (x, y), (y, z) ∈ EA,C ∩ EC,B such that (x, z) 6∈ X \ A × X \ A. In

case x ∈ A, y is necessarily in C, which, in turn, implies that z ∈ B. Hence (x, z) ∈

B ×B ⊆ EA,B.

The case z ∈ A can be proved in a similar way.

(b) An easy computation shows that, for every x ∈ X, EC,D[x]≪ EA,B[x] whenever

A≪ C ≪ D ≪ B. Now a proof by induction on n ≥ 1 is evident:

If E =
⋂n+1
i=1 EAi,Bi

and E′ =
⋂n+1
i=1 ECi,Di

with Ai ≪ Ci ≪ Di ≪ Bi for every

i ∈ {1, . . . , n+ 1}, then, for every x ∈ X,

E′[x] = EC1,D1 [x] ∩
n+1
⋂

i=2

ECi,Di
[x].
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By inductive hypothesis and by the case n = 1 already proved, we obtain

E′[x]≪ EA1,B1 [x] ∩
n+1
⋂

i=2

EAi,Bi
[x] = E[x].

(c) For any i ∈ {1, . . . , n} let Ci be such that Ai ≪ Ci ≪ Bi. An application of (a)

yields
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)2 ⊆
n
⋂

i=1

EAi,Bi
⊆ EA,B.

Let

E =
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)

and define

X1 = {x ∈ X | E[x] ∩A = ∅}

and

X2 = {x ∈ X | E[x] ∩A 6= ∅}.

Note that X2 6= ∅ whenever A 6= ∅. Now we have A ⊆ X \
⋃

x∈X1
E[x]. For each

i ∈ {1, . . . , n} consider A′
i, C

′
i, C

′′
i and B′

i such that

Ai ≪ A′
i ≪ C ′

i ≪ Ci ≪ C ′′
i ≪ B′

i ≪ Bi.

From (b) we may conclude that, for every x ∈ X, E′[x]≪ E[x], where E′ denotes the

entourage
n
⋂

i=1

(EA′
i
,C′

i
∩ EC′′

i
,B′

i
).

Then we have

A ⊆ X \
⋃

x∈X1

E[x] ⊆ X \
⋃

x∈X1

E′[x] ⊆
⋃

x∈X2

E′[x].

It is now easy to conclude that, due to the special form of E′, there is a finite subset

F2 of X2 such that
⋃

x∈X2

E′[x] =
⋃

x∈F2

E′[x].

Indeed, since E′ is of the form
⋂2n
j=1EA′′

j
,B′′

j
we have

⋃

x∈X2

E′[x] =
⋃

x∈X2

2n
⋂

j=1

(EA′′
j
,B′′

j
[x]),
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and it suffices now to form F2 by choosing exactly one element from each non-empty

set of the following 32n disjoint sets

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩A

′′
2n−1 ∩A

′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩A

′′
2n−1 ∩ (B′′

2n \A
′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩A

′′
2n−1 ∩ (X \B′′

2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (B′′

2n−1 \A
′′
2n−1) ∩A

′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (B′′

2n−1 \A
′′
2n−1) ∩ (B′′

2n \A
′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (B′′

2n−1 \A
′′
2n−1) ∩ (X \B′′

2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (X \B′′

2n−1) ∩A
′′
2n

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (X \B′′

2n−1) ∩ (B′′
2n \A

′′
2n)

X2 ∩A
′′
1 ∩A

′′
2 ∩ . . . ∩ (X \B′′

2n−1) ∩ (X \B′′
2n)

...

X2 ∩ (X \B′′
1 ) ∩ (X \B′′

2 ) ∩ . . . ∩ (X \B′′
2n−1) ∩ (X \B′′

2n),

whose union is X2.

Thus, by (b),

A ⊆
⋃

x∈F2

E′[x]≪
⋃

x∈F2

E[x].

Now, if y ∈ E[x] for some x ∈ F2, there is a ∈ A with (x, a) ∈ E. Since E is symmetric,

(a, y) ∈ E2 ⊆
n
⋂

i=1

(EAi,Ci
∩ ECi,Bi

)2 ⊆ EA,B

and, consequently, y ∈ B. Hence
⋃

x∈F2
E[x] ⊆ B and A≪ B.
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5. The category WNear as a unified theory of (symmetric) topology and uniformity

Proposition 5.13. Suppose (X,≪) is a proximal space. Then

{EA,B | A,B ⊆ X and A≪ B}

is a subbasis for a framed Weil uniformity E(≪) on X. Furthermore, the proximity

<E(≪) induced by E(≪) coincides with ≪.

Proof. It is obvious that E(≪) is a non-empty family of entourages of X. By Lemma

5.12 (a), E(≪) is a Weil uniformity on X. The conclusion that (X, E(≪)) is framed

follows immediately from assertion (c) of the same lemma:

x <E(≪) A ⇔ Ex,A ∈ E(≪)

⇒ x≪ A

⇒ ∃B ⊆ X : x≪ B ≪ A

⇒ x <E(≪) B <E(≪) A.

The non-trivial part of the equivalence of the binary relations <E(≪) and ≪ is also

an immediate corollary of Lemma 5.12 (c).

The fact that each int(EA,B) belongs to E(≪) whenever A ≪ B could be proved

directly by observing that Ecl(A),int(B) ⊆ int(EA,B) and by recalling the well-known

result of proximities

A≪ B ⇒ cl(A)≪ int(B).

This is sufficient to conclude that int(E) ∈ E(≪) whenever E ∈ E(≪).

For any (X, E) ∈ FrWNear satisfying

(NW6) ∀E ∈ E ∃A1, B1, . . . , An, Bn ⊆ X :

(

n
⋂

i=1

EAi,Bi
⊆ E and

n
⋂

i=1

EAi,Bi
∈ E

)

,

the Weil nearness E(<E) induced by <E coincides with E . Thus, the proximal spaces

may be identified as the framed Weil nearness spaces satisfying (NW6). The same

happens for morphisms:

Proposition 5.14. Let (X1,≪1) and (X2,≪2) be proximal spaces. A map f :

X1 −→ X2 is a proximal map from (X1,≪1) to (X2,≪2) if and only if it is a Weil

nearness map from (X1, E(≪1)) to (X2, E(≪2)).
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Proof. Suppose E ∈ E(≪2) and let A1, B1, . . . , An, Bn ⊆ X2 such that
⋂n
i=1E

X2
Ai,Bi

⊆

E and Ai ≪2 Bi for every i ∈ {1, . . . , n}. Then, for each i, f−1(Ai) ≪1 f
−1(Bi) and,

therefore,
n
⋂

i=1

EX1

f−1(Ai),f−1(Bi)
∈ E(≪1).

To prove that (f × f)−1(E) ∈ E(≪1) it suffices now to check that it contains

n
⋂

i=1

EX1

f−1(Ai),f−1(Bi)
,

which is straightforward since each EX1

f−1(Ai),f−1(Bi)
is equal to (f × f)−1(EX2

Ai,Bi
).

Conversely, suppose that A≪2 B. Then EX2
A,B ∈ E(≪2) and, consequently,

EX1

f−1(A),f−1(B) = (f × f)−1(EX2
A,B) ∈ E(≪1).

By Lemma 5.12, f−1(A)≪1 f
−1(B).

Corollary 5.15. The categories Prox and FrWNear(NW6) are isomorphic.

Note that the category FrWNear(NW6) is a bireflective subcategory of FrWNear:

Given (X, E) in FrWNear we already know that (X, E(<E)) belongs to

FrWNear(NW6). Since E(<E) ⊆ E ,

1X : (X, E) −→ (X, E(<E))

is in FrWNear. This is the bireflective map of (X, E) in FrWNear(NW6); indeed, if

f : (X, E) −→ (X ′, E ′) belongs to FrWNear, with (X ′, E ′) ∈ FrWNear(NW6),

f : (X, E(<E)) −→ (X ′, E ′) is also in FrWNear: for any E ∈ E ′ we may write
⋂n
i=1E

X′

Ai,Bi
⊆ E where each EX

′

Ai,Bi
∈ E ′. Therefore

EXf−1(Ai),f−1(Bi)
= (f × f)−1(EX

′

Ai,Bi
)

belongs to E and, since

n
⋂

i=1

EXf−1(Ai),f−1(Bi)
⊆ (f × f)−1(E),

(f × f)−1(E) ∈ E(<E).
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6. Proximal frames

6. Proximal frames

The notion of spatial proximity in terms of the relation≪ is immediately manage-

able from a lattice-theoretical point of view:

Definitions 6.1. (Frith [29])

(1) Let L be a frame and let ≪ be a binary relation on L. The pair (L,≪) is a

proximal frame provided that:

(P1) 1≪ 1 and 0≪ 0;

(P2) x≪ y implies x ≺ y;

(P3) x ≤ y ≪ z ≤ w implies x≪ w;

(P4) x1 ≪ y and x2 ≪ y imply x1 ∨ x2 ≪ y;

(P5) x≪ y1 and x≪ y2 imply x≪ y1 ∧ y2;

(P6) if x≪ y there is a z ∈ L such that x≪ z ≪ y;

(P7) x≪ y implies y∗ ≪ x∗;

(P8) x =
∨

{y ∈ L | y ≪ x} for every x ∈ L.

(2) Let (L1,≪1) and (L2,≪2) be proximal frames. A proximal frame homomorphism

f : (L1,≪1) −→ (L2,≪2) is a frame map f : L1 −→ L2 satisfying

∀ x, y ∈ L1

(

x≪1 y ⇒ f(x)≪2 f(y)

)

.

(3) We denote by PFrm the category of proximal frames and proximal frame homo-

morphisms.

It will be instructive to see how an analogue of the isomorphism between Prox and

FrWNear(NW6) may be established for frames. With this we obtain a new characteri-

zation of proximal frames.

Proposition 6.2. If (L, E) is a Weil uniform frame then (L,
E
<) is a proximal frame.
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Proof. Condition (P7) is a consequence of the implication

E ◦ (x⊕ x) ⊆ y ⊕ y ⇒ E−1 ◦ (y∗ ⊕ y∗) ⊆ x∗ ⊕ x∗.

The other conditions were proved in Proposition 4.8 of Chapter I.

Remark 6.3. When x∨ y = 1, the C-ideal (x⊕x)∨ (y⊕ y) is a Weil entourage of L.

The converse is also true since it is a corollary of the following property of the C-ideal

generated by a down-set of L × L, which can be proved in a similar way to Lemma

I.4.2, by considering

IIE = {E ∈ D(L× L) | A ⊆ E ⊆ k(A) and x ∨ y ≤ c for every (x, y) ∈ E \ O} :

let c ∈ L; if A ∈ D(L× L) is such that x ∨ y ≤ c whenever (x, y) ∈ A \ O,

then also x ∨ y ≤ c for every (x, y) ∈ k(A) \ O.

Thus, in any proximal frame (L,≪), since ≪ is stronger than ≺,

Ex,y := (x∗ ⊕ x∗) ∨ (y ⊕ y)

is a Weil entourage whenever x≪ y. These entourages are very important as we shall

see. For instance, they characterize, for any Weil nearness E on L, the relation
E
< :

Proposition 6.4. Let E be a Weil nearness on L. Then x
E
< y if and only if Ex,y ∈ E.

Proof. Assume that there is E ∈ E satisfying E ◦ (x ⊕ x) ⊆ y ⊕ y. It follows

that, whenever (a, a) ∈ E, a ≤ x∗ ∨ y and, consequently, that x∗ ∨ y = 1. Then

E ∩ E−1 ⊆ Ex,y. Indeed, if (a, b) ∈ E ∩ E−1 and b ≤ x∗ we have:

• in case a ≤ x∗, (a, b) ∈ x∗ ⊕ x∗ ⊆ Ex,y;

• otherwise, if a ∧ x 6= 0 then (b, a) ∈ E ◦ (x ⊕ x) thus b ≤ y. Hence b ≤ x∗ ∧ y.

But (1, x∗ ∧ y) = (x∗ ∨ y, x∗ ∧ y) ∈ Ex,y so (a, b) ∈ Ex,y.

On the other hand, if b∧x 6= 0 then a ≤ y. In case a ≤ x∗ we have (a, b) ≤ (x∗∧y, 1) ∈

Ex,y. If a 6≤ x∗ then b ≤ y and, again, (a, b) ∈ Ex,y.
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The reverse implication follows from the inclusion Ex,y ◦ (x⊕ x) ⊆ y ⊕ y.

From now on, for any down-set E of L× L and any a ∈ L, we denote by E[a] the

element
∨

{b ∈ L | (a, b) ∈ E}.

In particular, we have:

Proposition 6.5. Let x, y ∈ L with x ≺ y. Then

Ex,y[a] =































1 if a ∈ [0, x∗ ∧ y]

x∗ if a ∈ [0, x∗] ∩ (L \ [0, y])

y if a ∈ (L \ [0, x∗]) ∩ [0, y]

x∗ ∧ y if a ∈ L \ ([0, x∗] ∪ [0, y]).

Proof. First of all, let us point out that, since Ex,y ◦ (x⊕ x) ⊆ y ⊕ y,

if (a, b) ∈ Ex,y and b ∧ x 6= 0 then a ≤ y. (6.5.1)

Now, assume that (a, b) ∈ Ex,y with a ≤ x∗ ∧ y. The pair (x∗ ∧ y, 1) is in Ex,y so

(a, 1) ∈ Ex,y and, therefore, Ex,y[a] = 1.

The case a ∈ [0, x∗] ∩ (L \ [0, y]) is also clear: by 6.5.1, necessarily b ≤ x∗; since

(a, x∗) ∈ Ex,y, Ex,y[a] = x∗.

If a ∈ (L \ [0, x∗]) ∩ [0, y] we have (a, y) ∈ Ex,y. Furthermore, for any (a, b) ∈ Ex,y,

(b, a) ∈ Ex,y and, since a ∧ x 6= 0, b ≤ y. Hence Ex,y[a] = y whenever a 6≤ x∗ and

a ≤ y.

Finally, in case a ∧ x 6= 0 and a 6≤ y we have, for any (a, b) ∈ Ex,y, by 6.5.1, b ≤ y

and b ∧ x = 0, i.e., b ≤ x∗ ∧ y. Since (a, x∗ ∧ y) ≤ (1, x∗ ∧ y) ∈ Ex,y we may conclude

that, in this case, Ex,y[a] = x∗ ∧ y.

The following obvious property will also be useful later on.

Lemma 6.6. Let E1, E2, . . . , En ∈ D(L× L). Then

(

n
⋂

i=1

Ei
)

[x] =
n
∧

i=1

(Ei[x]).
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The proof of next lemma is modelled after the proof of Lemma 5.12 except that,

where the latter uses points, we think out means of avoiding them.

Lemma 6.7. Let (L,≪) be a proximal frame.

(a) If x≪ z ≪ y then (Ex,z ∩ Ez,y) ◦ (Ex,z ∩ Ez,y) ⊆ Ex,y.

(b) If E =
⋂n
i=1Exi,yi

, E′ =
⋂n
i=1Ezi,wi

and, for every i ∈ {1, . . . , n}, xi ≪ zi ≪

wi ≪ yi, then, for every a ∈ L, E′[a]≪ E[a].

(c) If
⋂n
i=1Exi,yi

⊆ Ex,y and, for every i ∈ {1, . . . , n}, xi ≪ yi, then x≪ y.

Proof. (a) Since (L⊕ L,∩,
∨

) is a frame, we have

Ex,z ∩ Ez,y = (x∗ ∧ z∗ ⊕ x∗ ∧ z∗) ∨ (x∗ ∧ y ⊕ x∗ ∧ y) ∨ (z ∧ y ⊕ z ∧ y)

= ((x ∨ z)∗ ⊕ (x ∨ z)∗) ∨ (x∗ ∧ y ⊕ x∗ ∧ y) ∨ (z ∧ y ⊕ z ∧ y).

On the other hand, an easy computation shows that, for any (a, b) and (b, c) in

((x ∨ z)∗ ⊕ (x ∨ z)∗) ∪ (x∗ ∧ y ⊕ x∗ ∧ y) ∪ (z ∧ y ⊕ z ∧ y),

with a, b, c 6= 0, the pair (a, c) belongs to Ex,y. This suffices to conclude that

(Ex,z ∩ Ez,y) ◦ (Ex,z ∩ Ez,y) ⊆ Ex,y.

(b) Let us prove this assertion by induction over n ≥ 1. When x≪ z ≪ w ≪ y we

have

Ex,y[a] =































1 if a ∈ [0, x∗ ∧ y]

x∗ if a ∈ [0, x∗] ∩ (L \ [0, y])

y if a ∈ (L \ [0, x∗]) ∩ [0, y]

x∗ ∧ y if a ∈ L \ ([0, x∗] ∪ [0, y])).

and

Ez,w[a] =































1 if a ∈ [0, z∗ ∧ w]

z∗ if a ∈ [0, z∗] ∩ (L \ [0, w])

w if a ∈ (L \ [0, z∗]) ∩ [0, w]

z∗ ∧ w if a ∈ L \ ([0, z∗] ∪ [0, w])).
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The properties of ≪ ensure us that, for every a ∈ L, Ez,w[a] ≪ Ex,y[a] and the case

n = 1 is proved.

We now assume that the formula is true for a positive integer n and prove that it

is also true for n+1. If E =
⋂n+1
i=1 Exi,yi

and E′ =
⋂n+1
i=1 Ezi,wi

with xi ≪ zi ≪ wi ≪ yi

for every i ∈ {1, . . . , n+ 1}, we have by Lemma 6.6 that, for every a ∈ L,

E′[a] =

(

(

n
⋂

i=1

Ezi,wi

)

[a]

)

∧ Ezn+1,wn+1 [a].

Therefore

E′[a]≪

(

(

n
⋂

i=1

Exi,yi

)

[a]

)

∧ Exn+1,yn+1 [a] = E[a].

(c) For any i ∈ {1, . . . , n} let zi be such that xi ≪ zi ≪ yi. By (a) we have

n
⋂

i=1

(Exi,zi
∩ Ezi,yi

)2 ⊆
n
⋂

i=1

Exi,yi
⊆ Ex,y.

Let E =
⋂n
i=1(Exi,zi

∩ Ezi,yi
) and define

L1 = {a ∈ L \ {0} | E[a] ∧ x = 0}

and

L2 = {a ∈ L \ {0} | E[a] ∧ x 6= 0}.

Since E is a Weil entourage, L2 is empty only when x = 0. Now we have x ≤
∧

a∈L1
(E[a]∗). For each i ∈ {1, . . . , n} consider x′i, z

′
i, z

′′
i , y

′
i ∈ L such that

xi ≪ x′i ≪ z′i ≪ zi ≪ z′′i ≪ y′i ≪ yi.

By (b) we may conclude that, for every a ∈ L, E′[a] ≪ E[a], where E′ denotes the

Weil entourage
⋂n
i=1(Ex′i,z

′
i
∩ Ez′′

i
,y′

i
). Then we have

x ≤
∧

a∈L1

(E[a]∗) ≤
∧

a∈L1

(E′[a]∗) =

(

∨

a∈L1

E′[a]

)∗

.

Since E′ is a Weil entourage we have

(

∨

a∈L1

E′[a]

)

∨

(

∨

a∈L2

E′[a]

)

= 1,
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which implies

(

∨

a∈L1

E′[a]
)∗
≤

∨

a∈L2

E′[a].

Therefore

x ≤
∨

a∈L2

(

(

n
⋂

i=1

(Ex′
i
,z′

i
∩ Ez′′

i
,y′

i
)
)

[a]

)

.

Let us write the latter element in the form
∨

a∈L2

(

(
⋂2n
i=1Euj ,vj

)[a]
)

where, for every

j ∈ {1, . . . , 2n}, uj ≪ vj . Then,

x ≤
∨

a∈L2

2n
∧

j=1

(Euj ,vj
[a]).

Choose exactly one element of each non-empty set of the following 42n disjoint sets

(whose union is L2)

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1 ∧ v2n−1] ∩ [0, u∗2n ∧ v2n]

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1 ∧ v2n−1] ∩ [0, u∗2n] ∩ (L \ [0, v2n])

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1 ∧ v2n−1] ∩ (L \ [0, u∗2n]) ∩ [0, v2n]

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1 ∧ v2n−1] ∩ (L \ ([0, u∗2n] ∪ [0, v2n]))

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1] ∩ (L \ [0, v2n−1]) ∩ [0, u∗2n ∧ v2n]

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1] ∩ (L \ [0, v2n−1]) ∩ [0, u∗2n] ∩ (L \ [0, v2n])

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1] ∩ (L \ [0, v2n−1]) ∩ (L \ [0, u∗2n]) ∩ [0, v2n]

L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ [0, u∗2n−1] ∩ (L \ [0, v2n−1]) ∩ (L \ ([0, u∗2n] ∪ [0, v2n]))
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L2 ∩ [0, u∗1 ∧ v1] ∩ [0, u∗2 ∧ v2] ∩ . . . ∩ (L \ [0, u∗2n−1]) ∩ [0, v2n−1] ∩ [0, u∗2n ∧ v2n]

...

L2 ∩ (L \ ([0, u∗1] ∪ [0, v1])) ∩ (L \ ([0, u∗2] ∪ [0, v2])) ∩ . . . ∩ (L \ ([0, u∗2n] ∪ [0, v2n])),

and denote by F2 the set constituted by them. Clearly

∨

a∈L2

2n
∧

j=1

(Euj ,vj
[a]) =

∨

a∈F2

2n
∧

j=1

(Euj ,vj
[a]).

It is now already possible to apply (b) and conclude that

x ≤
∨

a∈F2

E′[a]≪
∨

a∈F2

E[a].

Finally, we only have to verify that
∨

a∈F2
E[a] ≤ y:

If (a, b) ∈ E with a ∈ F2, then there is c ∈ L such that (a, c) ∈ E and c ∧ x 6= 0.

But a 6= 0 and E is symmetric, thus (c, b) ∈ E2 ⊆ Ex,y. Hence b ≤ y, because c∧x 6= 0,

which shows that
∨

a∈F2
E[a] ≤ y holds.

This lemma implies immediately the following proposition.

Proposition 6.8. Let (L,≪) be a proximal frame. Then

{Ex,y | x, y ∈ L, x≪ y}

is a subbasis for a Weil uniformity E(≪) on L. Moreover, the proximity
E(≪)
< induced

by E(≪) coincides with ≪.

The following proposition is also obvious.

Proposition 6.9. If (L, E) is a Weil uniform frame satisfying

(UW5) ∀E ∈ E ∃x1, y1, . . . , xn, yn ∈ L :

(

n
⋂

i=1

Exi,yi
⊆ E and

n
⋂

i=1

Exi,yi
∈ E

)

,

the Weil uniformity E(
E
<) induced by

E
< coincides with E.
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Let us denote by WUFrm(UW5) the full subcategory of WUFrm of all Weil uniform

frames satisfying (UW5). This is a bicoreflective subcategory of WUFrm; if (L, E)

is a Weil uniform frame and EP is the set of all entourages E of L for which there

exist x1, y1, . . . , xn, yn ∈ L such that
⋂n
i=1Exi,yi

⊆ E and
⋂n
i=1Exi,yi

∈ E , then 1L :

(L, EP ) −→ (L, E) is the bicoreflection of (L, E) with respect to WUFrm(UW5).

The preceding propositions allows us to present a new characterization of proximal

frames:

Theorem 6.10. The categories PFrm and WUFrm(UW5) are isomorphic.

In order to complete the proof of this theorem we start by recalling a simple and

well-known lemma.

Lemma 6.11. Suppose that f : L1 −→ L2 is a frame homomorphism and let x, y ∈

L1 with x ≺ y. Then f(y)∗ ≤ f(x∗).

Proof. We have

x ≺ y ⇔ x∗ ∨ y = 1

⇒ f(x∗) ∨ f(y) = 1

⇒ f(x∗) ∨ f(y)∗∗ = 1.

Hence f(y)∗ ≺ f(x∗) and, therefore, f(y)∗ ≤ f(x∗).

Proof of the theorem. According to Propositions 6.2, 6.8 and 6.9 it remains to show

that a frame map f : L1 −→ L2 between two proximal frames (L1,≪1) and (L2,≪2)

is a proximal frame homomorphism if and only if it is a Weil uniform homomorphism

from (L1, E(≪1)) to (L2, E(≪2)). So, let f be a proximal frame homomorphism. For

any E ∈ E(≪1) we may write
⋂n
i=1Exi,yi

⊆ E, where xi ≪1 yi for every i ∈ {1, . . . , n}.

Then

(f ⊕ f)(E) ⊇
n
⋂

i=1

(f ⊕ f)(Exi,yi
) =

n
⋂

i=1

(

(f(x∗i )⊕ f(x∗i )) ∨ (f(yi)⊕ f(yi))

)

.

Now consider, for each i ∈ {1, . . . , n}, zi, wi ∈ L such that xi ≪1 zi ≪1 wi ≪1 yi. By

the lemma, we have

(f(x∗i )⊕ f(x∗i )) ∨ (f(yi)⊕ f(yi)) ⊇ (f(zi)
∗ ⊕ f(zi)

∗) ∨ (f(wi)⊕ f(wi)) = Ef(zi),f(wi).
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So (f ⊕ f)(E) ⊇
⋂n
i=1Ef(zi),f(wi). Since, by hypothesis, f(zi) ≪2 f(wi), then (f ⊕

f)(E) ∈ E(≪2).

Conversely, if x≪1 y then (f⊕f)(Ex,y) ∈ E(≪2). As (f⊕f)(Ex,y) ⊆ Ef(x),f(y), the

entourage Ef(x),f(y) also belongs to E(≪2) and we may write
⋂n
i=1Exi,yi

⊆ Ef(x),f(y)

for x1, y1, . . . , xn, yn ∈ L2 with xi ≪2 yi for every i ∈ {1, . . . , n}. It suffices now to

apply Lemma 6.7 (c) to conclude that f(x)≪2 f(y).

In [29], Frith proved that the two concepts of proximity and totally bounded uni-

formity are still equivalent for frames. Since a uniform frame is totally bounded when

it has a basis of finite covers, this leads us to the following definition:

Definition 6.12. A Weil entourage E is finite provided that there exist elements

x1, y1, . . . , xn, yn in L such that xi ≺ yi, for every i ∈ {1, . . . , n}, and
⋂n
i=1Exi,yi

= E.

This is the “right” notion of finite Weil entourage if one wants to have Theorem

6.10 rephrased as follows:

“The category PFrm is isomorphic to the full subcategory of WUFrm of Weil

uniform frames with a basis of finite entourages”.

By Remark 6.3, the conditions xi ≺ yi in Definition 6.12 are redundant since each

Exi,yi
by containing E is also a Weil entourage.

For purposes of reference we shall denote by FWEnt(L) the filter of (WEnt(L),⊆)

generated by all finite Weil entourages.

When L is normal, this notion of finiteness may be stated in a more natural way:

Proposition 6.13. Assume that the frame L is normal. Then FWEnt(L) is pre-

cisely the filter of WEnt(L) generated by

{

n
∨

i=1

(xi ⊕ xi) | n ∈ IN, x1, . . . , xn ∈ L,
n
∨

i=1

xi = 1
}

.

Proof. Consider E ∈ FWEnt(L). Then there are x1, y1, . . . , xn, yn ∈ L such that

xi ≺ yi for every i ∈ {1, . . . , n} and
⋂n
i=1Exi,yi

⊆ E. Since each Exi,yi
belongs to the

set
{

n
∨

i=1

(xi ⊕ xi) | n ∈ IN, x1, . . . , xn ∈ L,
n
∨

i=1

xi = 1
}

,
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E belongs to the filter generated by it.

Conversely, consider
∨n
i=1(xi ⊕ xi) with

∨n
i=1 xi = 1. From the normality of L we

may ensure the existence of y1, . . . , yn ∈ L such that
∨n
i=1 yi = 1 and yi ≺ xi for any

i ∈ {1, . . . , n}. Since (L ⊕ L,∩,
∨

) is a frame, one can easily prove, by induction on

n ≥ 1, that

n
⋂

i=1

Eyi,xi
=

∨

z1∈{y∗1 ,x1}

. . .
∨

zn∈{y∗n,xn}

(z1 ∧ . . . ∧ zn ⊕ z1 ∧ . . . ∧ zn).

But (y∗1∧ . . .∧y
∗
n)⊕(y∗1∧ . . .∧y

∗
n) = O. Hence

⋂n
i=1Eyi,xi

⊆
∨n
i=1(xi⊕xi) and therefore

∨n
i=1(xi ⊕ xi) ∈ FWEnt(L).

Now, as for nearnesses [12], the following basic results are also valid for this notion

of finiteness, as one would expect:

Proposition 6.14. For a compact regular frame L, the filters FWEnt(L) and

WEnt(L) coincide and form the unique Weil nearness on L. Furthermore, this near-

ness is a uniformity.

Proof. We already observed in Remark 3.2 that WEnt(L) is a Weil nearness on L

whenever L is regular.

By compactness, every Weil entourage E contains
∨n
i=1(xi ⊕ xi) for some finite

cover {x1, . . . , xn} of L. Since any compact regular frame is normal, we may conclude

from Proposition 6.13 that WEnt(L) = FWEnt(L). Now, to prove the uniqueness,

it suffices to show that every Weil nearness E on L contains all entourages of the type
∨n
i=1(xi ⊕ xi) for

∨n
i=1 xi = 1. So, let E be a Weil nearness on L and consider a

finite cover {x1, . . . , xn} of L. By compactness, for every i ∈ {1, . . . , n}, there exist

yi1, . . . , y
i
ji
∈ L such that

yik
E
< xi for k ∈ {1, . . . , ji}

and
n
∨

i=1

ji
∨

k=1

yik = 1.

Let Eik ∈ E be such that Eik ◦ (yik ⊕ y
i
k) ⊆ xi ⊕ xi and consider a symmetric E ∈ E

such that E ⊆
⋂n
i=1

⋂ji
k=1E

i
k. An easy computation shows that E ⊆

∨n
i=1(xi ⊕ xi): let
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(a, b) ∈ E with a, b 6= 0. Since b 6= 0, there are i ∈ {1, . . . , n} and k ∈ {1, . . . , ji} such

that b∧ yik 6= 0. Then, (a, b∧ yik) ∈ E and (b∧ yik, y
i
k) ∈ y

i
k ⊕ y

i
k imply that a ≤ xi. By

symmetry, b ≤ xi also. In conclusion,
∨n
i=1(xi ⊕ xi) ∈ E , as we required.

Finally, let us prove that FWEnt(L) is a uniformity. In the proof of Proposition

6.13 above we showed that, whenever
∨n
i=1 xi = 1, there exist y1, . . . , yn such that

∨n
i=1 yi = 1, yi ≺ xi for every i ∈ {1, . . . , n} and

⋂n
i=1Eyi,xi

⊆
∨n
i=1(xi ⊕ xi). This

inclusion may be improved in order to imply that FWEnt(L) is a uniformity; in fact,

(

n
⋂

i=1

Eyi,xi

)2
⊆

n
∨

i=1

(xi ⊕ xi)

as we now prove.

Using Lemma I.4.2, we may write
(

⋂n
i=1Eyi,xi

)2
in the form

⋂

z1∈{y∗1 ,x1}

. . .
⋂

zn∈{y∗n,xn}

(z1 ∧ . . . ∧ zn ⊕ z1 ∧ . . . ∧ zn) ◦

◦
⋂

z1∈{y∗1 ,x1}

. . .
⋂

zn∈{y∗n,xn}

(z1 ∧ . . . ∧ zn ⊕ z1 ∧ . . . ∧ zn).

Now consider (a, b) ∈ (z1∧. . .∧zn)⊕(z1∧. . .∧zn) and (b, c) ∈ (z′1∧. . .∧z
′
n)⊕(z′1∧. . .∧z

′
n),

for some z1, z
′
1 ∈ {y

∗
1, x1} . . . , zn, z

′
n ∈ {y

∗
n, xn} with a, b, c 6= 0. Since y∗1 ∧ . . . ∧ y

∗
n = 0,

there must exist j ∈ {1, . . . , n} such that zj = z′j = xj , which implies (a, c) ∈ xj ⊕ xj .

Proposition 6.15. FWEnt(L) is a Weil uniformity in case L is regular and normal.

Proof. It is contained in the proof of the previous result.

Remark 6.16. We have reserved for the Weil entourages defined in 6.12 the adjective

finite, guided by the theorem that states an isomorphism between the categories PFrm

and WUFrm(UW5).

Note that we have an equivalence in Proposition 6.15 if we replace the filter of

WEnt(L) generated by

{
n
∨

i=1

(xi ⊕ xi) | n ∈ IN, x1, . . . , xn ∈ L,
n
∨

i=1

xi = 1}

for FWEnt(L).
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Recall the axiomatization of proximal spaces in terms of the infinitesimal relation

δ (Definition 5.9). We conclude this chapter with a brief discussion of the analogous

problem for frames.

Proposition 6.17. If (L,≪) is a proximal frame, the binary relation on L given by

xδy ≡ x 6≪ y∗

satisfies the following properties:

(I1) xδy implies yδx;

(I2) xδ(y ∨ z) if and only if xδy or xδz;

(I3) xδy implies x 6= 0 and y 6= 0;

(I4) if x/δy then there is z ∈ L such that x/δz and y/δz∗;

(I5) x∗ ∨ y∗ 6= 1 implies xδy;

(I6) for every x ∈ L, x =
∨

{y ∈ L | y ≤ x and y/δx∗}.

Proof. (I1) We have

x/δy ⇔ x≪ y∗

⇒ y∗∗ ≪ x∗ by property (P7)

⇒ y ≪ x∗ by property (P3)

⇔ y/δx.

(I2) If xδ(y ∨ z) then x 6≪ (y ∨ z)∗ = y∗ ∧ z∗. This implies, by (P5), that x 6≪ y∗

or x 6≪ z∗. Conversely, if xδy, x 6≪ (y ∨ z)∗ by (P3). Thus xδ(y ∧ z). In case xδz, we

have also xδ(y ∨ z), similarly.

(I3) x 6≪ y∗ implies, by (P1) and (P3), x 6= 0 and y∗ 6= 1, that is, x 6= 0 and y 6= 0.

(I4) If x ≪ y∗ there exists, by property (P5), w ∈ L such that x ≪ w ≪ y∗. Let

z := w∗; then x ≪ w ≤ w∗∗ = z∗, whence x/δz. Moreover y ≤ y∗∗ ≪ w∗ = z ≤ z∗∗

and, consequently, y/δz∗.

134



6. Proximal frames

(I5) Since

x∗ ∨ y∗ 6= 1⇔ x 6≺ y∗

we may conclude by (P2) that xδy.

(I6) By (P8) we have x =
∨

{y ∈ L | y ≪ x} ≤
∨

{y ∈ L | y ≤ x, y/δx∗} ≤ x.

Note that, since x ∧ y 6= 0 implies x∗ ∨ y∗ 6= 1, (I5) says, in particular, that xδy

whenever x∧ y 6= 0. When L is Boolean the converse is also true and condition (I5) is

equivalent to the condition

x ∧ y 6= 0 implies xδy.

We say that a binary relation δ satisfying properties (I1)-(I6) is an infinitesimal

relation and that, in this case, (L, δ) is an infinitesimal frame.

The correspondence of 6.17 is invertible for Boolean frames:

Proposition 6.18. If (L, δ) is an infinitesimal frame, the binary relation ≪ given

by

x≪ y ≡ x/δy∗

is a proximity on L if and only if L is Boolean.

Proof. If ≪ is a proximity then, for any x ∈ L, x∗∗ =
∨

{y ∈ L | y ≪ x∗∗}. But

y ≪ x∗∗ ⇔ y/δx∗∗∗ ⇔ y ≪ x.

Consequently, x∗∗ =
∨

{y ∈ L | y ≪ x} = x and L is Boolean.

Since in any Boolean frame the DeMorgan law (x1 ∧ x2)
∗ = x∗1 ∨ x

∗
2 also holds, the

proof that≪ is a proximity when L is Boolean follows immediately from the properties

of δ.

These two results show that on Boolean frames there is a one-to-one correspondence

between proximities and infinitesimal relations.

Proposition 6.19. Let f : (L1,≪1) −→ (L2,≪2) be a frame map between proximal

Boolean frames. The following assertions are equivalent:
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(i) f is a proximal frame homomorphism;

(ii) for every x, y ∈ L1, x/δ≪1y implies f(x)/δ≪2f(y).

Proof. It is an immediate consequence of the fact that, for any frame map f : L1 −→

L2, in case L1 is Boolean, f(x∗) = f(x)∗ for every x ∈ L1.

We define an infinitesimal homomorphism f : (L1, δ1) −→ (L2, δ2) between in-

finitesimal frames as a frame map f : L1 −→ L2 for which f(x)/δ2f(y) whenever x/δ1y.

Corollary 6.20. The full subcategory of PFrm of proximal Boolean frames is isomor-

phic to the category of infinitesimal Boolean frames and infinitesimal homomorphisms.

In conclusion, it is possible to generalize for Boolean frames the description of

proximal spaces in terms of infinitesimal relations.

Lemma 6.21. Let E be a Weil nearness on L. If (x ⊕ y) ∩ E = O for some E ∈ E

then x ≤ y∗ and y ≤ x∗.

Proof. Since (x ⊕ y) ∩ E = O is equivalent to (y ⊕ x) ∩ E−1 = O, it suffices to

show one of the inequalities. Let us prove that x ≤ y∗, i.e., that x ∧ y = 0. We have

x ∧ y =
∨

{x ∧ y ∧ a | (a, a) ∈ E}. But, for any (a, a) ∈ E, (x ∧ y ∧ a, x ∧ y ∧ a) ∈

(x⊕ y) ∩ E = O, so x ∧ y = 0.

Proposition 6.22. Let E be a Weil nearness on L. The following assertions are

equivalent:

(i) x
E
< y∗;

(ii) (x⊕ y) ∩ E = O for some E ∈ E;

(iii) there is E ∈ E such that, for every non-zero x′ ∈↓{x}, E[x′] ∧ y = 0;

(iv) there is E ∈ E such that, for every non-zero y′ ∈↓{y}, x ∧ E[y′] = 0.
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Proof. The equivalence between (i) and (ii) is a consequence of the equivalence

(x⊕ y) ∩ E−1 = O⇔ E ◦ (x⊕ x) ⊆ y∗ ⊕ y∗

that we prove next. So, let (x⊕y)∩E−1 = O and consider (a, b) ∈ E and (b, c) ∈ x⊕x

with a, b, c 6= 0. Then (b, a ∧ y) ∈ E−1 ∩ (x ⊕ y) = O and a ∧ y = 0, that is, a ≤ y∗.

On the other hand, by Lemma 6.21, c ≤ x ≤ y∗. Hence (a, c) ∈ y∗ ⊕ y∗. The reverse

implication is also clear.

The equivalence (ii)⇔ (iii) is obvious.

By symmetry, (ii) is then also equivalent to (iv).

As it is well-known, given a uniform space (X, E), there is a way of defining a

proximity on X by AδB if and only if one of the three following equivalent conditions

holds:

(i) for every E ∈ E , (A×B) ∩ E 6= ∅;

(ii) for every E ∈ E there is a ∈ A such that E[a] ∩B 6= ∅;

(iii) for every E ∈ E there is b ∈ B such that A ∩ E[b] 6= ∅.

Proposition 6.22 together with Propositions 6.2 and 6.17 say that any Weil unifor-

mity E on L induces an infinitesimal relation δ on L by xδy if and only if one of the

three following equivalent conditions is satisfied:

(i) for every E ∈ E , (x⊕ y) ∩ E 6= O;

(ii) for every E ∈ E there exists x′ ∈↓{x} \ {0} such that E[x′] ∧ y 6= 0;

(iii) for every E ∈ E there exists y′ ∈↓{y} \ {0} such that x ∧ E[y′] 6= 0.

We may avoid the use of ↓ {x} and ↓ {y} in (ii) and (iii) above, by replacing the

following equivalent conditions

(ii’) for every E ∈ E , st(x,E) ∧ y 6= 0

and

(iii’) for every E ∈ E , x ∧ st(y,E) 6= 0
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for, respectively, (ii) and (iii), as we show in the last result of this dissertation:

Proposition 6.23. Let E be a Weil uniformity on L. Then the following assertions

are equivalent:

(i) for every E ∈ E there exists x′ ∈↓{x} \ {0} such that E[x′] ∧ y 6= 0;

(ii) for every E ∈ E, st(x,E) ∧ y 6= 0.

Proof. (i)⇒(ii): Let E ∈ E and consider a symmetric Weil entourage F ∈ E such

that F 2 ⊆ E. By hypothesis, there is x′ ∈↓{x}\{0} such that F [x′]∧y 6= 0. Therefore,

there is z ∈ L such that (x′, z) ∈ F and z ∧ y 6= 0. Since z and x′ are non-zero we may

conclude that (x′ ∨ z, x′ ∨ z) ∈ F 2 ⊆ E. Also, (x′ ∨ z) ∧ x 6= 0 and (x′ ∨ z) ∧ y 6= 0.

Hence st(x,E) ∧ y 6= 0.

(ii)⇒(i): For any E ∈ E , st(x,E) ∧ y 6= 0 means that there is (z, z) ∈ E such that

z ∧ x 6= 0 and z ∧ y 6= 0. It suffices now to take z ∧ x for x′.

Notes on Chapter IV:

(1) In Section 2 we observed that the open and spectrum functors, conveniently

adapted to the categories FrNear and NFrm, establish a dual adjunction be-

tween them. With respect to the correlative Weil structures, the “spectrum”

of a Weil nearness frame is a framed Weil nearness space and the frame of

a framed Weil nearness space is a Weil nearness frame and these correspon-

dences are functorial. However, as we observed in Section 4, these functors

do not define a dual adjunction. This is a surprising circumstance which

is further evidence for the thesis that, in many situations, covers are better

than entourages.

(2) One of the advantages of entourage-like theories is that the symmetry is

visible and so the corresponding non-symmetric versions are evident and

pleasantly manageable. For example, we saw that by dropping in Definition

I.4.5 the symmetry condition (UW3) and replacing E = E ∪ {E−1 | E ∈ E}

for E in (UW4), we obtain a category of Weil structured frames which is

isomorphic to the category of quasi-uniform frames of Frith. In the same
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way, from Weil nearness frames, a theory of “Weil quasi-nearness frames”,

as sought for by Frith at the end of [29], may be nicely established. The

corresponding theory of “Weil quasi-nearness spaces”, similar to the theory

of “quasi-nearness spaces” presented by Frith in the last chapter of [29], can

be also developed just by dropping axiom (NW0) in Definition 4.3.

The “quasi-proximal frames” and “quasi-proximal spaces” arise similarly, by

dropping the symmetry of E in the definition of the objects of WUFrm(UW5).

The isomorphism of Chapter III between QWUFrm and QUFrm yields an

isomorphism between this category of “quasi-proximal frames” and the one

of Frith ([29], p. 68).

(3) We concluded in Section 5 that WNear contains the categories of

• symmetric topological spaces and continuous maps,

• uniform spaces and uniformly continuous maps

• proximal spaces and proximal maps

in a nice way: they are either bireflective or bicoreflective full subcategories of

WNear. However the category Top of topological spaces is not a subcategory

of WNear. Other useful topological structures, namely the non-symmetric

ones of quasi-uniform spaces and quasi-proximal spaces are also not embed-

dable in WNear.

Nevertheless, in the realm of those “Weil quasi-nearness spaces” mentioned

above, it is possible to consider all those spaces of topological and uniform

nature. It turns out that the category of Weil quasi-nearness spaces con-

tains nicely all the non-symmetric categories referred to above as well as the

category Top, i.e., it is a unified theory of (non-symmetric) topology and

uniformity.

(4) The isomorphism between PFrm and WUFrm(UW5) suggested us the notion

of finite Weil entourage. It also justifies that we name the Weil nearness

frames satisfying (UW5) as “Weil contigual frames”. This is the analogous

notion to the contigual frames of Dube [18] in the setting of nearness frames.

One natural question is this: are these two categories equivalent? Another

interesting problem is whether the corresponding category of “Weil contigual

spaces” (as a full subcategory of WNear) is equivalent to the full subcate-

gory of Near of contigual nearness spaces of Herrlich [34] and, consequently,

equivalent to the classical category of contigual spaces and contigual maps
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in the sense of Ivanova and Ivanov [41].
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APPENDIX

HIERARCHY

OF NEARNESS STRUCTURES

ON SETS AND FRAMES

This appendix consists of two diagrams. The first one summarizes the hierarchy

of nearness structures on sets in the senses of Tukey and Weil. The second diagram

is the corresponding diagram for frames.

In these diagrams, A −→ B and A ←→ B mean that category A is fully em-

beddable in category B and that categories A and B are isomorphic, respectively.
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1in the sense of Weil

2in the sense of Bourbaki

3in the sense of Tukey
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1 gauge frames
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[46] Katětov, M., On continuity structures and spaces of mappings, Comment. Math. Univ.

Carolin. 6 (1965) 257-278.

[47] Kelly, J.C., Bitopological spaces, Proc. London Math. Soc. (3) 13 (1963) 71-89.
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[49] Kř́ıž, I. and A. Pultr, Systems of covers of frames and resulting subframes, in: Proc. 14th
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Name Objects Morphisms Page

BiFrm biframes homomorphisms 4

BiTop bitopological spaces bicontinuous maps 4

CFrm contigual frames uniform homomorphisms 139

Cont contigual nearness spaces nearness preserving maps 139

CWFrm Weil contigual frames Weil uniform homomorphisms 139

⋆-DFrm star-diametric frames uniform homomorphisms 53

EUFrm entourage uniform frames entourage uniform homomor-

phisms

18

Frm frames homomorphisms 2

FrNear framed nearness spaces nearness preserving maps 101

FrWNear framed Weil nearness spaces Weil nearness preserving maps 105

FrWNear
(NW6)

framed Weil nearness spaces

sat. (NW6)

Weil nearness preserving maps 122

Loc locales homomorphisms 3

MFrm metric frames uniform homomorphisms 53

Near nearness spaces nearness preserving maps 99

NFrm nearness frames uniform homomorphisms 100

PFrm proximal frames proximal homomorphisms 123

PNear prenearness spaces nearness preserving maps 99

Prox proximal spaces infinitesimal maps 117
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PWNear Weil prenearness spaces Weil nearness preserving maps 106

QEUFrm entourage quasi-uniform frames entourage uniform homomor-

phisms

77

QNear quasi-nearness spaces nearness preserving maps 139

QPFrm quasi-proximal frames uniform homomorphisms 139

QWNear Weil quasi-nearness spaces Weil nearness preserving maps 139

QWNFrm Weil quasi-nearness frames uniform homomorphisms 139

QProx quasi-proximal spaces homomorphisms 139

QUFrm quasi-uniform frames uniform homomorphisms 80

QUnif quasi-uniform spaces uniformly continuous maps 78

QWUFrm Weil quasi-uniform frames Weil uniform homomorphisms 83

R0Top symmetric topological spaces continuous maps 99

Set sets functions 111

SNear seminearness spaces nearness preserving maps 99

SpNFrm spatial nearness frames uniform homomorphisms 101

SWNear Weil seminearness spaces Weil nearness preserving maps 106

TBUnif totally bounded uniform spaces uniformly continuous maps 117

Top topological spaces continuous maps 2

UFrm uniform frames uniform homomorphisms 16

Unif uniform spaces uniformly continuous maps 16

WCont Weil contigual spaces Weil nearness preserving maps 139

WNear Weil nearness spaces Weil nearness preserving maps 106

WNear
(NW4)

Weil nearness spaces sat.

(NW4)

Weil nearness preserving maps 110

WNear(NW5) Weil nearness spaces sat. sat.

(NW5)

Weil nearness preserving maps 115

WNFrm Weil nearness frames Weil uniform homomorphisms 102

WUFrm Weil uniform frames Weil uniform homomorphisms 22

WUFrm
(UW5)

Weil uniform frames sat.

(UW5)

Weil uniform homomorphisms 130

∆-CS(A,X ) ∆-complete sinks homomorphisms 59

M-∆-CS(A,X ) M-∆-complete sinks homomorphisms 62
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Symbol Meaning Page

↓A down-set generated by A 6

↑A upper-set generated by A 6

A ·B 18

A ◦B composition of C-ideals A and B 18

A <µ B 101

A <E B 108

Cov(L) family of covers of the frame L 15

Cov(X) family of covers of the set X 13
∼

d approximation of d by a metric diameter 53

d diameter induced by d on a quotient 53
◦

d diameter induced by d on a subframe 62

d1 ∨ d2 join of the star-diameters d1 and d2 54

d1 ⊔ d2 join of the metric diameters d1 and d2 55

D(L) frame of all down-sets of L 6

E[a] trace of a in E (in a frame) 125

EA,B (X \A×X \A) ∪ (B ×B) 108

eE entourage induced by the Weil entourage E 36

(E ,M) factorisation system 59

E[x] trace of x in E (in a set) 13

Ex,y Weil entourage (x∗ ⊕ x∗) ∨ (y ⊕ y) 124
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EU Weil entourage induced by the cover U 33

EU set of Weil entourages induced by the family of covers

U

33

E(≪) framed Weil uniformity induced by the proximity ≪

(resp. Weil uniformity induced by the frame prox-

imity ≪)

121 (resp. 129)

FWEnt(L) filter of WEnt(L) generated by all finite Weil

entourages

131

f1 ⊕ f2 coproduct morphism 8

g ⊣ f g is left adjoint to f 9

I
E

⊑ J I is E-strongly below J 23

I
E

⊑i J I is E-strongly below J 85

intT (E) interior of the Weil entourage E with respect to the

topology T

104

inti(E) interior of the C-ideal E 85

k0 prenucleus on D(L× L) 19

k(A) C-ideal generated by A 19

κ(x) least R-saturated element above x 5

Ld subframe of L induced by d 62

L/R quotient of L 5

L1 ⊕ L2 frame coproduct of L1 and L2 7, 54

L1, L2 subframes of L induced by
E

<1 and
E

<2, respectively 80

ME set of entourages induced by the family of Weil en-

tourages E

36

Mono class of monomorphisms 60

O(L) family of order-preserving maps from L to L 17

ptL spectrum of L 2

P(X) power set of X 1

RegEpi class of regular epimorphisms 60

R(L,U) frame of regular ideals of (L,U) 42

st(A,U) star of the set A in the cover U 13

sti(V,V) stars of the set V in the conjugate cover V 78

st(x,A) star of the element x in the C-ideal A 19
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st(x,E) star of the element x in the C-ideal E 81

sti(x,E) stars of the element x in the C-ideal E 81

st(x,U) star of the element x in the cover U 15

sti(x,U) stars of the element x in the conjugate cover U 79

T topology 2

TE uniform topology induced by the uniformity E 13

TptL spectral topology 2

Tµ uniform topology induced by the uniformity µ 16

U∗ frame star-refinement of the cover (resp. conjugate

cover) U

15 (resp. 79)

U∗ star-refinement of the cover (resp. conjugate cover)

U

13 (resp. 78)

Ue cover induced by the entourage e 38

Ud
ǫ cover induced by the diameter d 51

UM set of covers induced by the family of entouragesM 38

U# filter of covers generated by all finite covers 42

WEnt(L) family of Weil entourages of the frame L 21

WEnt(X) family of entourages of the set X 12

x∗ pseudocomplement of x 3

x⊕ y element of the coproduct L1 ⊕ L2 7

[x, y] intersection ↑{x} ∩ ↓{y} 6

x ≺ y x is well inside y 3

x
d
< y x is d-strongly below y 51

x
E

< y x is E-strongly below y 22

x
E

< i y x is E-strongly below y 80

x
G

< y x is G-strongly below y 55

x
M

< y x is M-strongly below y 17

x
U

< y x is U-strongly below y 15

x
U

< i y x is U-strongly below y 80

αU right adjoint of st( , U) 51

αd
ǫ abreviation of αUd

ǫ
51

Γ 68, 68
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Symbol Meaning Page

δ infinitesimal relation 116, 135

ε unit point on localic groups 27

η adjunction unit 2, 5, 16, 33

Θ functor from EUFrm to UFrm 38

ι inverse on localic groups 27

µ multiplication on localic groups 27

ξ adjunction counit 2, 5, 16, 33

ρ1 ∨ ρ2 join of the pseudometrics ρ1 and ρ2 50

σ unique frame homomorphism of domain 2 and codomain L 8

Σ spectrum functor 2, 5, 16, 31

Σx opens of the spectrum topology 2

Υ 69, 71

Φ functor from WUFrm to EUFrm 36

Ψ functor from UFrm to WUFrm 33

Ω open functor 2, 4, 16, 30

∇ codiagonal 27

0 zero of a frame 1

1 unity of a frame 1

O zero of the coproduct L1 ⊕ L2 7

2 frame with two elements 2

≪ proximity 118, 123

<E proximity induced by the framed Weil nearness E 118
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basis

filter b., 6

uniformity b.

covering u. b. (on frames), 15

covering u. b. (on sets), 13

entourage u. b. (on frames), 17

Weil quasi-uniformity b., 82

Weil uniformity b.

(on frames), 22

(on sets), 12

biframe, 4

C-ideal, 7

symmetric C-i., 18

closure of a weak gaugeMono-∆-complete

sink, 72

completion

final c., 58

universal f. c., 58

∆-universal f. c., 58

concrete category

cohereditary c. c., 59

finally complete c. c., 58

closed under final sinks, 58

conditions

(D1), (D2), (D3), (D4), 51

(D5), 52

(I1), (I2), (I3), (I4), (I5), 117, 134

(I6), 134

(M), (⋆), (⋆′), 52

(N1), (N2), 98, 100

(N3), 98

(NW0), (NW1), (NW2), 102, 105

(NW3), 105

(NW3′), 107

(NW4), 109

(NW5), 114

(NW6), 121

(P1), (P2), (P3), 117, 123

(P4), (P5), (P6), (P7), 118, 123

(P8), 123

(QU1), (QU2), (QU3), 78, 80

(QUW1), (QUW2), 77, 82

(QUW3), 82

(U1), (U2), 13, 15

(U3), 15

(UE1), (UE2), (UE3), 17

(UE4), 18

(UP1), (UP2), 50, 55
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(UP3), 55

(UP1′), 75

(UP2′), 73

(UW1), (UW2), (UW3), 12, 22

(UW4), 22

(UW5), 129

conjugate, 81

coproduct

of frames, 7

of metric frames, 54

cover

conjugate c. (on biframes), 79

strong c. c., 79

conjugate c. (on sets), 78

strong c. c., 78

of a frame, 15

of a set, 13

refinement, 13, 15

DeMorgan formulas, 4

diameter, 52

metric d., 52

down-set, 6

element

e-small e., 17

E-small e., 87

R-saturated e., 5

R-coherent e., 5

R-compatible e., 5

U -small e., 33

E-near elements, 44

entourage

frame e., 17

interior e., 104

open e., 104

uniformity (on frames), 18

Weil e.

(on frames), 21

(on sets), 12

finite Weil e., 131

filter, 6

final

∆-sink, 58

morphism, 58

finite Weil e., 131

frame, 1

boolean f., 4

compact f., 3

coproduct, 7

entourage uniform f., 18

gauge f., 57

weak g. f., 74

homomorphism, 1

infinitesimal f., 135

metric f., 52

coproduct, 54

nearness f., 100

normal f., 3

points, 2

prediametric f., 52

proximal f., 123

quasi-proximal f., 139

quasi-uniform f., 80

quotient, 6

regular f., 3

spatial f., 2

spectrum, 2

star-diametric f., 52

uniform f., 16
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totally bounded u. f., 42

Weil contigual f., 139

Weil nearness f., 102

Weil quasi-nearness f., 139

Weil quasi-uniform f., 82

Weil uniform f., 22

functor

open f., 2, 4, 16, 30, 100

spectrum f., 2, 5, 16, 31, 100

Galois

connection, 9

correspondence, 9

gauge closure

gauge homomorphism, 50, 57

gauge space, 50

gauge structure

(on frames), 55

weak g. s., 73

(on sets), 50

homomorphism

biframe h., 4

entourage uniform h., 18

of ∆-complete sinks, 59

gauge h., 50, 57

proximal h., 123

frame h., 1

infinitesimal h., 136

uniform h., 16, 18, 52, 80, 100

Weil uniform h., 22, 83, 102

ideal

C-ideal, 7

regular C-i., 42

infinitesimal relation

(on frames), 135

(on sets), 116

locale, 3

localic group, 27

map

infinitesimal m., 117

nearness m., 98

proximal m., 118

uniformly continuous m., 12, 78

Weil nearness m., 106

nearness

(on frames), 100

(on sets), 98

pair

conjugate p. (of covers), 78

U -small p., 33

points (of frames), 2

prediameter, 51

compatible p., 51

metric p., 52

star-p., 51

prenearness (on sets), 98

proximity, 118

pseudocomplement, 3

pseudometric, 50

quasi-uniformity

(on biframes), 79

(on sets), 78

quotient (of frames), 6

Samuel compactification, 42

seminearness (on sets), 98

set
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upper-s., 6

down-s., 6

strongly connected s., 52

sink

∆-complete s., 58

final s., 58

final ∆-s., 58

gauge Mono-∆-complete s., 72

weak g. c. s., 66

M-∆-complete, 61

space

gauge s., 50

nearness s., 98

framed n. s., 101

prenearness s., 98

proximal s., 116

quasi-proximal s., 139

seminearness s., 98

quasi-uniform s., 77

R0-s., 99

uniform s., 12

Weil contigual s., 139

Weil nearness s., 106

framed Weil n. s., 105

Weil prenearness s., 106

Weil quasi-nearness s., 139

Weil seminearness s., 106

spectrum, 2

star, 13, 15

strongly connected set, 54

subframe, 3

topology

R0 t., 99

spectral t., 2

symmetric t., 99

uniform t., 13, 14

totally bounded coreflection, 42

uniform homomorphism

(on metric frames), 52

(on nearness frames), 100

(on quasi-uniform frames), 80

(on uniform frames), 16

uniformity

(on frames), 16

(on sets), 13

upper-set, 6

Weil contigual frames, 139

Weil contigual spaces, 139

Weil nearness

(on frames), 102

(on sets), 106

Weil nearness frames, 102

Weil nearness spaces, 106

framed Weil n. s., 105

Weil prenearness (on sets), 106

Weil prenearness spaces, 106

Weil quasi-nearness frames, 139

Weil quasi-nearness spaces, 139

Weil quasi-uniform frames, 82

Weil quasi-uniformity (on frames), 82

Weil seminearness (on sets), 106

Weil seminearness spaces, 106

Weil uniform frames, 22

Weil uniform homomorphism

(on Weil nearness frames), 102

(on Weil quasi-uniform frames), 83

(on Weil uniform frames), 22

Weil uniformity
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(on frames), 22

(on sets), 12
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