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Summary

SUMMARY

The concept of torsion had its origin in the theory of abelian groups. There a group is
torsion if and only if all its elements have finite order. This notion could be directly extended
to modules over an integral domain. In the theory of rings and of modules of quotients, to each
ring of quotients of a ring R there is an associated notion of torsion for modules over R ([43],
11.3).

Several authors, as Dlab in [20] and Levy in [35], extended this notion to modules over
more general rings. However these definitions are too closely linked with some particular classes
of modules and, apparently, not connected.

In 1966 Dickson [17] gave a definition of torsion theory in abelian categories which
generalizes and unifies the existing ones. As Herrlich and Strecker refer in [27], quoting Bass,
? Virtually all algebraic notions in Category Theory are parodies of their parents in the most
classical of categories... the category of left A-modules.”

The extension of some fundamental ideas and constructions of one area of Mathematics
to other is one of the aims of the theory of Categories. This was Barr’s purpose in [4], where he
gave a definition of torsion theory for non-abelian categories and a great variety of examples
encompassed by these theories. Also Cassidy, Hébert and Kelly, in 1985, following a different
path from the one of Barr, introduced another definition of torsion theory which arose from a
close analysis of the relations between reflective subcategories and factorization systems of a
category.

This dissertation, which is mainly based on [11], summarizes some of the results in this
area.

In the first chapter, where we use essentially [17] and [15], we give an approach to
torsion theories in abelian categories. In the first section we present Dickson’s definition and
stress the first analogy between the theory of torsion/torsion free subcategories in this context
and the one of connectednesses/disconectednesses in the category of topological spaces as it
appears in [3]. The concept of hereditary torsion theories is a very important one. Indeed, they

are equivalent to, for example, ”idempotent filters of ideals” in (Bourbaki, FEléments de
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Mathématique, fasc.27, Chap.1,2 (1961)) and [24] nowadays called Gabriel topologies, "left
exact torsion radicals” in (Maranda, Injective Structures, Trans. AMS, 110 (1964)),
”idempotent kernel functors” in (Goldman, Rings and modules of quotients, J. Algebra, 13
(1969)) and to left exact reflectors” in [24]. This is the topic of the second section where we
give a characterization theorem extracted from [11] and [43]. Finally in section 3, where we use
mainly [15], we present, with some detail, a classification in the category of abelian groups of
all torsion subcategories contained in the subcategory of torsion groups (in the classical sense)
and of all hereditary torsion subcategories.

The second chapter starts with the definitions of prefactorization and factorization
systems as well as the statements and proof of the results that will enable us to establish the
one-to-one correspondence between reflective subcategories and prefactorization systems of a
category. All these results are from [11], being 1.8 a generalization of (2.4) in [11]. We point
out that this bijection develops an idea referred by Bousfield in ([6], 2.5). Observation 2.5 of
[11] led us to the study of the links between the notions introduced in the preceding section and
the categories of fractions. Under very general conditions on a category, namely that it is a
finitely well-complete category, it is proved in [11] that the bijection we referred to above is a
bijection between reflective subcategories and factorization systems. This is the subject we deal
with in 3.2, 3.3 and 3.4. In 3.5 we present an easy proof given by Cassidy, Hebert and Kelly in
[11] of a result of Day [14]. Section 4 as well as the first one consist of a short account of the
essential steps in [11] towards the formulation of the notion of torsion theory for categories
with initial and terminal objects. There we present a detailed description of the reflective and
of the coreflective factorization systems associated with a factorization system and exhibit some
examples. At this point it is possible to study torsion theories in categories with initial and
terminal objects. This is the topic of section 5. The definition 5.2, which can be formulated in
any category, was suggested by the study of [11] and aims to stress the differences and the
similarities with the characterization of torsion in abelian categories. In 5.4-we prove that it is
a generalization of the definition of Cassidy, Hébert and Kelly [11]. The remaining results are
from [11] with exception of 5.7 and of example (c) where we study the torsion theories of the
category of graphs and in preorder categories defined by complete lattices, respectively. Section
6 contains a brief survey of torsion theories in categories without zero object as well as
sufficient conditions for a category without zero object to have only as torsion theories the
trivial ones. As a direct consequence we conclude that the notion of torsion becomes trivial in
topological categories giving us a justification for the fact of being the analogue theory of
connectednesses/disconnectednesses that plays an important role in such categories. Except for
7.10(ii), which was inspired by the similar result for abelian categories, all the results in

section 7 are from [11] and deal with torsion theories in categories with a zero object. In 8.5,

II





Summary

8.6, 8.7, 8.8 and 8.10 we collect results of an approach given by Tholen in [45] for the study of
connections in the context of factorizations of sources and apply them to the special case we
are interested in: the torsion theories in categories with zero object. With these results, and still
inspired in [45], we obtain theorem 8.11 and its corollaries 8.12 and 8.13, which give us a
characterization of torsion theories in terms of &-connections and 8-reflections. Finally, we are
able to relate in proposition 8.14 the definition given by Cassidy, Hébert and Kelly [11] with
Barr’s definition [4].

The third chapter deals with torsion theories and localizations. In section 1 we first
recall the definition of certain types of reflectors given in [11] and its characterizations, giving
particular attention to the reflectors with stable units (1.6) whose characterization is based on
results of [34] and on the observation that condition 1.9 (iv) in this paper coincides with the
definition of reflector with stable units. The example 1.8 is a detailed proof of theorem 1 of
[10]. The relation between localizing subcategories and hereditary torsion theories is studied in
section 2. Its main goal is to present a result of [11] where it is shown that in abelian categories
with enough injectives there exists a one-to-one correspondence between localizing subcategories
and hereditary torsion theories. It also contains some examples of non-abelian categories where
this correspondence is not bijective. The third and last section is concerned with the idea of
setting up a link with the classical results on localizations suggested in the introduction of [11].
For that our main tools are two results of [5] which we recall in 3.2 and 3.4. With these results
we describe localizing subcategories of some special categories in terms of a topology adequate

for each case. We also make a short reference to the case of toposes.
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Introduction

INTRODUCTION

Throughout this dissertation we shall denote categories by A, B, C, ..., etc. The class
of objects of a category A will be denoted by ObjA, whereas, MorA will stand for the
class of morphisms of A. Capital and small Latin letters will be used for objects and
morphisms of a category, respectively, and so we will abbreviate A € Obj.A and f& MorA to
A€ A and fe A. For two objects A and B in A, Hom ,(A,B) will denote the set of
morphisms from A to B. We shall simply write HomA(A,B):O when HomA(A,B):{O}.

By a subcategory we always mean an isomorphism closed full subcategory, and so
identified by its objects.

Our general references for Category Theory are [27] and [36].

We shall denote by IsoA, MonoA, ExtMonoA, RegMonoA, StrMonoA, EpiA,
RegEpiAd and StrEpiA  the classes of isomorphisms, = monomorphisms, extremal
monomorphisms, regular monomorphisms, strong monomorphisms, epimorphisms, regular

epimorphisms and strong epimorphisms of the category A, respectively.

v





I - Torsion theories in abelian categories

CHAPTER I

TORSION THEORIES IN ABELIAN CATEGORIES

1. TORSION THEORIES: GENESIS AND EVOLUTION

An element g of an abelian group is called a torsion element if it has finite order, i.e.
if the ideal {n€Z |ng=0} of Z is non-zero. An abelian group G is torsion if all of its
elements are torsion elements, which is equivalent to say that Hom(G,Q)=0, @ being the
group of rationals. It is important to point out that every group G has a maximal torsion
subgroup G, for which (G/G,),=0, i.e. G/G, is a torsion-free group.

This definition of torsion can easily be extended to modules over integral domains.
However, for other rings this concept may have no relevance. Using this definition, the
categories of modules have non-zero torsion-free objects only if the ring has no zero divisors.
Indeed, if d and d’ are non-zero elements of the ring R such that dd’=0 then, for every
element m of a left R-module, either d’m=0 or d(d’m)=0.

Skirting this and other difficulties, several authors generalized the concept of torsion to
any categories of modules, e. g. Dlab in [20] and Levy in [35].

The notion of torsion theory that we shall present in this chapter is due to Dickson
[17], who gave an axiomatic definition of torsion in abelian categories. This definition avoids
certain pathologies that are in general associated to definitions too closely related with a
special abelian category, and unifies important classical torsion theories like for example those
of Goldie and of Lambek [42]. Furthermore, it allows the formulation of the corresponding
primary decomposition theorems. For additional information we refer to Dickson [16], [17] and
[18].

Throughout this chapter we shall denote by A an abelian wellpowered category in
which there exist the product [][ (A/A;) and the coproduct H A;, for every family
{A; : i €I} of subobjects of an obﬁeectI A in A el

In an abelian category, every morphism f:X—Y has a factorization
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X—8Imf-2aY

where m is a monomorphism and e is an epimorphism ([36], VIIL.3.1). We shall use kerf

and Kerf to denote the kernel morphism of f and the corresponding object, i.e.
Kerf—25X where m=kerf.

The assumptions on the category A imply that the set $(A) of subobjects of each

A-object A is a complete lattice for the usual order relation: for each family {A,:i€1} of

elements of $(A),

vV A, =Im( I A,—A)

iel i€l
and
/E\I A, =Ker(A—T] (A/A))) ([43], 1V, §2 and §4).
i i€l

DEFINITION 1.1. A pair (C,%) of subcategories of A is a torsion theory of A

provided that:
(T1) Hom 4(C,B)=0, for each C€C and BeB.
(T2) For every object A of A there exists an exact sequence
0—C—A—B—0

with C€C and B¢ %.

Then we shall say that C is a torsion subcategory and its objects are called the

torsion objects while B is a torsion-free subcategory and its objects are called

torsion-free objects.

It is clear that if (C,%) is a torsion theory then the exact sequence in (T2) is unique

up to isomorphism.

EXAMPLES 1.2. (a) Let Ab be the category of abelian groups, Jors and Tors¥F

be the subcategories of .Ab whose objects are the torsion abelian groups and the torsion-free
abelian groups, respectively. Then (Tors,Jors¥) is a torsion theory of Ab.
(b) Consider the category R-Mod of left modules over a ring R with identity. A

subset S of R is called a left denominator set if it is multiplicatively closed and satisfies the

following conditions:
(S1) Ya€eS, VreR, 3besS, 3teR : ta=br.
(S2) If ra=0 with a€S then br=0 for some beS.
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If we consider a left denominator set S and define for each M &€ R-Mod the

submodule
t(M)={m €M | am =0 for some 2 €S}
then the pair (C,B) where
Cc={MER-Mod | t(M)=M} and B={MeR-Mod | t(M)=0}

is a torsion theory of the category R-Mod. The modules of € are usually called S-torsion
modules and they are precisely the modules for which the respective quotient module M[S™}]

is the zero module ([43], 11.3).

When S is the set of regular elements of the ring, we obtain the definition of torsion
for modules over rings with zero divisors, originally given by Levy in [35].

(c¢) The pair (D,%), where 9 is the subcategory of divisible abelian groups and %
is the subcategory of reduced abelian groups, is also a torsion theory of Ab. This is an
important example because every abelian group G has a direct decomposition G=D@&R,

where D is the maximal divisible subgroup of G and R e % ([23], 21.2).

DEFINITION 1.3. A subcategory B of the category A is called reflective if the

inclusion functor, E:®B— A, has a left adjoint, R: A— B, i.e., for each object A of A,
there exists a universal morphism, r A :A—R(A), from A to E. This morphism is called
the reflection of A in 9B, and the functor R 1is the reflector. If all reflection morphisms

belong to a given class & of morphismsin A, B is called an &-reflective subcategory of A.

REMARKS 1.4. (i) By duality we obtain the notions of coreflective subcategory,

coreflection and of coreflector.

(ii) It is easy to check that, given a reflector R: A— B, there exists a reflector
R’: A— B, naturally isomorphic to R, such that r’B is the identity for each object B of
B (cf., for example, [30], I1.7.6). Since there is no loss of generality, in the following, we shall
always consider reflectors that satisfy this condition.

(ii1) From (T1) and (T2) it follows that B is an Epi-reflective subcategory of A.
Indeed, it is easy to see that the morphism A—B in (T2) is the reflection of A in %.

Then, by duality, € is a Mono-coreflective subcategory of A.

The family th of subcategories of A partially ordered by inclusion is a (possibly

large) complete lattice. Let us consider the operators
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o_’:ﬁ’AHb"A
%r—»fB_’::{A € ObjA | Hom ,(B,A)=0 for all B€ Obj“]&}
and
e : h"A — b"A
%Ha%“ﬂz{AeomAlﬂmgAmﬁnzomralBeom%}
The following proposition, whose proof is straightforward, brings together some of their
properties.

PROPOSITION 1.5. Let B, B, and B, be subcategories of A. Then:

i) BcsT .

(i) Bce .

(iii) B, CBy= (B, CB;  and B, CB,7)

(iv) BT 7T =37 and BT T=3B"". O
Hence, 0_':5:4010———»3’“4 o‘_:h"A——r.‘fAOP

are functors for which the pair (e, ) is a Galois connection ([13], p. 44), which is

equivalent to say that
B, C By B, CB, .

REMARK 1.6. The functors T=e ™~ and F=e“" " are closure operators ([13],

p. 42) in the complete lattice 3°_A, to which correspond the following closure ‘systems
ﬂ“:{fgeyji‘c:g—ﬂ—:%} and G.F:{?BEH’A[G.BG—_i:G,B}

in the sense of Cohn ([13], p. 41).

LEMMA 1.7. If (C,B) s a torsion theory of a category A then C =B and
BT =C.
Proof: By (T1) ®CC™ and CC B . Since, for every object A, there exists an

exact sequence

0 yo—L A8 »B +0,

then, if A€C™’, we have that f=0, and so g is an isomorphism. Hence A €%® and
therefore C =9%. The other inclusion follows by duality. O






I- Torsion theories in abelian categories

PROPOSITION 1.8. A pair (C,B) of subcategories of A is a torsion theory of A

if and only if the following conditions are satisfied:

(i) Enay={0}.

(ii) € s closed for quotient objects, i.e. if the sequence C—+A—0 s eract and
CeC then AeC.

(iii) B is closed for subobjects, i.e. if the sequence 0—A—B is ezact and BB
then A € B.

(iv) For every object A of A there exists an exact sequence 0—C—A—B—0,

with CeC and B e B.

Proof: Let (C,B) be a torsion theory of A. Condition (i) is obviously true and (iv) is
the condition (T2) of 1.1.

If c—E4a—0
is exact, i.e. g is an epimorphism, then A€®B™ because, for every Be&Obj%®, if
fe Hom 4(A,B) we have f.g=0 andso f=0. Thus A €C, by 1.7, and we have proved (ii).

Condition (iii) follows by duality.

Conversely, if (C,B) satisfies (i), (ii), (iii) and (iv) then (T2) holds. It remains to
prove (T1). Let C&€€C, Be®B and fe Hom ,(C,B). Consider the (Epi,Mono)-factorization,
m.e, of f. By (i) and (iii), Imfe €M% and so Imf=0, i.c. f=0. o

DEFINITION 1.9. A subcategory 9 of A is called closed under extensions if, for

every exact sequence 0—D;—A—D,—0, A€ D whenever D;,D, € D.

LEMMA 1.10. If the subcategory € is of the form B, for some subcategory B,

then C 1is closed under ertensions and the formation of all coproducis that exist in A.
Proof: If we consider an exact sequence
0—C,—A—C,—0

with C;,C, €C, then, since for every object B € B the contravariant functor Hom(—,B) is

left exact, we have the exact sequence
0 — Hom(C,,B) — Hom(A,B)— Hom(C,,B).
But Hom(C,,B)=Hom(C;,B)=0 so that Hom(A,B)=0, i.e. A€ B~ =C.

Finally, let {C;:i€I} be a family of objects of € whose coproduct exists in A.
Then HI C,; € B =C. Indeed, for every object B of B, we have
i

Hom( [I C;,B)=[] Hom(C,,B)=0. o
i€l =l
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THEOREM 1.11. (C,%) s a torsion theory of A if and only if CT =% and
RT=C.

Proof: The necessity was proved in 1.7. To prove its sufficiency it is enough to show
(T2), since (T1) trivially holds. Let A be an object of A and F(A)NC={A,:ic€l}, where

J(A) denotes the set of its subobjects. Consider the following diagram

\
Y ) =

where f is the unique morphism such that fu;=m;, for every :€l, and m.e is the
corresponding (Epi,Mono)-factorization. By 1.10 we have ‘HI A, €C and, in a similar way
to that one used in the proof of 1.8(ii), we can concluczleE that A{€C, since e is an
epimorphism. To finish the proof it remains to show that A/A; €B=C~. If C&C and
g €Hom 4(C,A/A¢) then ImgeC and it is a subobject of A/At. Thus Img=B/Ay, for
some subobject B of A greater than or equal to Ag, with respect to the usual order relation
in the class of subobjects of A. Since A; and B/A;€C, and, by 1.10, C is closed under
extensions, then B€C so that B& {A,::€1}. We have already observed that in the lattice

P(A), VIAi =A¢. Hence we can conclude that B=A, which implies that g=0. O
i€

!

With this theorem we can obtain very many examples of torsion theories of A: every
subcategory B of A generates the torsion theory (“33(—,‘58(__’) and cogénerates the torsion
theory (% 7,8 7). This unifies the classical torsion theories. For example, in a category of

modules over a ring R, the Goldie torsion theory is the pair (B~ 7 ,%7), where B is the

subcategory of modules M/L with L an essential submodule of M, and the

Lambek torsion theory is the pair (B, ~), where B is the subcategory defined by the

injective envelope of R (see definition 2.2). In Ab, the torsion theory generated by the group
Q of rational numbers is the torsion theory we referred to in 1.2(a) and 1.2(c) is the torsion

theory it cogenerates.
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COROLLARY 1.12. Let B and C be subcategories of the category A. Then:

(i) C 1s a torsion subcategory if and only if it is closed under quotient objects,

ertensions, and all the coproducts that exist in A.

(ii) B s a torsion-free subcategory if and only if it is closed under subobjects,
extensions, and all the products that exist in A.
Proof: (i) If € is a torsion subcategory we have already observed (1.8(ii) and 1.10)

that C 1is closed under quotient objects,. extensions, and all the coproducts that_ exist in A.

Conversely, it is obvious that (C,CH) verifies (T1). It also satisfies (T2) (see proof of

1.11), and so it is a torsion theory.

(ii) follows from (i), by duality. O

EXAMPLES 1.13. Let p be a prime number.

(a) An abelian group is called a p-group if the order of its elements is a power of p.
The subcategory p-Ab of p-groups is a torsion subcategory of Ab because it satisfies 1.12(i).
This subcategory is equal to {Zp}—H_, where Zp denotes the cyclic group of order p.
Indeed {Zp} = Cp-Ab because Zp is a p-group and {Zp} s the smallest torsion
subcategory that contains Zp. Conversely, given a p-group G, denote by <g> the

subgroup of G generated by {g}. The morphism

©: g]é[G<g>~—> G defined by go((ng g)g c G):g angg

is an epimorphism. But, for each g & G, there exists a n €N such that <g>= an. On the
other hand, the sequence
0——>an—_—+an+1——»2}3—>0

is exact, for every n €N, and so, since {Zp}_) " is closed under extensions, it can be proved
by induction that an € {Zp}_H_, for every n € N. It follows that G € {Zp}_ﬂ_ because
{Zp} 7 is closed under epimorphic images and ¢ is an epimorphism.

(b) The subcategory of divisible p-groups also satisﬁeé 1.12(i) ([23], 20). This torsion
subcategory coincides with {Z(p™)} =, where Z(p>) is the multiplicative group of the
complex roots of the equations xP™ = 1, n €N, because every divisible p-group is a direct sum

of copies of Z(p™) ([23], 23.1).

REMARK 1.14. The condition 7”3 is closed under eztensions” is equivalent to the

following:

For each epimorphism e:A—B,, with B, € %, if the diagram
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is a pullback and B; €% then A € %B. Therefore, 1.12(ii) allows us to observe a first close
relation between the theory of connectednesses/disconnectednesses in Jop [3] and the
torsion / torsion-free theory on abelian categories. A disconnectedness <@ in Jop is a
subcategory closed under products and subobjects, and such that for each surjective morphism

f:X—Y, with Y€ 9D, if in the following pullback where fy(x)=y,

£4(y) {*}

Oy

X—7 ——"Y

f

f1(y) €D, for every y€Y, then X€D ([3], 2.12).

2. HEREDITARY TORSION THEORIES

DEFINITION 2.1. A subcategory C of A is called hereditary if it is closed under

subobjects.

If the subcategory C of a torsion theory (C,B) is hereditary we say that (C,B) is

an hereditary torsion theory.

EXAMPLES. The torsion theories of the examples 1.2 (a) and (b) are clearly

hereditary.

The Lambek torsion theory is also hereditary since M is a Lambek torsion module if
and only if Hom(N,A)=0, for every submodule N of M.

1.2(c) is an example of a non-hereditary torsion theory.
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DEFINITION 2.2. We shall say that a monomorphism i:B—A 1is an essential

extension of B if BNA’#£0, for every non-zero subobject A’ of A. An injective envelope
of an object B is an essential extension of B, a:B——E(B), such that E(B) is an injective

object, i.e. for every monomorphism f:X-—Y, the map

Horn(f,E(B)):HomA(Y,E(B))—»HomA(X,E(B))
g — e.f

is surjective.

The category A is said to have injective envelopes if every object of A has an

injective envelope.

It can be easily proved that if an injective envelope exists then it is unique up to

isomorphism.

THEOREM 2.3. Let (C,B) be a torsion theory of the abelian category A and
consider the following conditions:

(i) (C,B) is hereditary.

(ii) B s closed under essential extensions.

(iii) B is closed under injective envelopes.

Then (1) = (ii) = (iii) and, if A has injective envelopes, the conditions are equivalent.

Proof:

(i) = (ii): Assume C is hereditary. Consider B€ B and let i:B—A be an essential
extension of B. We prove now that A€ ®B=C€"". For every morphism f:C— A, with
C € C, we consider the following pullback

5

Since i is a monomorphism, then D €€ and so f=0. In the following diagram,
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Imf

since (1) is a pullback t is the unique morphism for which it commutes. Furthermore, it can
be easily observed that (2) is also a pullback. Thus t is an epimorphism and so Imfn B=0.
Since 1 is essential then Imf=0, i.e. f=0.

(ii) = (iii): It is obvious.

Suppose now that A has injective envelopes.

(iii)=(i): Let j:C’—C be a monomorphism where C¢&C. To prove that
C’eC=%B" we consider g:C’—B, with B€B, and let «:B—E(B) be the injective
envelope of B in A. Since E(B) is injective, there exists a morphism f:C—E(B) such

that the diagram

C—  ——~¢C

Y
E(B)

commutes. Hence, since E(B) € B, f=0 and so g=0. 0

10
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REMARK 2.4. A family {A;::€1} of subobjects of an object A is called
directed if for every pair (i,;) €IxI there exists a k€1 such that A; <A, and A;<A,, for
the usual order relation in the class of subobjects of A.

Every cocomplete abelian category, with a generator, for which the equality

(< A)nB=% (A;nB)
i€l i€l
holds, for every directed family {A,:i €1} of subobjects of an object A and every subobject
B of A, has injective envelopes ([39], I11.3.2). Therefore, any Grothendieck category [43] has
injective envelopes. These categories are a natural extension of categories of modules and are

precisely the categories which arise as categories of modules of quotients ([43], chapter X).

PROPOSITION 2.5. If A has injective envelopes and C is a subcategory of A

oy e

closed under subobjects and quotient objects then the torsion theory (C ,CT), cogenerated

by C, s hereditary.

Proof: By 2.3 we only need to show that €™ is closed under injective envelopes. If
BeC™, let a:B—E(B) be an injective envelope of B, and let f:C—E(B),
with C€C. Then ImfeC and ImfNBe€C, by hypothesis. Hence, ImfN B is a subobject
of B that belongs to € and so ImfNB=0. By essentiality of o, Imf=0, i.e. f=0. O

EXAMPLE. By proposition 2.5 we can immediately conclude that the Goldie torsion

theory is hereditary.

3. TORSION THEORIES IN THE CATEGORY OF ABELIAN GROUPS

We finish this first chapter by presenting the complete classification in Ab of the
torsion subcategories contained in the subcategory Jors of usual torsion groups, and of the
hereditary torsion subcategories.

Let us denote by P the set of prime numbers. We call any formal product

11 pe(p), where e(p) is 0, 1 or oo

peP
a Steinitz_number and we denote the set of Steinitz numbers by N. Let U be the class of

torsion subcategories of Ab contained in Jors. Consider C€U and p€&P. If there is a

11
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non-zero p-group G in C, consider his decomposition G=D@®R, where D is the maximal
divisible subgroup of G (1.2(c)). In case R=0, G is a divisible p-group and then a copy of
Z(p™) belongs to C since every divisible p-group is a direct sum of copies of Z(p™), as we
referred to in 1.13 (b). Otherwise pR # R. Indeed, for any prime number q, distinct of p, we
have qG=G since G 1is a p-group, so G=qD®qR=D®qR, which implies qR=R. Hence
if pR isequal to R, R is divisible, i.e. R=0, a contradiction. Therefore pR # R, and the
projection R—R/pR is a non-zero map. Since every non-zero element of R/pR has order
p, R/pR may be written as a direct sum _in which all summands are isomorphic to Zp. Thus,
in this case, C contains a copy of Zp.

These facts enable us to define the following map:

A:U—N 0 if C does not contain a non-zero p-group.
C—]] pe(p) where e(p)=1{1 if C contains a copy of Lp.

eP

. oo if C contains a copy of Z(p®) and

does not contain a copy of Zp.

THEOREM 3.1. The map A 1is a bijection.

Proof: Consider the map

Q: N — U
11 p" i — g7
peP
with G={Gp |p€P} and where, for every p€P, Gp is equal to 0, Zp or Z(p%),

whenever e(p) is 0, 1 or co, respectively. For every Ce U,

QA(C) = Q( gppe(p) ) —§,
p

First we show that QA:IdU, ie. C=G— .

The inclusion §— ° CC holds trivially because §CC, C is a torsion subcategory
and G 7 is the smallest torsion subcategory that contains §. We now prove the reverse
inclusion. Let C & C. The primary decomposition theorem can be applied to C because
€ C Jors, and so we have C:pIéIPCp, where each Cp is a p-group. It is obvious that each
Cp belongs to C. In order to prove that Ce g~ it suffices to show that each Cp
belongs to G because this subcategory is closed under coproducts. Since Cp is a
p-group then Cp belongs to {Z(p™)} " if it is divisible or belongs to {Zp}_u_
otherwise (recall 1.13(a) and (b)). Thus Cp € G~ ", as we claimed and so QA=Idy.

12
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)

Furthermore, AQ:IdN. Indeed, for every Steinitz number [] pe(p we have

peEP

o 11,5°)=a6"")-

Since {Zp} 7T ={p-groups} and {Z(p™)} * ={divisible p-groups} (1.13(a) (b)),
it is obvious that

g_}(_:(ngCFJ—H_

where Cp, for every pe€P, is the subcategory {0}, the subcategory of p-groups or the
subcategory of divisible p-group, whenever e(p) is equal to 0, 1 or oo, respectively. But by
([15], 2.5), Ge€G~  if and only if G= [ Ge , where Ge  denotes the maximal
peP p P

subgroup of G that belongs to Cp.

Then, it is easy to check that

e
A(g——ﬂ'—)___ H p (P)’

pepP
and so AQ:IdN. O

Finally, we present the classification of the hereditary torsion subcategories of Ab.

We say that a torsion subcategory of Ab is proper if it does not contain all abelian groups.

THEOREM 3.2. The map A defines a one-to-one correspondence between the set
U’ of the proper hereditary torsion subcategories of Ab and the set N’ of the Steinitz
numbers for which e(p) 1s equalto 0 or 1, for every p €P.

Proof: Let C€U’. If C contains a group G with an infinite order element then Z
belongs to €, because G has a subgroup isomorphic to Z. Then C=.Ab, since any group is
an homomorphic image of a direct sum of copies of Z. Hence CC%ors and so U’CU.
Therefore, by 3.1 it suffices to prove that A(U’)=N".

A(U’) C N’ Consider

T p°® =A(e), with cev.
peP

If for some peP, ep)=oco, then Z(p>)eC. Since Z(p*°) has a subgroup
isomorphic to Zp and this subgroup belongs to C, we have that em)=1, which is

contradictory. Thus e(p) is 0 or 1, for every p € P.

N Cc A(U’): Let ] pe(p) € N’. By 3.1, thereisa C€ U such that
peP

13
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p

We show that CeU’. As we observed in 3.1, C=G 7, with G:{Gp |peP}
where, for every p€P, Gp s equal to 0 or Lp, if ep) is equal to 0 or 1, respectively.

Just, as in 3.1, it is obvious that
g——-H—Z( U e )
peP P
where Cp, for every p €P, is the subcategory {0} or the subcategory of p-groups, as e(p)

is equal to 0 or 1, respectively. But, since each Cp 1is closed under subobjects and quotient

objects,
u_¢
peP P
also verifies these conditions and so §— © =C is hereditary, by 2.5. O

14
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CHAPTER I

TORSION THEORIES IN CATEGORIES WITH INITIAL
AND TERMINAL OBJECTS

1. REFLECTIVE SUBCATEGORIES AND PREFACTORIZATION SYSTEMS

Let A be a category and e and m be two morphisms in A.
The morphism e is said to be orthogonal to m if for every pair (u,v) of morphisms
in A such that v.e=m.u there exists a unique morphism d in A such that d.e=u and

m.d=v.

When e is orthogonal to m we shall write e|m.

Given a class ¥ of morphisms in A, let

I}{ST:{eEMor.A | elh, for every hEI}G}

g6t :{m € MorA | hlm, for every he 3{;}

The following proposition is similar to I.1.5 and has also a trivial proof.

15
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PROPOSITION 1.1. Let 36, 36, and 36, be classes of morphisms of A. Then:

@ Bwcwlt

Gi) 36 cwil,

(i) 36, C 365 = (6,1 C 36,1 and 36, c 36, 4.

av) %V =%" ang 36t =3l O

DEFINITION 1.2. A pair (8,Ub) of classes of morphisms in A is called a

prefactorization system of A if Sl:Jﬂa and ./ﬂoT:-S.

EXAMPLES. For any class % of morphisms in A, (31,361 and (347,361) are

prefactorization systems of A.

Next we recall some properties of the class .

PROPOSITION 1.3. If (8,M) is a prefactorization system in A, then:
(i) 8N M=IsoA.

(i) Ao is closed under composition.

(iii) If fge M and f€ M UMonoA then ge M.

(iv) The pullback of a morphism in M along a morphism in A lies in b,
(v) b is stable under limits.

Proof: See e.g. ([12], I.1.1). O

The corresponding properties for the class & follow by duality.
The class of prefactorization systems with the order relation defined by
(8,AMb) < (8, M%) if M C M (or, which is equivalent, if €D &)
is a (possibly large) complete lattice with smallest and greatest elements (MorA,IsoA) and

(IsoA,MorA), respectively.

DEFINITION 1.4. A pair (&,M) of classes of morphisms in 4 is a factorization

system of A provided that:
(i) (8,M) is a prefactorization system.

(ii)) A is (8.Mb)-factorizable, i.e. every morphism f in A has a factorization

f=m.e, with ec & and me& M.

16
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REMARKS 1.5. (i) Let (8 M) be a factorization system. Then the

(8, M)-factorizations are unique up to isomorphism, i.e. if
A—€4B-M,C and A-¢Lp-,C

are two (&,4ib)-factorizations of a morphism f then there exists an isomorphism d:B—B’
such that d.e=e¢’ and m’.d=m.

(ii) The condition (i) of 1.4 can be replaced by the conditions (cf. [21]):
(i) 8C M.

(i,) & and M are closed under composition.

EXAMPLES. (a) In any category A, (Iso4,MorA) and (MorA,IsoA) are

factorization systems.

(b) The categories Yet and Grp of sets and groups, respectively, as well as the
category Ab of abelian groups, have the factorization system (Epi,Mono).
(¢) (Epi,ExtMono) is a factorization system of the category Top of topological
spaces.
(d) In Yet, the pair (&,M) with
8={e:X—Y |X=0=Y=0} and
Mo={m:X—Y | X=0 or m is a bijection }

is a factorization system.

DEFINITIONS 1.6. (1) A morphism h:A— A’ in A is said to be orthogonal to

an object B of A, and we write h LB, if Hom(hB) is a bijectiori, i.e. if for every

morphism f: A— B, there exists a unique morphism g:A’—B such that g.h=f.

(2) Given a class 1 of morphisms in A, we denote by %L the subcategory of A
defined by:

Obj¥--={B € Objd | h LB, for every he%}.

17
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(3) If B is a subcategory of A, we denote by BT the following class:

{heMorA | h LB, for evéry Be&Obj®}.

REMARK 1.7. The definition of co-orthogonality, the subcategory 196 and the
class T‘iB are defined dually.

Given a functor R: A—%B, the class of the morphisms f in A such that
Rf€IsoB will be denoted by ERr-

LEMMA 1.8. Let <F,Gin,é>: A—B be an adjunction. Then:

(i) Sp=(G(Mor®)) =c(B)T.

(ii) If A has a terminal object T we have that EF:{G(B)—bT | Be Obj‘iB}T.

Proof: (i) We shall prove that Falb if and only if a|Gb, for a&MorA and
b€ Mor®, since this implies EF:(G(MorG.B))T, according to the following sequence of

obvious equivalences:

a€ (G(MorfB))T@ a|Gb, for every morphism b of B
< Falb, for every morphism b of B
& Fa is an isomorphism

& a€Xp.
Moreover, it suffices to show one of the implications because the other can be obtained
by duality.

Falb=>a|Gb: Let us consider two morphisms u:A—G(B) and v:A’—G(B’) of

A such that v.a=Gb.u. Since the following diagram commutes

F(A) —L2— F(4")
Fu Fv
FC¥(B) Feb Fé(B’)
& £5
! ¥

18
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and Falb, there exists a unique morphism d:F(A’)—B such that d.Fa={p.Fu and

b.d=¢&p,. Fv. -
The morphism Gd.n,, is the unique morphism such that (Gd.nA,).a:u and

Gb.(Gd.n ) =v:
e Gd.ny,.a=Gd.GFa.ny = G(d.Fa).n, =G(&p-Fu).n, = GEp-GFun, = GEB.T]G(B).u:u
because GéB'nG(B) = lG(B)’ by one of the triangular identities of the adjunction.
e In an analogous way we have that
Gb.Gd.n ,=G(b.d).n 4= G(EB,.FV).nA,:GEB,.GFv.nA,:G&B,.nG(B,).v:v.
e To prove the unicity of Gd.nA, let us consider a morphism d’:A’— G(B) such that
d’.a=u and Gb.d>’=v. We have the equalities
{p-Fd.Fa=¢p.F(d.a)=¢pz.Fu and
b.{p.Fd’=¢£p, FGb.Fd’=£p,. F(Gb.d’) = {prFv
whence d:fB.Fd’, which is equivalent to d’= Gd.nA,, as can be easily observed.

Now we show that Zp CG(TB)T. Let h:A—A’ be a morphism of A such that
Fhelso® and f:A— G(B) a morphism of A with B € Obj®B. Since nA:A—»GF(A) is
an universal morphism from A to G there exists a unique morphism f:F(A)—B such

that Gf.T]A =1f. Consider the following commutative diagram:

A b > A’
A D :
f GFh
GF(A GF(A°
Y Gf

G(B)

We have that Gf.(GFh)_l.nA,.thf.r)A =t

It remains to prove that G?.(GFh)'l.nA, is the unique morphism fulfilling this
condition. Let us assume that g:A’— G(B) satisfies g.h=f Then GFg.GFh=GFf, i.e.
GFg=GFf.(GFh)™!, whence

g= 1G(B).g: GgB.nG(B).gzegB.GFg.nA, =Gép.GFL(GFh) ™ .5 4, = G(ER.FD).(GFh) o ».

But {B.Ff:f because G(£g.Ff).n, =f, and so g:Gf.(GFh)'l.nA,.
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Furthermore, Gr(":B)T C(G(Mor“fB))T. Indeed, consider the following commutative

diagram

G(B) G(B)

Gb

where h is a morphism of G(‘iB)Tand b a morphism of ®. Since heG(?B)T there exists a
unique morphism d:A’—G(B) such that d.h=u. By the.same reason v is the unique

morphism such that v.h=Gb.u. But Gb.d.h=Gb.u so Gb.d=v.
(i1) Suppose now that A has a terminal object T.

(@) c {G(B)—T | BcObjB}!: Let h:A—A’ be a morphism of G(B)! and

b:G(B)—T with B & Obj®B. Given u and v such that b.u=v.h, there exists a unique
morphism d such that d.h=u, because hEG(‘.B)T. Obviously b.d=v, therefore h|b.

{G(B)—T|Be¢ ObjG,B}T C (G(Mor?B))T: Let h:A— A’ be a morphism of
{G(B)—T |Be€ Obj?B}T. Consider morphisms u:A—G(B), f:B—B’ and v:A’—G(B’)

such that B and B’ are objects of ® and Gf.u=v.h.

A,

G(B) Gt G(B) T

Since he {G(B)—T |Be€ Obj‘fB}T then v 1is the unique morphism such that
v.h=Gf.u and there exists a unique morphism d:A’—G(B) such that d.h=u. Thus
v=Gf.d, because Gf.d.h=Gf.u. O

From now on, throughout this section, we shall consider a category A with terminal

object T.
Let us denote by %R the conglomerate of reflective subcategories of A, ordered by
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inclusion, and by @ the ordered conglomerate of prefactorization systems (&,) of A that

fulfil the following condition:

(P) VA €ObjA the morphism A——T has an (8,M)-factorization.

LEMMA 1.9. If B€R then the prefactorization system ((Mor"J?»)T,(Mor?B)”)
belongs to P.

Proof: Given A cObjA and f:A—T, consider the reflection morphism
rA:A—vR(A) of A in 9. Since T 1is terminal, there exists a unique morphism
f:R(A)—T and ?.rA:f. Moreover rAE(MorG.B)T. Indeed, let b&Mor® and u and v
such that b.u=v.r,. By definition of r, there exists a unique morphism d such that
d.rAzu. By the same reason v is the unique morphism such that v.rA:b.u.v Since

b.d.rA =b.u then b.d=v.

A R(A)
/
7
7/
//
u ,d v
/
//
Ve
B b B

Thus rAlb as we claimed.
Finally, since % is reflective, T € Obj% ([27], 36.13), then f€ Mor® C (Mor®)'t. O

If (8M) is a prefactorization system we denote by M/T the subcategory of A
whose class of objects is defined by {A€ObjA | A—Tc M}.

LEMMA 1.10. If (8,M)€ P then M/T € R.

Proof: Let A €ObjA, f:A—T, and m.e be the (&,4)-factorization of f, with
¢e:A—B and m:B—T. By definition, B € Obj(M/T). Furthermore, e is a reflection
morphism of A in Ab/T. Indeed, assuming that g:A——B’ is a morphism of codomain in
SM/T, we have that m.e=m’.g, where m’:B’—T is the morphism from B’ to the
terminal object. Since e|m’, there exists a unique morphism d such that d.e=g and

m’.d=m
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which is also the unique morphism such that d.e=g. a

REMARKS 1.11. (i) The reflection morphisms belong to & and so /T is an

&-reflective subcategory of A.
(ii) By lemma 1.8 ER:(MorJﬂJT)T, where R is the reflector of A in M/T.
Hence § CXp because §€C (MorJﬂ;/T)T.

Lemmas 1.9 and 1.10 define order-preserving maps

PR — P

B s (Mor®) |, (Mor®) T

and V:P— R
(8, M) — A/T.

PROPOSITION 1.12. W@:Id% and Q\FSId@.

To prove this proposition we shall make use of the following results:

LEMMA 1.13. Let B be a reflective subcategory of A with reflecior R: A—B.
Then (Mor®)! ={B—T |Beobja} =3l =x.

Proof: It is a specialization of 1.8. O

LEMMA 1.14. Let B be a reflective subcategory of A and
{ry:A—R(A) | A€ODbjA}
be the class of reflection morphisms.

If % is such that {r, | A€ObjA}CHCZp then JH/T=%1=3.

Proof: See ( [12], I1.5.5). |
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Proof of 1.12:
If €% then VO(B) :\P((Mor‘iB)T,(MorfB)”)

= \II(ER,(ER)l), by lemma 1.13.

Furthermore, taking 3 =3¥p in 1.14 we obtain \IIQ(?B):(ER)l/Tsz.
If (8,4)€ P then

SU(8, M) = B(M/T) = (Mor(e/T)) |, (Mor(Mo/T)) 4.

Moreover, since & C (MOI‘(Jﬂ:/T))T, we can conclude that ®Y(§,M) < (8,4b). a

Given a prefactorization system (8,4) € P, we call reflective interior of (8,4b) to

the image of (&,b) by ®¥ and we denote it by (%,J?t) The elements of % that coincide

with their reflective interior are called reflective prefactorization systems and the corresponding

o
conglomerate is denoted by @®. It is clear that the corestriction of & and the restriction of

¢}
¥ define a bijection between %R and %P.

EXAMPLE. Consider the category Nil of nilpotent groups, a set P of prime
numbers and its complement P’ in the set of all prime numbers. By n € P’ we mean that n
is a product of primes of P’. A nilpotent group G is called P-local if the map x —x™,
x € G, is a bijection for every n €P’. The subcategory B of P-local groups is reflective
(31, L1). Let (r1g:G—Gp)ae iy be the family of reflection morphisms. An

homomorphism ¢:G—H is called P’-isolated if the diagram

G—L’H

'G H

Gp Hp

R(yp)

is a pullback. The morphism ¢ 1is called P-injective if Ker¢ is a set of P’-torsion elements
and is called P-suriective if, given h € H, there exists a n€P’ such that h®? € Imy. If ¢
is both P-injective and P-surjective then it is called a P-bijection. According to ([31], I.1.9)
each reflection morphism is a P-bijection. Then, by ([31], 1.3.3), ¢ is a P-bijection if and
only if R(y) is an isomorphism. The P-bijections are preserved by pullbacks. Indeed,

consider the pullback
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Rl
QR

i.e. P is the set
{(xy) €GxK | B(x)=a(y) },

@ and [ are the projections in G and K, respectively, and assume that o is a
P-bijection. Since KeraZ=Kera then @& is P-injective. Finally, given x€ G, we have
B(x) € H and so, there exists a n € P’ such that A(x)" €Im e, i.e. there exist a n€ P’ and
a y€K such that a(y)=pF(x"). Therefore, (x,y)€P and @((x%y))=x" thus x" €Ima.

In conclusion, @ is P-surjective and since it is P-injective then it is a P-bijection.

The pair F=(8,4) where & is the family of P-bijections and Ab the family of

P’-isolated morphisms is a factorization syétem of Nil:

(i) Nil is (8,/b)-factorizable. Indeed, we obtain an (8, Ab)-factorization of ¢ by

considering the diagram

Gp—————H
P R(p) P

where the square is a pullback. Since I is a P-bijection because R(rH) is an isomorphism,
then T is also a P-bijection and so e is a P-bijection. On the other hand, m is P’-isolated

because T is isomorphic to ry, since T is P-bijective and Gp is P-local ([31], p- 7).

(ii) 6C ./flaT: In the following commutative diagram
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the lower square is a pullback. Then there exists a unique morphism A such that m.A=v

and rC.A:R(u).R(e)_l.rB which implies
rc./\.e = R(u).R(e)‘l.rB.e = R(u).R(e)_l.R(e).rA =rgeu
Furthermore, m.A\.e=v.e=m.u, and so Ae=u.

Let A’ be such that m.A’=v and M.e=u. Then R(X).R(e)=R(u), so
rc.)\’:R()\’).rB:R(u).R(e)'l.rB. Hence A=A,

(iii) Finally, & and M are classes closed under composition with isomorphisms.

Therefore, ¥ is a factorization system.
But, as we already observed, the equality (MorfB)Tz ER always holds. Hence, in this

example, (MOI"EB)T is the family of P-bijections and so & is reflective.
The following proposition characterizes the reflective prefactorization systems.

PROPOSITION 1.15. Let (8,M)€P. Then (8,M) is reflective if and only if the

following holds:
(fge€ and feE=gct).
Proof: This proposition is an immediate consequence of the equivalence
gcé o Ifce:fges

that we prove next. Let us assume that g:A— B belongs to §=(MOI‘(Jﬂ:/T))T: Yp, where
R is the reflector of A in Ab/T. Since Rgr, =rp.g, where Rg is an isomorphism and
TA, T € € then I3-g€ g.
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Conversely, if there exists a morphism f€& such that f.ge€& then fgfeXp,
(o] o
because & C&=2Xp and therefore ge 8. u

2. CATEGORIES OF FRACTIONS

Let ¥ be a class of morphisms in a category A.

DEFINITION 2.1. A category of fractions of A with respect to ¥ is a pair

(P, A(Z71)) where A(Z7!) is a category and Py: A— A(Z7Y) is a functor satisfying the
following conditions:

(i) For every s€ %, Py(s) is an isomorphism.

(ii) If F: A— A’ is a functor such that F(s) is an isomorphism whenever s€ %,

then there exists a unique functor F: A(X7')— A’ such that F.P;=F.

Obviously, when the category A(X7') exists (see ([40], 1.13) and ([41], 19.1.2)) it is
unique up to isomorphism of categories. The class EP): is called the saturation of ¥ and %
is said to be saturated when EP): =X,

The theorem 1.13.10 of [40] guarantees that if B is a reflective subcategory of A,
with reflector R, then the category A(ER_l) exists. If (8,4) € P then the equivalence
proved in 1.15 implies that gC Ep if and only if & CEp. Then, since .A((g)_l):.A(ER"l)
satisfies (i) and (ii) of 2.1, the category A(87') exists and is isomorphic to A((g)"l).

PROPOSITION 2.2. Let F=(8M)EP. The category of fractions of A with

(o]
respect to & s equivalent to M/T, & 1is the saturation of &, and so & 1is saturated

ezactly when F 1is reflective.

Proof: If we consider the reflector R of A in M/T then, by definition of the
category of fractions, there exists a unique functor R:A(8')— M/T such that the
following diagram commutes:

P
A —L>A(g—l)

I

I
R 'R
|
\

Mo/ T
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We show that R is an equivalence. To prove this it suffices to show that there exist
natural isomorphisms IdA(g_l)ngEﬁ and RPgEEIdJﬂ’/T, where E: M/T— A is the
inclusion functor.

The isomorphism EPgEC—:IdJn)/T is clear since the counity of the adjunction R—E,
f:RE:EPgE—'+IdJﬂJ/T, is a natural isomorphism.

Let 7 be the unit of the adjunction R—E. We saw in section 1 that Ny =TIy €68,
for each A-object A. Thus we can conclude that Pgn:Pg—'—»PgER: Pg’ERP8 is a
natural isomorphism. Consider the quasicategories ([27], 11.3) [A(€™)),A(&1)] and
[A,A(EY)] of functors from A(8') to A(€') and functors from A to A(87Y),
respectively ([27], §15). The functor

[A(E), A& — [A,A(ET)]
F — FPS
(:F—G) — (fPg:FPe—GPg)

is faithful and full (cf. [41], 19.1.4(d)). But Pen is a natural isomorphism from Pg to
PgEEPg. Hence, IdAngEE as we claimed. 0

3. FINITELY WELL-COMPLETE CATEGORIES

DEFINITION 3.1. A category is said to be finitely well-complete if it admits finite

limits and all intersections (even large ones) of strong monomorphisms.

We shall write an (FWC)-category meaning a finitely well-complete category.

EXAMPLES. (a) The categories fet, Grp and 9op are complete, cocomplete,
wellpowered and cowellpowered ([27], [36]). Hence they are (FWC)-categories, as well as their
duals.

(b) Any topological category over fet is (FWC) as well as its dual category. This is
a specialization of the fact that a topological category (A, T:A—®F) is (FWC) if % is
(FWC) (see [9], [1] VL.21).

(c) Any wellpowered abelian category with products (for example, the category of left
modules over a ring) is a (FWC)-category.

(d) Consider the category Grf of directed graphs whose objects are the pairs (A,V),

where A is aset and V asubset of A®, and whose morphisms from (A,V) to (A’,V’) are

27





IT - Torsion theories in categories with initial and terminal objects

the maps f:A— A’ such that (f(a;),f(ay)) €V’ whenever (a;,a,) €V i.e. morphisms are
the maps compatible with the structure of the graph. Since the forgetful functor U:{rf— et
creates limits and colimits then  Grf is complete . and cocomplete. Moreover
f:(A,V)—(A’,V’) is a monomorphism in §rf if and only if f:A— A’ is injective and given
a graph (A’ V’), for any set A and any map f:A— A’ the family of pairs (A,V) with
V CA? and such that f:(A,V)—(A’,V’) is compatible with the structure of graph is a set.
Therefore, since fet is wellpowered, Grf is also wellpowered. Analogously we could conclude
that Grf is cowellpowered. Hence, Grf and Grf’” are (FWC).

(e) Any algebraic category over et is (FWC) because it is complete and
wellpowered. Therefore, for instance, the categories of semigroups, monoids, rings, R-algebras,
Boolean algebras, torsion-free abelian groups, C*-algebras, compact abelian groups and
Hausdorff compact spaces are (FWC). More generally, an algebraic category (A, U: A— %)
is (FWC) if % is complete and wellpowered or if % is (FWC) and StrMono% =Mono%

(see [1]).
Any (FWCQ)-category has a terminal object that will be denoted by T.

PROPOSITION 3.2. Let N be a class of morphisms of a category A satisfying the

following conditions:

(i) IsoA C N CMonoA.

(i) N is closed under composition.

(iii) A admits all pullbacks of morphisms of N along any morphism of A, and
these pullbacks again belong to N.

(iv) A admits all intersections of arbitrary families of morphisms of N, and these

intersections again belong to N.

Then (NT,N) s a factorization system of A.

Proof: See proof of the dual result in ([12], 1.3.7). O

This proposition will be useful in the ééquel.

THEOREM 3.3. Let <F,G,n,6>: A—~B be an adjunction. If A is (FWC) then
the prefactorizalion sysiem (S,er):((G(Mor‘fB))T,(G(Mor?B))Tl) is a factorization system.

Proof: We prove first that A is (8,b)-factorizable. Given f:A—B in A consider
the pullback (P,(a,b)) of (GFf,ng). Then we have the following commutative diagram
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GF(A)

GFf GF(B)

where t is the unique morphism such that b.t=f and a.t= MA-

Since GFfe G(Mor®) C (G(Mor®)) L = M, then be M, by 1.3(iv). So it suffices to
give an (8,b)-factorization of t.

Consider N = b N StrMonoA. By 3.2 (NT,N) is a factorization system. If t=n.u
is the (NT,N)—factorization of t, then né& b.

We show now that u€ 8. By lemma 1.8, this is equivalent to prove that Fu € Iso%.
Since a.t=n,, then EF(A)‘Fa‘thgF(A)'FnAzl and so Ft is a split monomorphism.
But Ft=Fn.Fu, thus Fu is also a split monomorphism. Let us consider the pullback

(P’,(a’b’)) of (GFuyn,,). We have a commutative diagram similar to the one above

GF(A”)

GF(A)

GFu

where t’ is the unique morphism such that b’.t’=u and a’.t’:nA.

The fact that Fu is a split monomorphism impiies, trivially, that GFu is also a split
monomorphism and so a strong monomorphism. Hence b’€ StrMonoA, since strong
monomorphisms are preserved by pullbacks, and b’€ N because GFu€ M. Since ue N T
we have that ulb’ and so b’€lsoAd. From GFu.a’.(b’)_lznA, we conclude that
{F(A,).FGFH.Fa’.F(b’)_l = 5F(A’)'F”A’ =1, and so Fu.ﬁF(A).Fa’.F(b’)_l =1. Thus, Fu is

a split epimorphism and, since it is a monomorphism, it is an isomorphism, as it was required
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to prove.

As an immediate consequence of this theorem we have that if A is (FWC) and 8
is a reflective subcategory of A then <I>"ZB:((Mor‘iB)T,(MorG.B)Tl is a factorization system,
and therefore the reflective interior of a prefactorization system in % is a factorization system
of A. In this case, the restrictions of ® and ¥ referred in section 1 define a one-to-one

correspondence between reflective subcategories of A and reflective factorization systems of

A.
For future reference, next we summarize the fact just described:
COROLLARY 34. If A is (FWC) and B is a reflective subcategory of A then

the prefactorization system @B is a faclorization system. |

A functor is called conservative if it reflects isomorphisms.

The theorem of B. Day [14], that we state next, is also a consequence of 3.3.

THEOREM 3.5. If A s (FWC) then for each left adjoint functor F: A—C
there exist a reflector R: A—B and a conservative left adjoint functor Q:B—C such that
F=QR.

Proof: Let us assume that G:C— A is the right adjoint of F. By 3.3 the
prefactorization system (8,./110):((G(MorC))T,(G(MorC))Tl) is a factorization system so it
belongs to ®. Therefore Mb/T =¥ (8, M) is a reflective subcategory of A. We denote it by
B, by R: A—B the reflector and by E:B— A the inclusion functor. By lemma 1.8,
gLl=G()TL andso G(¢)c&Ll. But 81=%, bylemma 1.14, thus G(C) € B, for every
CeC. This implies that the functor G is factorizable as G=EP along some functor
P:C—B. It is easy to verify that FE 1is left adjoint of P since F is left adjoint of G=EP
and E is an inclusion functor. Let Q=FE. It is clear that QR=F. To conclude the proof
we show that Q is conservative. Let £€ Mor® such that Qf is an isomorphism, i.e. f& EQ.
Furthermore, EQ:EF NMorB=8€ N Mor®B. By 1.3(iii) it is obvious that Mor®B C M, so
EQ =8N M NMorB=Is0B, whence f&IsoB, as required. O

This theorem has the following interpretation:
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Consider the quasicategory whose objects are the (FWC)-categories and whose
morphisms are the left adjoint functors. Denote by Adj the quasicategory that we get as the
quotient of that quasicategory by the congruence “natural isomorphism of functors”, i.e. the
conglomerate of objects of Adj is the conglomerate of (FWC)-categories and the
conglomerate of morphisms is the conglomerate of the classes of natural isomorphism of left
adjoint functors. If we denote the class of reflectors by @ef and the class of left adjoint
conservative functors by Cons we may conclude that (G.R:ef,Cons)b is a factorization system in
Adj. Indeed, theorem 3.5 says that Adj is (%ef,Cons)-factorizable. It remains to prove that
Reef=Cons! and Cons:%efl but, since %Ref and Cons are closed under composition with
isomorphisms, it suffices to check that Fef C Cons!. So consider the following commutative

diagrom in .Adj,

A B
U \Y
c S D

where R € Ref and S &Cons. Let us assume that <R,E;n,é> and <U,G;a,8> are
adjunctions, VK and S—N. We have to prove that there is a left adjoint functor D,
unique up to isomorphism, such that DR=U and SDZ=V. Since R &€ Pef, it suffices to
show that there exists a left adjoint D such that DR=U. Let D=UE. It is obvious that
the class of morphisms (UnA:U(A)—bUER(A))A € ObjA defines a natural transformation
from U to UER. But SUp AEVRn A whenever the second morphism is an isomorphism,
SO UnA is also an isomorphism since S &€ Cons. Thus, US UER=DR. Before showing that
D is left adjoint we prove that nG(C) is an isomorphism, for every C & C. Denote the

morphism

a G((Ungey)™) @
ERG(C)M’ GUERG(C) Si/ GUG(C)—EC—* @)

by HC. We have that

bc1G(c) =GP c-S((Vngcy ™ )-gra(cya(c) = PG ((Ung ) ™)-CUng cy2g(c) =
= Gﬂc.aG(C) =1.

On the other hand, by definition of universal morphism, there exists a unique
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morphism f such that Ef'”G(C):”G(C)‘ But T}G(C)'GC'UG(C):WG(C) and E is a full
embedding hence "G(C)'QC:L
Therefore, nG:G—'—»ERG is a natural isomorphism. Consequently, U ERG and

so D=UE—-RG, because E is a full embedding.

We point out that the preceding theorem generalizes a result of H. Applegate and M.
Tierney ([2], pp. 79-80).

4. REFLECTIVE SUBCATEGORIES AND COREFLECTIVE SUBCATEGORIES
ASSOCIATED TO A FACTORIZATION SYSTEM

Let us assume that the category A has a terminal object T and an initial object I.
Hence, we can also define two order-inverting maps &’ and ¥’ between the conglomerate %’

of prefactorization systems (8,4b) of A such that
(P’) VA €ObjA the morphism I— A has an (8,b)-factorization

and the conglomerate R’ of coreflective subcategories of A, as follows:

P : R ——m— P

c r—»((MorC)”,(MorC)l)

VP — R’
(8, M) —> 1/8

where I/8 is the category of &-quotients of I.
In this case, each prefactorization system % =(&,4b) has not only a reflective interior

o -
F= (g,.;l:) but also a coreflective closure F=(8,M)=3"T’(F).

If the categories A and A°? are (FWC) we can successively apply the operators
®, @, ¥ and ¥ to a factorization system (cr, more generally, to a prefactorization system

satisfying conditions (P) and (P’)), getting several factorization systems.
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PROPOSITION 4.1. Assume that A and A’ are (FWCQC). Let ¥ and § be

two prefactorization systems of A fulfilling conditions (P) and (P’). Then:

() F<F<T.

IN

[e]

o]
(i) F=F and F=7.

o o
S 9o )
(v) F=F and F=9.

Proof: (i), (ii) and (iii) are obvious and (iv) is a consequence of them.

o

o) o,

— o B o
0, o o o o o o o 9
(v) The implications F<F=>F<F and F<F=>F<F tell us that F=5.

The other equality can be obtained by duality. d

We conclude that, from a given factorization system %, by applying the operations
”reflective interior” and ”coreflective closure”, we obtain at most seven distinct factorization

systems. The number of distinct reflective subcategories is at most three, namely B C B’ C B>

corresponding to the reflective factorization systems

Qojo
Rlo

o]
F<FL

being the number of different coreflective subcategories also at most three, namely € C ¢ C €”

corresponding to the coreflective factorization systems

In conclusion, we have the following situation:
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e o :

c=1/8 B=M/T

@ Q’l o @
7 5
3 F

o o
3 g
w v
e} ] o o
I/g=¢” ©=I/8 B=M/T M/T=2"
@’ 3
Y
A o
Q9 o
F F
‘y I,
v v
| °
] o
/8= X=7 Y=? M/T=%

The chain ends here, because X=C” and Y=%". Actually, by 4.1(v)

Klo

3(Y) :M:(%) _§-
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0]
so Y=YQ(Y)=Y¥(F)=B". Dually X=C".

REMARK 4.2. The fact that A and A°" are (FWC) is assumed to guarantee
that all prefactorization systems in 4.1(iv) are factorization systems and, consequently, to
insure the existence of the reflective subcategories B’ and B” and of the coreflective

subcategories €’ and C”.

EXAMPLES 4.3. (a) In any category A with initial and terminal objects the

factorization systems 0= (MorA,IsoA) and T=(Iso.A,Mor.A) are reflective and coreflective.
Therefore, in these two examples, the seven corresponding factorization systems coincide.

(b) Let A, be the category Grp and ¥F,=(EpiA,;,MonoA,;). We have that
UF, =Mono/T={Ge@rp| G—0&Mono}={Ge@rp | G=0}.
O
Then %, =(Mor,Iso) < ¥F;.
On the other hand,
VT, =I/Epi={Ge€@p | 0—Ge€Epi}={GeGrp | G=0}

thus ¥, = (Iso,Mor) > ¥F,. Hence,

[ - S 9
1= = SH SR =T =F =1

yolo

D=

and so B=B?*C B? and C=C'CE™.
(c) Let A, be a category such that, HomAZ(A,I)::(D, for every object A non-
isomorphic to I. This occurs for example in fet, Top and Grf.

Consider the factorization system %F,=(8,,4b,) with

€,={A—B|A=ZI=B=1} and
My={A—B| A=1} UlsoA,.

Now
UF,={A€ObjA, | A—Te My} ={A€cObj4, | AZ] ou A=T}
g0 %2 =%,, as can be easily verified. On the other hand,

I’F,={A cObjd, | I—A€8,}={A€Obja, | AZI}
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which implies F,=(IsoA,,MorA,). Therefore,

«qolo
[V
Il
9
Il
Ao,
N
I
QAo
N
Il
Al
()
I
(=]

®<(EF2——_—C-F2<

In this case, B C B’ =B” and C=C"=C".
(d) Consider the category A3 obtained from the lattice represented by the diagram

1 ifx<y

, Vx,yeObjA,.
0  otherwise Y I3

ObjAs;={0,a,b,c,1} and # Mor(x,y)= {

It is trivially verified that B={c,1} is a reflective subcategory of A;. Then
F,=®B is a reflective factorization system since Az is (FWC). We have that
F, = (85, M) with

83={0—0,0—c,a—a,a—b,a—1,b—b,b—r1,1—r1},

Mg={o—r0,0—ra,0—b,c—rc,c—1,a—ra,b—rb,1—1}
and, therefore, C=0/8;={0,c}. On the other hand, F3=&C=(85,/M;) where
Esz(MorC)lz{o—»o,o——»a,0——>b,c—>c,c——»1,a—>a,a—>b,b—>b,1—&1}D.ALS.

Then B’={c,1}=2B, hence B=B’=B”. In conclusion, we have that

Ro|

o
e=Ta<l, B=B'=B? and C=C'=C"

«qolo

o o -
0<F3=F3=F3=F3<F3=

(e) Consider the category TJop and %= (Epi,ExtMono). Then
YT =ExtMono/T={X € Jop | X— T € ExtMono } ={X € Top | XET}U{0}.

o oo )
Hence F=(8, M), with
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8= {X—Y|X=0=Y=0} and M={X—Y|X=0}UTso.
Thus ¥ <%F. On the other hand,
WF =T/Epi={X € Top | I—X € Epi}={0}

and so F = (Iso,Mor) > ¥.
[¢]
Since ¥F is equal to the factorization system %, of (¢) (with A,=%op), then

o % 5 _ o ©
0<F<TF<T=F=F=F=F =1,

BCB =" and C=C'=C".

(f) The existence of examples in which one of the inequalities in 4.1(iv) is strict allows
us to get a factorization system in which the six factorization systems of 4.1(iv) are all distinct.
For example, if we consider the categories A;, Ao and Ajg of the preceding examples, the
corresponding duals A,, Ay and .Ag, the factorization systems %F;, F,, TFs and their
duals ¥4, Fg, F4, constructing the product category AjxAgxAsxAzxAgzxAg ([27], 4.8),
then for the factorization system F= (f'[l g; ,ﬁl ./ﬂoi> all the inequalities

i= i=

Qo
AN
Qolo
AN A
Rlo o]
VARVAN
Rlo
AN
Al

are strict.

5. TORSION THEORIES

In the sequel, unless otherwise stated, A has an initial object T and a terminal

object T.

The conglomerate ffA of subcategories of A 1is partially ordered by inclusion and it

is even a (possibly large) complete lattice. Consider the operators

o"’:h"A——vtf_A
Br— B "= { A€ ObjA | #Hom ,(B,A)=1, ¥ B €Obj% }

and
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0‘_:3°A——»§fA
Br— B = { A €Objd | #Hom ,(AB)=1, VBEObjG.B},

that generalize the corresponding operators e~ and e“ defined in L.1.

Obviously, these operators satisfy similar conditions to the ones of 1.1.5 and
o_’:h"j———»ﬂ’A and 0‘_:5"A—+3’j

are contravariant functors.

—F Lo

Again, the pair (e 7,e“7) is a Galois connection and the functors T=-e and

F=e“ " are two closure operators in the complete lattice e
The following proposition gives a relation between reflective subcategories and
coreflectives subcategories which leads Cassidy, Hébert and Kelly to the foundations of a

theory of torsion theories in categories with initial and terminal objects, that is, in a more

general context than that of abelian categories, where it had its origin.

PROPOSITION 5.1. Let F=(8,M) be a prefactorization system of A, B=M/T

and C=1/8 the corresponding subcategories. Then:

(i) ccBT.

(G) If B s a vreflective subcategory of A, with reflector R, then
BT ={AcObjA |R(A)ZR()} and if, in addition, F=0B then C=B" .

(i) If F€P then =B ={ A€ ObjA | R(A)ZR()}.

Proof: (i) If C is an object of C then e:I—C is a morphism of &. For each object
B of B, the morphism m:B—T beiongs to . Since e|lm, it follows that
#Hom ,(C,B)=1.

(ii) The fact that R is left adjoint implies that R(I) is initial in B and so that

AeB o #Hom ((AB)=1, ¥BeOb%B
& #Homg(R(A),B)=1, VB € Obj%
< R(A)ZER(D)
With regard to the inclusion B CC when ?F:((Mor%)T,(Mor?B)Tl), we have to
show that if Ce® then e:I———»CE(Mor‘iB)T. So, let C be an object of BT . If
b:B— B’ is a morphism in B and u:I-—B and v:C—B’ are morphisms such that

v.e=b.u (we point out that u and v are unique such) it is clear that there exists a unique

morphism d such that the following diagram is commutative
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e
I C
Ve
7/
7/
7/
u ///d v
//
i
¥ o
B b

since #HomA(C,B)z#HomA(C,B’)Zl and I is initial.

(ili) B is reflective because F € P, hence B ={A € ObjA | R(A)=R()}, by (ii).
But F also belongs to P and the corresponding éubcategories J?la/T and I/g are,
respectively, B and €. Applying again (ii) we get the equality C”?=%3"". O

The characterization of torsion theories in abelian categories might suggest that one
should define a torsion theory as a pair of subcategories (C,%B) such that €~ =% and
BT =C. However, there would be no guarantee that B is reflective and C coreflective.
Indeed, let us consider the category whose objects and non-identity morphisms are represented

in the following diagram:

Qe q oT

Of course {I,Q} ={Q,T} and {Q,T}  ={I,Q}. However {I,Q} is not
coreflective because, as can be easily observed, it is impossible to define a coreflection
morphism from P to {[,Q}. But {Q,T} is reflective:

The morphisms [—Q, P—T, Q—Q, T—T are reflection morphisms from A
to {Q,T}.

So, even the reflectivity of the subcategory % does not implies that B s
coreflective. However, when the category is (FWC) then, by 3.4, ®B is a factorization
system if B is reflective, thus, by 5.1(ii), B~ is coreflective. In this example (where,
obviously, the category is not (FWC)) {I,P}  ={P,T} and {P,T} ={I,P}, {I,P} is
coreflective but {P,T} is not reflective. Therefore, the dual category is not (FWC) also. It is

easy to see directly that this category has neither products nor coproducts.
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Another example is the category §rf, which is (FWC) as well as its dual. Denoting
by efl the subcategory of graphs in which every vertex has a loop and by Oloop the
subcategory of graphs with exactly one loop, we have that Pefl " =0loop and
Oloop 7 = Refl. However, Pefl is not coreflective (it is impossible to define morphisms from
a graph with all loops to a graph with no loop) and, therefore, Oloop is not reflective.

In the following definition, A denotes an arbitrary category and not necessarily a

category with initial and terminal objects.

DEFINITION 5.2. A pair (C,8B) of subcategories of A is called a torsion theory

of A provided that B is reflective, C is coreflective, BT =C, C7=B and ®B and

P’C are factorization systems.

Then, we say that C is a torsion subcategory and its objects are torsion objects.

Analogously, B is a torsion-free subcategory and its objects, torsion-free objects.

From now on, given a torsion theory (C,8), we denote the reflection morphisms in

B by (rp:A—R(A)), € Obj A and the coreﬂecﬁion morphisms in € by

REMARK 5.3. According to remarks and examples preceding 5.2, if A and A°?
are (FWC)-categories then (C,®) is a torsion theory if and only if B is reflective, €7 =%
and BT =C. Hence, in this case, any reflective subcategory % generates a torsion theory
(7,8 7). This is the smallest torsion theory of A such that the objects of % are
torsion-free objects. Dually, any coreflective subcategory C cogenerates the torsion theory

(€77 7,€77) which is also the smallest one in the appropriate sense.

Now we prove that definition 5.2 is a generalization to any category of the one given

by Cassidy, Hébert and Kelly in ([11], p. 307). In fact, if A has initial and terminal objects

we have:

PROPOSITION 5.4. A pair (C,B) of subcategories of A is a torsion theory if

and only if there is a reflective factorization system F such that F is also a factorization

system, B=UF=UF and C=V%F.

Proof: If (C,B) is a torsion theory of A then F=&B is a reflective factorization

system. It is obvious that W¥=%. Assuming that F=(&,M), we denote the subcategory
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9F=1/& by <9D. Then D=8, by 5.1(ii) and so D=C, by hypothesis. Therefore
C=0F, F=¢’D=3P"C is a factorization system and ¥F=M/T=%S". Since ¢ =B, by
the dual of 5.1(iii), then 7=, i.e. ¥F =7

Conversely, B is reflective and C is coreflective because B=¥F and C=V'F and
it is clear that ®% and ®’C are factorization systems. Since ¥ is reflective, from 5.1 (ii) we

conclude that €=%"". Finally, by the dual of 5.1(jii), €~ =%’ =¥F=B. O

To state the equality B=TVF=TF is equivalent to assertion that the three
subcategories B, B> and B’ coincide. Then, since F is reflective, the subcategories C, €’

and C” also coincide.

EXAMPLES. (a) For any category A with initial object I and terminal object T,
the pairs (A,9er) and (Ini,A) are torsion theories, where Jer is the subcategory of objects
isomorphic to T and Ini the subcategory of objects isomorphic to I. These will be called

the trivial torsion theories.

(b) An important question that naturally arises is that of knowing whether a category

- admits non-trivial torsion theories. For example, if we consider the category A, of 4.3 (c) and

the reflective factorization system F,, then %F, is still a factorization system. But

UF,={AcObjl, | AZI or AZT} and UF,=A,. Hence ¥, does not give rise to any

torsion theory. Let A,=Yet. This category has only four factorization systems, namely,

(Mor,Iso), (Iso,Mor), ¥, and (Epi,Mono) being only the first three reflective. Thus, we can
conclude that in fet there exist only the trivial torsion theories.

(c) Let A be a preorder category defined by a complete lattice. Obviously, A and
A°? are (FWC)-categories and a subcategory B of A is reflective if and only if it is closed
under meets.

By 5.3, the torsion theories of A are the pairs (B ,B) such that % is reflective
and BT T =9B. It is trivially verified that, in this case, B=""" implies the reflectivity
of B, so the torsion theories of A are the pairs (% ,B) such that BT —~=%B, i.e.
(C,B) is a torsion theory if and only if € =% and BT =C.

For example, in the category A5 of 4.3(d) there exist only the torsion theories

({o,a},{a,b,1}), ({o,a,b},{b,1}), ({0}, 43), (A3z,{1}) and ({o,c},{c,1}).

Let B be a reflective subcategory such that that F=3&% belongs to P’. Assume

- S
also that ¥ and & are factorization systems.

lo

o
We have then a reflective factorization system, %, such that ¥ is also a
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factorization system, because

QKlo]
Il
olo|
I
Kol

I

Ql

Since
o - S ) — o ) —
IF=PF=UF =B, VF=UF=B and VF=C=VF=VF=C

then (C,%’) is a torsion theory and B C B’.

In conclusion, a reflective subcategory 9B generates a torsion theory if F=07o&B

2

belongs to ¥’ and F and F are factorization systems.

If ®B is a factorization system we denote the object through which the morphism

I— T factors by the symbol .

PROPOSITION 5.5. (C,B) s a torsion theory if and only if B is reflective, C 1is
coreflective, ®B and &’C are factorization systems, B={A € ObjA | S(A)=x}, where S
is the coreflector of A in C and C={A cObjA | R(A)=x*}, where R is the reflector of
A in B.

Proof: Let (C,%) be a torsion theory. Then by deﬁnition B is reflective, C s
coreflective and @B and &@’C are factorization systems. Let F=&B. By 5.1(ii)
B —{A cObjA | R(A)ZR(I)}={A cObjd | R(A)=«}. Hence C={A cObjA | R(A)=x}
since C=%B" by hypothesis. Dually, if we consider the factorization system @°C, by the
dual of 5.1(ii), we conclude in a similar way that B={A € ObjA | S(A)=x*}.

Conversely, it suffices to prove that B =C and C =%. Applying 5.1(ii) to the
factorization system @B we get BT ={A € ObjA | R(A)=«} and, consequently, B~ =C.
Finally, applying the dual of 5.1 (ii) to ®’C, we conclude that ¢~ =%B. O

We have, as an immediate consequence of this proposition, the following corollary:

COROLLARY 5.6. If A and A°® are (FWC)-categories then the following

assertions are equivalent:

(1) (C,B) is a torsion theory.

(i) B is reflective, C is coreflective, B={A€ObjA|S(A)=x} and
C={AeObjAd | R(A)=x*}. O

As an example of application of these statements we determine the torsion theories of
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the category Grf. Let %Disc be the subcategory of discrete graphs (without edges) and PTer

the subcategory of discrete graphs with one vertex and of the terminal graph.

PROPOSITION 5.7. In the category Grf there ezist only the torsion theories
(Ini,Grf), (Grf,Ter) and (Disc,PTer).

Proof: We first remark that in §rf the initial object is the empty graph, @, and the
terminal object is the graph with cne vertex and one loop. It is easy to see that these three
pairs of subcategories verify the conditions of 5.3 and so they are torsion theories. Let us prove
that there are any more torsion theories. If (C,B) is a torsion theory of Grf with B # Ter
and B # PTer then (& B. Indeed, in these conditions and being reflective, B is also
distinct from Oloop and contains, at least, one of the following sets of graphs:

e the empty graph.

e a graph G with, at least, two vertices and a number of loops distinct from one.

e the graph P with one vertex and without edges and a graph G’ of Oloop with,
at least, two vertices.

In the first case there is nothing to prove.

In the second case let us study first the situation where G does not have loops. Let

v, and v, be two vertices of G and consider the maps:

p1:G—G and 0,:G—G
Vi v, VE— v, .

As it is obvious, §— G is the equalizer of ¢; and ¢,, and so 0 €®B. Let now G
has more than one loop. We consider two vertices, v; and v,, with a loop and by defining
¢, and ¢, in an analogous way we did in the previous case, we conclude in the same way
also that § € B.

In the last case it suffices to consider the maps

p:P—G’ and @y P— G’
o—ruy o—ru,

where u; and u, are two vertices of G’, and the conclusion follows.
The fact that § has to belong to % immediately implies that the torsion theory
(C,B) is equal to (Ini,§rf):
P —ap,T
is the $B-factorization of ¢0—T since e € Iso(Grf) C (Mor?l?»)T and
m € Mor® C (Mor“.B)N. Therefore, in this case, *=0, C={G € Obj(grf) | R(G)=0}={0}
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by 5.6 and, consequently, B=(rf. O

PROPOSITION 5.8. If (C,B) is a torsion theory then:
(1) CNDB is the subcategory of objects isomorphic to *.

(i) * s initial in B and terminal in C.

(iii) For every A € ObjA, SR(A)=RS(A)=x*.

Proof: (i) Let X be an object of CN®. Then I—X €8 and X—T € A, where
(8, M) =3B, and, since the (8,Mb)-factorizations are unique up to isomorphism, we can

conclude that X = .

(i1) To prove the first part it suffices to observe that R, being a left adjoint, preserves
colimits and that R(I)=*. The second part follows by duality.

(iii) For every A €ObjA, m:R(A)—T e M thus S(m):SR(A)—S(T)=%* is an
isomorphism because b= Y. Dually, RS(A)=x. O

6. TORSION THEORIES IN CATEGORIES WITHOUT ZERO OBJECT

Let us assume that the initial and terminal objects of A are not isomorphic, i.e. A

does not have a zero object.

DEFINITION 6.1. A  terminal object T is called strong terminal if

Hom ,(T,A) # (0, for every non-initial object A.

EXAMPLES. (a) fet and Jop have strong terminal objects.
(b) The terminal object of Grf is not strong.

THEOREM 6.2. Let A be a category with finite products, a strong terminal object

which is a generator and no zero object. Then the torsion theories of A are ezactly the trivial
ones.

Proof: Let % be a reflective subcategory of A. Since T€®B then TerC B. If
B # Ter then Ie B. Before proving that we point out that if T is a strong terminal and
f,gGHomA(T,Y) such that f##g then the morphism I—T is the equalizer of f and g.
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Then, to prove that I€ B, it suffices to find a B-object Y and two different morphisms
fg: T—Y. Let X be an object of % non-isomorphic to T. If X 1is not isomorphic to I,
considering the morphisms x:X—T and t:T—X then t.x# 1. By definition of product

there exists a unique morphism s such that the following diagram commutes

p

X ~—0t XxX i —x
\ I\
|
]

1 :s t.x

1
1
|
X

whence p; #p,. Since T is generator there exists a morphism h:T—XxX such that
pi-h # py.h. So, it suffices to take Y=X and let p;.h and py.h be the morphisms f and g.
Now let (C,B) be a torsion theory of A. If B=Fer then, obviously,

(C,B)=(A,Ter). If B#Ter then [ €B, as we observed, so

I—I—T
is the @®B-factorization of I[—T. Hence C={Ae€ObjA|R(A)=I}, by 5.5. But
{A€ObjA | R(A)=I}=9ni. Actually, if R(A)=I then

A—I—0T
is the ®&B-factorization of A—T. However the existence of a morphism from A to I
implies that A is isomorphic to I: otherwise, since HomA(T,A)#_(I), T would be
isomorphic to I, i.e. A would have zero object contradicting the assumptions. Therefore,

€C=9ni. Then we immediately infer that B = A and the torsion theory is still trivial. O

EXAMPLES. (a) The categories Yet and Jop satisfy the conditions of this
theorem.

(b) Any topological category over fet satisfy also these conditions. Thus the category
Jop, the category C%Reg of completely regular topological spa;ces, the category %Prox of
proximity spaces as well as the categories of uniform spaces, convergence spaces, merotopic
spaces, mensurable spaces and preorder sets [29], [9] are examples of categories which admit

only the trivial torsion theories.

This theorem enables us to conclude that in many categories without zero object the
concept of torsion theory trivializes. For that reason, in the following we study the torsion

theories in categories with zero object. It is in this context that the most interesting results
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arise and where the connection with results in abelian categories is closer. However, the
existence of zero object does not insure that the categories have non-trivial torsion theories. For
example, the category of partial maps, where the objects are the sets and the morphisms
f:X—Y are the maps from some subset D(f) of X to Y, has only the trivial torsion

theories, though it has a zero object.

7. TORSION THEORIES IN CATEGORIES WITH ZERO OBJECT

Throughout this section we denote by A a category with zero object that will be
denoted by 0 as well as the morphism A—0—B by 0:A—B. Given a morphism f, we
use, respectively, kerf and Kerf for the kernel morphism of f and the corresponding object,

i.e. Kerf—25 X with m=kerf.

DEFINITION 7.1. A subcategory B of A is said to be closed under extensions if

for any strong epimorphism f:A——B such that B&€ Obj® and Kerf exists and belongs to
B then A € ObjB.

PROPOSITION 7.2. Given a subcategory B of A, B is closed under

monosources and exrtensions.

Proof: Obviously B ={A € ObjA | HomA(B,A):O, for all B€Obj®B}. Let us
assume that (A;), o1 Is a family of objects of B~ and (fi:A;—rAi)i c1 2 monosource. If
f:B— A, with B € ObjB, then f;.f=0=f;.0, for every i€l. Then f=0 and so AcB ™.

In order to show the closure for extensions, let f:A——B be a strong epimorphism,
Be® ™, and m:K—A be the kernel of f with K€ B ™. If g:C—A, with C & Obj%B,

then there exists a unique morphism t such that m.t=g, since f.g=0.
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It is now obvious that t=0, and so g=0. O

Notice that a subcategory of A closed under monosources is closed under all products

that exist in A.

LEMMA 7.3. Let A°" be (FWC). For a subcategory B of A the following
assertions are equivalent: '
(1) B s closed under monosources.

(i1) B is reflective and closed under subobjects.

Proof:
(i) = (ii): It is enough to show that B is reflective. Let A € ObjA and consider the

family

M= U Hom ,(A,B)={g:A—Bg € MorA4 | B, € ObjB® }.
B e Obj% A( )={g g | g }

Let (e;); c1 be the family of strong epimorphisms with domain A through which all
morphisms of b factors, g:f?.ei.
Consider the cointersection r, :A—R(A) of the family (e;), c1 > Which is a strong

epimorphism. By definition of cointersection there exists, for each ge& Ab, a unique morphism

tg such that in the diagram

the lower triangle commutes and, consequently, g=tg.Iy.
We show next that the family (tg)gE , 18 @ monosource. If tg.u=tg.v, for every
gE M, let q:R(A)—E be the coequalizer of u and v. Then there exists, for each g¢& b,
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a unique sg such that sg.q=tg and so g=sg.qry, forevery ge .

Since q and r, are strong epimorphisms then q.r A is also a strong epimorphism
and so there exists a j €1 such that qr, =e;. From dj.q.rA :d]-.ej:rA we conclude that
d;.q=1, so q isan isomorphism, i.e. u=v, as it was required.

By (i); we conclude that R(A)€ B and also that r, is the reflection morphism from

A to @B. Actually, we proved even a stronger result: B is StrEpi-reflective.

(ii) = (i): Given a monosource (fi:A—+B,-)’.€I , with B; € ObjB, we show that
A € Obj%B. Let us assume that rA:A——»R(A) is the reflection morphism from A to %B. To
prove that A € Obj®B it suffices to show that r " is a monomorphism since, by hypothesis,
% is closed under subobjects. For each i€l, there exists a unique morphism g; such that

gi-Tp =f;. Then ry.u=r,.v implies that f;.u=f,.v for each i €I and, consequently, u=v. 0O
Statements 7.2 and 7.3 allow us to simplify 5.3 and to conclude immediately that:

COROLLARY 7.4. If A°? is (FWC) then B~ is reflective for every subcategory

B. If, furthermore, A is (FWC) then (C,B) is a torsion theory if and only if C=B"
and B=C . In this case, any subcategory D generates the torsion theory (D™, DT 7))

and cogenerates the torsion theory (97 7 ,D7). O

PROPOSITION 7.5. Let B be a reflective  subcategory of A,
(IA:A__’R(A))AEObj.A being the family of reflection morphisms, F=®&%B its associated

prefactorization system and C=1/8. Then:
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(i) C={A€ObjA|R(A)Z0}={A€ObjA|ry=0}=B"".

(i) If every morphism rt, :A—R(A) has kernel s, :S(A)—A then A€C if and
only if S(A)=A, and the morphism Sp is the coreflection from A to C whenever
S(A) ecC.

Proof: (i) follows immediately from 5.1.
(ii) From (i) we know that A€C if and only if r, =0, which is equivalent to
S(A)=A.

Finally, assuming that S(A) € C, consider the following commutative diagram

S(A) A L, — 4 R(A)
f R(f)
C o R(C)

where C is an object of C and f an arbitrary morphism.
Since rA.fz R(f).rCZO, there is a unique morphism t such that sA.t:f. Thus, Sp

is the coreflection. O

If sA:S(A)—vA is the kernel of ry, Wwe say that this kernel is idempotent if
S%(A)=S(A), considered as subobjects of A.

PROPOSITION 7.6. The following assertions are equivalent:

(1) The kernel of every 1, ezists and it 15 idempotent.

(ii) € s coreflective and each coreflection morphism SA is the kernel of Ty-

Proof:

(i) = (ii): If S*(A)=S(A), for each A €ObjA, then S(A)€C, by the preceding

proposition, and so SA is the coreflection morphism.

(ii) = (i): is clear. O

DEFINITION 7.7. We say that a reflector R is normal provided that it satisfies

the equivalent conditions of 7.6.
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A torsion theory (C,®) is called left normal if the reflector in B is normal.

Dually, a torsion theory (C,B) is right normal if the coreflector is normal, i.e. the
reflection morphism for each object is the cokernel of the corresponding coreflection morphism
in C.

A torsion theory is called normal if it is both left and right normal.

EXAMPLES. (a) It is clear that every torsion theory of an abelian category is
normal. ‘

(b) In the category (rp, any torsion theory is normal. In fact, let (C,B) be a torsion
theory of Grp. By the dual of 7.2 and 7.3 ((i) = (ii)), C is StrMono-coreflective. In Grp a
strong monomorphism is not necessarily a kernel but in this case every coreflection morphism
8G:5(G)—G is a kernel. Indeed, sy is a monomorphism so S(G) is isomorphic to a
subgroup of G. But, by definition of coreflection morphism, any endomorphism f of G can

be restricted to an endomorphism S(f) of S(G):

5(G) ——=G
A
l
S(1) | f
|
SG)———"G

w
(!

Thus, considering all endomorphisms fy of G, for g€ G, defined by fg(x)zgxg'1
for every x€ G, we can conclude that S(G) is isomorphic to a normal subgroup of G.
Hence s is a kernel.

Let tq: G—T(G) be the cokernel of Sy and consider the commutative diagram

S(G) . - ST(G)
\\\£ /
'S
8¢ / P ST(G)
@ ~ ()

ta

where (x,y) is the pullback of (tG’ST(G))’ which implies the existence of a unique

morphism f such that x.f=sG and y.f=0.
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Since 50 is a kernel, then s =ker ta and so it is easy to prove that f=kery. But
in Grp, pullbacks of cokernels along keruels are still cokernels thus y is a cokernel and,
therefore, y=cokerf. Then P €€ because C=B" is closed under coextensions. But x is a
monomorphism since it is a pullback of a monomorphism. Hence, P is a subobject of G such
that S(P)=P and S(G) <P <G, for the usual order relation in the set of subobjects of G.
Since S*(G)=S(G), then P=S(G) as subobjects of G, i.e. f is an isomorphism. The fact
that f is an isomorphism and y an epimorphism implies that ST(G)=0 and, consequently,
tT(G) is an isomorphism, i.e. T(G) is idempotent. Finally, by the dual of 7.6, we can deduce
that o =cokersG. Furthermore, it is clear that sG:kerrG and so the torsion theory is

normal.

REMARK 7.8. Observing the arguments used in example (b) we conclude that in a
finitely complete and finitely cocomplete category with zero object such that the cokernels are
preserved by pullbacks along kernels, a torsion theory is normal if the coreflection into the
torsion subcategory are kernels. By the dual of 7.2 and by the proof of the dual of
7.3 ((1) = (i1)) any torsion subcategory of a (FWC)-category is StrMono-coreflective.
Therefore, we may conclude that, in finitely well-complete and finitely cocomplete categories
with zero object such that the cokernels are preserved by pullbacks along kernels and all the
strong monomorphisms are kernels, every torsion theory is normal. By the duals of ([11],
5.1(iii)) and ([11], remark 5.2) we may replace the hypothesis that the categories are (FWC)
by the condition of existence of finite limits because, according to these results, any coreflective
subcategory of a finitely cocomplete category, whose coreflection morphisms are
monomorphisms, is a StrMono-coreflective subcategory.

For instance, in any finitely cocomplete regular additive category such that the
monomorphisms are kernels, the torsion theories are normal.

In ([11], 8.2) the authors say that they do not know any example of a non-normal
torsion theory. However S. Mantovani in ([37], p. 43) presents an example of a non-normal
torsion theory in the category PtHaus of pointed Hausdorff topological spaces:

(C,7") where C is the subcategory of connected spaces.

The following proposition characterizes the torsion-free subcategories.

PROPQSITION 7.9. Assume that A and A" are (FWC) and that any torsion
theory of A s left normal. A subcategory of A is a torsion-free subcategory if and only if it

is a reflective subcategory closed under subobjects and extensions whose reflector is normal.
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Proof: We show that a subcategory B is torsion-free if it satisfies these conditions
since the converse is obvious. For that we consider the reflective factorization system %=o%
and let C=U’F. As we have already observed, C=%" and ¥ is a factorization system
since A°? is (FWC), and then, by 5.1(iii), €~ =%”. To conclude the proof it remains to
show that C 7 =%, and for that, it suffices to prove that € C®B. Let A€C™ and
55 :S(A)—A Dbe the coreflection of A in C. Since S(A)€C it is clear that s, =0, thus
S(A)=0 since s, isa monomorphism. Then S(A) € B since B is closed under subobjects.

By the dual of 3.2 it follows that (StrEpiA,MonoA) is a factorization system of A. Let
A—S X0, R(A)

be the (StrEpiA,MonoA)-factorization of r,. The object R(A) belongs to B so Xe®
and Kere=S(A) € B. Hence, A €B because B is closed under extensions. a

EXAMPLE. The category of abelian groups is a reflective subcategory of (rp with

reflection morphisms
TG G—G/[G,G],

where [G,G] denotes the commutator subgroup of G. However, the reflector is not normal
since Ker rG:[G,G] is not always idempotent; it suffices to consider in a non-abelian soluble
group as, for instance, the symmetric group Sj. Therefore Ab is not a torsion-free
subcategory of Grp and since Ab* is the subcategory Perf of perfect groups then the
inclusion Ab C Perf™ is strict and (Perf,Perf ) is the torsion theory generated by Ab.

PROPOSITION 7.10. (i) Every torsion-free subcategory of the cat‘egory A s closed

under monosources and extensions.

(ii) If A is a complete, cocomplete, wellpowered and cowellpowered category such that
every strong epimorphism is a cokernel and pushouts of strong monomorphisms along cokernels
are kernels, then a subcategory of A s a torsion-free subcategory if and only if it is reflective

and closed under extensions and subobjects.

Proof: (i) It is obvious.

(ii) Let us assume that % is a reflective subcategory closed under extensions and
subobjects. By 7.3, B is closed under monosources and so under products. Let C=%". To
prove that (C,B) is a torsion theory it suffices to show that C 7 C B. First we prove that,
for each X €ODbjA, there exist objects X~€C and Xz €®B and morphisms p:XC——'X
and e:X—Xp such that p=kere with e €& StrEpiA.
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Let Q be the family of quotient objects of X that belong to B. Since A is
cowellpowered then Q is aset, {(X;,e;):i€l}. Consider the product

(11 X0, 1)
(el /i€l
which belongs to . By the universal property of product there exists a unique morphism
i€l
such that p;f=e;, for each i€l. From the dual of 3.2 it follows immediately that
(StrEpiA,MonoA) is a factorization system. This conclusion could also be inferred from the
facts that A 1is finitely complete and finitely cocomplete, has zero object and every strong
epimorphism is a cokernel (cf. II1.2.4). Let
X-——e——bXB——m—’H X;

iel

be the corresponding factorization of f and p:XC—aX be the kernel of e. Then Xg€ B

We prove now that XC €C=3B". Let g be a morphism from XC to an arbitrary object

B of ® and let us consider the following diagram

where m’.e’ is the (StrEpiA,MonoA)-factorization of g, (X”,p,e’) is the pushout of (p,e’)
and h is the unique morphism such that h.p=0 and h.e’=e. It is obvious that h is a
strong epimorphism. Our goal is to show that g=0. To prove this it suffices to see that
X’=0. Since B is closed under subobjects then X’¢& B. The morphism e is a strong
epimorphism, then a cokernel and, since p=kere, we have that e=cokerp. It is an easy
exercise to verify that then h=cokerp. But P 1is a kernel, since pushouts of strong
monomorphisms along cokernels are kernels, so p=kerh. Since % is closed under extensions
we conclude that X7 € B, hence X7€Q, Ii.e. there exists a ;€I such that

(X”,€)=(X;,e;). Consider the following commutative diagram
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€
X XB
m
A
€j [T X;
i€l
P;
4 Y
X; : — X;

Since e is a strong epimorphism, then there exists a unique morphism d:XB—>X j
such that d.e=e; and pj.m:d. But h.e;=e, hence d.h.ejzd.e:ej and h‘d.e:h.ejze
which implies that d.h=1 and h.d=1, i.e. h is an isomorphism. Since p:X’— X is the
kernel of h then X’=0.

Now we conclude that C CB. Let Xe&C . There exist objects XCEC and
XB €%® and morphisms p:XC—¢X and e:X—Xp such that p=kere with
e € StrEpiA. Since X €€ then p=0. Thus e is an isomorphism and so X € B, as we
claimed.

The converse is an immediate consequence of 7.2 and 7.3. O

By lemma 7.3 we can conclude that for categories satisfying the conditions of 7.10 a
subcategory is torsion-free if and only if it is closed under subobjects, extensions and products.

So, we have in these categories a characterization similar to (1.1.12).

EXAMPLE. In Grp, B is a torsion-free subcategory if and only if it is closed under

subobjects, extensions and products.

8. CONNECTEDNESSES AND REFLECTIONS

The theory of connectednesses/disconnectednesses in Topology [3] and in other
contexts such as the category of non-directed graphs [22], and the theory of
radicals / semisimple classes of rings [19] have intriguing similarities with the theory of torsion

subcategories / torsion-free subcategories.
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The attempt to understand these similarities lead us to the questions we shall deal
with in this chapter. Their inclusion here is justified by the analogies between factorizations of
morphisms / reflections / torsion  theories and factorizations of sources/prereflections/
/ connectedness theories, that culminate in theorem 8.11 and their consequences, allowing us to
establish close relations between two definitions of torsion theory apparently distinct.

In this section we shall still assume that the category A has a zero object.

Let & be a class of morphisms of A containing the iso.morphisms and closed under

composition with them. From now on we consider factorizations of sources instead of

morphisms.

DEFINITIONS 8.1. (1) The pair (e,(m;), EI) consisting of a morphism e:A—B

and a class (m;), ey of morphisms m;:B—A; is called an &-factorization of the A-source
(A,(f;:A—A)), EI) if e€e8 and f,=m;.e for every i€l

(2) An &-factorization (e,(m;), eI) of a source (A,(f;), EI) is called orthogonal if,
given morphisms p€ & and u and a source (Vi)i cl such that m;.u=v,.p, for every i€l

there exists a unique morphism d such that the diagram

is commutative.
(3) A category is called &-cocomplete if it admits cointersections of morphisms of &
and these cointersections belong to & and the pushouts of morphisms of & along any

morphism exist and belong to §&.

For additional information about factorizations of sources see e.g. [12] and [28].

EXAMPLE. Any category with a (FWC) dual is a StrEpi-cocomplete category.

The following proposition (cf. [44]) will be useful in the sequel.
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PROPOSITION 8.2. (i) Ewvery source in A has an orthogonal &-factorization if

and only if A 1is 8-cocomplete and & 1is closed under composition.

(i) If A 1s 8-cocomplete then & C EpiA. O

From now on we shall assume that A is &-cocomplete, being & closed under

composition and containing A—0, for each A€ A.

Let H be an endofunctor of A.

DEFINITIONS 8.3. (1) An &-prereflection is a natural transformation y:Id , ——H
such that Th & g, for every A €ObjA.

(2) An E-prereflection is called an &-reflection if 'yH:H—'——»H2 is a natural

isomorphism.

Let v be an &-prereflection.
We denote by 3, and 3, the subcategories defined by:

%y={AEObA| 7, =0}

3y={A €ObjA | v, is an isomorphism }.

EXAMPLES 84. (a) If A is an abelian category and R a radical [43], the

morphisms (v : M—M/R(M))y o OBt define an Epi-reflection because R(M/R(M))=0.
In this case
K,={MecObjA | M/R(M)=0}={Me€ObjA | R(M)=M}

and 3, ={MeObjA | M/R(M)=M}={McObjA | R(M)=0}.

(b) In Grp the morphisms (7G:G—>G/[G,G])G€grp define an Epi-reflection

where

Ky={G|[G,G]=G} and 1,={G|[G,G]=0}

that is the perfect groups and the abelian groups, respectively.

The following proposition which characterizes the  &-prereflections that are

&-reflections has a straightforward proof.

56





II - Torsion theories in categories with initial and terminal objects

PROPOSITION 8.5. If 7:IdA——'—>H is an 8-prereflection, then the following

assertions are equivalent:
(i) v s an &-reflection.
(ii) Ly s reflective with reflection morphisms (';/A)A € Obj A" O

Note that if v is an &-prereflection, Ly can be reflective with reflection morphisms

eventually different from (7A)A € ObjA (cf. [46], remark 3 of corollary 3).

Given a subcategory B and an object A of A, we consider the source
F;B:(A,(fi)iel) of all morphisms f;, with domain A, such that f,.u=0 for every
morphism u  with codomain A and domain in ®. Let 7p:A—PP(A) be the
8-part of the orthogonal &-factorization of FEE The correspondence between A and PG‘B(A)
is functorial. Indeed, it is the function of objects of an endofunctor of A which assigns to each
A-morphism f:A—A’ the morphism PG‘B(f) defined as follows:

| Given the sources F::&B:(A,(fi)i c 1) and F?f,:(A’,(f’j)j EJ) it is clear that for each
j€J there exists a i;€l such that f'}.f:fij. Denoting by (w%,(mi)iel) and
(W%,,(m})je'] the orthogonal &-factorizations of, respectively, F;}f and FE,, the diagram

"
A P3(a)
£
A
A’ :
£ i
B
7I'A,
‘.BJ !
PB(a) — A

J

commutes, for every j€J. Then, PG‘B(f):P%(A)—»PG‘B(A’) is the unique morphism such
that PgB(f).WZB_—_?r?,.f and m}.P%(f):mij for every j€J.

As an immediate consequence, we obtain a natural transformation 7r(EB :1d A—'»P%.

PROPOSITION 8.6. If B s a subcategory of A then:
(1) B s an &-prereflection.

(i) BCE,_qp.
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Proof: (i) It is trivial.
(ii) Let B€Obj® and F%B:(B,(fi)i c1)- Since each f; is a morphism such that
f,,u=0 for every morphism u with codomain B and domain in %, then f;=0, for every

i €Il. So, we have, for each i €1, the following commutative diagram

B
TR i

P3(B) —=— A

By definition of orthogonal &-factorization we can conclude that WGBB factors through

the zero object, i.e. B € %ng. O

We define pfAB:A—oRG“B(A), for each A €ObjA, as the &-morphism of the
orthogonal &-factorization of the source of all morphisms with domain A and codomain in
%B. In a similar way, it is possible to define a functor RG“B and a natural transformation

pG‘B:IdA—'—rRO:B.

PROPOSITION 8.7. If B is a subcategory of A then:

(1) pﬁB 1s an E-reflection.

(i) B C ﬂpr.

Proof: (i) The conclusion follows by proposition 8.5, observing that & C EpiA.

(ii) For each B € ObjB let (pg,(mi)i c1) be the orthogonal &-factorization of the
source (B,(f;), c 1) of all morphisms with domain B and codomain in . Since f;=1, for
some j €1, then p%B is a split monomorphism. Moreover, p%B € § CEpiA, and so it is an

isomorphism. |

In the conglomerate of the &-prereflections, we define a preorder by:
v < &6 if there exists a natural transformation o such that o.y=3§.

Considering the quasicategory (Id (|[A,A]) (cf. [36]), where [A,A] denotes the
quasicategory of endofunctors of A, the &-prereflections y and § are isomorphic (as objects

of this quasicategory) if and only if y<é and §<+. It is obvious that v <§ implies
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%’Yc%c‘i and 56C3‘Y'

LEMMA 8.8.

1) W%Emin{’y | C.BCS{S7}.
(i) pG‘BEmax{'y | BC3y}

Proof: (i) Let us denote the min{y | ®C%y} by m. We have that m < 7T€B, by

8.6(ii). Consider 7:Id y ——H such that B C¥%,. For each A €ObjA and each morphism

u with codomain A and domain B in 9B, ij.u:H(u).')/B:O since yg=0. Let

(W%,(mi)i EI) be the orthogonal &-factorization of FEXB Then there exists a iy €I such

that 7A:miA'F§XB‘ Therefore, defining o:P3__,H by Tp=M; for every A € ObjA,

it is obvious that 0‘.71'%:.7, l.e. WG“B
B

and so W%Sm. Consequently, 7~ =m.

<. Hence, 3 <7, for every 7y such that B C%,,

(i) Let us denote the max{~y|®BC3y} by M. According to 8.7(ii), p{BSM.
Consider y:1d y ——H such that BC3y, (A,(f;:A—B;), c 1) the source of all morphisms
with domain A and codomain in B and (p%,(mi)iel) its orthogonal &-factorization.

Since, B is an isomorphism, for every B € Obj®, we have the commutative diagram

Hence, there exists a unique morphism d, such that dA'7A=pEXB and mi.dA:'fBli.H(fi),
for every i€Il. Defining §:H—=—RD by 5A=dA, for each A €ObjA, it is clear that
6.7:pG‘B, lLe. y< p%. We conclude that M:p‘EB because v < pG‘B for every v such that

fBCLY and so pr%. O

DEFINITION 8.9. An &-prereflection 7y 1is called an S-connection if ')'§7r(ZB for

some subcategory %B.

Given an &-prereflection 7:Idd‘(—'——,H let us denote the &-prereflections ﬂ'%7 and
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p57 by 7 and 7%, respectively. Lemma 8.8 tells us that v <y <7.

LEMMA 8.10. Let ’y:IdA—'—»H be an &-prereflection. Then:
(i) y=min {6 |y<§é and 6§ isan &-reflection }.

(ii) y=max {6 |6<vy and § is an 8-connection }.

Proof: (i) Let us denote the minimum by m. By 8.7 we have that m <%, since
7 is an &-reflection.
Let 6:IdA—‘»L be an &-reflection such that v <§. By 8.5, 56 is reflective with

reflection morphisms

thus L(A)ES(SCS,}/, for every object A of A. Hence, by definition of VA:pE{Y, 6A
factors through ¥ A It is easy to see that this way we define a natural transformation
9
R 7——L which shows that ¥ <0, So; F<m.
(ii) Denoting the maximum by M it is clear that 7y <M. To prove that M <+, let
6§73 bean &connection such that & <+v. By 8.6(ii), B C %ﬂ_@) :%5. On the other hand,
L o
§ <~ implies that ﬂG(ScﬂGgG, and so BCHy. If Fy=(A(L), cp)s FA7=(A,(gJ-)jEJ)
and (WRB,(mi)i c I) and (7rA7,(nj)]. EJ) are the respective orthogonal &-factorizations then
there exists, for each j€J, an i; €I such that gj:fij’ which implies, for each j€J, the

commutativity of the following diagram

5
TA

A P3a)

%
Hence, one has a unique morphism aA:PGB(A)——vP 7(A) such that aA.wEE — ﬂ'i}f‘y

and nj.a, =m; for every j€J. It is obvious that the morphisms (aA)A € ObjA define a

B

natural transformation a:PG‘B—'ﬂP 7 such that a.r :7(3(;7. Hence, 6 <7, and so

MSZ' O
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THEOREM 8.11. (1) Let B be a subcategory of A. Then the following assertions

are equivalent:
(i) PP .

(i) B=3y for some E-connection 7.

(2) Let C be a subcategory of A. Then the following assertions are equivalent:
(iif) C=CT .
(iv) C=%y for some E-reflection 7.

Proof:

(i) = (ii): First we prove that for any subcategory C, C_’:flﬂ_e. Let AcC.
Then, the family of all morphisms g with domain A such that g.u=0 for every morphism
u with codomain A and domain in C is exactly the source of all A-morphisms with domain
A. From the definition of wi it follows that this morphism is a split monomorphism. Since
it is always an epimorphism, A €3 . Conversely, let A€J ¢ and F%::(A,(fi)i eI) be
the respective source whose orthogonal 8-factorization is (Wi,(mi)iel). If CeC and

f:C— A then it is clear that f,.f=0, for every i €I. Hence, in the commutative diagram

s = -0

f
y
A

(7 £;

Ty :

y ‘ '
e

e e

there exists a unique morphism d such that d.e:ri.f. But Wg is an isomorphism, hence

f=0.
Now it suffices to take C=%".

(i) = (i): If v is an &-connection then Y=z, by the preceding lemma, implying

that %:37:32. To prove that ((i) = (ii)), we saw that ﬂw%7:3€7, i.e. ﬂzzf}GfY_’. Thus
B :%7 :367 — R,

(iii) = (iv): It is easy to verify that the equality fB(_zﬂGpc_B holds for any
subcategory B. Then the proof is concluded if we take B=C".
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(iv) = (ii): By the preceding lemma +=7%. This implies that C:SG,—)(. From

((iii) = (iv)) we conclude that 3(5,7:.‘1,}— . As a consequence of this fact we have that
c_"“:a‘.,—””_:sir_:c, as it was required. |

COROLLARY 8.12. If A and A°" are (FWC)-categories and A is 8-cocomplete

then:
(1) B s a torsion-free subcategory if and only if B=3, for some &-connection 7.

(ii) € s a torsion subcategory if and only if C:ﬂ{;,), for some &-reflection .

COROLLARY 8.13. If A and A°" are (FWC)-categories and A is &-cocomplete

then the following conditions are equivalent:
(1) (C,B) is a torsion theory.
(i) B=3, for some 8-connection 7y and 62%7.
(iii) €=%y for some &-reflection v and B=3,.

Proof:
(i) = (ii): Since B~ 7 =%, then B=J, for some &-connection 7. On the other
hand, C=3" =35 =% 5 =%, according to the proof of 8:11.

(ii) = (i), (i) = (i1i) and (iii) = (i) can be proved in a similar way. O

In addition, we can conclude that if v is both an &-connection and an &-reflection

then (9(57,37) is a torsion theory.

EXAMPLE. Consider a (FWC) abelian category A such that its dual category is
also (FWC) and let v be the Epi-reflection referred to in 8.4(a). Assuming that the radical
R is idempotent then v is also an Epi-connection since = 7r3€7. Indeed, let
F?\G,['Y:(M,(fi)i EI) for every M € ObjA, i.e. (fi)iel is the family of morphisms g with
domain M such that g.u=0 for every morphism u with codomain M and domain in 3(37.
The fact that R is idempotent implies that R(M) €¥y and so R(M) C Kerf;, for each
i €. Conversely, if g is a morphism with domain M such that R(M) C Kerg, then g
belongs to the family (fi)iel because, for each u:N-—M with N€%,, we have that
u(R(N)) CR(M) (cf. [43]), since R(N)=N and R is a radical. Thus u(N)C Kerg, i.e.

gu=0. Then, (f;) c1 is the family

1

{g€MorA | dom(g)=M and R(M)C Kerg}.
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Consequently, each f; factors through the morphism 7, in a unique way:

kg

M M, M/R(M)

AVAN:

Kerf

Let us show now that the factorization (7M’(mi)i61) of the source Fig,ﬂ is an
orthogonal Epi-factorization.  Given e:A—B e EpiA, v:A—M/R(M) and
(u;:B—M;); o1 such that m;v=u;e, for every i€l, since Keryy =R(M), then there
exists some j €I such that f; =7y, and, consequently, m;=1. Since e is an epimorphism,

then u; is the unique morphism for which the following diagram

M/R(M)

commutes for every i€l
The orthogonal Epi-factorization (vyy,(m;), c ) of the source Fi(;/ﬂ and its unicity,

up to isomorphism, enables us to conclude that Y=z~ 7 and so that (5}67,37) is a torsion

theory of A.

Cassidy, Hébert and Kelly ([11], p. 307) (proposition 5.4 in this chapter) and Barr
([4], 1.1) gave different answers to the question of knowing which properties should be
preserved when extending the concept of torsion to non-abelian categories. Actually, Barr
defined the torsion theory of a category .A as an idempotent monad in A, T=(T,n,ux), such
that T preserves regular monomorphisms and 7 A is an epimorphism, for every object A of
A, the torsion-free objects being the objects A for which MA is an isomorphism. Therefore,

since the monad is idempotent, the subcategory of the torsion-free objects is isomorphic to the

category of T-algebras.
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Corollary 8.13 allows us to relate these two concepts, being the one introduced in [11]

referred to just as torsion theory.

PROPOSITION 8.14. Assume that A and A°Y are (FWC)-categories.
(i) Let (C,B) be a torsion theory of A. Then the idempotent monad (T,n,u) where

n:IdA—»T is ¢ StrEpi-reflection such that C=%y and uA:(nTA)"l, for every object
A of A, s a torsion theory, according to Barrs definition, if T preserves regular
monomorphisms.

(ii) Let (T,n,p) be a torsion theory of A, in the sense of Barr. Then (3{377,37_7) s a
torsion theory if A is Epi-cocomplete or MA € StrEpiA, for every A € ObjA.

Proof: (i) To conclude that we get Barr’s definition it suffices to observe that, since
A°? is (FWC), A is StrEpi-cocomplete and then to apply 8.13. We point out that Barr
defines the torsion-free class as In, which is contained in Sn:iB, but the reflectivity of B
implies easily that 377 :377. R

(i1) Since (T,n,u)_ is an idempotent monad, then 7 is an Epi-reflection. So, when A
is Epi-cocomplete we can use 8.13 to conclude that (f}Gn,ﬂn) is a torsion theory. If

na € StrEpiA, we can still use 8.13 since we have the StrEpi-cocompleteness of A. O
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CHAPTER IlI

LOCALIZATIONS AND TORSION THEORIES

1. CHARACTERIZATION OF SOME CLASSES OF REFLECTORS

We have already observed in I1.3.4 that if A is (FWC) and B is a reflective
subcategory of A then ®®B is a factorization system. However if we drop the condition
relative to the existence of intersections of strong monomorphisms then &8 will be a
factorization system only for some special type of reflective subcategories. In this section we
will do a brief digression through some of these reflectors, giving particular attention to the
localizations, whose torsion theory has special interesting properties if it exists, and the
reflectors with stable units defined in [11], which we develop here a little more.

Let A be a finitely complete category, and (rA:A——bR(A))A € Obj A the class of
retlection morphisms from A to a subcategory B We denote by F=(&M) the
prefactorization system @®%®. Throughout this section, for each A €ObjA and each
g:B—R(A) with B € Obj%®, the diagram j

P(g) —H—y

8o Th

B R(A)

represents the pullback of g along r A

It is clear that given a morphism f:A—— A’ there exists a unique morphism f such

that the following diagram
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commutes.

DEFINITION 1.1. The reflector R is called simple if f€ & for each A-morphism f.

Since R(f) € Mor® C M then R(f); € fb so, if the reflector is simple, F 1is a

factorization system.

PROPOSITION 1.2. The following assertions are equivalent:

(i) The reflector R s simple.

(i) f:A— A’ € M if and only o (A,rA,f) is the pullback of (R(f),rA,).

(iii) For each g:B—R(A) in B, (P(g),rp(g),l) is the pullback of (go,R(g0))-

(iv) For each g:B—R(A) in B, if R(gy) s a split epimorphism then it is an

isomorphism.

Proof: See ([11], 4.1). O

REMARK 1.3. When A is preadittive the conditions (i)-(iv) are equivalent to
(v) For each g:B—R(A) in B, the morphism R(gy) is a monomorphism.

In fact, it is obvious that the implication ((v) = (iv)) is always true. In preadittive

categories ((iii) = (v)) holds, because m is a monomorphism if and only if kerm=0.
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PROPOSITION 1.4. The following conditions are equivalent and tmply that R is

simple:
(i) For each g:B—R(A) in B, R(gy) is an isomorphism.
(ii) The reflector R preserves the pullback of any pair of morphisms provided that one

of them belongs to b.
(iii) Any pullback of a morphism of & along a morphism of Mo lies in &.

Proof: See ([11], 4.3). O

DEFINITIONS 1.5. (1) A reflector is said to be semi-left-exact provided that it

satisfies one and then all the equivalent conditions of 14.
(2) We say that a reflector has stable units if the pullback of any reflection morphism

belongs to &.

Denote by S(®B) the full subcategory of A defined by the objects X whose

reflection Iy is a monomorphism. By a pullback over an object of S(B) we mean a

pullback of two morphisms whose common codomain is an object of S(%B).

PROPOSITION 1.6. The following assertions are equivalent and imply that the

reflector R is semi-left-ezact.
(i) R has stable units.
(ii) & is stable under pullbacks over objects of S(%B).
(ili) R preserves pullbacks over objects of S(%B). .

iv) R preserves finite products and equalizers of pairs of morphisms with codomain
P

in S(B).
Proof: (i) implies 1.4(i) and, therefore, that R is semi-left-exact.

(i) = (ii): Consider a pullback

D
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where e€ & and X €S(®). It is obvious that (D,&f) is also the pullback of (ry.ery.f),
since ry is a monomorphism. But Re is an isomorphism and ry.e=Rer . hence, by

hypothesis, €€ &.

(ii) = (iii): Let

>

be a pullback with X € S(B).

Consider the pullback (P,g,f) of Rg and Rf. Then there exists a unique morphism
t such that g.t=Rg’ and Lt=Rf.

R(D)

Rf (2)

R(A)

g RO

To prove (iii) it suffices to check that t is an isomérphism.

By definition of reflection morphism, there exist unique morphisms g, and f; such
that g,.rp=g and fl.rpzf. According to this fact and since (2) is a pullback, it is obvious
that p isa monomorphism, i.e. P& S(B). '

Now we prove that in the following bipullback (see [34]),

A~ K >
N u o (3)
R(A) 7 P —>R(C)
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ucs.
Note that a bipullback is the limit of a diagram of the following form

But, as can be easily observed, every bipullback can be constructed from three

pullbacks. In particular, the bipullback above can be obtained from the three following

pullbacks
K
7\
e P R T
A fx /fc e
R(A) = T P g > R(C)

taking u= fA.rb: TC'f}y a= p.rb and c= q.rjA.

By hypothesis, T,,f~€8, and we already know that P €S(%®B), hence Iy, Ip € 8.
Since & is closed under composition we can conclude that u € &, as required.

Since  ry.ga= Rg.rA.a:Rg.f.u:Rf.g.u:Rf.rC.c:rX.f.c and ry s a
monomorphism we conclude that g.a=f.c. Therefore, in (1) there exists a unique morphism

d such that f.d=a and g’.d=c:
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By lemma I1.1.14, SJ-:G.B, so there exists a unique morphism t’ such that the

following diagram is commutative:

We assert that t.t’=1 and t’.t=1. In order to prove it we begin by observing that

d is an isomorphism.

Since (2) is a pullback and Rirn.g=ry fg=ry.gf=Rgr, .f, there exists a unique
morphism s:D—P such that f.s:rA.f’ e g.s:rc.g’.

But r,.f=Rf.rp :f.t.rD and rc.g’ =Rg.rp=g.t.ry so s=t.rp.

Consequently, in the bipullback (3) there exists a unique morphism m such that

um=s, am=f and cm=g.

D
]
I
l .
P - g
[}
i
A= 2 K < -G
S
I'A u IC
R(A) - P - ==R(C)

From f.dm=am=f and g’dm=cm=g’ we obtain d.m=1. On the other hand,
f‘.u.m.d:f.s.d:f.t.rD.d:Rf’.rD.d:rA.P.d:rA.a:fu and
Q.u.m.d:g.s.d:g.t.rD.d:Rg’.rD.dzrC.g’.d:rC.c:g.u

implies that u.m.d=u, since {f,g} is a monosource.

From the equalities

e cmd=g’.d=c
e amd=f.d=a

e umd=u
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we conclude, by definition of bipullback, that m.d=1 and, therefore, d is an isomorphism.
Then t’.t.rD =t.um= rD.d.m =1p which implies that tt=1. But
Rf.t’.u= RP.rD.d :f.t.rD.d:f.u.m.d:f.u. Moreover Rf.t’.u= Rt’.rD.d:rA.f’.d which
implies that Rf.t’=f, because ue & and R(A)€ gL In an analogous way we infer that
Rg’.t’=g. But then

o ft.t’=RP.’=F
o g.t.t’=Rg'.t’=g

whence t.t’=1 since (2) is a pullback.

(iii) = (iv): To prove that R preserves finite products it suffices to observe that if
(AxC,p;,ps) s the product of two objects A and C then

P2

AxXC— > C

P
A—————"T
is a pullback and that T € B C S(B).
Finally, if A—h—»B_—"’_;,X is an equalizer with X € S(%®B) then

h

A——"]

fh=g.h (f,g)

X XxX -

A

is a pullback with A=(1y,ly), using the notation of ([36], p. 69).

Consider the products (XxX,7;,m,) and (R(X)xR(X),p;,ps), and the morphism
(rX)2:: (].'X.ﬂ’l,I'X.'Irz). The fact that Iy is a monomorphism implies, immediately, that
(1'X)2 is also a monomorphism. But it is clear that there exists a morphism t such that
try x =(rx)®. Hence ry v is a monomorphism, i.e.. XxX €5(®B), and then the pullback
fulfils the conditions of hypothesis. Therefore Rh is the equalizer of Rf and Rg.

(iv) = (i): Clearly ((iv) = (iii)) since a pullback
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f. 5 s ;
is the equalizer of AxC_gJ;;L’X, where p, and p, are the projections of AxC in A and
-P1
C, respectively.
On the other hand, it is obvious that ((ii) = (i)). Therefore, it remains to prove the

implication ((iii) = (ii)). So, consider a pullback

[¢)

D C
f f
! X

with e€ & and X € S(®B). Let us prove that e€§.
By hypothesis (RD,R&Rf) is the pullback of Re and Rf. Hence there exists a

unique morphism t such that the following diagram is commutative:

R(A)

Re  R(X)

By definition of reflection morphism there exists a unique morphism % such that
t.rczt. Then Ré.t.rC=Ré.t:rG and so Re.t=1.
We have also that
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o Re.t.e= rC.é: Ré.rD

and o REt.e=(Re)™".Rfr,&=(Re) " .RLR&.rp=RErp.

Thus t.8=rp which implies that rD:—.rC.é:f..Ré.rD, so t.Re=1. In conclusion,

Re is an isomorphism, i.e. €€ §. O

DEFINITION 1.7. We say that a reflector is a localization if it is left exact, i.e. if it

preserves finite limits.

In the sequel a reflective subcategory of A such that the reflector is a localization will

be called a localizing subcategory of A.

EXAMPLE 1.8. The only localizing subcategories of Fop are Jop itself, the
subcategory Ind of indiscrete topological spaces and Ter. It is obvious that Top and Ter
are localizing. Let B be a localizing subcategory of Jop different from Jop and Ter. The
corresponding reflector is a monofunctor, because being left exact it preserves monomorphisms.
The subcategory % contains a space B with at least two points b, ‘a.nd b,, since
B # Ter. Let-us show that B is monoreflective. If D is a discrete space, rp:D—R(D) is
a monomorphism: if d;,d, €D and f:D—B is such that f(d;)#f(d,), then there exists a
morphism f such that f'.rD:f and consequently 'd; and d, have different images by -
For any space X, consider the corresponding discrete space D with the same underlying set
and the identity map-i:D—X. Then ry.i=R(i).rjy and, since R is a monofunctor, R(i)
is a monomorphism and the same occurs with R(i).rD. Thus ry is a monomorphism because
1 is bijective. ‘

By the dual of ([26], Prop. 1) B is bireflective and so, according to ([38], Theorem 1)
it contains Ind. But the Sierpinski space S does not belong to B because Jop is the
bireflective hull of S. Then it is obvious that the indiscrete space with two points, I,, is the
reflection of S in %B. Since the reflector preserves products, fhe‘ reflection of SxS in B is
I,xI,=I,. Now we shall see that this fact allows us to conclude that the reflection of the
discrete space D, with two points is equal to I,. Let us denote by m the map D,—SxS
defined by m(d;)=(0,1) and m(d,)=(1,0), assuming that {1} is the non-trivial open set of
S. This map is injective, continuous and m_llm(Dz) is continuous. Therefore, m 1is a
regular monomorphism since it is an embedding. Then R(m) is a regular monomorphism,

because R preserves equalizers. In the following diagram
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R(D,) R(SxS)=1,

R(m)

R(D2) has two elements since the reflection morphism rD2 is a bijection, and we obtain a
homeomorphism by corestricting it to a subspace of I,, since R(m) is an embedding. Hence,
R(D,)=1,.

Finally, we prove that 9B C Ind. Assume that for some X & B there exists an open
set U of X such that U#0 and U #X. If we consider the map f:D,—X such that
f1(U)={d;} we conclude that there is a morphism f:I,—X such that f.rDzzf, which is

impossible, as can be immediately observed.

PROPOSITION 1.9. The following conditions are equivelent and tmply that R has
stable units:
(i) R s a localization.

(ii) & s stable under pullbacks.
Proof: (i) = (ii): It is trivial, since §=Xp.

(ii) = (i): It suffices to prove that R preserves pullbacks because the terminal object,
since it belongs to B, is preserved by R. _

It is clear that R has stable units so ®B=(8,M) is a factorization system. Given
f:A—B and h:C—B let (P,f;h) be their pullback. Consider the (&,b)-factorizations,

f=m,.e; and h=m,.e,. It is obvious that the following diagram is commutative:

f

ey m}’ l

—— P=P, =P, =C
ey (4) e (2) e

] ' | !

h P, o - C
my () m; (1) m,

| ' ‘

T\ o A — B
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.where each square (1), (2), (3) and (4) is a pullback.
By 1.4(ii) R preserves (1), (2) and (3) and, by hypothesis, e],e5,e/’,ey €8=Tp
thus R also preserves (4). Therefore R preserves the outer pullback. O

REMARK 1.10. In Theorem I1.3.5, if F is left exact then it is obvious that Q is
left exact too. Using the characterization 1.9 it is possible to prove that, in these conditions,
R is also left exact. Indeed, if (8,4) is the factorization system (G(Mor€)!,G(More)!})
associated with the adjunction F-G, we know that €=Xp. Since B=M/T, the

o o -0
factorization system ®% is equal to ®WU(8§,M)=(€,M) and E&=Xp. But we saw in the
o :
proof of I1.3.5 that . (8, M) is reflective, thus =8 and since F preserves pullbacks it is
obvious that R satisfies 1.9 (ii).
These facts imply that Theorem II.3.5 of B. Day generalizes a result of

Lawvere-Tierney (cf. [32], Theorem 4.14) about factorizations of geometric morphisms between

toposes.

DEFINITION 1.11. A factorization system (8,4b) is called local if it is reflective

and the class & is stable under pullbacks.

As a corollary of 1.9 and of some results in II.1 we have the following:

COROLLARY 1.12. In a finitely complete category there erisits a one-to-one

correspondence between the localizations and the local factorization systems. ]

We can derive from the preceding results the following chain of implications:

R is a localization = R has stable units = R is semi-left-exact = R is simple

= Q@B is a factorization system.

The following examples show that the converse of each one of these implications is
false:

(a) The reflector from §rp to Ab which sends each group G to the quotient of G
by its commutator subgronp is not simple because 1.2(iv) is not true if A is the symmetric
group of order three and B=0. However, ®%®B is a factorization system since Grp is a
(FWC)-category.

(b) The reflector from category A5 of I1.4.3 (d) to subcategory {a,b,1} is simple but
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is not semi-left-exact:

Indeed, the pullback of c—1€ & along b—1€ b is equal to 0o—b which does
noé belong to €.

(c) Let G be a group with a cardinal greater than one and consider the category A
of G-sets whose objects are the pairs (X,.), where X is aset and .:GxX—X is an action
of G in X verifying l.x=x and (gg’)-x=g-(g’-x) for every g,g’€ G and every x€X,
and whose morphisms are the maps which preserve the actions. A G-set (X,.) is called
discrete if ge.x=x, for every pair (g,x)€GxX. In each G-set, (X,.), let us define the

following equivalence relation:
x ~x’ if and only if there exists a g€ G such that x=g.x’".

Of course, X/~ is a G-set for the action g.[x]=[g-x]. If B denotes the subcategory of

discrete G-sets, the functor

R:A—%B
X+ X/~
€ X T (s )
[x] = [£()]

is a reflector from A to 9. This reflector is semi-left-exact since it satisfies 1.4(i). However,
it does not have stable units because, for the G-set G whose action is defined by the group
operation, the pullback of rg: G—{eg} along r does not belong to &.

(d) Consider the category Jop and the subcategory Top, of Tj-spaces. The
reflector R from Jop to Jop, which sends each topological space (X,TX) to X/~, with

quotient topology, where ~ is the equivalence relation defined by
x~y if and only if x€{y} and y e {xJ},
which is also equivalent to
VUETX, xeUsyel,

is not a localization as we remarked in 1.8. The same conclusion follows from the fact that this
reflector does not preserve monomorphisms. Indeed, it suffices to consider a monomorphism
from a Ty-space X with cardinal greater than one into a topological space Y with the
indiscrete topology, because R(X)=X and R(Y)={*} where {+} is the terminal object of
T op.

On the other hand, R has stablc units. Indeed, consider the pullback
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X X/~

Ix

i.e. P istheset {(x,y)€EXxY |ry(x)=1(y)}, with the subspace topology with respect to the
product, and ¥ and f are the projections to Y and X, respectively. Let us check that

Rf:P/~—Y/~
()] [y]

is an isomorphism.

First we note that T is surjective. Indeed, for each y €Y, if we consider x € X such
that ry(x)=f(y) then F((x,y))=y. Now let us prove that T is open. Denoting the
projections from XxY to X and Y by py and Py respectively, the collection of all sets
px(V;) Npy(W;), where V; ranges over all members of. 7y and W; over all members of
Ty is a basis for the topology of XxY. So, the collection of all sets
PNpy (V) Npy Y(W;), for each V;€7y and W;Ery, is a basis for the topology of
P. Let U:Pﬂpx_l(V)ﬂpY_l(W), for some open set V of X and some open set W of
Y. To prove that FU) is an open set of Y it is enough to observe that
E(U):Fl(rX(V))_ﬂ W, which is an open set of Y because ry s open, being
rX_l(rX(V))zv for every V€ Ty. -

Hence, the morphism T is open and so it is an extremal epimorphism. But then RF is
an extremal epimorphism since RE.rP:rY.E is an extremal epimorphism. Thus, to conclude
that R is an isomorphism, it suffices to prove that it is a monomorphism.

Let  [(xo,yo)l[(x1,y1)] €P/~  such  that  RE([(x0,¥0)]) =RE([(x1,y1)]).  But
Rirp=ry.F. Then ry equalizes T((xq,yg)) and T((x1,y;)), i.e. ry(Yo)=ry(y;) and so
g.rY(yo)zg.rY(yl), where g denotes the unique morphism such that g.rY:f, whose
existence is guaranteed by definition of reflection morphism. Thus ry(ye)=ry(y;) and
f(yo)=f(y;) and, consequently, ry(xg)=ry(x;), since (Xo,¥0),(x1,y1) €P. Let us prove that
[(xoyo) =[xyl e (x1,91) € {(Xo¥0)} and (x0,¥0) € {1y} I (x1,y;) would not
belong to {(Xo,¥o)}, then, for some open set U of P, (x;,y;) €U and (xq,y0) € U. The
open set U is a union of open sets of type f‘l(V) ﬂf‘l(W) where V is an open set of X
and W an open set of Y. Without loss of generality, we can assume that

U=F"YV)Nn¥}(W). Then x,€V and y, €W since (x,y;)€f }(V)N £ }(W), and
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Xo €V and y, €W since ry(xo)=rx(x;) and ry(yo)=ry(y1)- Then (xq,yo) €U, which
is absurd. Thus (x;,y1) € {(x0,¥0)}. Analogously we conclude that (xq,yo) € {(x1,¥1)}-

Therefore, R has stable units, as we claimed.

2. LOCALIZATIONS AND HEREDITARY TORSION THEORIES

In this section we assume that the categories A and A°? are finitely complete.
The torsion theories are not necessarily generated by localizing categories. However,
when this happens, we have a torsion theory with interesting properties.

Next definition generalizes 1.2.1 since in an abelian category any monomorphism is

regular.

DEFINITION 2.1. A subcategory C of A 1is hereditary provided that it is closed

under regular subobjects and, in this case, if (C,B) is a torsion theory then it is called a

hereditary torsion theory.

Given a localizing subcategory <, consider the corresponding factorization system
F=(8,M)=®B, the subcategory C=I/€ and the subcategory B’ defined in II.4. Recall
that B~ =€ and C =B

PROPOSITION 2.2. The subcategory C is hereditary and, therefore, the torsion

theory (C,B’) generated by a localizing subcategory B is heredilary whenever it exists.

Proof: Consider a regular subobject C’ of Ce€C, being‘ i:C°—C the equalizer of
f,g:C—A. Since the reflector R from A to B is a localization then R(i) is the equalizer
of R(f) and R(g). But R(C)=R(I), by IL5.1(ii), and R(I) is the initial object of B
hence R(f)=R(g) and R(C’)=R(I). Thus, C’€C. O

DEFINITION 2.3. Given a subcategory B of A, -we denote by ?B# the closure

of B under subobjects, i.e. the subcategory of A whose objects are the A-objects for which

there exist a monomorphism with codomain in .
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If we assume that A has zero object and that all strong epimorphisms are cokernels
then the classes SEpiA and RegEpid coincide and so RegEpid is closed under

composition. According to the dual of ([12], 1.3.5 (iii)), we have the following:

LEMMA 2.4. If A has zero object and all strong epimorphisms are cokernels then
(StrEpiA,MonoA) is a factorization system of A. ‘ ad

PROPOSITION 2.5. Assume that A has zero object and all strong epimorphisms

are cokernels. Let B be a localizing subcategory of A. If the hereditary torsion theory

(C,B’) generated by B ezists then it is normal and G,B’:G,B#.

Proof: The reflector R from A to 9B is normal, since it is left exact. Hence
C=B"" 1is coreflective and each coreflection morphism s A:S(A)—»A is the kernel of the
respective reflection morphism N (cf. II.7.7).

For every object A of B, N is a monomorphism since, by the dual of the
proposition IL.5.1 (ii), € =%’ is the subcategory whose class of objects is equal to
{A€ObjA|S(A)=0}. Therefore B’C GB#. The converse inclusion is obvious because B’
contains B and it is closed under subobjects (see I1.7.2).

It remains to prove that if the torsion theory (C,®B’) exists (which happens, for
instance, when ¥ and é.)—F are factorization systems), then.it is normal.

The previous lemma allows us to consider the (StrEpiA,MonoA)-factorization my .y
of r A for each object A of A. The morphism rf is a reflection mbrphism from A to
‘iB#. Indeed, considering f:A—C and CE‘:'B#, if 1:C—B is a monomorphism with
B&® then there exists a unique morphism g such that gr, =if. Consequently, since

rf € StrEpiAd = (MonoA)T N EpiA, there exists a unique morphism h such that the diagram

%
A R7(A)
/l
/
/
/ |
/
/
/ A
f /b R(A)
//
/
/
/ &
/
/
4 y
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commutes. Therefore, f= h.rA# factors through rﬁ. The unicity follows because rf is
epimorphic.

Since sA:ker(mA.rﬁ) and m, is a monomorphism then sA:kerrf. But, by
hypothesis, .rf is a cokernel and so 1} =cokers, . Therefore, (€,B%)=(C,%") is normal. O

The correspondence B+—(C,B’) defined in the class of localizing subcategories of A
is not, in general, injective. For instance, in Jop we proved that the only localizing
subcategories are Jop itself, Fer and Ind (1.8) to which correspond, respectively, the
hereditary torsion theories (Jop ™, Jop™ 7 )=(Ini,Top), (Fer—,Ter —)=(Top,Ter)
and (9nd T ,9Ind T 77)=(9ni,Top).

The same situation occurs in the topological categories C%eg and %Prox which have
only the two trivial torsion theories and the localizing subcategories C%eg, Jer, Ind and
Prox, Fer, Ind, respectively (cf. [10], 3). However, when A is abelian that correspondence
defines a bijection between the class of the localizing subcategories and the class of the
hereditary torsion theories provided that A has sufficient injectives. To prove this assertion

we shall make use of the following lemmas:

LEMMA 2.6. If pushouts in A preserve monomorphisms then (EpiA,StrMonoA)

s a factorizaiion system of A.

Proof: It suffices to prove that A has (EpiA,RegMonoA)-factorizations since then
the classes StrMonoA and RegMonoA are equal and therefore, as we did in lemma 2.4,
applying ([12], 1.3.5 (iii)) we conclude what is required.

Consider a morphism f:A—B of A andlet (x,y:B—C) be its cokernel pair and
p:E—B be the equalizer of x and y. Then there exists a morphism q such that f=p.q.
Since p is a regular monomorphism it suffices to show that q is an epimorphism. So, let us

assume that (u,v:E——TF) is the cokernel pair of q and consider the pushouts

— "k E > B F———Y
p p’ v v’ pﬁ pﬁ’
B> "X F———>Y X 2
u q q
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q p

Then A E ~B
q v’

Y

E Y
p p7’

Y
B 5~ X e )

is a pushout, so there exists an isomorphism i such that ix=q”.w’ and iy=p”.v’ which
implies that q”.plu=q”.w.p=ixp=Ly.p=p”.v.p=p”’.¢.v=q”.p’.v. By hypothesis, the
pushouts preserve monomorphisms thus q” and p’ are monomorphisms. Therefore u=v

and so q is an epimorphism. O

REMARKS 2.7. (i) The dual of 2.6 enables us to replace in 2.5 the condition ” A has
zero object and all strong epimorphisms are cokernels” by the one ”pullbacks in A preserve
eptmorphisms”.

(ii) If a subcategory B of A is reflective then a morphism of % belongs to
MonoA if and only if it belongs to Mono®. In fact, it is obvious that this condition is
necessary. Conversely, if m:B—B’ belongs to Mono® and if fig:A—B are parallel
morphisms of A such that m.f=m.g then m.Rf.rA:m.Rg.rA, il.e. m.Rf=m.Rg and so,
by hypothesis, Rf=Rg which implies that f=g. Thus, m € MonoA.

Let us assume now that 4 is an abelian category.

If B is localizing, we observed in 2.5 that in the pair (C,®’), C is coreflective, B’
is reflective, each coreflection morphism s, :S(A)———;A is the kernel of the reflection
morphism = rjf :A—R’(A) and ry =cokers, . Considering A— R’(A),
f:A>—R’(A) and the diagram

P— XA

S(A) = A T R’(A
N o (A)
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where the square is a pullback and j the unique morphism such that y.j:sA and xj=0, it
is easy to check that j=kerx. But x is the pullback of a cokernel and so, since A is
.abelian, x is a cokernel and then x=cokerj. The fact that R’ is a left adjoint implies that
R’(x) is the cokernel of R’(j):R’S(A)—R’(P) in %®’. Obviously R’S(A)=0 since
B’=C"", hence R’(x) is an isomorphism. We proved that R’ has stable units and therefore
‘?—F is a factorization system.

Now, by duality, we can conclude that the coreflector has also stable units and that
F is a factorization system.

In conclusion, if A is abelian then any localizing.subcategory B generates an
hereditary torsion theory (C,®’). So, we can define a map Z from the class of localizing

subcategories of A to the class of hereditary torsion theories of A by Z(®B)=(C,®’).

LEMMA 2.8. If (C,®’) s an hereditary torsion theory of the abelian category A
then  Mono®B’ s closed wunder pushouts in  B’, StrMono®B’=RegMono®B’ and
(Epi®’,StrMono®’) is a factorization system of B’

Proof: Let us assume that

B’———>A

is the pushout in A of the morphisms i and f of %’, such that i€ Mono%®’. Then
(R’(A),R’(j),R’(g)) is the pushout in %’ of i and f. But, according to 2.7(ii), i€ Mono.A.
Thus j € MonoA since A is abelian. Since in abelian categories any torsion theory is normal,
as we already referred to in the previous chapter, SB,,:kerr’B,, and sA:ker r’A. Thus, we

have the following commutative diagram where S(B”’)<0:

S ) 34
B N B N
S(B”) B” > R’(B”)

|

S() i R'(j)

S4) T AT TR
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But S(A)NB”=0, since B and C are hereditary. Consequently, the left square is a

pullback. Then 0=sp,, =ker(r}.j) =ker (R’(j).rg,)) =ker (R’(J)) which implies that R’(j) is a
monomorphism of A. Thus R’(j) € Mono®’. So, we proved that Mono®’ is closed under
pushouts in %®’. Now, the hypothesis of 2.7 being fulfilled, %’ has the factorization system

(Epi®’,StrtMono®’) and StrMono®’=RegMono%®’. a

LEMMA 2.9. Let (C,B’) be an hereditary torsion theory generaled by a localizing
subcategory B of the abelian category A. An object A of B belongs to B if and only if

every monomorphism i:A—B with B€ B’ is a sirong monomorphism of B’

Proof: If A€® and 1:A—B is a monomorphism with B&%®B’, then i is a
regular monomorphism in A and, therefore, R(i) is a regular monomorphism in %’ because
R is left exact. But R(i)=rg.i whence i is a strong monomorphism in ®’, since R(i) is a
strong monomorphism in B’ (2.8). '

Conversely, since R is left exact, we saw in the beginning of the proof of 2.5 that, for
each object A of B, Ty is a monomorphism hence a strong monomorphism in %’. On the
other hand, r, € Epi®’  because if u,v:R(A)—C with C€& % are morphisms such that
WEp =ViIy then we have that TUTp =TV which implies that T U=THV by the
universal property of the reflector, and consequently u=v since o is a monomorphism.

Thus we have shown that r A is an isomorphism, i.e. that A &€ %B. |

DEFINITION 2.10. We say that the category A has enough injectives if every

object of A 1is a subobject of an injective object.

EXAMPLE. Any Grothendieck category has enough injectives (see 1.2.4).

THEOREM 2.11. Consider the correspondence Z between localizing subcategories

and hereditary torsion theories of the abelian category A. Then:

() Z is injective.

(1) If A has enough injectives then Z 1is bijective.

Proof: (i) Let B and 9D be two localizing subcategories of A such that
Z(B)=(C,B’)=Z(D). From 2.9, it follows that B ="D.

(ii) Given an hereditary torsion theory (C,®’), consider the subcategory B whose

objects are the @B’-objects A for which any monomorphism i:A-—B, with Be B’ is

a_strong monomorphism of B’. To prove that B is a reflective subcategory of A it suffices
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to show that it is a reflective subcategory of B’ (the composition of the reflectors
R:B— B and R’: A— B’ is then a reflector from A to B which we will also denote by

R). Let A€ ®B’, j:A—.pJ be a monomorphism with J injective and
I .
A—23B—LR(J)

be the (Epi®’,StrMono®’)-factorization of r’J.j, denoting by (r.,A)AGOij( the reflection
morphisms from A to ®B’. If (C,B’) is hereditary and j is a monomorphism then R’(j) is
a monomorphism (see proof of 2.8). Since R’(j):r’J Jj=ir,, then r, is a monomorphism.
We claim that B & ®B. To prove that, let us consider a monomorphism k:B-—D with
D e B’. Since J is injective, there exists a morphism h:D-——J such that h.k.rA =j whence
i.rA:R’(j):R’(h).k.rA which implies the equality i=R’(h).k, because rAEEpiG.B’. But i,
and so k, belongs to StrMono®’. Consequently B € B.

Next we show that TA is a reflection morphism from A to 9B. In fact, given
f:A—B’, with B’€ B, if we consider the following pushout in B’

A

A~ B

R

then, by 2.8, u is a monomorphism in B’ since r A is a monomorphism in A and so in
%®’. Then u¢€ StrMono®’, according to the definition of B, since B’€ 3. Consequently,
there exists a unique morphism f:B— B’ such that fr 5 =f and uf=v. Furthermore, f is
the unique morphism such that f.rA:f since r) € Epi®’. But TA is monomorphic and B’
is closed under subobjects hence €B#:€B’. Then proving that B is Idcalizing we obtain
Z(B)=(C,B’), according to 2.5, and in this way we show that Z is surjective. So, let us
prove that the reflector R from A to B is a localization. >We first remark that B is closed
in B’ under StrMono%’-subobjects:

If m:A—B is a strong monomorphism of B’, Ac® and Be&PB then there
exists a unique morphism ™ such that Mm.ry, =m. Then N is a split monomorphism since
belongs to Epi®’, and so an isomorphism. Hence A € .

The arguments used to prove that r, is a reflection morphism allow us to conclude

that any morphism A—B of MonoANEpi®’, with AE€® and Be B, is a reflection

morphism from A to .
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Assume that k:A—D is a monomorphism with A,D € ®’ and let
A-Pp- L snp)

be the (Epi®’,StrMono®’)-factorization of ry-k. It is obvious that B €B because B is
closed in B’ under StrMono®’-subobjects and then, as we have just seen, B=R(A) and
p:i.rA , for some isomorphism 1i. Hence j.i.rA :j.p:rD.k:R(k).rA , which implies that
R(k) =j.i € StrMono%®’. Thus, R:®B—B maps monomorphisms into  strong
monomorphisms of %B’. Since R’ preserves monomorphisms, as we observed in 2.8,
R: A— B preserves monomorphisms sending them into strong monomorphisms of B’
which are regular monomorphisms in B’, also by 2.8. Furthermore, this functor is additive
(note that B, being a reflective subcategory of A, is additive) being a left adjoint of an
additive functor.

Since the functor R is additive then it suffices that it preserves kernels in order to be

a localization.

Assuming that m=kerf in A, we can write f=n.q where q=cokerm and n isa

11 M f C
D

Let us prove that R(m)=ker R(q):
Since R is a left adjoint then R(q) is the cokernel of R(m) in %B. Let

monomorphism.

e:R(B)—E be the cokernel of R(m) in %’. Since R(q).R(m)=0 then there exists a
unique morphism t such that t.e=R(q) implying the existence of a unique morphism %
such that t.rp=t. On the other hand, rp.e.R(m)=0, thus there exists a unique morphism
h such that h.R(q)=rp.e. The situation is the following:

R R
R(A) (m)_, R(B) Ll ~R(D)
\ -l
7’ |
/’ |
i
E="—F— R(E)
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from which easily foliows that t.h=1 and h.t=1.

But R(m) is a regular monomorphism in P> (recall that R assigns regular
monomorphisms of B’ to monomorphisms) and e=cokerR(m) in %’ whence R(m)=kere
in %’ and so in A. Then R(m)=kerR(q), since rp is a monomorphism and t is an
isomorphism. '

Finally, R(m)=kerR(f) since R(n) is a monomorphism. O

3. SOME CLASSICAL CASES
Assume that A is finitely complete.

REMARK 3.1. The bijection referred to in 1.12, according to the results from which
it is derived, is defined by the maps ® and V¥ in the following way:

From a localizing subcategory B, with reflector R, we get & as the class ER of
morphisms whose images by R are isomorphisms (which are precisely the morphisms which
are orthogonal to every object B of B) and A as the class of morphisms m for which the
diagram

Ex
A—"R(A)

m R(m)

B~ R(B)

Ip

is a pullback. The (&,b)-factorization m.e of a morphism f is obtained taking m as the

pullback of R(f) along rp:
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R(A)

R(B)

R(f)

Conversely, from a local factorization system, (8,4b), we get the localizing
subcategory B = M/T, whose class of objects consist of the orthogonal objects with respect to
every e€8. The reflection morphism from A to 9B is the &-morphism of the

(8,Ab)-factorization of A—T.

The following proposition [5] is a refinement of the fact that B = gl

PROPOSITION 3.2. Under the conditions of 3.1 we have that B=(8N Mono.A)‘L.

Proof: Obviously, B= gl c (8 N MonoA) L
Conversely, -let B € (8 N MonoA) L. Then B €%B if and only if g is an

isomorphism. Let us consider the diagram

B R(B)

A —C : =

where (u,v) is the kernel pair of ) and j is the-equalizer of u and v. Since R(rB) is an
isomorphism, the fact that R is left exact implies that R(u)=R(v). Thus R(j) is an
isomorphism and, consequently, j&€ 8N MonoA. Hence j_L B, and therefore u=v since
uj=v.j. Then rg Is a monomorphism and so rg € § N Mono.A. Consequently, rg L B,
which implies the existence of a unique morphism t such that trg=1. Then rg.trp=rg

and, since rp L R(B), we have that rp-t=1. Thus rp is an isomorphism. O

DEFINITIONS 3.3. (1) An epi-cosource (c")iEI of morphisms of A is called

strong if, given a monomorphism m and morphisms u and (v;), g1 such that m.v;=u.e;,

for each i €1, there exists a unique morphism d for which the diagram

87





III - Localizations and torsion theories

/7
/
7/
7
//
v, ~d u
/
7/
4
Vs
m

commutes.

(2) A class § of objects of A is called a strong generator if, for each A € ObjA, the

family of all morphisms with domain in § and codomain A is a strong epi-cosource.

When the strong generator § is a set then it is called a small strong generator.

In [5], a more precise description of ® is given by the following proposition:

PROPOSITION 3.4. Assume that A has a sirong generator G. Then, under the
conditions of 3.1, B={e€ &N MonoA | cod(e) €G} 1

Proof: Let us denote {e € 8N MonoA | cod(e) € G} by 9.
Let BE‘ﬂ'"L and consider the diagram of 3.2. We concluded that j€& &N MonoA.
For each g:Gg—>C with domain in §, let us consider the pullback
b
Gg

Pg

sg g (1)

in which tg € J since & and MonoA are classes stable under pullbacks. It is obvious that
u.g.tg=v.g.tg and, since Be °IL, then u.g=v.g. This implies that u=v because § is a
strong generator. Therefore rp € & N MonoA.

Next we consider, for each h:Gh—AR(B) with domain in @, the pullback

T R(B)
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Then xy, € J. There exists a unique morphism z; such that zj Xy, =y}, because Be g
. Then rp.z;.x;, =h.xp, and so rp.z; =h because x, €8 and R(B)E‘B:S'L. Therefore for
each morphism h with domain in § and codomain R(B), h=rp.z; and rg is a
monomorphism, thus, by definition of strong generator, there exists a morphism d such that
rB.d: 1, i.e. rg is a split epimorphism. Since, moreover it is a monomorphism, then rg is

an isomorphism. |

The class of all objects of A is always a strong generator and in this case the
proposition 3.4 reduces to 3.2. Clearly the most interesting situation occurs when there exists a
small strong generator. In this case the class of all localizing subcategories of A is a set and if

A is complete this set is a complete lattice (cf. [5], 6.4 and 6.5).

PROPOSITION 3.5. Under the assumptions of 3.4, a monomorphism j:A—C

belongs to & if and only if for every morphism g:Gg—>C with domain n G, the pullback
tg of j along g belongs to T. '

Proof: In the proof of 3.4 we concluded that tg belongs to I whenever j belongs to

Conversely, let us consider the image of the pullback (1) of 3.4 by R. Since tg €8,
then R(tg) is an isomorphism and R(g):R(j).R(sg).R(tg)"l. But j is-a monomorphism as
well as R(j), because R is left exact. On the other hand, the proof that a left adjoint
preserves strong epi-cosources is essentially a technical one and is omitted. Then, from the

diagram

R(Gg) ‘&’R(C)

R(sg)-R(tg)™" 1

R(A) R(C)

R(j)

where the family of morphisms R(g) is a strong epi-cosource, for every morphism g with
domain in § and codomain C, and R(j) is a monomorphism, we conclude that R(j) is a

split epimorphism and, therefore, an isomorphism. Hence j € 8. O
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Now let us analyse these results when A is the category R-Mod of left modules cver
a ring R with identity. We will see that the sets I considered in 3.4 are the well-known
Gabriel topologies, defined by Gabriel in [24].

PROPOSITION 3.6. The ring R, considered as R-module, is a strong generator of

the category R-Mod.

Proof: Let us show first that, for each R-module M, the family HomR-Mod(R’.M) is
an epi-cosource. Indeed, if f and g are distinct parallel morphisms with domain M, i.e. if
there exists a m €M such that f(m)# g(m) then defining h:R—M by h(r)=rm, for
each r € R, we conclude that f.h # g.h. Finally, we verify that this epi-cosource is strong.

It is obvious that
Homp yroq@®M)={¢p :R—M | o ()=mm, n.eR; meM }

Given a monomorphism n:N-—N’ and morphisms u:M—N’ and (vm)mEM such that
n.vp =u.p, for each meM, we can define an homomorphism of R-modules, d:M—N,
by d(m)=vm(1), for each m €M, which is easily seen to be the unique morphism for which

the diagram

commutes. 00

Since, for every monomorphism f:M—R, f(M) is a left ideal of R, we can identify

the set I of 3.4 with the set of left ideals I of A for which the inclusion I—> A belongs to 8.

DEFINITION 3.7. For a ring R, a family &F of left ideals of R 1is called a

Gabriel topology of R if it satisfies the following conditions:
(G1) Re 7.
(G2) I€¥ and reR)= (I:r):={beR|brel} 9.
(G3) The left ideal J belongs to ¥ whenever there exists some 1€ % such that

(J:i) € F, for every i€l
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REMARK 3.8. (i) Conditions (G1) and (G3) imply that if I and J are left ideals
of R such that 1€ ¥ and ICJ then J€F. In fact, for each i€l, (J:1))=R€E .
(ii) From (G2) and (G3) we infer that INJ € F whenever I,J € F since

(INJ:j)=:j)Nn(I:j)=(I:]) for each je€J.

Therefore, a Gabriel topology is a filter for the ordered set of ideals of R.

PROPOSITION 3.9. The set T defined in 3.4 1s a Gabriel topology of R.

Proof:

(G1) It is obvious that R€ T since IsoA C 8.

(G2) Let reR and I1€7, ie let j:I—R be an embedding belonging to 8. If we
consider the morphism g:R—R defined by g(x)=xr, we saw in the proof of 3.4 that the
pullback tg of j along g liesin . But

Py={(ix) € IR | i) =g(e) } = { (i) € R | i=sr},
and so, by the previous identification, tg(Pg)=(I:r)€ 7. -

(G3) Let us suppose that the left ideal I belongs to I and that, for every i€l
(J:)ed.
If JCI it suffices to verify that the diagram

@:) —2—R

6l
)

is a pullback, where m and ™ are the inclusions and ?s and % are the morphisms which
send each element r of their domain to ri. By hypothesis M €& and so me & by 3.5.
Since the inclusion from I to R belongs to & we can conclude that J €T, because & is
closed under composition.

Finally, if J ¢ 1 we consider the left ideal I4+J. Since I CI4J then, by 3.8, I+J € 9.
If x=i4j €I4+J we have that

(J:i+))={reR|ri+rjel}={reR|riel}=(J:i)e7.

But J CI+J and so we reduce this situation to the one already considered. O
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By the propositions 3.4 and 3.9 the function © which maps each localizing
subcategory B to the corresponding set I is injective, has codomain in the set Top(R) of
the Gabriel topologies of the ring R and reverses the order defined by inclusion. Therefore,
the existence in R-Mod of a strong generator allows us to describe the subcategory B by a
set I contained in &, instead of using the equality gl=a. This is the suitable topology.
In fact a classical result states that I belongs to the codomain of © precisely when I is a
Gabriel topology of R, i.e. there exists a bijection between the set of the localizing
subcategories of R-Mod and Top(R) (cf. [24] or [43]). These sets I are much easier to deal
with. This is clear for instance in [7] and (8], where all Gabriel topologies of valuation rings
and of the respective quotient rings are described. The surjectivity of © can be checked
directly by proving that, given a Gabriel topology 9, the subcategory B whose class of
objects is the class {M € R-Mod | t(M)=0}, where t(M)={x€M | An(x)€9T} and An(x)
denotes the left ideal {rcR |rx=0} of R, is a localizing subcategory of % and that,
moreover, O(B)=J.

This bijection as well as the one we referred to in 2.11, make clear the reason why the
concept of hereditary torsion theory has been very useful in the study of localizations in rings
and modules. In fact, the Gabriel topologies determine the rings and modules of quotients (cf.
[43], chapters IX and X).

Another classical situation where we can apply these results is the category of presheafs
A=[C°? fet], where C is a small category.

Consider the contravariant functors Homc(——,C):COP -~ fet, associated to each

object C of C.

[

PROPOSITION 3.10. The set Q:{Homc(——,C) | CeObjC} is a strong generator
of A=[C°F Set].

Proof: For each F € ObjA and each C & ObjC consider
Hom ; (Hom(—C),F)={A%:i€1 }.
First, we prove that, for every F € ObjA, the family
?F:{/\Ci:Homc(—,C)—‘—»F | Ceobje, iely}

is an epi-cosource. Assume that « and [ are two natural transformations such that
a./\cizﬁ./\ci, for every Aci € ¥F. Then we have that aB‘(ACi)B:ﬁB'(’\Ci)B’ for each
)\Cigﬁj and B € ObjC. For each C€ObjC and each x € F(C), if we consider

7Cx :Hom(—,C)——F defined by (7CX)B(f) =Ff(x),
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for each BeObjC and fe HomC(B,C), it is obvious that 7CXG?F. The equality

aC.('rCX)C:ﬂC.('yCX)C implies that '
(e (1% 10 = B0 1),

ie ac(x):ﬁc(x) and, consequently, a=p.
Finally, we prove that the epi-cosource & is strong. Indeed, consider a
monomorphism « and morphisms p and (JC,-)C € ObiC, i1 for which the following
’ C

diagram is commutative:

2%,

Home(—C) ™ ~F
Uci [P
H

For each B € ObjC we get the following commutative diagram in Yet:

A
Hom(B,C) — > F(B)

C
(o i)B PB

G(B) —5— H(B)

But ap is a monomorphism, for every B € ObjC, since the monomorphisms in A are the
natural transformations whose component morphisms are monomorphisms in fet (cf. [25],
I1.2.1). Let us show that, for each B € ObjC, the family

(A°IB)c € oie, ielg |
is an epi-cosource. Consider two morphisms f and g such that f.(/\c,-)B:g.(/\Ci)B, for
each C€ObjC and i€ln. Foreach x€ F(B) consider

7BX:HomC(—,B)-;>F defined by (7BX)A(h):Fh(x),
for A €0bjC and he HomC(A,B). Then, since

E(P )R 1) = (2 )p)(1p),
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we conclude that f(x)=g(x) and so that f=g.

But, in a category with coproducts in which every monomorphism is strong, any small
epi-cosource is strong, as can be easily observed. Thus, for each B & ObjC, the family
((’\C")B)C cObic, i€l is a strong epi-cosource and then we can conclude that there exists a
unique morphism d such that ag.d=pp and d~(’\ci)B=(°'Ci)B , for each C€ObjC and
iEIC. It is easy to see that this way we get a natural transformation 6:F—>G such that
a.6=p and 5./\Ci~_—aci, for every C € ObjC and every i €I~ By the unicity of d it is
obvious that & is the unique natural transformation satisfying these conditions. Hence the

epi-cosource ¥ is strong, as we claimed. O

In this category, the set I of 3.4 is equal to U Y(Home(—C)), where

¥ (Home(—C))={a € &N MonoA | Cod(ar) = Hom(—,C) }.

A subobject of Home(—C) is a natural transformation a:U——Home(—C) such
that, for every object B of C, UB is a subset of HomC(B,C). Since « is a natural
transformation then, for objects B and B’ of B, the morphism g.h & UB’ whenever
g€UB and he&Homp(B’,B). Therefore, each element of ¥(Homg(—C)) is precisely a
family

Be%bchB
of morphisms with codomain C such that gheUB’ if g€ UB and heHomc(B’,B), i.e.
each element of ¥(Home(—C)) is a sieve ([32], [41]).

According to the Yoneda embedding [27], Y:C—[C°?,fet], € is isomorphic to a full

subcategory of [C°F fet] and we can identify Home(—,C) with the object C when there

arises no ambiguity. It can be verified, giving a similar proof to that one of 3.9, that

= U ‘V(C)
C e 0bjC

is a Grothendieck topology ([32], [41]) in C.

So, it is possible to describe I by a topology which is the ”good” one in the sense
that the function which maps the localizing subcategory B to I is not only injective (3.4),
but it is even a bijection with the class of Grothendieck topologies in € (cf. [41]).

This example is a particular case of a topos. In toposes the existence of a classifier
subobject allows the explicit description of the class & by the intersection & N Mono. In this
case, the ”good” topology is the Lawvere-Tierney topology [32]: in a topos [E there exists a
bijection between isomorphic classes of left exact idempotent monads in E and

Lawvere-Tierney topologies in [E.
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In ([4]), 2.4) Barr proved that in a category A there exists a bijection between
isomorphic classes of idempotent monads in A and reflective subcategories of A, which leads
to the conclusion that there is a bijection between isomorphic classes of lef"t exact idempotent
monads of A and localizing subcategories of A. We saw that in abelian categories with
enough injectives there exists a bijection between hereditary torsion theories and localizing
subcategories and that in module categories over a ring R these are in a one-to-one
correspondence with the Gabriel topologies of the ring R. This enables us to understand the
way that leads Barr to the generalizaﬁon of hereditary torsion theories to non-abelian
categories given in [4], as well as the divergence between this way and the one followed by

Cassidy, Heébert and Kelly which we presented in this dissertation.
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