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Summary


SUMMARY


The concept of torsion had its origin in the theory of abelian groups. There a group is


torsion if and only if all its elements have finite order. This notion couldbe directly extended


to modules over an integral domain. In the theory of rings and of modules of quotients, to each


ring of quotients of a ring R there is an associated notion of torsion for modules over R ([43],
11.3).


Several authors, as Dlab in [20] and Levy in [35], extended this notion to modules over


more general rings. However these definitions are too closely linked with some particular classes


of modules and, apparently, not connected.


In 1966 Dickson [17] gave a definition of torsion theory in abelian categories which


generalizes and unifies the existing ones. As Herrlich and Strecker refer in [27], quoting Bass,


"Virtually ali algebraic notions in Category Theory are parodies of their parents in the most


classical of categories ... the category of left A-modules. "


The extension of some fundamental ideas and constructions of one area of Mathematics


to other is one of the aims of the theory of Categories. This was Barr's purpose in [4], where he


gave a definition of torsion theory for non-abelian categories and a great variety of examples


encompassed by these theories. Also Cassidy, Hébert and Kelly, in 1985, following a different


path from the one of Barr, introduced another definition of torsion theory which arose from a


dose analysis of the relations between reflective subcategories and factorization systems of a


category.


This dissertation, which is mainly based on [11], summarizes some of theresults in this


area.


In the first chapter, where we use essentialIy [17] and [15], we give an approach to


torsion theories in abelian categories. In the first sectiori we present Dicksorr's definition and


stress the first analogy between the theory of torsion Ztorsion free subcategories in this context


and the one of connectednesses/disconectednesses in the category of topological spaces as it


appears in [3]. The concept of hereditary torsion theories is a very important one. Indeed, they


are equivalent to, for example, "idempotent filters of ideais" in (Bourbaki, Eléments de
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Summary


Mathématique, fase. 27, Chap.1,2 (1961)) and [24} nowadays called Gabriel topologies, "left


exact torsion radicaIs" m (Maranda, Injective Structures, Trans. AMS, 110 (1964)),
"idempotent kernel functors" in (Goldman, Rings and modules o] quotients, J. Algebra, 13


(1969)) and to "left exact reflectora" in [24]. This is the topic of the second section where we


give a characterization theorem extracted from [ll] and [43]. Finally in section 3, where we use


mainly [15], we present, with some detail, a classification in the categoryof abelian groups of


all torsion subcategories contained in the subcategory of torsion groups (in the classical sense)


and of all hereditary torsion subcategories.


The second chapter starts with the definitions of prefactorization and factorization


systems as well as the statements and proof of the results that will enable us to establish the


one-to-one correspondence between reflective subcategories and prefactorization systems of a


category. All these results are from [l l], being 1.8 a generalization of (2.4) in [l l]. We point


out that this bijection develops an idea referred by Bousfield in ([6], 2.5). Observation 2.5 of


[l l] led us to the study of the links between the notions introduced in the preceding section and


the categories of fractions. Under very general conditions on a category, namely that it is a


finitely well-complete category, it is proved in [ll] that the bijection we referred to above is a


bijection between reflective subcategories and factorization systems. This is the subject we deal


with in 3.2, 3.3 and 3.4. In 3.5 we present an easy proof given by Cassidy, Hébert and Kelly in


[l I] of a result of Day [14]. Section 4 as well as the first one consist of a short account of the


essential steps in [I I] towards the formulation of the notion of torsion theory for categories


with initial and terminal objects. There we present a detailed description of the reflective and


of the coreflective factorization systems associated with a factorization system and exhibit some


examples. At this point it is possible to study torsion theories in categories with initial and


terminal objects. This is the topic of section 5. The definition 5.2, which can be formulated in


any category, was suggested by the study of [11] and aims to stress the differences and the


similarities with the characterization of torsion in abelian categories. ln 5.4 -we prove that it is


a generalization of the definition of Cassidy, Hébert and Kelly [11]. The remaining results are


from [11] with exception of 5.7 and of example (c) where we study the torsion theories of the


category of graphs and in preorder categories defined by complete lattices, respectively. Section


6 contains a brief survey of torsion theories in categories without zero object as well as


sufficient conditions for a category without zero object to have only as torsion theories the


trivial ones. As a direct consequence we conclude that the notion of torsion becomes trivial in


topological categories giving us a justification for the fact of being the analogue theory of


connectednessesjdisconnectednesses that plays an important role in such categories. Except for


7.10 (ii), which was inspired by the similar result for abelian categories, all the results in


section 7 are from [11] and deal with torsion theories in categories with a zero objecto ln 8.5,
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Summary


8.6, 8.7, 8.8 and 8.10 we callect results of an approach given by Tholen in [45J for the study of


cannectians in the context af factorizations of sources and apply thern ta the special case we


are interested in: the torsion theories in categories with zero objecto With these results, and still


inspired in [45], we obtain theorem 8.11 and its corollaries 8.12 and 8.13, which give us a


characterization of torsion theories in terms of b-connections and b-reflections. Finally, we are


able to relate in proposition 8.14 the definition given by Cassidy, Hébert and Kelly [11] with


Barr's definition [4].


The third chapter deals with torsion theories and localizations. In section 1 we first


recall the definition of certain types of reflectors given in [11] and its characterizatians, giving


particular attention to the reflectors with stable units (1.6) whose characterization is based on


results of [34] and on the observation that condition 1.9 (iv) in this paper coincides with the


definition of reflector with stable units. The example 1.8 is a detailed proof of theorem 1 of


[10]. The relation between localizing subcategories and hereditary torsion theories is studied in


section 2. Its main goal is to present a result of [11] where it is shown that in abelian categories


with enough injectives there exists a one-ta-one correspondence between localizing subcategaries


and hereditary torsion theories. It also contains some examples of non-abelian categories where


this correspondence is not bijective. The third and last section is concerned with the idea of


setting up a link with the classical results on localizations suggested in the introduction of [11].


For that our main tools are two results of [5] which we recall in 3.2 and 3.4. With these results


we describe localizing subcategories of some special categories in terms of a topology adequate


for each case. We also make a short reference to the case of to poses.
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Introduction


INTRODUCTION


Throughout this dissertation we shall denote categories by Á, ~, e, ... , etc. The class


of objects of a category Á will be denoted by Obj A, whereas, MorÁ will stand for the


class of morphisms of Á. Capital and small Latin letters will be used for objects and


rnorphisms of a category, respectively, and 80 we will abbreviate A E Obj.A and fE MorÁ to


A E A and f E A. For two objects A and B in A, Hom Á (A,B) will denote the set of


morphisms from A to B. We shall simply write Hom A (A,B) = O when Hom A (A,B) = {O}.


By a subcategory we always mean an isomorphism closed full subcategory, and so


identified by its objects.


Our general references for Category Theory are [27] and [36].


We shall denote by Isoví , Mono A, ExtMonoA, RegMonovt, StrMonoA, Epivt,


RegEpiA and StrEpiÁ the classes of isomorphisms, monomorphisms, extremal


monomorphisms, regular monomorphisms, strong monomorphisms, epimorphisms, regular


epimorphisms and strong epimorphisms of the category A, respectively.
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1- Torsion theories in abelian categories


CHAPTER I


TORSION THEORIES IN ABEllAN CATEGORIES


1. TORSION THEORIES: GENESIS AND EVOLUTION


An element g of an abelian group is called a torsion element if it has finite order, i. e.


if the ideal {n E 7L I ng =O} of 7L is non-zero. An abelian group G is torsion if all of its


elements are torsion elements, which is equivalent to say that Hom(G,Q) =O, Q being the


group of rationals. It is important to point out that every group G has a maximal torsion


subgroup Gt for which (G/Gt)t = O, i. e. G/Gt is a torsion-free group.


This definition of torsion can easily be extended to modules over integral domains.


However, for other rings this concept may have no relevance. Using this definition, the


categories of modules have non-zero torsion-free objects only if the ring has no zero divisors.


lndeed, if d and d' are non-zero elements of the ring R such that dd' =O then, for every


element m of a left R-module, either d' m = O or d( d'm) = O.


Skirting this and other difficulties, several authors generalized the concept of torsion to


any categories of modules, e. g. Dlab in [20] and Levy in [35].


The notion of torsion theory that we shall present in this chapter is due to Dickson


[17], who gave an axiomatic definition of torsion in abelian categories. This definition avoids


certain pathologies that are in general associated to definitions too closely related with a


special abelian category, and unifies important classical torsion theories like for example those


of Goldie and of Larnbek [42]. Furthermore, it allows the formulation of the corresponding


primary decomposition theorems. For additional information we refer to Dickson [16], [17] and


[18].


Throughout this chapter we shall denote by .A an abelian wellpowered category in


which there exist the product TI (AI Ai) and the coproduct U Ai' for every family
iEI iEI


{Ai: i E I} of subobjects of an object A in .A.


In an abelian category, every morphism f: X --t Y has a factorization
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I - Torsion theories in abelian categories


X~Imf~Y


where m is a monomorphism and e is an epimorphism ([36], VIII.3.I). We shall use kerf


and Kerf to denote the kernel morphism of f and the corresponding object, l.e.


Kerf~X where m e ker f.


The assumptions on the category .Á imply that the set f(A) of subobjects of each


.Á-object A is a complete lattice for the usual order relation: for each family {Ai: i E I} of


elements of f(A),


and


/\ Ai = Ker (A--+ TI (AI Ai))
i E I i E I


([43], IV, §2 and §4).


DEFINITION 1.1. A pair (e,':B) of subcategories of .Á is a torsion theory of .Á


provided that:


(TI) Horn _A(C,B) = O, for each C E e and B E ':B.
(T2) For every object A of .Á there exists an exact sequence


0--+ C--+A--+B--+O


with C E e and B E ':B.
Then we shall say that e is a torsion subcategory and its objecta are called the


torsion objects while ':B IS a torsion-free subcategory and its objects are called


torsion-free objects.


It is clear that if (e,':B) is a torsion theory then the exact sequence in (T2) is unique


up to isomorphism.


EXAMPLES 1.2. (a) Let .Ab be the category of abelian groups, ~ ors and ~ orsg


be the subcategories of .Áb whose objects are the torsion abelian groups and the torsion-free


abelian groups, respectively. Then (~ors, ~ ors'F) is a torsion theory of .Ab.


(b) Consider the category R-Mod of left modules over a ring R with identity. A


subset S of R is called a left denominator set if it is multiplicatively closed and satisfies the


following conditions:


(SI) VaES, VrER, :lbES, :ltER:ta=br.


(S2) If ra=O with a E S then br=O for some b E S.
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I - Torsion theories in abelian categories


If we consider a left denominator set S and define for each ME R-Mod the


submodule


teM) = {m E Miam = O for some '3. E S }


then the pair (e, '3'3) where


e = {M E R-Mod I teM) = M} and '3'3= {M E R-Mod I teM) = O}


is a torsion theory of the category R-Mod. The modules of e are usually called S-torsion


modules and they are precisely the modules for which the respective quotient module M[S-l]


is the zero module ([43], lI.3).


When S is the set of regular elements of the ring, we obtain the definition of torsion


for modules over rings with zero divisors, originally given by Levy in [35].


(c) The pair (':D,~), where 'j) is the subcategory of divisible abelian groups and ~


1S the subcategory of reduced abelian groups, is also a torsion theory of Áb. This is an


important example because every abelian group G has a direct decomposition G=DEBR,


where D is the maximal divisible subgroup of G and R E '% ([23], 21.2).


DEFINITION 1.3. A subcategory ~ of the category Á is called reflective if the


inclusion functor, E: ~ ----+Á, has a left adjoint, R: Á ----+~, i. e., for each object A of Á,


there exists a universal morphism, rA :A----+R(A), from A to E. This morphism is called


the reflection of A in '3'3, and the functor R is the reflector. If all reflection morphisms


belong to a given class g of morphisms in Á, 'll is called an g-reflective subcategory of Á.


REMARKS 1.4. (i) By duality we obtain the notions of coreflective subcategory,


coreflection and of coreflector.


(ii) It is easy to check that, given a reflector R: Á----+~, there exists a reflector


R': Á ----+'3'3, naturally isomorphic to R, such that r' B is the identity for each object B of


~ (cf., for example, [30], 11.7.6). Since there is no loss of generality, in the following, we shall


always consider reflectors that satisfy this condition.


(iii) From (TI) and (T2) it follows that ~ 1S an Epi-reflective subcategory of Á.


lndeed, it is easy to see that the morphism A ----+B in (T2) is the reflection of A in '3'3.


Then, by duality, e is a Mono-coreflective subcategory of Á.


The family 'JÁ of subcategories of Á partially ordered by inclusion 1S a (possibly


large) complete lattice. Let us consider the operators
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1 - Torsion theories in abelian categories


.-l-:fA--dA
~f------+ ~ -l-:= { A E Obj.A. I RomA (B,A) = O for all B E Obj~ }


and


·<-::t'A----+:t'A


~f------+ ~ <-:= { A E Obj.A. I Hom A (A,B) = O for all B E Obj~ }.


The following proposition, whose proof is straightforward, brings together some of their


properties.


PROPOSITION 1.5. Let ':B, ':B1 and ':B2 be subcategories of A. Then:


(i) ':BC~<--+.


(ii) ~ C ':B-+ <-o


(iii) ':B
1
C ':B


2
=> (':B


2
-l- C ':B


1
-l- and ':B


2
<---C ':B


1
<---).


(iv) ':B<-- -l- <---= ':B<--- and ~ -l- <- -+ = ':B-+. o


Hence,


are functors for which the pair (. -+ ,. <---) lS a Galois connection ([13], p. 44), which lS


equivalent to say that


REMARK 1.6. The functors T=. -+ <--- and F =. f-- -+ are closure operators ([13],
I


p. 42) in the complete lattice j' A' to which correspond the following closure systems


and


in the sense of Cohn ([13], p. 41).


LEMMA 1.7. I] (C,~) is a iorsion theory of a category A then C-l-=~ and


':B <- = e.


Proof: By (TI) ':BC e -+ and e C ':B<---. Since, for every object A, there exists an


exact sequence


O--+C~A~B--+O,


then, if A E c ", we have that f=O, and so g is an isomorphism. Hence A E ':B and


therefore C-+ =~. The other inclusion follows by duality. o
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J - Torsion theories in abelian categories


PROPOSITION 1.8. A pair (e, '13) of subcategories o] .A is a torsion theory o] .A


if and only if the following conditions are satisfied:


(i) en'13={O}.


(ii) e ís c/osed for quotíent objects, i. e. if the sequence C---+A---+O is exact and


C E e then A E e.


(iii) '13 is c/osed for subobjects, i. e. if the sequence O---+ A ---+ B is exact and B E '13


then A E '13.


(iv) For every object A of .A there exists an exact sequence 0---+ C---+A---+ B---+ O,


with C E e and B E '13.


Proof: Let (e,'13) be a torsion theory of .A. Condition (i) is obviously true and (iv) is


the condition (T2) of 1.1.


If C~A--+O


lS exact, i. e. g is an epimorphism, then A E '13<- because, for every B E Obj'13, if


fE Hom Á(A,B) we have f.g=O and so f=O. Thus A E e, by 1.7, and we have proved (ii).


Condition (iii) follows by duality.


Conversely, if (C,'13) satisfies (i), (ii), (iii) and (iv) then (T2) holds. It remams to


prove (TI). Let C E C, B E 'j) and fE Hom .A(C,B). Consider the (Epi,Mono)-factorization,


m.e, off. By(ii) and (iii), ImfECn'13 andso Im f ee Ü, i.e. f=O. O


DEFINITION 1.9. A subcategory ':D of Á is called closed under extensions if, for


everyexactsequence O---+D1---+A---+D2---+O, AE':D whenever Dl,D2E':D.


LEMMA 1.10. If the subcategory e is of the form 'j)<-, for some subcategory 'j),


then C is closed under extensions and the formation of all coproducts that exist in .A.


Proof: If we consider an exact sequence


with Cl, C2 E e, then, since for every object B E '13 the contravariant functor Hom(-,B) is


left exact, we have the exact sequence


But Hom(C2,B) = Hom(C1,B) = ° so that Hom(A,B) = O, i. e. A E '13<- = C.


Finally, let {Cj: i E I} be a family of objecte of e whose coproduct exists m .A.


Then U C, E '13<- =C. Indeed, for every object B of '13, we have
iEI


Hom( li Cj,B)::= TI Hom(C;,B) = O.
i~I i E I


o
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I - Torsion theories ín abelian cateçories


THEOREM 1.11. (C, 53) is a torsioti theoru of .A. if and only if C --+ = 53 and


~ t-- = e.


Proof: The necessity was proved in 1.7. To prove its sufficiency it is enough to show


(T2), since (TI) trivially holds. Let A be an object of .A. and f(A) n C = {Ai: i E I}, where


f(A) denotes the set of its subobjects. Consider the following diagram


U A ...••f--_u...:i'--_


;/
iEl •


e I
I


At :


-. ir
m~~


A


m.•


where f is the ulllque morphism such that f.u, = mi, for every i E I, and m.e is the


corresponding (Epi,Mono )-factorization. By 1.10 we have U Aí E C and, in a similar way
iEI


to that one used in the proof of 1.8 (ii), we can conclude that At E C, since e is an


epimorphism. To finish the proof it remains to show that A/ At E 53= C -+. If C E C and


gEHom.A.(C,A/At) then ImgEC and it is a subobject of A/At. Thus Img=B/At, for


some subobject B of A greater than or equal to At, with respect to the usual order relation


in the class of subobjects of A. Since At and B/ At E C, and, by 1.10, C is closed under


extensions, then B E C so that B E {Ai: i E I}. We have already observed that in the lattice


f(A), V Ai=At. Hence we can conclude that B=At, which implies that g=O. D
i E I


With this theorem we can obtain very many examples of torsion theories of .A.: every


subcategory 53 of .A. generates the torsion theory (53 (-,53 (- --+) and cogenerates the torsion


theory (53 --+ (-,53 --+). This unifies the classical torsion theories. For example, in a category of


modules over a ring R, the Goldie torsion theory is the pair (53 --+ t--, 53--+), where 53 is the


subcategory of modules M/L with L an essential submodule of M, and the


Lambek torsion theory is the pair (53 <-,53 <- --+), where 53 is the subcategory defined by the


injective envelope of R (see definition 2.2). In .A.b, the torsion theory generated by the group


Q of rational numbers is the torsion theory we referred to in 1.2(a) and l.2(c) is the torsion


theory it cogenerates.
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1- Torsion theories in abelían categories


COROLLARY 1.12. Let ':B and e be subcategories of the category .A. Then:


(i) e is a iorsion subcaiegory if and only if it is c/osed under quoiieni objecte,


extensions, and all the coproducis that exist in .A.


(ii) ':B is a torsion-free subcategory if and only if it is closed under subobjects,


extensions, and all the products ih ai exist in .A.


Proof: (i) If e is a torsion subcategory we have already observed (1.8(ii) and 1.10)


that e is closed under quotient objecte, extensions, and all the coproducts that exist in .A.


Conversely, it is obvious that (e,e--+) verifies (TI). It also satisfies (T2) (see proof of


1.11), and so it is a torsion theory.


(ii) follows from (i), by duality. o


EXAMPLES 1.13. Let p be a prime number.


(a) An abelian group is called a p-group if the order of its elements is a power of p.


The subcategory p-.Ab of p-groups is a torsion subcategory of.Ab because it satisfies 1.12(i).


This subcategory is equal to {&:'p}--+<---, where &:'p denotes the cyclic group of order p.


lndeed P:p}--+<---cp-.Ab because IIp is a p-group and {Ilp}--+<--- is the smallest torsion


subcategory that contains IIp. Conversely, given a p-group G, denote by < g > the


subgroup of G generated by {g}. The morphism


is an epimorphism. But, for each g E G, there exists a n E N such that < g > == &:'n- On thep
other hand, the sequence


O---t&:' n ---t&:' n+l---t&:'p---tOp p


is exact, for every n E N, and so, since {Ilp} --+ <--- is closed under extensions, it can be proved


by induction that &:'pnE {&:'p}--+<---, for every n E N' It follows that G E {&:'p}--+ <--- because


{&:'p}--+ <--- is closed under epimorphic images and <p is an epimorphism.


(b) The subcategory of divisible p-groups also satisfies 1.12(i) ([23], 20). This torsion


subcategory coincides with {&:'(pCO)}--+ <---, where &:'(pCO)is the multiplicative group of the


complex roots of the equations xpn = 1, n E N, because every divisible p-group is a direct sum


of copies of ll(pOO) ([23], 23.1).


REMARK 1.14. The condition "':B is closed utuler exiensions" is equivalent to the


following:


For each epirnorphism e: A ---t B2' with B2 E '13, if the diagram
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I - Torsion iheories in abelian caieçories


Bj-----" O


j j
A ---e--~·B


2


is a pullback and B1 E ':B then A E ':B. Therefore, 1.12(ii) allows us to observe a first elose


relation between the theory of connectednesses / disconnectednesses in cr op [3] and the


torsion / torsion-free theory on abelian categories. A disconnectedness 'Jl m cr op lS a


subcategory elosed under products and subobjects, and such that for each surjective morphism


f:X~Y, with YE'Jl, ifinthefollowingpullbackwhere 8y(*)=y,


X-----· Y
f


r1(y) E 'Jl, for every y E Y, then X E 'Jl ([3], 2.12).


2. HEREDITARY TORSION THEORIES


DEFINITION 2.1. A subcategory C of .Á is called hereditarv if it is closed under


subobjects.


If the subcategory e of a torsion theory (e, ':B) is hereditary we say that (e, ':B) is


an hereditary torsion theory.


EXAMPLES. The torsion theories of the examples 1.2 (a) and (b) are elearly


hereditary.


The Lambek torsion theory is also hereditary since M is a Lambek torsion module if


and only if Hom(N,A) = O, for every submodule N of M.


1.2(c) is an example of a non-hereditary torsion theory.
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1- Torsion theories in abelian categories


DEFINITION 2.2. We shall say that a monomorphism i:B--A is an essential


extension of B if B n A' i:- 0, for every non-zero subobject A' of A. An injective envelope


of an object B is an essential extension of B, o rB __ E(B), such that E(B) is an injective


object, i. e. for every monomorphism f: X-- Y, the map


Hom(f,E(B»: Hom.Á (Y,E(B»--Hom .Á (X,E(B»


g !---t g.f


is surjective.


The category .Á is said to have injective envelopes if every object of .Á has an


inject ive envelope.


It can be easily proved that if an injective envelope exists then it is unique up to


isomorphism.


THEOREM 2.3. Let (e,~) be a torsion theory of the abelian category .Á and


consider the following conditions:


(i) (e,~) is hereditary.


(ii) ~ is closed under essential extensions.


(iii) 'J3 is closed under injective envelopes.


Then (i) => (ii) => (iii) and, if .Á has injective envelopes, the conditions are equivalent.


Proof:


(i) => (ii): Assume e is hereditary. Consider B E ~ and let i: B -- A be an essential


extension of B. We prove now that A E ~ = e ---t. For every morphism f: C __ A, with


C E e, we consider the following pullback


D f • B


1 j i
C f "A


Since 1 is a monomorphism, then D E e and so f= O. In the following diagram,
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I - Torsion theories in abelian caiegories


(2) i' (1)


c --------------. A
f


since (1) is a pullback t is the unique morphism for which it commutes. Furthermore, it can


be easily observed that (2) is also a pullback. Thus t is an epimorphism and so Im f n B = O.


Since i is essential then Im f = O, i.e. f =O.


(ii)::>(iii): It is obvious.


Suppose now that .A has injective envelopes.


(iii)::> (i): Let j:C'~C be a monomorphism where CEe. To prove that


C'Ee=~<- we consider g:C'~B, with BE~, and let C\!:B~E(B) be the injective


envelope of B in .A. Since E(B) is injective, there exists a morphism f: C~E(B) such


that the diagram


j
C' ---"--_. C


g


E(B)


comrnutes. Hence, since E(B) E~, f=O and 80 g =O. o


10







1- Torsion theories in abelian categories


REMARK 2.4. A family {Ai: i E I } of subobjects of an object A is called


directed if for every pair (i,j) E IxI there exists a k E I such that Ai ~ Ak and Aj ~ Ak' for


the usual order relation in the class of subobjects of A.


Every cocomplete abelian category, with a generator, for which the equality


holds, for every directed family {Ai: i E I} of subobjects of an object A and every subobject


B of A, has injective envelopes ([39), IIL3.2). Therefore, any Grothendieck category [43] has


injective envelopes. These categories are a natural extension of categories of modules and are


precisely the categories which arise as categories of modules of quotients ([43], chapter X).


PROPOS1T10N 2.5. lf .Á has injective envelopes and e is a subcategory of .Á


closed under subobjects and quotient objects then the torsion theory (e -+ <-, e -+), cogenerated


by e, is hereditary.


Proof: By 2.3 we only need to show that e -r is closed under injective envelopes. If


BEe-+, let o::B---tE(B) be an injective envelope of B, and let f:C---tE(B),


with C E e. Then Im f E e and Im f n B E e, by hypothesis. Hence, Im f n B is a subobject


of B that belongs to e and so Irn f n B = O. By essentiality of o, Im f = O, i. e. f= o. O


EXAMPLE. By proposition 2.5 we can immediately conclude that the Goldie torsion


theory is heredi tary.


3. TORSION TIIEORIES IN THE CATEGORY OF ABEL1AN GROUPS


We finish this first chapter by presenting the complete classification in .Áb of the


torsion subcategories contained in the subcategory 'J'ors of usual torsion groups, and of the


hereditary torsion subcategories.


Let us denote by P the set of prime numbers. We call any formal product


Il pe(p), where e(p) is O, 1 or 00


pEP
a Steinitz number and we denote the set of Steinitz numbers by N. Let U be the class of


torsion subcategories of .A.b contained in 'J'ors. Consider e E U and p E P. If there is a
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non-zero p-group G in e, consider his decomposition G = DEBR, where D is the maximal


divisible subgroup of G (1.2(c)). In case R=O, G is a divisible p-group and then a copy of


ll(pOO) belongs to e since every divisible p-group is a direct sum of copies of ll(pOO), as we


referred to in 1.13 (b). Otherwise pR i- R. Indeed, for any prime number q, distinct of p, w,e


have qG = G since G is a p-group, so G = qD EBqR= D EBqR, which implies qR = R. Hence


if pR is equal to R, R is divisible, i. e. R = 0, a contradiction. Therefore pR i- R, and the


projection R--+ RjpR is a non-zero map. Since every non-zero element of RjpR has order


p, RjpR may be written as a direct sum in which all summands are isomorphic to IIp. Thus,


in this case, e contains a copy of IIp'


These facts enable us to define the following map:


.6.:U--+N


er---t Il pe(p)
pEP


o if e does not contain a non-zero p-group .


where e(p) = 1 if e contains a copy of IIp.


00 if e contains a copy of ll(pOO) and


does not contain a copy of IIp.


THEOREM 3.1. The map .6. is a bijection.


Proof: Consider the map


Q: N --+ U
rI p«r» ~ y-+ +-


pEP


with y = {Gp I p E P} and where, for every p E P, Gp is equal to 0, IIp or ll(pOO),


whenever e(p) is 0, 1 ar 00, respectively. For every e E U,


n.6.(e)=n( Il pe(p))=y-++-.
pEP


First we show that n.6.=Idu' i.e. e=ÇJ-++-.


The inclusion y -+ +- c e holds trivially because y C e, e is a torsion subcategory


and y --+ +- is the smallest torsion subcategory that contains y. We now prove the reverse


inclusion. Let C E e. The primary decomposition theorem can be applied to C because


e c '5' ors, and so we have C = U Cp, where each Cp is a p-group. It is obvious that each
pEP


Cp belongs to e. In order to prove that C E Y --+ +- it suffices to show that each Cp


belongs to g-+ +- because this subcategory is closed under coproducts. Since Cp is a


p-group then Cp belongs to {ll(pOO)}-+ +- if it is divisible or belongs to {llp} -+ +-


otherwise (recalll.13(a) and (b)). Thus Cp E g--++-, as we claimed and so Q.6.=IdU'
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Furthermore, fl.D = IdN. Indeed, for every Steinitz number TI pe(p) we have
pEP


fl.D( TI peCP»)=fI.(g-+<--) ..
pEP


Since {1'p}-+<--={p-groups} and {1'(pOO)}-+<--={divisiblep-groups} (1.13 (a) (b)),


it is obvious that


y-+<--=( U e )-+<--
pEP P


where ep, for every p E P, is the subcategory {O}, the subcategory of p-groups or the


subcategory of divisible p-group, whenever e(p) is equal to 0, 1 or 00, respectively. But by


([15],2.5), GEg-+<-- if and only if G= li Ge, where Ge denotes the maximal
p E P p p


subgroup of G that belongs to Cp,


Then, it is easy to check that


fI.(g-+<--)= TI pe(p),
pEP


o


Finally, we present the classification of the hereditary torsion subcategories of .Ab.


We say that a torsion subcategory of .Ab is.l2.!:9.l2ITif it does not contain all abelian groups.


THEOREM 3.2. The map fi. defines a one-to-one correspondence between the set


U' of the proper hereditary torsion subcategories of .Ab and the set N' of the Steinitz


numbers for which e(p) is equal to ° or 1, for every p E P.


Proof: Let e EU'. If e contains a group G with an infinite order element then l'


belongs to e, because G has a subgroup isomorphic to 1'. Then e = .Ab, since any group is


an homomorphic image of a direct sum of copies of 1'. Hence e c '5'ors and so U' eU.


Therefore, by 3.1 it suffices to prove that fI.(U') = N'.


fI.(U') C N': Consider


TI pe(p'=fI.(e), with eEU'.
pEP


If for some pEP, e(p)=oo, then Z(pOO)Ee. Since Z(pOO) has a subgroup


isomorphic to Zp and this subgroup belongs to e, wehave that e(p) = 1, which is


contradictory. Thus e(p) IS o or 1, for every p E P.


N' C ~(U'): Let TI pe(p) E N'. By 3.1, there is a e E U such that
pEP
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TI perp) = .0.(C).
pEP


We show that CEU'. As we observed m 3.1, C=(:r-+f-, with y={Gp I pEP}


where, for every p E P, Gp is equal to O or lp, if etp) is equal to O or 1, respectively.


Just, as in 3.1, it is obvious that


y~f-=( U C )->f-
P EP P


where Cp, for every p E P, is the subcategory {O} or the subcategory of p-groups, as e(p)


is equal to O or 1, respectively. But, since each Cp is closed under subobjects and quotient


objects,


u C
pEP P


also verifies these conditions and so ~->f-=C is hereditary, by 2.5. o
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CHAPTER 11


TORSION THEORIES IN CATEGORIES WITH INITIAl
ANO TERMINAL OBJECTS


1. REFLECTIVE SUBCATEGORIES AND PREFACTORIZATION SYSTEMS


Let Á be a category and e and m be two morphisms in Á.


The morphism e is said to be orthogonal to m if for every pair (u, v) of morphisms


m ..Á such that v.e ec m.u there exists a unique morphism d in ..Á such that d.e=u and


m.d ec v.


e ..


. .
m


When e is orthogonal to m we shall write elm.


Given a class J{, of morphisms in ..Á, let


J{, i= { e E Mor.L I el h, for every h E JG}


JG! = { m E MorÁ I hjrn, for every h E JG}.


The following proposition is similar to 1.1.5 and has also a trivial proof.
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PROPOSITION 1.1. Lei %, %1 and %2 be classes of morphisms of..A· Then:


(i) JbCJbH.


(ii) JbcJbli.


(iii) %1 C %2 => (%2 i C %1i and %21 C %11).
(iv) %i1 i =% i and %1i1 = %1. O


DEFINITION 1.2. A pair (~,A) of classes of morphisms in ..A is called a


prefactorization system of Á if ~1= A and A i= s.


EXAMPLES. For any class Jb of morphisms in ..A, (%i,JbH) and (%li,%1) are


prefactorization systems of ..A.


Next we recall some properties of the class A.


PROPOSITION 1.3. lf (g,A) is a prefactorization system in ..A, then:


(i) s n A = Iso..A.


(ii) A is c/osed uruler composition.


(iii) lf f.g EA and f EA UMonoÁ then g EA.


(iv) The pullback of a morphism in A along a morphism in Á lies in A.


(v) A is stable uiuier limits.


Proof: See e. g. ([12),1.1.1). o


The corresponding properties for the class g follow by duality.


The class of prefactorization systems with the order relation defined by


(g,A):::: (g',A') if A C A' (or, which is equivalent, if s J g')


is a (possibly large) complete lattice with smallest and greatest elements (MorÁ,IsoÁ) and


(IsoÁ,MorÁ), respectively.


DEFINITION 1.4. A pair (~,A) of classes of morphisms in Á IS a factorization


system of ..A provided that:


(i) (~,A) is a prefactorization system.


(ii) Á is (~,.Ab)-factorizable, i. e. every morphism f in Á has a factorization


f = rn.e, with e E ~ and m E A.
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REMARKS 1.5. (i) Let be a factorisation system. Then the


(!';,A)-fadorizations .are unique up to isomorphism, i. e. if


A~B~C and A~B'~C


are two (b,A)-factorizations of a morphism f then there exists an isomorphism d: B--+B'


such that d.e e e' and m.d e.rn.


(ii) The condition (i) of 1.4 can be replaced by the conditions (cf. [21]):


(i1) bC.Abi.
(i2) b and A are closed under composition.


EXAMPLES. (a) In any category .A, (lso.A,Mor.A) and (Mor.A,lso.A) are


factoriaation systems.


(b) The categaries :fet and yrp of sets and groups, respectively, as well as the


categary .Ab of abelian groups, have the factorization system (Epi,Mano).


(c) (Epi,ExtMano) is a factoriaation systern of the categary <J op of topalogical


spaces.


(d) In f'et, the pair (b,A) with


~ = {e :X --+ Y I X = 0 => Y = 0} and


.Ab={m:X--+Y I X=0 ar m is a bijedion}


is a factorization system.


DEFINITIONS 1.6. (1) A morphisrn h:A--+A' in .A is said to be orthogonal to


an object B of .A, and we write h 1- B, if Hom(h,B) is a bijection, i. e. if for every


morphism f:A--+B, there exists a unique morphism g:A'--+Bsuch that g.h=f.


(2) Given a class Jb of morphisms in .A, we denote by %1- the subcategory of .A


defined by:


ObjJb1- = {B E Obj.A I h 1- B, for every h E Jb}.
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(3) If ~ is a subcategory of Á, we denote by ~ T the following class:


{h E MorÁ I h 1.. B, for evéry B E Obj'B}.


REMARK 1.7. The definition of co-orthogonality, the subcategory 1.. J{, and the


class T~ are defined dually.


Given a functor R: Á~~, the class of the morphisms f m Á such that


Rf E Iso'B will be denoted by ~R.


LEMMA 1.8. Let < F,G;1],ç >: Á-c:B be an adjunciion. Then:


(i) ~F = (G(Mor~)) i = G(~) T.


(ii) 11 Á has a terminal object T we have that ~F={G(B)~T I BEObj~}i.


Proof: (i) We shall prove that Faj b if and only if aj Gb, for a E Mor A and


b E Mor'B, since this implies ~F = (G(Morc:B)) i, according to the following sequence of


obvious equivalences:


a E (G(Morc:B)) i {:? alCb, for every morphism b of c:B


{:? Faj b, for every morphism b of ~


{:? Fa is an isomorphism


Moreover, it suffices to show one of the implications because the other can be obtained


by duality.


Faj b cc- aj Gb: Let us consider two morphisms u:A~G(B) and v:A'~G(B') of


.A such that v.a= Gb.u. Since the following diagram commutes


F(A) Fa • F(A')


Fui IFv
FG(B) FGb. FG(B')


<B! ÇB'


B b
•. B'
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and Fa j b, there exists a unique morphism d:F(A') __ B such that d.Fa=l;B.Fu and


b.d ee ÇB,.Fv.


The morphism Gd.1)A' IS the uni que morphism such that (Gd.1]A,).a= u and


Gb.(Gd.1] A') = v:


• Gd·1]A,·a=Gd.GFa·1]A =G(d.Fa)·1]A =G(çB"Fu)·1]A = GÇB·GFu·1]A =GÇB"1]G(B)"u=u


because G';B.1]G(B) = 1G(B)' by one of the triangular identities of the adjunction.


• In an analogous way we have that


• To prove the unicity of Gd.1]A' let us consider a morphism d':A'--G(B) such that


d'.a=u and Gb.d'=v. Wehavetheequalities


whence d=';B"Fd', which is equivalent to d'=Gd.1]A" as can be easily observed.


Now we show that ~F C G(~)T. Let h:A--A' be a morphism of .A such that


FhEIso':B and f:A--G(B) a morphismof .A with BEObj~. Since 1JA:A-+GF(A) is


an universal morphism from A to G there exists a uni que morphism f: F(A)-+B such


that Gf.1]A = f. Consider the following commutative diagram:


hA •. A'


~ ~
f GF(A).. GFh •. GF(A')


/_ (GFh) 1


/ Gf
G(B)


- -I -
We have that Gf.(GFh) .1JA,.h=Gf.1JA =f.


It remains to prove that Gf.(GFhr1.1JA' IS the umque rnorphism fulfilling this


condition. Let us assume that g:A'-+G(B) satisfies g.h=f. Then GFg.GFh=GFf, l.e.


GFg= GFf.(GFhr1, whence


- - -1
But çB"Ff=f because G(çB"Ff).1] A =f, and so g= Gf.(GFh) .1]A'·


19







II - Torsion theories in categories with initial and terminal objects


Furthermore, G('~l C (G(Mor'1\)) i. Indeed, consider the following commutative


diagram


h
- A'A


u lv
G(B) Gb • G(B')


where h is a morphism of G('1\)T and b a morphism of '1\. Since h E G('1\7 there exists a


unique morphism d:A'---+G(B) such that d.h=u. By the same reason v is the unique


morphism such that v.h ee Gb.u. But Gb.d.h e. Cb.u so Cb.d ee v.


(ii) Suppose now that .Á has a terminal object T.


G('1\l C {G(B)---+T I BEObj'1\}L Let h:A-----4A' be a morphism of G('1\l and


b:G(B)---+T with BEObj'1\. Given u and v such that b.u=v.h, there exists a unique


morphism d such that d.h=u, because h E G('1\)f. Obviously b.d ee v, therefore h j b.


{G(B)-----4T I BEObj'1\}l C (G(Mor'1\))l: Let h:A-----4A' be a morphism of


{G(B)----+T I BEObj'1\}T. Consider morphisms u:A-----4G(B), f:B-----4B' and v:A'-----4G(B')


such that B and B' are objects of '1\ and Gf.u=v.h.


hA ---=---- A'


v~


G(B) Gf • G(B') ---.-- T


Since h E {G(B)----+T I B E Obj'1\} 1 then v is the unique morphism such that


v.h e- Gf.u and there exists a unique morphism d:A'----+G(B) such that d.h=u. Thus


v = Gf.d, because Gf.d.h = Gf. u. O


From now on, throughout this section, we shall consider a category Á with terminal


objact T.


Let us denote by ~ the conglomerate of reflective subcategories of .A, ordered by
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inclusion, and by GJ> the ordered conglomerate of prefactorization systems (b,.Ab) of Á that


fulfil the following condition:


(P) 'ri A E Obj.A the morphism A-+T has an (~,.Ab)-factorization.


LEMMA 1.9. Ii '1\E '% then the prefactorisaiioti system ((Mor'1\) 1,(Mor'1\) i!)
belongs to GJ>.


Proof: Given A E Obj.A and f: A-+T, consider the reflection morphism


rA:A-+R(A) of A m


f:R(A)-+T and f.rA =f.


such that b.u ee v.rA. By


'1\. Since T is terminal, there exists a unique


Moreover rA E (Mor'1\) l. Indeed, let b E Mor'1\ and


definition of rA there exists a unique morphism d


morphism


u and v


such that


d.r A = u. By the same reason v is the unique morphism such that v.r A = b.u. Since


b.d.rA =b.u then b.d ec v.


u


rAA ---'-"-_. R( A)
/


/
/


/
//d


/
/


/


/
B-----·~ B'


b


v


Thus rA [b as we claimed.


Finally,since '1\ is reflective, TEObj'1\ ([27], 36.13),then fEMor'1\C(Mor'1\)il. O


If (~,.Ab) is a prefactorization system we denote by .Ab/T the subcategory of Á


whose class of objects is defined by {A E Obj.A I A-+T E.At:.}.


LEMMA 1.10. li (~,.At:.)E 'P tlieti .At:./TE '%.


Proof: Let A E Obj Á, f: A -+ T, and m.e be the (~,.At:.)-factorization of I, with


e:A-+B and m:B-+T. By definition, BEObj(.Ab/T). Furthermore, e is a reflection


morphism of A in Ab/T. Indeed, assuming that g: A -+ B'. is a morphism of codomain in


Ab/T, we have that m.e e= m'.g, where m': B'-+T is the morphism from B' to the


terminal objecto Since ejrn', there exists a unique morphism d such that d.e = g and


m'.d=m
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g


A--",,-e-_ •. B


"/
/


/
//d


/
/


/


/
B'----" Tm'


m


which is also the unique morphism such that d.e = g. O


REMARKS 1.11. (i) The reflection morphisms belong to b and 80 A/T is an


~-reflective subcategory of .A.


(ii) By lemma 1.8 I:R = (MorA/T) T, where R 18 the reflector of .A m .Ab/T.


Hence ~ C I:R because ~ C (Mor.Ab/T) T.


Lemmas 1.9 and 1.10 define order-preserving maps


<I> : '], , 'j>


':B f---t ((Mor':B) i,(Mor':B) i 1)


and


(8,A) r---t A fT.


PROPOSITION 1.12. 1l1<I> = Id'], and <I>w ~ Id'j>'


To prove this proposition we shall make use of the following results:


LEMMA 1.13. Let '] be a reflective subcaiegory of .A with reflector R:.A --+ '].


Then (Mor']) i= {B--+T I B EObj']} r = ']T = L;R'


Proof: It is a specialization of 1.8. o


LEMMA 1.14. Lei '] be a reflectiue subcaiegory of.A and


{rA:A--+R(A) I AEObj.A}


be ttie class of rcflcction morphisms.


If Jb is such that {r A I A E Obj.A} C JbC ER then Jb1/T= Jb..L= ':B.


Proof: See ( [12], rI.5.5). o
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Proof of 1.12:


If '1lE ~ then 'l1<l?('J3) = 'l1((Mor'1l) i,(Mor'J3) il)


= 1l1(~R'(~R)l), by lemma 1.13.


Furthermore, taking %=~R in 1.14 we obtain 1l1<I>('~B)=(~R)ljT='1l.


If (B,A) E ':P then


<I>1l1(B,A)= <I>(AjT) = ((Mor(A/T)) 1,(Mor(A/T)) I 1).


Moreover, since g C (Mor(AjT)) i, we can conclude that <I>1l1(g,A)::; (g,A). D


Given a prefactorization system (g,.Ab) E 'P, we call reflective interior of (~,.Ab) to
o o


the image of (g,A) by <I>1l1and we denote it by (~,.Ab). The elements of ':P that coincide


with their reflective interior are called reflective prefactorization systems and the corresponding
o


conglomerate is denoted by ':P. It is clear that the corestriction of <l? and the restriction of
o


111define a bijection between iJ{, and 'P.


EXAMPLE. Consider the category Mil of nilpotent groups, a set P of prime


numbers and its complement P' in the set of ali prime numbers. By n E P' we mean that n


is a product of primes of P'. A nilpotent group G is called P-Iocal if the map x ---+xn,


x E G, 1S a bijection for every n E P'. The subcategory '] of P-Iocal groups is reflective


([31], 1.1). Let (rG: G---+Gp)G E Mil be the family of reflection morphisms. An


homomorphism ip : G ---+ H is called P'-isolated if the diagram


G _--''P''-- __ • H


is a pullback. The morphism <p is called P-injective if Ker t.p is a set of P'-torsion elements


and is called P-surjective if, given h E H, there exists a n E P' such that hn E Im <p. If <p


is both P-injective and P-surjective then it is called a P-bijection. According to ([31], 1.1.9)


each reflection morphism is a P-bijection. Then, by ([31J, 1.3.3), <p is a P-bijection if and


only if R( t.p) is an isomorphism. The P-bijecLiolls are preserved by pullbacks. Indeed,


consider the pullback
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P ----<§"---... K


G----~ •.~H
f3


i.e. P is the set


{(x,y) E GxK I ,B(x) = a(y)},


a and 73 are the projections m G and K, respectively, and assume that a is a


P-bijection. Since Ker a ~ Ker a then a is P-injective. Finally, given x E G, we have


j3(x) E H and so, there exists a n E P' such that j3(x)n E 1m a, i. e. there exist a n E P' and


a y E K such that a(y) = j3(xn). Therefore, (xn,y) E P and a((xn,y)) =xn thus xn E Irn a.
In conclusion, a is P-surjective and since it is P-injective then it is a P-bijection.


The pair ':f = (e,A) where e is the family of P-bijections and A the family of


P'-isolated morphisms is a factorization system of XiI:


(i) Hil is (b,A)-factorizable. lndeed, we obtain an (b,.A6)-factorization of 'P by


considering the diagram


G,,,
, e,,,,


X K ----' .•.•......---


where the square is a pullback. Since rH is a P-bijection because R(rH) is an isomorphism,


then r is aIso a P-bijection and so e is a P-bijection. On the other hand, m is P'-isolated


because r is isomorphic to rK' since r is P-bijective and Gp is P-Iocal ([31], p. 7).


(ii) e c A T: ln the following commutative diagram


24







II - Torsion theories in categories with initial and terminal objecte


e •.BA/1 v~Uj
m


Ap C • D Bp


~c j'D
cp R(m) •. Dp


R(e)


the lower square is a pullback. Then there exists a unique morphism .À such that m ..À= v


and rC ..À=R(u).R(ef1.rB which implies


fC·.À·e= R(u).R(ef1.fB·e= R(u).R(efl.R(e).r A = fC·U.


Furthermore, m ..À.e=v.e=m.u, and so .À.e=u.


Let .À' be such that m ..À'=v and .À'.e=u. Then R(.À') .R(e)=R(u), so


re.À' = R(À').rB = R(u).R(ef1.rB· Hence À'= À.


(iii) Finally, ~ and .At, are classes closed under composition with isomorphisms.


Therefore, 'J is a factorization system.


But, as we already observed, the equality (Mor%) i= E R always holds. Hence, in this


example, (Mor'B) i is the family of P-bijections and so GJ is reflective.


The following proposition characterizes the reflective prefactorization systems.


PROPOSITION 1.15. Lei (g,..Ab) E 'P. Then (g,..Ab) zs reflectiue if and only if the


following holds:


(f.g E ~ and f E s =!> g E ~).


Proof: This proposition is an immediate consequence of the equivalence


o
g E ~ {::} :3 f E b : f.g E ~


that we prove next. Let us assume that g: A ---. B belongs to g = (More.At, IT)) i= ER, where


R is the reflector of .Á in A/T. Since Rg.r A = rB'g, where Rg is an isomorphism and


rA' "n E b then rB·g E b.
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Conversely, if there exists a morphism fE8 such that f.gE8 then f.g,fEER,
o o


because b C s = LR and therefore g E s. O


2. CATEGORIES OF FRACTIONS


Let E be a class of rnorphisms in a categary ..Â.


DEFINITION 2.1. A category of fractions of .A. with respect to L is a pau


(P E,.A.(I:-1)) where .A.(E-1) is a category and P E: .A.----..A.(E-1) is a functor satisfying the


follawing conditions:


(i) For every SEI:, P 17(s) is an isomorphism.


(ii) If F:.A. ----..A.' is a functor such that F(s) is an isomorphism whenever sEI:,


then there exists a unique functor F:.A.(E-1)----..A.' such that F.PE=F.


Obviously, when the category .A(E-1) exists (see ([40], 1.13) and ([41],19.1.2)) it is


unique up to isomarphism of categories. The class Ep is called the saturation of L and L
E


is said to be saturated when Lp = L.
E


The theorem 1.13.10 of [40] guarantees that if ':B is a reflective subcategory of .A.,


with reflector R, then the category .A.(ER -1) exists. If (8,.Ab) E CJl then the equivalence
o o


proved in 1.15 implies that s C EF if and only if 8 C LF. Then, since .A.((8)-1) = .A.(LR -1)
o


satisfies (i) and (ii) of 2.1, the category .A(8-1) exists and is isomorphic to .A((8)-1).


PROPOSITION 2.2. Let ~ = (8,.Ab) E CJl. The category 01 [raciions 01 .A. with
o


respect to b is equivalent to A/T, b is the saturation 01 b I and so g is saturated


exactly when ~ is reflective.


Proof: If we consider the reflector R of ..Â m .Ab/T then, by definition of the


categary of fractions, there exists a unique functor R: .A.(g-1)----..Ab/T such that the


following diagram commutes:


26







II - Torsion theories in categories with initial and terminal objects


We show that R is an equivalence. To prove this it suffices to show that there exist


natural isomorphisms IdÁ(g_l)~P~ER and RP~E~IdA/T' where E:A/T---tÁ is the


inclusion functor.


The isomorphism RP ~E == Id A/T is clear since the counity of the adjunction R-l E,


~ : RE = RP sE ----=----. Id A /T' is a natural isomorphism.


Let TJ be the unit of the adjunction R -j E. We saw in section 1 that TJA = rA E ~,


for each Á-object A. Thus we can conclude that P~TJ:P~~P~ER=P~ERPg is a


natural isomorphism. Consider the quasicategories ([27], 11.3) [.A(~-1),.A(~-1)1 and


[Á,.Á(~-l)l of functors from .Á(~-l) to Á(~-l) and functors from .A to Á(~-l),


respectively ([27], §15). The functor


[.A( ~-1 ),.A( ~-l ))---t [.A,.A(~-l))


F 1----+ FP~


(B:F---tG) 1----+ (BP~:FP~---tGP~)


is faithful and ful! (cf. (41), 19.1.4(d)). But P~TJ is a natural isomorphism from Pg to


p ~ERP~. Rence, Id.A == P ~ER as we claimed. D


3. FINITELY WELL-COMPLETE CATEGORIES


DEFINITION 3.1. A category is said to be finitely well-complete if it adrnits finite


limits and alI intersections (even large ones) of strong monomorphisms.


We shall write an (FWC)-category meaning a finitely well-complete category.


EXAMPLES. (a) The categories f'et, yrp and <Jop are complete, cocomplete,


wellpowered and cowellpowered ([27), [36]). Hence they are (FWC)-categories, as well as their


duals.


(b) Any topological category over fet is (FWC) as well as its dual category. This is


a specialization of the fact that a topological category (.A,T: .A---t 9;) is (FWC) if 9; is


(FWC) (see [9], [1) VI.21).


(c) Any wellpowered abelian category with produds (for example, the category of left


modules over a ring) is a (FWC)-category.


(d) Consider the category yrf of directed graphs whose objecte are the paira (A,V),


where A is a set and V a subset of A2
, and whose morphisms from (A,V) to (A',V') are
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the maps f: A---+A' such that (f(aj),f(a2)) E V' whenever (alla2) E V i. e. morphisms are


the maps compatible with the structure of the graph, Since the forgetful functor U: yrf---+fet


creates limits and colimits then yrf 18 complete. and cocomplete. Moreover


f:(A,V)---+(A',V') is a monomorphism in yrf if and only if f:A---+A' is injective and given


a graph (A',V'), f~r any set A and any map f: A---+A', the family of pairs (A, V) with


V C A 2 and such that f: (A, V) ---+ (A' ,V') is com pati ble wi th the structure of graph is a set.


Therefore, since :fet is wellpowered, yrf is also wellpowered. Analogously we could conclude


that yrf is cowellpowered. Hence, yrf and yrfOP are (FWC).


(e) Any algebraic category over :fet IS (FWC) because it is complete and


wellpowered. Therefore, for instance, the categories of sernigroups, monoids, rings, R-algebras,


Boolean algebras, torsion-free abelian groups, C* -algebras, compact abelian groups and


Hausdorff compact spaces are (FWC). More generally, an algebraic category (A, U: A ---+ S;)


is (FWC) if S; is complete and wellpowered or if S; is (FWC) and StrMono'E = Mono'E


(see [1]).


Any (FWC)-category has a terminal object that will be denoted by T.


PROPOSITION 3.2. Let H be a class of morphisms o] a category Á satisfying the


following conditions:


(i) IsoA C H C MonoÁ.


(ii) H is closed uruler composition.


(iii) Á admits ali pullbacks of morphisms of j{ along any morphism of Á, and


these pullbacks again belong to H.


(iv) Á admits all intersections of arbitrary families of morphisms of H, and these


intersections again belong to H.


Then (H i,H) is a [aciorizatioti system 01 Á.


Proof: See proof of the dual result in ([12], 1.3.7). o


This proposition wil! be useful in the sequel.


THEOREM 3.3. Lei < F,G,1],ç .>: A~,] be an adjunction. 11 A is (FWC) then


the prefactorization system (~,.A6) = ((G(Mor'1l)) i,(G(Mor'1l)) i1) is a factorization system.


Proof: We prove first that Á is (8,.Ab)-fadorizable. Given f:A--B in Á consider


the pullback (P,(a,b)) of (GFf,1JB). Then we have the following cornmutative diagram
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a


GF(A) GFf' GF(B)


where t is the unique morphism such that b.t=f and a.t=1]A'


Since GFf E G(Mor~) C (G(Mor~)) Tl = A, then b E A, by 1.3(iv). So it suffices to


give an (8,A)-factorization of t.


Consider N = A nStrMonoÁ. By 3.2 (N i,N) is a factorization system. If t = n.U


is the (N i,N)-factorization of t, then n E A.


We show now that u E 8. By lemma 1.8, this is equivalent to prove that Fu E Iso'B.


Since a.t=1]A' then çF(A)"Fa.Ft=çF(A).F1]A =1 and so Ft is a split monomorphism.


But Ft = Fn.Fu, thus Fu is also a split monomorphism. Let us consider the pullback


(P',(a',b')) of (GFu,1]A')' We have a commutative diagram similar to the one above


A ,,,.•...
' ... t'...•,...• ...•


'" P'--=----


a'


GF(A) ~ GF(A')
GFu


where t' is the unique morphism such that b'.t'=u and a'~t'=1]A'


The fact that Fu is a split monomorphism impiies, trivially, that GFu is also a split


monomorphism and so a strong monomorphism. Hence b' E StrMono.A, since strong


monomorphisms are preserved by pulIbacks, and b' E N because GFu E A. Since u E N i
we have that utb' and so b' E IooÁ. From GFu.a'.(b')-l = 1]A' we conclude that


~F(A,)"FGFu.Fa'.F(b,)-l=ÇF(A,)·FT)A,=l, and so Fu.ÇF(A).Fa'.F(b,)-l=1. Thus, Fu is


a split epimorphism and, since it is a monomorphism, it is an isomorphism, as it was required
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to prove. o


As an immediate consequence of this theorem we have that if Jt is (FWC) and '13


is a reflective subcategory of .Â then <1>'13== ((Mor'13) r ,(Mor'13) n is a factorization system,


and therefore the reflective interior of a prefactorization system in 'P is a factorization system


of .Â. In this case, the restrictions of <1>and \]i referred in section 1 define a one-to-one


correspondence between reflective subcategories of .Â and reflective factorization systems of


.Â.


For future reference, next we summarize the fact just described:


COROLLARY 3.4. Ii.Â is (FWC) and '13 is a reflective subcategory oi.Â then


the prejaciorizaiioti system <1>'13is a [aciorizaiion system. o


A functor is called conservative if it reflects isomorphisms.


The theorem of B. Day [14], that we state next, is also a consequence of 3.3.


THEOREM 3.5. lf .Â ss (FWC) then for each left adjoint [uncior F:.Â --t e


there exist a reflector R:.Â --t '13 and a conservative left adjoint functor Q: '13--t e such that


F~QR.


Proof: Let us assume that G : e --t.Â is the right adjoint of F. By 3.3 the


prefactorization system (~,.Ab) == ((G(More)) r,(G(More)) r 1) is a factoriz~tion system so it


belongs to 'P. Therefore .Ab/T= \]!(~,.Ab) is a reflective subcategory of Á. We denote it by


'13, by R:.Â--t'13 the reflector and by E:'13--t.Â the inclusion functor. By lemma 1.8,


~..l == G(el..l and so G(e) C s+. But s! = '13, by lemma 1.14, thus G(C) E '13, for every


C E e. This implies that the functor G is factorizable as G = EP along some functor


P: e --t '13. It is easy to verify that FE is left adjoint of P since F is left adjoint of G = EP


and E is an inclusion functor. Let Q = FE. It is clear that QR~ F. To conclude the proof


we show that Q is conservative, Let fE Mor'13 such that Qf is an isomorphism, i.e. fE EQ.


Furthermore, EQ = EF n Mor'13 = ~ n Mor'13. By 1.3 (iii) it is obvious that Mor'13 C.Ab, so


EQ = ~n .Abn Mor'13 = Iso '13, whence f E 1so'13, as required. o


This theorem has the following interpretation:
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Consider the quasicategory whose objects are the (FWC)-categories and whose


morphisms are the left adjoint functors, Denote by .Adj the quasicategory that we get as the


quotient of that quasicategory by the congruence "natural isomorphism of functors", i. e. the


conglomerate of objects of .A.dj is the conglomerate of (FWC)-categories and the


conglomerate of morphisms is the conglomerate of the classes of natural isomorphism of left


adjoint functors. If we denote the class of reflectors by 'Jbef and the class of left adjoint


conservative functors by Cons we may conclude that ('Jbef,Cons) is a factorization system in


.A.dj. Indeed, theorem 3.5 says that .A.dj is ('Jbef,Cons)-factorizable. It remains to prove that


'Jbef = Cons T and Cons = 'Jbefl but, since 'Jbef and Cons are closed under composition with


isomorphisms, it suffices to check that 'Jbef C Cons T. SO consider the following commutative


dia,gro,rn in Adj,


R


U v


s '']


where R E 'Jbef and SE Cons, Let us assume that < R,E;1),ç > and < U,G;a,.B > are


adjunctions, V -l K and S-l N. We have to prove that there is a left adjoint functor D,


unique up to isomorphism, such that DR== U and SD ==V. Since R E 'Jbef, it suffices to


show that there exists a left adjoint D such that DR= U. Let D = UE. It is obvious that


the class of morphisms (U1)A:U(A)-+UER(A))AEObj.A. defines a natural transformation


frorn U to UER. But SU 17 A ==VRl7 A' whenever the second morphism is an isomorphism,


so U1)A is also an isomorphism since S E Cons. Thus, U ==UER = DR. Before showing that


D is left adjoint we prove that l7G(C) is an isomorphism, for every C E C. Denote the


morphism


ERG(C) ~ GUERG(C) • G(C)


by "c: We have that


BC'l7G(C) = G.BC·G«Ul7G(C))-I).aERG(C)"l7G(C) =G.BC·G«U1JG(C))-I).GU1JG(C)"aG(C) =


=G.BC.aG(C) = 1.


On the other hand, by definition of universal morphism, there exists a unique
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morphism f such that Ef·7JG(C) == 7JG(C)" But 7JG(C)"8 C'7JG(C) == 1JG(C) and E is a full


er:nbedding hence 7JG(C)"BC::: 1.


Therefore, 7JG: G -,-!--+ ERG is a natural isomorphism. Consequently, U -l ERG and


so D == UE-l RG, because E is a full embedding.


We point out that the preceding theorem generalizes a result of H. Applegate and M.


Tierney ([2], pp. 79-80).


4. REFLECTIVE SUBCATEGORIES AND COREFLECTIVE SUBCATEGORIES


ASSOCIATED TO A FACTORIZATION SYSTEM


Let us assume that the category Á has a terminal object T and an initial object I.


Hence, we can also define two order-inverting maps <l?' and >Ir' between the conglomerate 'j>'


of prefactorization systems (b,.Ab) of Á such that


(P') V A E Obj.d the morphism I--.A has an (b,.Ab)-factarizatian


and the conglomerate ~' of coreflective subcategaries of .Á, as follows:


<l?':~' I'j>'


e ~((More)LT,(More)!)


>Ir':'j>'_~'


where I/b is the category of b-quatients of I.


In this case, each prefactorization system ':J == (b,.Ab) has not only a reflective interior
o o o _ __
':J == (b,.Ab) but ais o a coreflective closure ':J == (b,.Ab) = <l?'>Ir'(':J).


If the categories .Á and .Á op are (FWC) we can successively apply the operators


<l?, <1>', >Ir and >Ir' to a factorization aystem (cr, more generally, to a prefactorization system


satisfying conditions (P) and (P')), getting several factorization systems.
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PROPOSITION 4.1. Assume that .Á and .Á op are (FWC). Let ':F and Q be


two prefaciorization systems o] .Á fulfilling conditions (P) and(P'). Then:


o _
(i) ':F::; ':F ::; ':F.


o
o o


(ii) ':F = ':F and ':F = '!F.


(iv)


o oo o o o
(v) '!F = '!F and ':F = ':F.


Proof: (i), (ii) and (iii) are obvious and (iv) is a consequence of them.


o o o
o 00 o 000 00


(v) The implications '!F::; '!F :::} '!F ::; '!F and '!F::; '!F :::} '!F < '!F teU us that '!F = '!F.
The other equality can be obtained by duality. o


We conclude that , from a given factorization system ':F, by applying the operations


"reflective interior" and "coreflective closure", we obtain at most seven distinct factorization


systems. The number of distinct reflective subcategories is at most three, namely ':B C ':B' C ':B"


corresponding to the reflective factorization systems


being the number of different coreflective subcategories also at most three, namely e c e' c e"
corresponding to the coreflective factorization systems


_ Q o
':F > ':F > ':F.


In conclusion, we have the following situation:
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GJ = (S,A)


o
GJ


o
Gj


\[1'


o
Gj


o
o
"J


\[1'


y=?


The chain ends here, because X =e" and Y = ~". Actually, by 4.1 (v)
oo o o


<T>(Y) = <T>w(<J) = <J = <J
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o
so Y = \li<I>(Y) = \lI(~) = ~". Dually X = e".


REMARK 4.2. The fact that .A. and .A.op are (FWC) is assumed to guarantee


that ali prefactorization systems in 4.1(iv) are factorization systems and, consequently, to


insure the existence of the reflecti ve subcategories ~' and ~" and of the coreflecti ve


subcategories e' and e".


EXAMPLES 4.3. (a) ln any category Á with initial and terminal objects the


factorization systems ([)= (Mor .A.,lso.A.) and 11= (lso.A.,Mor.A.) are reflective and coreflective.


Therefore, in these two examples, the seven corresponding factorization systems coincide.


(b) Let Ál be the category yrp and ~l = (Epi.A.1,Mono.A.1). We have that


\lI~l=Mono/T={GEyrp I G--+OEMono}={GEyrp I G==O}.


o
Then ~l = (Mor,Iso) < ~l.


On the other hand,


thus ~l = (Iso,Mor) > 'J1. Hence,


and so ~=~' C~" and e=e' C e".


(c) Let Á2 be a category such that, Rom.A. (A,I) = 0, for every object A non-
2


isornorphic to L This occurs for example in 1et, ~ op and Yrf.


Consider the factorization system ~2 = ($2'..Ab2) with


S2={A--+B I A==I=>B==I} and


..Ab2= {A --+ B I A ==I} U IsoÁ2·


Now


o
so S:z=S:z, as can be easily verified. On the other hand,
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which implies ~2 = (Iso.Á2,Mor.Á2)· Therefore,


In this case, ':BC ':B'=':B" and C=C'=C".


(d) Consider the category .Á3 obtained from the lattice represented by the diagram


b


c


a


o


1. e.


Obj.Á3 = {n.a.b,c.,r ] and # Mor(x,y) = { 10
if x ~y


, V x,y E Obj.Á3.
otherwise


It 18 tri vially verified that ~ = { c, 1 } 18 a


g3 = <I>~ 18 a reflective faetorization system since


~3 = (~3,.Áb3) with


reflective subcategory of .Á3. Then


.Á3 is (FWC). We have that


b3 = { o---t O,o---te, a---ta, a---t b, a---t 1, b---t b, b---t 1, 1---t 1},


.Áb3= { o---t O, o---t a, o---t b, e ---t e, c---t 1, a---ta, b ---t b, 1---t 1},


and, therefore, e = Ojb3 = {o,c}. On the other hand, ~3 = <I>'e= (~3,.Áb3) where


.Áb3= (More)! = { o---t o, o---t a, o---t b, c---t c, c---t 1, a---ta, a---t b, b ---t b, 1---t 1} => .Âb3.


Then ':B"= {c.i }=~, hence ':B=~' = ':B". In conclusion, we have that


o
o Q o _ o Q


ID<g3=g3=g3=g3<g3=g3=g3<1I, ~=~'=~" and e=e'=e".


(e) Consider the category ~ op and ~ = (Epi,ExtMono). Then


q;':f=ExtMonojT={XE~OP I X---tTEExtMono}={XE~op I X==T}u{0}.


o o o
Hence g=(~,..At,), with
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a o
õ::::{X-tY I X::::0 =? Y::::0} and ..A1.,::::{X-tY I X::::0} UIso.


o
Thus ':F< ':F. On the other hand,


W'':F::::IjEpi::::{XE'jop I I-tXEEpi}={0}


and so ~ = (Iso,Mor) > ':F.
a


Since ':F is equaI to the factorization system ':F2 of (c) (with .Á.2 = 'jop), then


(f) The existence af examples in which ane af the incquali tics in 4.1(iv) is str ict allaws


us to get a factorization system in which the six factorization systems of 4.1(iv) are alI distinct.


For example, if we consider the categories .Á.1, Á2 and Á3 of the preceding examples, the


corresponding duaIs Á4, Ás and Á6' the factorization systerns ':F1, ':F2, ':F3 and their


duals g:4' g:5' g:6, constructing the product category .Á.1xÁ2xÁ3x.Á.4x.Á.Sx.Á6 ([27], 4.8),


then for the factorization system ':F= (1]1s, )]1 Ai) all the inequalities


are strict.


5. TORSION THEORIES


In the sequeI, unless otherwise stated , .Á. has an initial object I and a terminal


object T.


The conglomerate 1.Á. of subcategories of .Á. is partialIy ordered by inclusion and it


is even a (possibly Iarge) complete lattice. Consider the operators


• ----:f .Â. --+ j' .Â.


':Bf---+':B-r::::: {AEObj.A I # HOID.Á(B,A)::::1, \fBEObj':B}


and
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.<-:fA~fA


':Br---t':B<-;= {AEObjÁ I #HomA(A,B)=l, \fBEObj':B},


that generalize the corresponding operators • --+ and • <----defined in 1.1.


Obviously, these operators satisfy similar conditions to the ones of 1.1.5 and


--+ ",op '" d• :~A ~ ~A an


are contravariant functors.


Again, the pair (. --+ ,. <-) is a Galois connection and the functors T =. -+ <----and


F = • <-----+ are two closure operators in the complete lattice :f A'


The following proposition gives a relation between reflective subcategories and


coreflectives subcategories which leads Cassidy, Hébert and Kelly to the foundations of a


theory of torsion theories in categories with initial and terminal objects, that is, in a more


general context than that of abelian categories, where it had its origino


PROPOSITION 5.1. Let ':f = (g,A) be a prefactorization system of A, '1l= AjT


and e = Ij~ the corresponding subcategories. Then:


(i) eC'1l<----.


(ii) I] '1l is a reflective subcategory of A, with reflector R, then


'1l<----= {A E ObjA I R(A) ~ R(I)} and iJ, in addition, ':f =1>'1l then e = '1l<-o


(iii) If ':fE'P then C"='1l<----={ AEObjA I R(A)~R(I)}.


Proof: (i) If C is an object of C then e:I~C is a morphism of g. For each object


B of '1l, the morphism m: B --+ T belongs to A. Since e1m,' it follows that


# Hom A (C,B) = 1.


(ii) The fact that R is left adjoint implies that R(I) is initial in '1l and so that


A E ~<----q #Hom A(A,B) = 1, V B E Obj'1l


q # Hom'1l(R(A),B) = 1, V B E Obj'B


q R(A) ~ R(I)


With regard to the inclusion '1l<- C C when ':f = ((Mor'1l) T,(Mor'1l) Ti), we have to


show that if C E '1l<---- then e: I --+ C E (Mor'B) T. So, let C be an object of '1l<- . If


b:B--+B' is a morphism in '1l and u:I--+B and v:C~B' are morphisms such that


v.e= b.u (we point out that u and vare unique such) it is clear that there exists a unique


morphism d such that the following diagram is commutative
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u


__ ~e,--_~.C
/


/
/


/
/


//d
/


/
/


/
jI


B-----·~B'
b


v


smce # Horn Á (C,B) =# Horn Á (C,B') = 1 and I is initial.


(iii) ~ is reflective because ~ E '5', hence ~ <- = {A E Obj.ã I R(A) ~ R(I)}, by (ii).
o o o


But ~ also belongs to '3l and the corresponding subcategories A/T and I/~ are,


respectively, ~ and e". Applying again (ii) we get the equality e"=~<-. o


The characterization of torsion theories in abelian categories might suggest that one


should define a torsion theory as a pair of subcategories (e,~) such that c :' = ~ and


~ <- = e. However, there would be no guarantee that 'jS is reflective and e coreflective.


Indeed, let us consider the category whose objects and non-identity morphisms are represented


in the following diagram:


Of course {l,Q} --+ = {Q,T} and {Q,T} <- == {l,Q}. However {l,Q} lS not


coreflective because, as can be easily observed, it is impossible to define a coreflection


morphism from P to {l,Q}. But {Q,T} is reflective:


The' morphisms I---.Q, P---.T, Q---.Q, T---.T are reflection morphisms from Á


to {Q,T}.


So, even the reflectivity of the subcategory ~ does not implies that ~ <- lS


coreflective. However, when the category 1S (FWC) then, by 3.4, <I>~ is a factorization


system if 'jS is reflective, thus, by 5.1(ii), ':B<- is coreflective. In this example (where,


obviously, the category is not (FWC)) {I,P} -, == {P,T} and {P,T} <- == {I,P}, {I,P} is


coreflective but {P,T} is not reflective. Therefore, the dual category is not (FWC) also. It is


easy to see directly that this category has neither products nor coproducts.
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Another example is the category grf, which is (FWC) as welI as its dual. Denoting


by ~efl the subcategory of graphs in which every vertex has a loop and by Oloop the


subcategory of graphs with exactly one loop, we have that ~efl---+ = Oloop and


Oloop f- = ':R,efl. However, ':R,efl is not coreflective (it is impossible to define morphisms from


a graph with alI loops to a graph with no loop) and, therefore, Oloop is not reflective.


In the following definition, .A denotes an arbitrary category and not necessarily a


category with initial and terminal objects.


DEFINITION 5.2. A pair (C,'1l) of subcategories of .A is called a torsion theory


of .A provided that '1l is reflective, e is coreflective, '1l f- = C, C ---+= '1l and <f>'1l and


<f>'C are factorization systems.


Then, we say that e 1S a torsion subcategory and its objects are torsion objects.


Analogously, '1l is a torsion-free subcategory and its objects, torsion-free objects.


From now on, gi ven a torsion theory (e,'5l), we denote the reflection morphisms in


'1l by (rA : A --t R( A)) A E Obj.A and the coreflection morphisms III C by


(sA :S(A)--tA))A E Obj.A·


REMARK 5.3. According to remarks and examples preceding 5.2, if .A and .A op


are (FWC)-categories then (C, ':B) is a torsion theory if and only if ':B is reflective, C --+= ':B


and ':Bf- = C. Hence, in this case, any reflective subcategory ':B generates a torsion theory


(':Bf-, ':Bf- --+). This is the smallest torsion theory of .A such that the objects of ':B are


torsion-free objects. Dually, any coreflective subcategory e cogenerates 'the torsion theory


(C --+f-, C --+) which is also the smallest one in the appropriate sense.


Now we prove that definition 5.2 is a generalization to any category of the one given


by Cassidy, Hébert and Kelly in (j l l], p. 307). In fact, if .A has initial and terminal objects


we have:


PROPOSITION 5.4. A p atr (C,'1l) of subcategories of..A. is a torsion theory if


and only if there is a reflective factorization sysiem 'iJ such that ~ is also a faciorizaiion


system, ':B = 1.jí'}" = 1.jí'!F and C = 1.jí''}".


Proof: lf (C, '1l) is a torsion theory of .A then 'iJ = <f>'1l is a reflective factorization


system. It is obvious that \{I~ = ':B. Assuming that ~ = (b,Jfb), we denote the subcategory
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1Ji'~=Ijb by GJl. Then GJl=':B<--, by 5.1(ii) and so GJl=e, by hypothesis. Therefore


e=IJi'~, GJ=1>'GJl=1>'e is a factorization system and IJiGJ= Jl1,jT= ':B". Since e-> = ':B", by


the dual of 5.1(iii), then ':B" = ':B, i. e. IJiGJ= ':B.


Conversely, ':B is reflective and e is coreflective because ':B=IJi~ and e=IJi'~ and


it is clear that 1>':B and 1>'e are factorization systems. Since ~ is reflective, from 5.1 (ii) we


conclude that e = ':B<--. Finally, by the dual of 5.1 (iii), e -+ = ':B" = IJiGJ= ':B. o


To state the equality ':B = w~ = w~ 1S equivalent to assertion that the three


subcategories ':B, ':B' and ':B" coincide. Then, since ~ is reflective, the subcategories e, e'


and e" also coincide.


EXAMPLES. (a) For any category .A with initial object I and terminal object T,


the pairs (.A, <r er) and (3ni,.A) are torsion theories, where <r er is the subcategory of objects


isomorphic to T and Jni the subcategory of objects isomorphic to r. These will be called


the trivial torsion theories.


(b) An important question that naturally arises is that of knowing whether a category


, admits non-trivial torsion theories. For example, if we consider the category .A2 of 4.3 (c) and


the reflective factorization system ~2, then ~2 is still a factorization system. But


1Ji~2= {A E Obj.A2 I A ~ I or A ~ T} and W~2 = .A2. Hence ~2 does not give rise to any


torsion theory. Let .A2 = feto This category has only four factorization systems, namely,


(Mor,Iso), (Iso,Mor), ~2 and (Epi,Mono) being only the first three reflective. Thus, we can


conclude that in :fet there exist only the trivial torsion theories.


(c) Let .A be a preorder category defined by a complete lattice. Obviously, .A and


.A o Pare (FWC)-categories and a subcategory ':B of .A is reflective if and only if it is closed


under meets.


By 5.3, the torsion theories of .A are the pairs (':B<--,':B) such that ':B is reflective


and ':B<---+ = ':B. It is trivially verified that, in this case, ':B= ':B<---+ implies the reflectivity


of ':B, so the torsion theories of .A are the pairs (':B<--,':B) such that ':B<-- -+ = ':B, i. e.


(e, ':B) is a torsion theory if and only if e -+ = ':B and ':B<--= e.


For exarnple, in the category .A3 of 4.3 (d) there exist only the torsion theories


({o,a},{a,b,1}), ({o,a,b},{b,l}), ({o},.A3), (.A3,{1}) and ({o,C},{C,l}).


Let % be a reflective subcategory such that that ~ = 1>':B belongs to 'P'. Assume
o


also that ~ and ~ are factorization systems.
o o


We have then a reflective factorization system, ~, such that GJ 1S also a


41







II - Torsion theories in categories with initiai andterminal objects


factorization systern, because


Since
Q _ o Q _ Q Q_


1Ji'!F = 1Ji'!F = 1Ji'!F = '1\', 1Ji'J = 1Ji'!F = '1\' and 1Ji''!F = e' = 1Ji''!F = 1Ji''!F = e


then (e, '1\') is a torsion theory and 'jl C 'jl'.


In conclusion, a reflective subcategory 'jl generates a torsion theory if '!F = <I>'jl
o


belongs to '5" and GJ and GJ are factorization systems.


If <I>'jl is a factorization system we denote the object through which the morphism


I-tT factors by the symbol *.


PROPOSITION 5.5. (e,'1\) is a torsion theory if and oniy if '1\ is reflectiue, e zs


corefleciive, <I>~ and <I>'e are factorization systems, ~ = {A E Obj.A I S(A) ~ *}, where S


is the corejlector of .A in e and e = {A E Obj.A I R(A) == *}, uihere R is the reflector of


.A in '1\.


Proof: Let (e, '1\) be a torsion theory. Then by definition '1\ is reflecti ve, e is


coreflective and <I>'1\ and <I>'e are factorization systems. Let '!F = <I>'1\. By 5.1(ii)


~f-={AEObj.A I R(A)~R(I)}={AEObj.A I R(A)~*}. Hence e={AEObj.A I R(A)~*}


since e = '1\<- by hypothesis. Dually, if we consider the factorization system <I>'e, by the


dual of 5.1 (ii), we conclude in a similar way that ~ = {A E Obj.A I S(A) ~ *}.


Conversely, it suffices to prove that '1l<- = e and e ---+ = '1l. Applying 5.1(ii) to the


factorization system <I>'jl we get '1lf- = {A E Obj.A I R(A) ~ *} and, consequently, '1lf- = e.


Finally, applying the dual of 5.1 (ii) to <I>'e, we conclude that e ---+ = '1l. o


We have, as an immediate consequence of this proposition, the following corollary:


COROLLARY 5.6. I'F .A and .A0P (FWC) t . th th F ll .J are -ca egorzes en e J o owzng


assertions are equivalent:


(i) (e, '1l) is a torsion theory.


(ii) '1l ts reflective, e is coreflective, '1l={AEObj.AIS(A)=*} and


e={AEObj.A I R(A)=*}. o


As an example of application of these statements we determine the torsion theories of
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the category Yrf. Let ':Disc be the subcategory of discrete graphs (without edges) and 'Pc:rer


the subcategory of discrete graphs with one vertex and of the terminal graph.


PROPOSlTlON 5.7. In ihe category grf there exist only the torsion theories


(3ni,grj), (grj,c:r er) and (':Disc,'Pc:rer).


Proof: We first remark that in grf the initial object is the empty graph, 0, and the


terminal object is the graph with crie vertex and one loop. It is easy to see that these three


pairs of subcategories verify the conditions of 5.3 and so they are torsion theories. Let us prove


that there are any more torsion theories. If (e,~) is a torsion theory of grf with ~:j:.c:rer


and ~:j:.'Pc:rer then 0 E~. lndeed, in these conditions and being reflective, ~ is also


distinct from Oloop and contains, at least, one of the following sets of graphs:


• the empty graph.


• a graph G with, at Ieast, two vertices and a numberof loops distinct from one.


• the graph P with one vertex and without edges and a graph G' of Oloop with,


at least, two vertices.


ln the first case there is nothing to prove.


ln the second case let us study first the situation where G does not have loops. Let


VI and v2 be two vertices of G and consider the maps:


and 'P2: G--G


As it is obvious, 0 -- G is the equalizer of 'PI and 'P2, and 80 0 E <1$.Let now G


has more than one loop. We consider two vertices, VI and V2, with a loop and by defining


'PI and 'P2 in an analogous way we did in the previous case, we conclude in the same way


also that 0 E <1$.


ln the last case it suffices to consider the maps


and 'P2:P--G'


where UI and U2 are two vertices of G', and the conclusion follows.


The fact that 0 has to belong to ~ immediately implies that the torsion theory


(e,~) is equal to (3ni,grf):


is the <I><1$-factorization of 0--T smce


m E Mor'B C (Mor~) T1. Therefore, in this case, * = 0,
e E Sso(grf) C (Mor'B) T and


e = {G E Obj(grf) I R(G) == 0} = {0}
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by 5.6 and, consequently, '13= Yrf. o


PROPOSITION 5.8. lf (e,'13) is a torsion theory then:


(i) e n '13 is the subcategory of objects isomorphic to *.


(ii) * is initial in '13 and terminal in e.
(iii) For every A E Obj.A., SR(A) ==RS(A) ==*.


Proof: (i) Let X be an object of en'13. Then I-+XE~ and X-+TEJ!t" where


(!~,J!t,) = <1>'13, and, since the (~,J!t,)-factorizations are unique up to isomorphism, we can


conclude that X ==*.


(ii) To prove the first part it suffices to observe that R, being a left adjoint, preserves


colimits and that R(I) ==*. The second part follows by duality.


(iii) For every AEObj.A., m:R(A)---+TE.A6 thus S(m):SR(A)---+S(T)==* 1S an


isomorphism because .A6= L;S. Dually, RS(A) == *. O


6. TORSION THEORIES IN CATEGORIES WITHOUT ZERO OBJECT


Let us assume that the initial and terminal objects of .A. are not isomorphic, i. e. .A.


does not have a zero object.


DEFINITION 6.1. A terminal object


Hom.A. (T,A) =f=. 0, for every non-initial object A.


T is called atrong terminal if


EXAMPLES. (a) f'et and <jop have strong terminal objects.


(b) The terminal object of yrf is not strong.


THEOREM 6.2. Lei .A. be a category with finite products, a strong terminal object


which is a [etierator and no zero objecto Then the torsion theories of .A. are exactly the trivial


ones.


Proof: Let '13 be a reflective subcategory of .A.. Since TE '13 then <jer C '13. If


~* 'Ter then I E~. Before proving that we point out that if T is a strong terminal and


f,g E Hom.A. (T, Y) such that f =f=. g then the morphism 1-+ T is the equalizer of f and g.
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Then, to prove that I E ':B, it suffices to find a ':B-object Y and two different morphisms


f,g: T--+ Y. Let X be an object of ':B non-isomorphic to T. If X is not isomorphic to I,


considering the morphisms x: X --+ T and t: T --+ X then t.x =f:1. By definition of product


there exists a unique morphism s such that the following diagram commutes


Pl P2
X • XxX •. X


"~1/
X


whence Pi =f:P2· Since T is generator there exists a morphism h: T --+ XxX such that


Pl.h =f:P2·h. So, it suffices to take Y = X and let Pl.h and P2.h be the morphisms f and g.


Now let (e, ':B) be a torsion theory of Á.· If ':B= ~ er then, obviously,


(e,':B)=(Á,~er). If ':B=f:~er then IE':B, as weobserved,so


I--+I--+T


1S the <I>':B-factorization of I--+T. Hence e={AEObjÁI R(A)~I}, by 5.5. But


{AEObjÁI R(A)~I}=Sni. Actually, if R(A)~I then


A--+I--+T


1S the <I>':B-factorization of A --+ T. However the existence of a morphism from A to I


implies that A is isomorphic to I: otherwise, since Hom Á (T,A) =f:0, T would be


isomorphic to I, i. e. Á would have zero object contradicting the assumptions. Therefore,


e = Jni. Then we immediately infer that ':B= Á and the torsion theory is still trivial. D


EXAMPLES. (a) The categories f'et and ~op satisfy the conditions of this


theorem.


(b) Any topological category over :J'et satisfy also these conditions. Thus the category


~ op, the category e'5beg of completely regular topological spaces, the category ~rox of


proximity spacesas well as the categories of uniform spaces, convergence spaces, merotopic


spaces, mensurable spaces and preorder sets [29], [9] are examples of categories which adrnit


only the trivial torsion theories.


This theorem enables us to conclude that in many categories without zero object the


concept of torsion theory trivializes. For that reason, in the following we study the torsion


theories in categories with zero objecto It is in this context that the most interesting results
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arrse and where the connection with results in abelian categories is closer. However, the


existence of zero object does not insure that the categories have non-trivial torsion theories. For


example, the category of partial maps, where the objects are the sets and the morphisms


f: X---t Y are the maps from some subset D(t) of X to Y, has only the trivial torsion


theories, though it has a zero objecto


7. TORSION THEORIES IN CATEGORIES WITH ZERO OBJECT


Throughout this section we denote by Á a category with zero object that will be


denoted by O as well as the morphism A ---t O---t B by O: A ---t B. Given a morphism f, we


use, respectively, kerf and Kerf for the kernel morphism of f and the corresponding object,


i. e. Ker f _!!L .• X with m = ker f.


DEFINITION 7.1. A subcategory ':B of Á is said to be closed under extensions if


for any strong epimorphism f: A---tB such that B E Obj':B and Kerf exists and belongs to


':B then AEObj':B.


PROPOSITION 7.2. Given a subcategory ':B of Á, ':B-+ zs c/osed under


monosources and extensions.


Proof: Obviously ':B-+={AEObjÁ I HomÁ(B,A) =0, for all BEObj':B}. Let us


assume that (Ai)j E I is a family of objects of ~ -+ and (fi: A---tAj)i E I a monosource. If


f:B---tA, with BEObj~, then fj.f=O=fi.O, forevery iEI. Then f=O andso AE~-+.


In order to show the closure for extensions, let f: A ---t B be a strong epimorphism,


BE~-+, and m:K---tA bethekernelof f with KE~-+. If g:C---tA, with CEObj~,


then there exists a unique morphism t such that m. t = g, since f.g = O.


m fK --:=---" A --~--<.~B,1/I g
I
I
f


C
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It is now obvious that t = O, and so g = O. o


Notice that a subcategory of .A closed under monosources is closed under all products


that exist in .A.


LEMMA 7.3. Let .Aop be (FWC). For a subcategory ~ of .A the following


assertions are equivalent:


(i) ~ is closed under monosources.


(ii) '3:l is reflective and closed utuler subobjects.


Proof:


(i) ::::}(ii): It is enough to show that ~ is reflective. Let A E Obj.A and consider the


family


..4= U. Hom.A(A,B) = {g:A----tBg EMor.A I BgEObj~}.
B E ObJ~


Let (ei\ E I be the family of strong epimorphisms with domain A through which alI


morphisms of ..4 factors, g = tf .ei·


Consider the cointersection rA :A---4R(A) of the family (eJ; E I ' which is a strong


epimorphism. By definition of cointersection there exists, for each g E..4, a unique morphism


tg such that in the diagram


A


e,j~
C; I •• R(A)


the lower triangle commutes and, consequently, g = tg.r A'


We show next that the family (tg) g E.Ab is a monosource. If tg. u = tg. v, for every


gE.Ab, let.q:R(A)---4E bethecoequalizerof u and v. Thén there exists.Tor each gE.Ab,
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a unique Sg such that 8g.q = tg and 80 g = sg.q.r A' for every g E A.


A


~u jv q


c, • R(A) ---'---~. E


~


g 1
ISg
I
I


+
Bg


g
E,


Since q and rA are strong epimorphisms then q.rA is also a strong epimorphism


and so there exists a j E I such that q.rA = ej. From dj.q.r A = dj.ej = rA we conclude that


dj.q=l, so q is an isomorphism, i.e. u=v, as it was required.


By (i); we conclude that R(A) E':B and also that rA is the reflection morphism from


A to ':B. Actually , we proved even a stronger result: ':B is Str Epi-reflective.


(ii) =} (i): Given a monosource (fi:A--Bi)iEI ' with BjEObj':B, we show that


A EObj':B. Let us assume that rA:A--R(A) is the reflection morphism from A to ':B.To


prove that A E Obj'B it suffices to show that rA is a monomorphism since, by hypothesis,


% is closed under subobjects. For each i E I, there exists a unique morphism gi such that


gi.r A =fi· Then rA.u=r A'v implies that fi·u=fi.v for each i E I and, consequently, u=v. O


Statements 7.2 and 7.3 allow us to simplify 5.3 and to conclude immediately that:


COROLLARY 7.4. lf .A0P is (FWC)


':B. lI, furthermore. .A is (FWC) then (e, ':B)


and ':B = e -+. Iii this case, any subcategory ':D
and coçeneraies the torsion theory (':D -+ f-, ':D -+).


then ':B -+ is reflective for every subcaiegory


is a torsion iheory if and only if e = ':B f-


'i th . h (GlIf-,GlIf--+)qetiera es e torsion i eory.JJ '.li


o


PROPOSITION 7.5. Lei be a refleciive subcaiegory of .A,


(rA :A--R(A» A E Obj.A being the family of reflection morphisms, q= <I>':Bits associated


prefactorization system and C= I/b. Then:
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(i) e=={AEObj.A I R(A)==O}={AEObj.A I rA =O}=~~.


(ii) li every morphism rA: A -+ R(A) lias kernel sA: S(A) -+ A then A E e if and


only if S(A) = A, and the morphism sAis the coreflection from A to e whenever


S(A) E e.


Proof: (i) follows immediately from 5.1.


(ii) From (i) we know that A E e if and only if rA = O, which is equivalent to


S(A)=A.


Finally, assuming that S(A) E e, consider the following commutative diagram


S(A)


f R(f)


C --r-C-"'· R~C)


where C is an object of e and f an arbitrary morphism.


Since rA.f=R(f).rC=O, there is a unique morphism t such that sA.t==f. Thus, sA


is the coreflection. O


If sA: S(A) -+ A is the kernel of rA we say that this kernel lS idempotent if


S2(A) = S(A), considered as subobjects of A.


PROPOSITION 7.6. The following assertions are equivalent:


(i) The kernel of every rA exists and it is idempotent.


(ii) e is coreflective and each careflection morphism sAis the kernel o] rA'


Proof:


(i) => (ii): If S2(A) = S(A), for each A E Obj.A, then S(A) E e, by the preceding


proposition, and S0 sAis the coreflection morphism.


(ii) =i> (i): is clear. o


DEFINITION 7.7. We say that a reflector R is normal provided that it satisfies


the equivalent conditions of 7.6.
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A torsion theory (e, '1l) is called left normal if the reflector in '1l is normal.


Dually, a torsion theory (e, ~) is right normal if the coreflector is normal, 1. e. the


reflection morphism for each object is the cokernel of the corresponding coreflection morphism


in C.


A torsion theory is called normal if it is both left and right normal.


EXAMPLES. (a) It IS clear that every torsion theory of an abelian category IS


normal.


(b) In the category yrp, any torsion theory is normal. In fact, let (e, ':B) be a torsion


theory of yrp. By the dual of 7.2 and 7.3 «i)::} (ii)), e is StrMono-coreflective. In yrp a


strong monomorphism is not necessarily a kernel but in this case every coreflection morphism


So : S( O) --t G is a kernel. Indeed, so is a monomorphism so S( G) is isomorphic to a


subgroup of G. But, by definition of coreflection morphism, any endomorphism f of G can


be restricted to an endomorphism S(f) of S(G):


S(O)
so


• O•
lf


I
I


S(f) I
I
I
I
I


S(G) So • G


Thus, considering ali endomorphisms fg of G, for g.E G, defined by fg(x) = gxg-1


for every x E O, we can conclude that 8(0) is isornorphic to a normal subgroup of o.
Hence SG is a kernel.


Let te: G --t T( G) be the cakernel of so and consider the commutative diagram


where (x.y) is the pullback of (tO,sT(G))' which implies the existence of a unique


morphism f such that x.f= sG and y.f= O.
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Since se is a kernel, then se =kerte and so it iseasy to prove that f=kery. But


m yrp, pullbacks of cokernels along kernels are still cokernels thus y is a cokernel and,


therefore, y = coker f. Then P E e because e = <::B f- is closed under coextensions. But x is a


monomorphism since it is a pullback of a monomorphism. Hence, P is a subobject of G such


that S(P) =P and S(G):S P :S G, for the usual order relation in the set of subobjects of e.


Since S2(G)==S(G), then P=S(G) as subobjectsof G, i.e. f is an isomorphism. The fact


that f is an isomorphism and y an epimorphism implies that ST(G) ==O and, consequently,


tT(G) is an isomorphism, i. e. T(G) is idempotent. Finally, by the dual of 7.6, we can deduce


that rG = coker sG. Furthermore, it is clear that sG = ker rG and so the torsion theory is


normal.


REMARK 7.8. Observing the arguments used in example (b) we conclude that in a


finitely complete and finitely cocomplete category with zero object such tha,t the cokernels are


preserved by pullbacks along kernels, a torsion theory is normal if the coreflection into the


torsion subcategory are kernels. By the dual of 7.2 and by the proof of the dual of


7.3 ((i) ::::::}(ii» any torsion subcategory of a (FWC)-category is StrMono-coreflective.


Therefore, we may conclude that, in finitely well-complete and finitely cocomplete categories


with zero object such that the cokernels are preserved by pullbacks along kernels and all the


strong monomorphisms are kernels, every torsion theory is normal. By the duals of ([ll],


5.1 (iii» and ([11], remark 5.2) we may replace the hypothesis that the categories are (FWC)


by the condition of existence of finite limits because, according to these results, any coreflective


subcategory of a finitely cocomplete category, whose coreflection morphisms are


monornorphisms, is a StrMono-coreflective subcategory.


For instance, in any finitely cocomplete regular additive category such that the


monomorphisms are kernels, the torsion theories are normal.


In ([11], 8.2) the authors say that they do not know any example of a non-normal


torsion theory. However S. Mantovani in ([37], p. 43) presents an example of a non-normal


torsion theory in the category 'PtHaus of pointed Hausdorff topological spaces:


(e,e --') where e is the subcategory of connected spaces.


The following proposition characterizes the torsion-free subcategories.


PROPOSITION 7.9. Assume that .A and .A op are (FWC) and that any torsion


theory of .A. is left normal. A subcategory of .A is a torsion- [ree subcategory if and only if it


is a reflective subcategory c/osed under subobjects and extensions whose reflector is normal.
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Proof: We show that a subcategory 1] is torsion-free if it satisfies these conditions


since the converse is obvÍous. For that we consider the reflective factorization system '!F= ~~


and let e = \{I''}". As we have already observed, e = ~;- and '!F is a factorization system


smce .A0P is (FWC), and then, by 5.1(iii), e-+=~". To conclude the proofit remains to


show that e -+ = ~, and for that, it suffices to prove that e -+ C~. Let A E e -+ and


sA:S(A)--+A be the coreflection of A in e. Since S(A)Ee it is clear that sA =0, thus


S(A) == o since sAis a monomorphism. Then S(A) E ~ since ~ is closed under subobjects.


By the dual of 3.2 it follows that (StrEpi.A,Mono.A) is a factorization system of .A. Let


A~X~R(A)


be the (StrEpi.A,Mono.A)-factorization of rA' The object R(A) belongs to ~ so X E ~


and Kere=S(A) E~. Hence, A E ~ because ~ is closed under extensions. D


EXAMPLE. The category of abelian groups is a reflective subcategory of yrp with


reflection morphisms


rG: G--+G/[G,G],


where [G,G) denotes the commutator subgroup of G. However, the reflector is not normal


since Ker rG = [G,G) is not always idempotent; it suffices to consider in a non-abeliansoluble


group as, for instance, the symmetric group S3' Therefore .Ab is not a torsion-free


subcategory of yrp and since .Ab <-- is the subcategory 'Jlerf of perfect groups then the


inclusion .Ab C 'Jlerf-+ is strict and ('Jlerf, 'Jlerf-+) is the torsion theory generated by .Ab.


PROPOSITION 7.10. (i) Every torsion-free subcategory of the caiegory .A is closed


under monosources and extensions.


(ii) I] .A is a complete, cocomplete, wellpowered and cowellpowered category such that


every strong epimorphism is a cokernel and pushouts of strong monomorphisms along cokernels


are kernels, then a subcategory of .A is a torsion-free subcategory if and only if ii is reflectiue


and closed under exiensions and subobjects.


Proof: (i) It is obvious.


(ii) Let us assume that ~ is a reflective subcategory closed under extensions and


subobjects. By 7.3, ~ is closed under monosources and so under products. Let e = ~ +-, To


prove that (e,~) is a torsion theory it suffices to show that c " C~. First we prove that,


for each X EObj.A, there exist objects XCEe and XBE~ and morphisms p:XC--tX


and e:X--+XB such that p e ker e with eEStrEpi.A.
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Let Q be the family of quotient objects of X that belong to '1l. Since A is


cowellpowered then Q is a set, {(Xi,eJ: i E I}. Consider the product


(TI x., (o.), E I)
i E I


which belongs to '1l. By the universal property of product there exists a unique morphism


f:X--t TI x,
i E I


such that pj.f= e., for each i E L From the dual of 3.2 it follows immediately that


(StrEpiA,Mono.A.) is a factorization system. This conclusion could also be inferred from the


facts that A is finitely complete and finitely cocomplete, has zero object and every strong


epimorphism is a cokernel (cf. II1.2.4). Let


X~XB~TI x,
iEI


be the corresponding factoriz ation of f and p: Xc --+ X be the kernel of e. Then XB E '1l.


We prove now that Xc E e = '1l~. Let g be a morphism from Xc to an arbitrary object


B of '1l and let us consider the following diagram


where m'.e' is the (StrEpiA,MonoA)-factorization of g, (X",p,e» is the pushout of (p.e')


and h is the unique morphism such that h.p = O and h.e>= e. It is obvious that h is a


strong epimorphism. Our goal is to show that g = O. To prove this it suffices to see that


X' ~ O. Since '1l is closed under subobjects then X' E '1l. The morphism e is a strong


epimorphism, then a cokernel and, since p = ker e, we ha ve that e = coker p. It is an easy


exercise to verify that then h = coker p. But p is a kernel, since pushouts of strong


monomorphisms along cokernels are kernels, so p =ker h. Since ~ is closed under extensions


we conclude that X" E ~, hence X" E Q, 1. e. there exists a j E I such that


eX",e') = eXj,ej). Consider the following commutative diagram
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X
e •. X


B


jm
ei Il x,


i E I


IPj


Xi 1
•. Xi


Since e is a strong epimorphism, then there exists a unique morphism d: XB -----+Xj


such that d.e=ej and Pj.m=d. But h.ej=e, hence d.h.ej=d.e=ej and h.d.e=h.ej=e


which implies that d.h = 1 and h.d = 1, i. e. h is an isomorphism. Since p: X' -----+X" is the


kernel of h then X' == O.


Now we conclude that e --> c 'j3. Let


XB E 'j3 and morphisms p: Xc -----+X and


e E Str Epi.A. Since X E e --> then p = O. Thus


claimed.


X E e-->. There exist objects Xc E e and


e:X-----+XB such that p=kere with


e is an ísornorphism and so X E 'j3, as we


The converse is an immediate consequence of 7.2 and 7.3. o


By lemma 7.3 we can conclude that for categories satisfying the conditions of 7.10 a


subcategory is torsion-free if and only if it is closed under subobjects, extensions and products.


So, we have in these categories a characterization similar to (Ll.12).


EXAMPLE. ln yrp, 'j3 is a torsion-free subcategory if and only if it is closed under


subobjects, extensions and products.


8. CONNECTEDNESSES AND REFLECTIONS


The theory of connectednesses / disconnectednesses in Topology [3) and in other


contexts such as the category of non-directed graphs [22), and the theory of


radicaIs / semisimple classes of rings [19] have intriguing similarities with the theory of torsion


subcategories / torsion-free subcategories.
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The attempt to understand these similarities lead us to the questions we shall deal


with in this chapter. Their inclusion here is justified by the analogies between factorizations of


morphisms / reflections / torsion theories and factorizations of sources / prereflections /


/ connectedness theories, that culminare in theorem 8.11 and their consequences, allowing us to


establish close relations between two definitions of torsion theory apparently distinct.


In this section we shall still assume that the category Á has a zero objecto


Let g be a class of morphisms of Á containing the isomorphisms and closed under


composition with them. From now on we consider factorizations of sources instead of


morphisms.


DEFINITIONS 8.1. (1) The pair (e,(m;)i EI) consisting of a morphism e:A--tB


and a class (m;)i E I of morphisms mi: B--tAi is called an g-factorization of the Á-source


(A,(fi: A--tAi\ E I) if e E ~ and fi =mi·e for every i E I.


(2) An ~-factorization (e, (rn.) i E I) of a source (A, (f;) i E I) is called orthogonal if,


given morphisms p E ~ and u and a source (vi\ E I such that mi.u=vi.P, for every i E I,


there exists a unique morphism d such that the diagram


p
~ .


. .
m.,


is commutative.


(3) A category is called b-cocomplete if it admits cointersections of morphisms of g


and these cointersections belong to g and thepushouts of morphisms of g along any


morphism exist and belong to b.


For additional information about factorizations of sources see e. g. [12] and [28].


EXAMPLE. Any category witb a (FWC) dual IS a StrEpi-cocomplete category.


The following proposition (cf. [44]) will be useful in the sequel.
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PROPOSITION 8.2. (i) Every source in .A has an orthogonal g-factorization if


and only if .A is g- cocomplete and g is c/osed uiuler compositivn.


(ii) If .A is f5-cocomplete then f5C Epi.A. D


From now on we shall assume that .A is 8:-cocomplete, being f5 closed under


composition and containing A -----.O, for each A E .A.


Let H be an endofunctor of .A.


DEFINITIONS 8.3. (1) An g-prereflection is a natural transformation ,: Id .A ~ H


such that 'A E f5, for every A E Obj.A.


(2) An f5-prereflection is called an f5-reflection if 'H:H~H2 is a natural


isomorphism.


Let , be an b-prereflection.


We denote by %, and j-f the subcategories defined by:


%,={AEObj.A I'A =O}


j, = {A E Obj.A I 'Ais an isomorphism}.


EXAMPLES 8.4. (a) If .A is an abelian category and R a radical [43], the


morphisms ('M: M-----.MjR(M))M E Obj.A define an Epi-reflection because R(M/R(M)) =0.


In this case


and


K,={MEObj.A I M/R(M)=O}={MEObj.A I R(M)=M}


j,={MEObj.A I M/R(M)=M}={MEObj.A I R(M)=O}.


(b) In grp the morphisms (-y G : G -----.G /[G,G)) G E yrp define an Epi-reflection


where


K, = {G I [G,G] ~ G} and I, = { G I [G,G] = O}


that is the perfect groups and the abelian groups, respectively.


The following proposition which characterizes the ~-prereflections that are


(g-reflections has a straightforward proof.
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PROPOSITION 8.5. lf ,: IdA .-!.-..t H IS an 8-prereflection, then the following


assertions are equivalent:


(i) , is an 8-reflection.


(ii) I, is reflective with reflection morphisms ( 'A) A E Obj.Â· o


Note that if , is an 8-prereflection, I, can be reflective with reflection morphisms


eventually different from ('A)AEObj.Â (cf. [46], remark 3 ofcorollary 3).


Given a subcategory '1l and an object A of .Â, we consider the source


F~=(A,(fi)iEI) of all morphisms fi' with domain A, such that fi.u=ü for every


morphism u with codomain A and domain in '1l. Let 'Ir~:A __ p'1l(A) be the


8-part of the orthogonal 8-factorization of F~. The correspondence between A and P '1l(A)


is functorial. Indeed, it is the function of objects of an endofunctor of .Â which assigns to each


.Â-morphism f:A--A' the morphism p'1l(f) defined as follows:


Given the sources F~=(A,(f;)iEI) and F~,=(A',(rj)jEJ) it is clear that for each


j E J there exists a ij E I such that fi .f= fi " Denoting by
J


('Ir~,,(mj) j E J the orthogonal b-factorizations of, respectively, F~ and


('Ir~,(mi)iEI) and


F~" the diagram


'Ir'1l
A __ ---'A~_~. P'1l(A)


'1l
'IrA'


p,
rn.'j


A'


p'1lCA') --------. Aj
mj


commutes, for every j E J.
'1l '1l ':Bthat P (f).'IrA = 'IrA,·f and


Then, p'1l(f):p'1l(A) __ p'1l(A') 1S the unique morphism such


mj .P '1l(f) = mi, for every j E J.
J


As an immediate consequence, we obtain a natural transformation 'Ir'1l : Id.Â .-!.-..t P '1l.


PROPOSITION 8.6. If '1l is a subcategory of .Â then:


(i) 'Ir'1l is an 8-prcrcflcction.


(ii) ':BC%'lrc:B'
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Proof: (i) It is trivial.


(ii) Let B E Obj~ and F~ = (B,(fj)j E I)' Since each fi is a morphism such that


fi' u = ° for every morphism u with codomain B and domain in ~, then fi = 0, for every


i E I. So, we have, for each i E I, the following commutative diagram


By definition of orthogonal b-factorization we can conclude that 7r~ factors through


the zero object, i.e. B E %7r~' o


We define p~:A--+R~(A), for each A EObj.A, as the b-morphism of the


orthogonal b-factorization of the source of all morphisms with domain A and codomain in


~. In a similar way, it is possible to define a functor R ~ and a natural transformation


p~:ld.A~R~


PROPOSlTION 8.7. I] ~ is a subcategory of .A then:


(i) p~ is an g-reflection.


(ii) ~Cjp':B'


Proof: (i) The conclusian follows by proposition 8.5, observing that b C Epi.A.


(ii) For each B E Obj'B let (p~,(mi\ E I) be the orthogonal b-factorization of the


source (B,(fi\ E I) of all morphisms with domain B and codomain in ~. Since fj = 1, for


some j E I, then p~ is a split monomorphism. Moreover, p~ E b C Epi.A, and so it is an


isomorphism. o


In the conglomerate of the b-prereflections, we define a preorder by:


r:::::; 8 if there exists a natural transformation a such that (j.' = 8.


Considering the quasicategory (Id.A H.A,.A]) (cf. [36]), where [A,A] denotes the


quasicategory af endafunctors of .A, the b-prereflections I and 8 are isomorphic (as objects


of this quasicategory) if and only if r ~8 and Ó ~ r. It is obvious that I:::::; 8 implies
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LEMMA 8.8.


(i) 7r33==min{,I33CX,}.


(ii) p 33==rnax { , I 33C .'l,}.


Proof: (i) Let us denote the min{, I33CX,} by m. We have that m::;7r33, by


8.6(ii). Consider ,: IdÁ ---t H such that 33C X,. For each A E Obj.d and each morphism


u with codomain A and domain B in 33, 'A.u=H(u).'B=O since 'B=O. Let


(7r~,(m;)i E r) be the orthogonaI 8-factorization of F~. Then there exists a iA E r such


that 'A = mi A· 7r~. Therefore, defining (J":P 33---t H by (J"A = fii A' for every A E Obj Á,


it is obvious that (J".7r33=" i. e. 7r33<v- Hence, 7r33::;" for every , such that 33C %"


and so 7r33 ::; m. Consequently, 7r33= m.


(ii) Let us denote the max { , I 33C .'l,} by M. According to 8.7(ii), p 33 ::; M.


Consider ,: Id Á ---t H such that 33C .'l" (A,(f;: A -- B;); E; I) the source of all morphisms


with domain A and codomain in 33 and (p ~ ,(mi); E I) its orthogonal 8-factorization.


Since, 'B is an isomorphism, for every B E Obj33, we havethe commutative diagram


Aj~,' H(A)~
pX ~ _, H(B;)


R"(A) ffi.· B;~,


Hence, there exists a unique morphism dA such that dA.'A =P~ and mi.dA =,Ê ..H(f;),


for every i E r. Defining b : H~ R33 by ÓA = dA' for each A E Obj Á, it is d:ar that


ó.,= p 33, i. e. ,:::; p 33. We conel ude that M = p 33 because ,:::; p 33 for every , such that


33C r, and so M::; p 33. o


DEFrNITION 8.9. An 8-prereflection , is called an 8-connection if , ==7r33 for


some subcategory 33.


Given an 8-prereflection ,: Id Á ---!.......t H Iet us denote the 8-prereflections 7r%, and
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p'lr by , and 7, respectively. Lemma 8.8 tells us that I.:::;':::; 7.


LEMMA 8.10. Let ,:IdÁ ~ R be an b-prereflection. Then:


(i) 7= min {6 I,::;6 and 6 is an b-reflection}.


(ii) I. = max {6 I 6 ::;, and 6 is an b-connection}.


Proof: (i) Let us denote the minimum by m. By 8.7 we have that m::; 7, since


7 1S an b-reflection.


Let 6: Id Á ~ L be an b-reflection such that ,:::; 6. By 8.5, .'l8 is reflective with


reflection morphisms


(ó A: A-+L(A)) A E ObjÁ
_ .'l


thus L(A) E .'ls C .'l" for every object A of .A. Hence, by definition of 'A = PA" óA


factors through 7A' It is easy to see that this way we define a natural transformation
.'l


R '~L which shows that 'Y::; 6. So, 7::; m.


(ii) Denoting the maximum by M it is clear that r:::;M. To prove that M:::; r, let


Ó ~ 7r~ be an b-connection such that ó:::; ,. By 8.6(ii), CJ'3C %7r~ = %Ó. On the other hand,


5:::;, implies that %óC%" and so CJ'3C%,. If F~=(A,(f;)iEI)' F~'=(A,(gj)jEJ)


and (7r~,(rni)iEI) and (7r~,,(nj)jEJ) are the respective orthogonal t,-factorizations then


there exists, for each j E J, an i j E I such that gi = fi.' which implies, for each i E J, the
J


commutativity of the following diagram


g.=f. m.
) 'j 'i


Hence, one has a unique morphism (XA :P~(A)-+p%'(A) such that (XA.7r~=7r~'


and n i: (X A = rni ., for every j E J. It is obvious that the morphisms ((X A) A E Ob·.A define a
) ~ % ~ % ~


natural transformation (X: P ~P , such that (X.7r = 7r '. Hence, 6:::; I.' and 80


o
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THEOREM 8.11. (1) Lei ~ be a subcategory of.A. Then the fol/owing assertions


are equivalent:
(i) ~=~<--+.


(ii) ~ = ~/' for some ~-connection /,.


(2) Lei e be a subcategory of.A. Then the following assertions are equivalent:


(
"') to _ to -+ <-
111 v- v .


(iv) e = %/' for some ~-reflection /,.


Proof:


(i) ::::}(ii): First we prove that for any subcategory e, e-+ = ~'lre. Let A E e-+.


Then, the family of all marphisms g with dornain A such that g.u = o for every marphism


u with codomain A and damain in e is exactly the sourceof all .A-marphisms with domain


A. From the definition of ?rÃ it follows that this morphism is a split monamorphism. Since


it is always an epimorphism, A E j?re· Conversely, let A E j?re and FÃ = (A,(fi)i E r) be


the respective source whose orthogonal b-factorization is ('lrX,(m;)i E r)' If c E e and


f: C--+A then it is clear that fi.f= O, for every i E L Hence, in the commutative diagram


eC -----''---- •. O


A


e ethere exists a unique morphism d such that d.e = 'IrA .f. But 'IrA is an isomorphism, hence


f=O.


Now it suffices to take e = ~ <--.


(ii)::::} (i): If /' is an ~-connection then /'= /,


that ~ =:l/, = j:r- To prove that ((i) ::::}(ii», we saw that
GTl <- -+ _ <Ir -+ <- -+ _ ~r -+ _ GTl..o - Jo/, - Jo/, -..o.


by the preceding lemma, implying


j % =%;, l.e. :l/,=%;, Thus
?r /' -


(iii) ::::}(iv): It is easy to verify that the equality ~ <- = %p~ holds for any


subcategory ~. Then the proof is concluded if we take ~ = e -+.
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(iv) :::}(iii): By the preceding lemma


((iii):::} (iv)) we conclude that %7 = j;-. As
to ---7 f-- Q f-- ---7 f-- Q f-- to· . d
'-' = J, = J, = '-', as it was reqmre .


,-=- 7. This implies that e =X7' From


a consequence of this fact we have that


o


COROLLARY 8.12. I] .A and .A op are (FWC)-categories and .A is [5-cocompleie


then:


(i) ~ is a torsion-free subcaiegory if and only if ~ = j, for some ~-connection ,.


(ii) e is a torsioti subcategory íf and only íf e= x, for some ~-refleciion ,.


o


COROLLARY 8.13. lf .A and .A op are (FWC)-categories and .A zs ~-cocomplete


then the following conditions are equivalent:


(i) (e,~) is a iorsion theory.


(ii) ~ = .'Ly for some ~- connection , and e = x7.


(iii) e = %, for some ~-reflection , and ':B= j,.


hand,


Proof:


(i) :::}(ii): Since ':B f-- --+ = ':B, then ':B = j, for some ~-connection ,. On the other


e = 'J3 +- =:J:y = % j = %7' according to the proof of 8;11.
p ,


(ii) => (i), (i) => (iii) and (iii) => (i) can be proved in a similar way. O


In addition, we can conclude that if , is both an ~-connection and an ~-reflection


then (X"j,) is a torsion theory.


EXAMPLE. Consider a (FWC) abelian category .A such that its dual category is


also (FWC) and let , be the Epi-reflection referred to in 8.4(a). Assuming that the radical


R is idempotent then , is als o an Epi-connection since ,-=- 7r %, Indeed, let
%


FM,=(M,(fi)iEI) for every MEObj.A, i.e. (fi)iEI is the family of morphisms g with


dornain M such that g.u=O for every morphism u with codomain M and domain in %,.
The fact that R IS idempotent impliesthat R(M) E %, and so R(M) C Kerfi, for each


i E I. Conversely, if g is a morphism with domain M such that R(M) C Ker g, then g


belongs to the family (fi)i E I because, for each u: N --+M with N E %" we have that


u(R(N)) C R(M) (cf. [43]), since R(N) = N and R is a radical. Thus u(N) C Ker g, I. e.


g.u=O.Then, (f;)iEI ia the farnily


{g E Mor.A I dom(g) = M and R(M) C Ker g}.
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Consequently, each fi factors through the morphism rM in a uni que way:


Ker f,


Let us show now that the factorization (rM,(mj)i E r) of the source F~r is an


orthogonal Epi-factorization. Given e: A ---. B E Epi.A, v: A ---. M/R(M) and


(uj:B--+Mj)jEI such that mi,v=uj.e, for every iEI, since KerrM=R(M), then there


exists some j E I such that fj = rM and, consequently, fij = 1. Since e is an epimorphism,


then u} is the unique morphism for which the following diagram


A __ -"e'--_ •..- B


"""""u , //
J"


"";'
M/R(M)


v


commutes for every i E r.
The orthogonal Epi-factorization (rM,(mi)i EM of the source F~r and its unicity,


up to isomorphism, enables us to conclude that r:::: 7r r and so that (%r,jr) is a torsion


theory of .A.


Cassidy, Hébert and Kelly ([11], p. 307) (proposition 5.4 in this chapter) and Barr


([4], 1.1) gave different answers to the question of knowing which properties should be


preserved when extending the concept of torsion to non-abelian categories. Actually, Barr


defined the torsion theory of a category .A as an idempotent monad in .A, T = (T,TJ,fL), such


that T preserves regular monomorphisms and TJA is an epimorphism, for every object A of


.A, the torsion-free objects being the objects A for which r;A is an isomorphism. Therefore,


since the mona.d is idempotent, the subca.tegory of the torsion-free objects is isomorphic to the


category of T-algebras.
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Corollary 8.13 allows us to relate these two concepts, being the one introduced in [11]


referred to just as torsion theory.


PROPOSITION 8.14. Assume that ..4. and ..4.ap are (FWC)-categories.


(i) Let (e,GJ3) be a iorsion theory of..4.. Then the idempotent monad (T,1],f.i) uihere


1]:Id..4.----+T is a StrEpi-rejleciion such that e=%1] and f.iA=(1]TA)-l, for every object


A of ..4., zs a iorsion theory, according to Barr' s definition, if T preserves regular


monomorphisms.


(ii) Lei (T,1],f.i) be a torsioti theory of ..4., in the sense of Barr. Then (%1],j~) zs a


iorsion theoru if ..4. is Epi- cocomplete 01' 1]A E StrEpi..4., for every A E Obj..4..


Proof: (i) To conclude that we get Barr's definition it suffices to observe that, since


..4. o p is (FWC), .A. is StrEpi-cocomplete and then to apply 8.13. We point out that Barr


defines the torsion-free class as 31]' which is contained in 3~ = GJ3,but the reflectivity of GJ3


implies easily that 31]= 31]'


(ii) Since (T,1],f.i) is an idempotent monad, then 1] is an Epi-reflection. So, when .A.


lS Epi-cocomplete we can use 8.13 ta conclude that (%1],j~) is a torsion theory. If


1]A E StrEpi..4., we can still use 8.13 since we have the StrEpi-cocompleteness of ..4.. O
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CHAPTER 111


LOCALIZATIONS AND TORSION THEORIES


1. CHARACTERIZATION OF SOME CLASSES OF REFLECTORS


We have already observed in 11.3.4 that if Á is (FWC) and ~ is a reflective


subcategory of .Á. then <f>~ is a factorization systerri. However if we drop the condition


relative to the existence of intersections of strong monomorphisms then <f>~ will be a


factorization system only for some special type of reflective subcategories. ln this section we


wil! do a brief digression through some of these reflectora, giving particular attention to the


localizations, whose torsion theory has special interesting properties if it exists, and the


reflectors with stable units defined in [lll, which we develop here a little more.


Let .Á. be a finitely complete category, and (rA:A--+R(A))AEObj.A. the class of


retlection morphisms from .A. to a subcategory ~ We denote by c:F = (b,.J!1,) the


prefactorization system <P~. Throughout this section, for each A E ObjÁ and each


g: B --+ R(A) with B E Obj'B, the diagram


P(g)
g, • A


go j'A
B g • R(A)


represents the pullback of g along rA'


It is clear that given a morphism f:A--+A' there exists a uni que morphism f such


that the following diagram
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A,,,,,
", f f,,,


" R(f),rA P(R(f)) --===u __• A'


R(fjoj ['A'
R(A) R(f)· R(A')


commutes.


DEFINlTION 1.1. The reflector R is called simple if fE g for each .A-morphism f.


Since R(f) E Mor'B C.Ab then R(f)l E.Ab so, if the reflector is simple, '!J is a


factorization system.


PROPOSITION 1.2. The following assertions are equiva/ent:


(i) The reflector R is simple.


(ii) f:A-+A'E.Ab ifand only if (A,rA,f) is the pullback of (R(f),rA')'


(iii) For each g: B-+R(A) in ':R, (P(g),rp(g),l) is the pullback of (go,R(go))'


(iv) For each g:B-+R(A) in ~, if R(go) is a splii epimorphism then it is an


isomorphism.


Proof: See ([11], 4.1). o


REMARK 1.3. When .A is preadittive the conditions (i)-(iv) are equivalent to


(v) For each g: B-+R(A) III ':R, the morphism R(go) is a monomorphism.


In fact, it is obvious that the implication ((v) => (iv)) is always true. ln preadittive


categories ((iii) => (v)) holds, because m is a monomorphism if and only if ker m = O.
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PROPOSITION IA. The following conditions are equivalent and imp/y that R zs


simple:


(i) For each g: B --+ R(A) in <:B, R(go) is an isomorphism.


(ii) The reflector R preserves ihe pullback of any pair of morphisms provided that one


of them belongs to A.


(iii) Any pullback of a morphism of ~ along a morphism of Alies in ~.


Proof: See ([11], 4.3). o


DEFINITIONS 1.5. (1) A reflector is said to be semi-left-exact provided that it


satisfies one and then all the equivalent conditions of IA.


(2) We say that a reflector has stable units if the pullback of any reflection morphism


belongs to ~.


Denote by 8('13) the full subcategory of .A. defined by the objects X whose


reflection "x is a monomorphism. By a pullback over an object of S('~B) we mean a


pullback of two morphisms whose common codomain is an object of 8(<:B).


PROPOSITION 1.6. The following assertions are equivalent and imply that the


reflector R is semi-left- exacto


(i) R has stable uniis.


(ii) ~ is stable under pullbacks over objecte of S(%).


(iii) R preserves pullbacks ouer objects of S(%).


(iv) R preserves finde pro ducts and equalizers of pairs of morphisms with codomain


zn 8('13).


Proof: (i) implies 1.4(i) and, therefore, that R is serni-left-exact.


(i) => (ii): Consider a pullback


eD -----'''----. C


f


A ---e---l •.•..X
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where e E ~ and X E S('J3). It is obvious that (D,e,f) is als o the pullback of (rX·e,rX·f),


since "x is a monomorphism. But Re is an isomorphism and rX·e =Re.r A hence, by


hypothesis, e E ~.


(ii) :=> (iii): Let


D
g' PC


f j f
(1)


A g • X


be a pullback with X E S(~).


Consider the pullback (P ,g,f) of Rg and Rf. Then there exists a uni que morphism


t such that g.t = Rg' and f.t = Rf'.


R(D),
",t,,,•...,


-....P--~--t~
• R(C)


jm
R(A) Rg' R(X)


Rf
(2)


To prove (iii) it suffices to check that t is an isomorphism.


By definition of reflection morphism, there exist unique morphisms gl and f1 such


that gl.rp =g and f1.rp = f. According to this fact and since (2) is a pullback, it is obvious


that fp is a monomorphism, i. e. P E S(~).


Now we prove that in the following bipullback (see [34]),


A·
a cK 'C


rA ju rC (3)


R(A) • f
p g • R(C)
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Note that a bipullback is the limit of a diagram of the following form


.. . .


But, as can be easily observed, every bipullback can be constructed from three


pullbacks. In particular, the bipullback above can be obtained from the three following


pullbacks


K


p
y~


qA· ,\/c
•..c


'A j j 'C


R(A) • f
p g • R(C)


taking u=fA.rC=fC.rA' a=p.rC and c=q.rA.


By hypothesis, fA' fC E~, and we already know that P E S('1\), hence rA' re E ~.


Since g is closed under composition we can conclude that u E g, as required.


Since "x.g.a = Rg.r A.a = Rg.f.u = Rf.g. u = Rf.rC'c = "x .f.c and 'x IS a


monomorphism we conclude that g.a=f.c. Therefore, in (1) there exists 11: unique morphism


d such that r.d=a and g'.d=c:


K ,
"


", d,-,,,,......
D---=----


f


a


A -------< ••..X
g
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By lemma lI.1.14, ~l.=~, so there exists a unique morphism t' such that the


following diagram is commutative:


li • PK


dI


I
I
I
I
I t'
I
I


t
D rD


• R(D)


Weassert that t.t'= 1 and t'.t= 1. In order to prove it we begin by observing that


d is an isomorphism.


Since (2) is a pullback and Rf.rC.g' = rX .f.g' = rX .g.r = Rg.r A.r, there exists a unique


morphism s: D ---t P such that f.s = rA.r e g.s = rC.g'.


But rA.r=Rr.rD=f.t.rD and rC.g'=Rg'.rD=g.t.rD so s=t.rD.


Consequently , in the bipullback (3) there exists a unique morphism m such that


u.m=s, a.m ee f' and c.m=g'.


D
I
I
I


f I g'
I m
I
I


a t c
A K • C


s


•
rA u


R(A) •
f


p
g ~ R(C)


From r.d.m=a.m=f' and g'.d.m=c.m=g' we obtain d.m= 1. On the other hand,


f.u.m.d =f.s.d=f.t.rD·d= Rr.rD·d = rA .f'.d= rA .a=f.u and


g.u.m.d= g.s.d= g.t.rD.d = Rg'.rD.d= rC.g'.d= rC'c= g.u


implies that u.m.d = u, since {f, g} is a monosource.


From the equalities


• c.m.d ee g l.d ee c


• a.m.d=f.d=a


• u.rn.d ee u
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we conclude, by definition of bipullback, that m.d e 1 and, therefore, d is an isomorphism.


Then t'.t.rD=t'.u.m=rD.~.m=rD


Rf.t'.u = Rf.rD.d=f.t.rD.d=f.u.m.d=f.u.


implies that Rf'. t' = f, because u E g and


Rg'.t'=g. Butthen


which implies that t'.t=l. But


Moreover Rf.t'.u=Rf.rD.d=rA.f.d which


R(A) E g J... In an analogous way we infer that


• f.t.t' = Rf.t' = f


• g.t.t'=Rg'.t'=g


whence t. t' = 1 since (2) is a pullback.


(iii) => (iv): To prove that R preserves finite products it suffices to observe that if


(AXC,Pl,P2) is the product of two objects A and C then


AxC P2 •
C


Pl j
A ~ T


is a pullback and that TE '53C S('53).


Finally, if A......h......B ! I X is an equalizer with X E S('53) then


A
h ~ B


f.h=gh j j (f,g)


X i:J.. ~ XxX


is a pullback with i:J..=(1X,lX)' using the notation of ([36], p. 69).


Consider the products (XxX,7r1,7r2) and (R(X)xR(X),Pl,P2)' and the morphism


(rX)2:= (rX.7rl,rX.7r2)' The fact that rX is a monomorphism implies, immediately, that


(rX)2 is also a monomorphism. But it is clear that there exists a morphism t such that


t.rXxX = (rX)2. Hence 'x-x is a monomorphism, i. e. XxX E 8('53), and then the pullback


fulfils the conditions of hypothesis. Therefore Rh is the equalizer of Rf and Rg.


(iv) => (i): Clearly ((iv) => (iii» since a pullback
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g •.Cp


f) f


A g
•. X


is the equalizer ofAxC f,P2 : X, where Pl and P2 are the projections of AxC m A and
g·Pl


c, respectively.


On the other hand, it is obvious that ((ii)::} (i)). Therefore, it remains to prove the


implication ((iii) => (ii)). So, consider a pullback


D
e •C


fj f


A e • X


with e E (g and X E S(~). Let us prove that e E (g.


By hypothesis (RD,Re,Rf) is the pullback of Re and Rf. Hence there exists a


unique morphism t such that the following diagram is commutative:


• R(C)


Ri' Rf


R(A) Re • R(X)


By definition of reflection morphism there exists a unique morphism t such that


t.rC=t. Then Re.t.rC=Re.t=rC and so Re.t=1.


We have also that
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and


Thus U!=rD which implies that rD=t.rC.e=t.Re.rD' so t.Re=1. In conclusion,


Re is an isomorphism, i. e. e E g. o


DEFINITION 1.7. We say that a reflector is a localization if it is left exact, i. e. if it


preserves finite limits.


In the sequei a reflective subcategory of .A. such that the reflector is a localization will


be called a localizing subcategory of .A.


EXAMPLE 1.8. The only localizing subcategories af ~ op are ~ op itself, the


subcategory Jnd of indiscrete topological spaces and ~er. It isobvious that ~op and ~er


are localizing. Let ':B be a localizing subcategory of ~ op different from ~ op and ~ er. The


corresponding reflector is a monofunctor, because being left exact it preserves monomorphisms.


The subcategory ':B contains a space B with at least two points bl and b2, smce


':B =1= ~ er. Let us show that ':B is monoreflecti ve. If D is a discrete space, rD: D --t R(D) is


a monomorphism: if du d2 E D and f: D--tB is sueh that f(dI) =1= f(d2), then there exists a


morphism f sueh that f.rD = f and consequently dI and d2 have different images by rD'


For any space X, consider the corresponding discrete space D with the same underlying set


and the identity map i: D --t X. Then rX.i = R(i).rD and, sinee R is a monofunetor, R(i)


is a monomorphism and the sarne occurs with R(i).rD' Thus 'x is a rnonomorphism because


is bijective.


By the dualof ([26], Prop. 1) ':B is bireflective and so, according to ([38], Theorem 1)


it eontains .'Jnd. But the Sierpinski space S does not belong to ':B because '1op is the


bireflective hull of S. Then it is obvious that the indiscrete space with two points, 12, is the


reflection of S in ':B. Since the reflector preserves products, the reflection of SxS in ':B is


12xI2=I4' Now weshall see that this fact allows us to conclude that the reflection of the


discrete space D2 with two points is equal to 12, Let us denote by fi the map D2--tSxS


defined by m(dl) = (0,1) and m(d2) = (1,0), assuming that {I} is the non-trivial open set of


S. This map is injective, continuous and -: m(D
2
) is continuous. Therefore, m is a


regular monomorphism since it is an embedding. Then R(m) is a regular monomorphism,


because R preserves equalizers, In the following diagram
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mD
2


--""'---~. SxS


R(m) R(SxS) = 14


R(D2) has two elements since the reflection morphism rD
2


is a bijection, and we obtain a


homeomorphism by corestricting it to a subspace of 14, since R(m) is an embedding. Hence,


R(D2) =12,


Finally, we prove that ':BC Jnd. Assume that for some X E ':B there exists an open


set U of X such that U =F 0 and U =F X. If we consider the map f: D2--+X such that


rI(U) = {dI} we conclude that there is a morphism f: 12--+ X such that f.r
D2


= f, which is


impossible, as can be immediately observed.


PROPOS1TION 1.9. The following conditions are equivalent and imply that R has


stable units:


(i) R is a /oca/ization.


(ii) ~ is stable under pullbacks.


Proof: (i)::} (ii): It is trivial, since ~ = ER.


(ii) ::} (i): It suffices to prove that R preserves pullbacks because the terminal object,


since it belongs to ':B, is preserved by R.


It is clear that R has stable units so <I>':B= (~,.At,) is a factorization system. Given


f: A --+ B and h: C--+ B let (P ,f,h) be their pullback. Consider the (~,.At, )-factorizations,


f=m1.e1 and h=m2.e2' It is obvious that the following diagram is commutative:


r-


ei' m" 1
P=P4


•. P2
I


• C


e, 1 (4) e' (2) j e,2


li P3 e'
•.P


I m' • C
I I


m" (3) m' (1) m22 2


A •. A •.B
el ml
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.where each square (1), (2), (3) and (4) is a pullback.


By 1.4(ii) R preserves (1), (2) and (3) and, by hypothesis, ei, e2' ei\ e2'E ~ = ER
thus R als o preserves (4). Therefore R preserves the outer pullback. O


REMARK 1.10. In Theorem 11.3.5, if F is left exact then it is obvious that Q is


left exact too. Using the characterization 1.9 it is possible to prove that,in these conditions,


R is also left exacto Indeed, if (~,.Ab) is the factorizatíon system (G(More) i,G(More) il)


associated wi th the adj unction F -1 G, we know that ~ = EF. Since ':B= .Ab/T, the
o o o


factorization system <I>':Bis equal to <I>1l1(~,.Ab)=(~,.Ab) and ~=ER. But we saw in the
o .


proof of 11.3.5 that . (~,.Ab) is reflective, thus ~ = ~ and since F preserves pullbacks it is


obvious that R satisfies 1.9 (ii).


These facts imply that Theorem 11.3.5 of B. Day generalizes a result of


Lawvere-Tierney (cf. [32], Theorem 4.14) about factorizations of geometric morphisms between


toposes.


DEFINITION 1.11. A factorization system (g,.Ab) 1S called local if it 1S reflective


and the class g is stable under pullbacks.


As a corollary of 1.9 and of some results in 11.1 we have the following:


COROLLARY 1.12. In a finitely complete category ihere existe a one-io-one


correspondence beiuieen the localizations and the local factorization sysiems. O


We can derive from the preceding results the following chain of implications:


R is a localization => R has stable units => li is semi-left-exact => R is simple


=> <I>':Bis a factorization system.


The following examples show that the converse of each one of these implications 1S


false:


(a) The reflector from yrp to ..A.b which sends each group G to the quotient of G


by its commutator subgronp is not simple because 1.2(iv) is not true if A is the symmetric


group of order three and B = o. However, <I>':Bis a factorization system since yrp is a


(FW C)-category.


(b) TLe reflector from category .A3 of 11.4.3 (d) to subcategory {a.b.z} is simplc but
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is not serni-left-exact:


Indeed, the pullback of C-H E g along b----+l E..Ab is equal to o----+b which does


not belong to ~.


(c) Let G be a group with a cardinal greater than one and consider the category .Á.


of G-sets whose objects are the pairs (X,.), where X is a set and .:GxX----+X is an action


of G in X verifying l.x=x and (gg').x=g.(g'.x) for every g,g'EG and every xEX,


and whose morphisms are the maps which preserve the actions. A G-set (X,.) is called


discrete if g. x =x, for every pair (g,x) E GxX. ln each G-set, (X, .), let us define the


following equivalence relation:


x ~ x' if and only if there exists a g E G such that x ee g-x'.


Of course, XI ~ is a G-set for the action g. [x)= [g-x]. If '11 denotes the subcategory of


discrete G-sets, the functor


R : .A. ----+ '11


X 1----+ XI ~
(f: X----+ Y) 1----+ (XI ~ ----+Y I ~)


[x)~[f(x))


is a reflector from .Á. to '11. This reflector is semi-left-exact since it satisfies 1.4(i). However,


it does not have stable units because, for the G-set G whose action is defined by the group


operation, the pullback of rG:G----+{eG} along rG does not belong to g.


(d) Consider the category CJop and the subcategory CJ0Po of To-spaces. The


reflector R from CJop to CJ0Po which sends each topological space (X,TX) to X/,-v, with


quotient topology, where ~ is the equivalence relation defined by


x~y if and only if xE{y} and YE{x},


which is also equivalent to


is not a localization as we remarked in 1.8. The same conclusion follows from the fact that this


reflector does not preserve monomorphisms. Indeed, it suffices to consider a monomorphism


from a T o-space X with cardinal greater than one into a topological space Y with the


indiscrete topology, because R(X) =X and R(Y) ~ {*} where {*} is the terminal object of


CJop.


On the other hand, R ha.s stablc unins. Indeed , consider the pullback
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P
i' ~y


I
f jl


X rX • XI'"


i. e. P is the set {(x,J) E XxV I rX(x) =f(y)}, with the subspace topology with respectto the


product, and r and f are the projections to Y and X, respectively. Let us check that


Ri' : P I '"---t YI '"
[(x,y)] r-t [y]


is an isomorphism.


First we note that r is surjective. Indeed, for each y E Y, if we consider x E X such


that rX(x)=f(y) then i'((x,y»=y. Now let us prove that r is open. Denoting the


projections from XxV to X and Y by pX and Py, respectively, the collection of all sets


PX(V;)nPy(Wj), where Vi ranges over all members of TX and Wj over all members of


Ty, IS a basis for the topology of XxV. So, the collection of all sets


p n Px -1(V;) n Py -1(W j)' for each Vi E TX and W j E Ty' is a basis for the topology of


P. Let U = P n Px -1(V) n Py -1(W), for some open set V of X and some open set W of


Y. To prove that I'(U) IS an open set of Y it is enough to observe that


I'(U)=rl(rX(V»)nW, which is an open set of Y because 'x IS open, being


rX-l(rX(V))=V forevery VETX'


Hence, the morphism r is open and so it is an extremal epimorphis~. But then RI' is


an extrernal epimorphism since Ri'.rp = ry.r is an extremal epimorphism. Thus, to conclude


that Ri' is an isornorphisrn, it suffices to prove that it is a rnonornorphisrn ..


Let [(xo,y o)],[(Xl,y 1)] E P I~ such that Rf([(xo,y o)]) = RI'([(xl'Y 1)])' But


Rr.rp = ry.r. Then 'v equalizes r((xo,yo» and r((xl'Yl))' i. e. ry(Yo) = rY(Yl) and so


g.ry(Yo)=g.rY(Yl), where g denotes the unique morphism such that g.ry=f, whose


existence is guaranteed by definition of reflection morphism. Thus ry(Y ri) = rY(Yl) and


f(yo) =f(Yl) and, consequently, rX(xo) =rX(xl), since (xo,yo), (XI,yI) E P. Let us prove that


[(xo,yo)]= [(XI,YI)), i.e. (xI,yd E {(xo,yo)} and (xo,yo) E {(XI,yl)}' If (xl,y1) would not


belong to {(xo,Jo)}, then, for some open set U of P, (Xl>Y1)EU and (xo.Yo) fi. U. The


open set U is a union of open sets of type [-I(V) n r-l(W) where V is an open set of X


and W an open set of Y. Without loss of generality, we can assume that


U=f-1(V)nr-1(W). Then x1EV and y1EW smce (X1,Yl) Ef-1(V)nr1(W), and
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xoEV and YoEW since rX(xo)::::rX(xJ and rY(YO)=rY(YI)' Then (xo,yO) EU, which


is absurdo Thus (XISI) E {(xoSo)}· Analogously we conclude that (xoSo) E {(X1'Yl)}'


Therefore, R has stable units, as we claimed.


2. LOCALIZATIONS AND HEREDITARY TORSION THEORlES


In this section we assume that the categories Ã and Ã o Pare finitely complete.


The torsion theories are not necessarily generated by localizing categories. However,


when this happens, we have a torsion theory with interesting properties.


Next definition generalizes 1.2.1 since in an abelian category any monornorphism 18


regular.


DEFINITION 2.1. A subcategory e of Ã is hereditary provided that it is closed


under regular subobjects and, in this case, if (e,':B) is a torsion theory then it is called a


hereditary torsion theory.


Given a localizing subcategory ':B, consider the corresponding factorization system


~=(g,..Ab)::::<[>':B, the subcategory e::::Ijg and the subcategory ':B' defined in lIA. Recall


that ':B+- = e and e -t = ':B'.


PROPOSITION 2.2. The subcategory e rs hereditary and, therefore, the torsion


theory (e,~') generated by a localizing subcategory ~ is hereditary whenever it exists.


Proof: Consider a regular subobject C' of C E e, being i: C' ~C the equalizer of


f, g : C --+ A. Since the reflector R from Ã to ~ is a localization then R(i) is the equalizer


of R(f) and R(g). But R(C) ~ R(I), by 11.5.1 (ii), and R(I) is the initial object of ':B


hence R(f) = R(g) and R(C') ~ R(I). Thus, C' E e. O


DEFINITION 2.3. Given a subcategory ':B of Ã,we denote by ~# the closure


of ~ under subobjects, i. e. the subcategory of Ã· whose objects are the Ã-objects for which


thoro exist a monomorphism with codornain in ~.
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If we assume that Á has zero object and that all strong epimorphisms are cokernels


then the classes SEpiÁ and RegEpiÁ coincide and so RegEpi.A is closed under


composition. According to the dual of ([12], 1.3.5 (iii)), we have the following:


LEMMA 2.4. I] Á has zero object and all strong epimorphisms are cokernels then


(Str EpiÁ,MonoÁ) is a factorization system of Á. o


PROPOSITION 2.5. Assume that Á has zero object and all strong epimorphisms


are cokernels. Let ~ be a localizing subcategory of Á. I] the hereditary torsion theory


(e,~') generated by ~ exists then it is normal and ~'=~#.


Proof: The reflector R from Á to ~ is normal, since it is left exacto Hence


e = ~ +- is coreflective and each coreflection morphism sA: S(A) --.A is the kernel of the


respective reflection morphism rA (cf.11.7.7).


For every object A of ~', rA is a monomorphism since, by the dual of the


proposition I1.5.1 (ii), e ----> =~' is the subcategory whose class of objects is equal to


{AEObjÁI S(A)=O}. Therefore ~'c~#. The converse inclusion is obvious because ~'


contains ~ and it is closed under subobjects (see 11.7.2).


It remains to prove that if the torsion theory (e,~') exists (which happens, for
o


instance, when ~ and ~ are factorization systerns), thenit is normal.


The previous lemma allows us to consider the (StrEpi.Á.,MonoÁ)-fact~rization mA.r!


of rA' for each object A of Á. The morphism rX is a reflection morphism from A to


~#. Indeed, considering f: A --. C and C E ~ ". if i: C --. B is a monomorphism with


B E ~ then there exists a unique morphism g such that g.r A = i.f. Consequently, since


rt E Str EpiÁ = (Mono.A) T n Epi A, there exists a unique morphism h such that the diagram


#
rA #


A • R (A)
I
I
I
I


" mAI
I


I


f ,'h R(A)
I


I
I
I


" gI
I
;


C -B
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commutes. Therefore, f= h.rÃ factors through rÁ· The unicity follows because rÃ 1S


epimorphic.


Since sA =ker(mA·rÃ) and mA is a monomorphism then sA =kerrf. But, by


hypothesis, .rÍ is a cokernel and so rÍ= coker SA' Therefore,· (e,':B#) = (e,':B') is normal. O


The correspondence ':B~(e,~') defined in the class of localizing subcategoriesof .A


1S not, in general, injective, For instance, in 'J op we proved that the only localizing


subcategories are 'Jop itself, 'Jer and Jnd (1.8) to which correspond, respectively, the


hereditary torsion theories ('J op "", 'J op <- --+) = (3ni, 'J op), ('J er <-, 'J er <- --+) = ('J op, 'J er)


and (3nd <-,3nd <- -+) = (3ni,'Top).


The same situation occurs in the topological categories e~eg and 'Prox which have


only the two trivial torsion theories and the localizing subcategories e~eg, 'J er, Jnd and


'Prox, 'Jer, Jnd, respectively (cf. [10), 3). However, when .A is abelian that correspondence


defines a bijection between the class of the localizing subcategories and the class of the


hereditary torsion theories provided that .A has sufficient injectives. To prove this assertion


we shall make use of the following lemmas:


LEMMA 2.6. li pushouts in .A preserve monomorphisms then (Epi.A,StrMono.A)


is a [actorization system oi .A.


Proof: It suffices to prove that .A has (Epi.A,RegMono..A.)-factorizations since then


the classes StrMono.A and RegMono.A are equal and therefore, as we did in lemma 2.4,


applying ([12], 1.3.5 (iii)) we conclude what is required.


Consider a morphism f: A --+ B of .A and let (x, y: B --+ C) be it~ cokernel pair and


p:E--+B be the equalizer of x and y. Then there exists a morphism q such that f=p.q.


Since p is a regular monomorphism it suffices to show that q is an epimorphism. So, let us


assume that (u, v: E --+ F) is the cokernel pair of q and consider the pushouts


u
• F E


P • B
q'


E F ·Y


p jp' v jv, p,j j p"


B u' ·x F q' •Y X q" ·z
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q p •BThen A • E


q[ v'


E y


pj p"


B u' • X q" • z


is a pushout, so there exists an isornorphism i such that i.x=q".u' and i.y=p".v' which


implies that q".p'.u=q".u'.p=i.x.p=i.y.p=p".v'.p=p".q'.v=q".p'.v. By hypothesis, the


pushouts preserve monomorphisms thus q" and p' are monomorphisms. Therefore u = v


and so q is an epimorphism. O


REMARKS 2.7. (i) The dual of 2.6 enables us to replace in 2.5 the condition "A has


zero object and all strong epimorphisms are cokernels" by the one "pullbacks in A preserve


epimorphisms" .


(ii) lf a subcategory ~ of .Á is reflective then a morphism of ~ belongs to


MonoA if and only if it belongs to Mono'B. ln fact, it is obvious that this condition is


necessary, Conversely, if m: B ~ B' belongs to Mono'B and if f,g: A ~ B are parallel


morphisms of .A. such that m.f=m.g then m.Rf.rA =m.Rg.rA' i.e. m.Rf=m.Rg and so,


by hypothesis, Rf= Rg which implies that f= g. Thus, mE MonoA.


Let us assume now that A is an abelian category.


If ~ is localizing, we observed in 2.5 that in the pair (e,~'), e is coreflective, ~'


is reflective, each coreflection morphism sA: S(A) ~A


morphism rÁ=r:f::A---+R'(A) and rÁ=cokersA.


f:A'~R'(A) and the diagram


is the kernel of the reflection


Considering rÁ:A~R'(A),


S(A) --SA--" A ---~. R'(A)fA


81







Ill - Localízatíons and torsioti theories


where the square is a pullback and j the unique morphism such that y.j = sA and x.j = O, it


is easy to check that j = ker x. But x is the pullback of a cokernel and so, since .A. is


abelian, x is a cokernel and then x e coker j. The fact that R' is a left adjoint implies that


R'(x) IS the cokernel of R'O) : R'S(A) - R'(P) in GJ3'. Obviously R'S(A) = O since


GJ3' = C~, hence R'(x) is an isomorphism. We proved that R' has stable units and therefore
o
Gj is a factorization system.


Now, by duality, we can concIude that the coreflector has also stable units and that


Gj is a factorization system.


In concIusion, if .A IS abelian then any localizing. subcategory ~ generates an


hereditary torsion theory (C,GJ3'). So, we can define a map Z frorn the cIass of localizing


subcategories of .A. to the class of hereditary torsion theories of .A by Z(GJ3) = (C, GJ3').


LEMMA 2.8. I] (C,GJ3') is an hereditary torsion theory of the abelian category .A


then Mono~' ts closed under pushouts zn ~', Str Mono'B" = Reg'Mono'B.' and


(Epi':B',StrMono':B') is a factorization system of ':B'.


Proof: Let us assume that


B ---'---.. B'


jg
B"-----.· A


]


IS the pushout in A of the morphisms i and f of GJ3', such that i E Mono'B". Then


(R'(A),R'(j),R'(g)) is the pushout in GJ3' of i and f. But, according to 2.7(ii), i E Mono.A,


Thus j E MonoA since A is abelian. Since in abelian categories any torsion theory is normal,


as we already referred to in the previous chapter, sB,,=kerr'B" and sA=kerr'A' Thus, we


have the following commutative diagram where S(B") ~ O:


sB"
,


S(B") • B"
rB" • R'(B")


I


j R'Q)S(j) ji
S(A) sA • A r' • R'(A)


A
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But S(A) n B" ~ O, since ~ and C are hereditary. Consequently, the left square is a


pullback. Then 0= sB" = ker (rA.j) = ker (R'(j).rB,,) = ker (R'(j)) which implies that R'(j) is a


monomorphism of A. Thus R'(j) E Mono'B". So, we proved that Mono'B" is closed under


pushouts in ~'. Now, the hypothesis of 2.7 being fulfilled, ~' has the factorization system


(Epi~',StrMono~') and Str Mono'B" = RegMono'B'. o


LEMMA 2.9. Lei (C, ':B') be an hereditary torsion theory generated by a localizing


subcategory ~ of the abelian category A. An object A of ~' belongs to ~ if and only if


every monomorphism i:A-B with B E~' is a strong monomorphism o] ~'.


Proof: If AE~ and i:A-B is a monomorphism with BE~', then i is a


regular monomorphism in A and, therefore, R(i) is a regular monomorphism in ~' because


R is left exacto But R(i) = rB.i whence i is a strong monomorphism in ~', since R(i) is a


strong monomorphism in ':B' (2.8).


Conversely, since R is left exact, we saw in the beginning of the proof of 2.5 that, for


each object A of ~', rA is a monomorphism hencea strong monomorphism in ~'. On the


other hand, rA E Epi ~' .. because if u, v : R( A) - C with C E ~' are morphisms such that


li.rA =v.rA ' then we have that rC.u.rA =rC.v.rA ' which implies that rC.u=rC'v by the


universal property of the reflector, and consequently u = v since 'c is a monomorphism.


Thus we have shown that rA is an isomorphism, i. e. that A E ~. O


DEFINITION 2.10. We say that the category A has enough injectives if every


object of A is a subobject of an injective objecto


EXAMPLE. Any Grothendieck category has enough injectives (see I.2.4).


THEOREM 2.11. Consider the correspondence Z between localizing subcategories


and hereditary torsion theories of the abelian category A. Then:


(i) Z is injeciive.


(ii) I] A has enough injectives then Z is bijective.


Proof: (i) Let ~ and ':D be two localizing subcategories of A such that


Z(~)=(C,~')=Z(':D). From 2.9, it follows that ~=':D.


(ii) Given an hereditary torsion theory (C,~'), consider the subcategory ':B whose


objects are the %'-objeds A for which any monomorphism i:A--tB, with B E '1\', is


a strong monomorphism of ':B'. To prove that ':B is a reflective subcategory of Á it suffices
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to show that it is a reflective subcategory of '5S' (the composition of the reflectors


R:':B'--+':B and R':Á--+'5S' isthenareflectorfrom Á to ':B whichwewillalsodenoteby


R). Let A E '5S', j: A--+J be a monomorphism with J injective and


A~B--L...R'(J)


be the (Epi'5S',StrMono':B')-factorization of r'J.j, denoting by (rNA E Obj.ã the reflection


morphisms from Á to ':B'. If (e, ':B') is hereditary and j is a monomorphism then R'(j) is


a monomorphism (see proof of 2.8). Since R'(j)=rJ.j=i.rA' then rA is a monomorphism.


We claim that B E ':B. To prove that, let us consider a monomorphism k: B--+D with


DE ':B'. Since J is injective, there exists a morphism h:D--+J such that h.k.rA =j whence


i.rA=R'(j)=R'(h).k.rA which implies the equality i=R'(h).k, because rA E Epi':B'. But i,


and so k, belongs to StrMono~'. Consequently B E ':B.


Next we show that rA is a reflection morphism from A to ~. In fact, given


f: A--+B', with B' E '5S, if we consider the following pushout in ':B'


f v


B'---u--"· E


then, by 2.8, u is a monomorphism in ':B' since rA is a monomorphism in Á and so in


~'. Then u E StrMono':B', according to the definition of ':B, since B'E,':B. Consequently,


there exists a unique morphism f; B --+ B' such that f.r A = f and u.f = v. Furthermore, f is


the unique morphism such that f.rA =f since rA E Epi':B'. But rA is monomorphic and ~'


is closed under subobjects hence ':B# =~'. Then proving that ':B is localizing we obtain


Z(~) = (e,~'), according to 2.5, and in this way we show that Z is surjective, So, let us


prove that the reflector R from Á to ':B is a localization. We first remark that ~ is closed


in 'il' under StrMono':B'-subobjects:


If rn : A --+ B is a strong monomorphism of ~', A E ~' and B E ':B then there


exists a unique morphism m such that m.rA = m. Then rA is a split monomorphism since


belongs to Epi'B.', and so an isomorphism. Hence A E ':B.


The arguments used to prove that rA is a reflection morphism allow us to conclude


that any morphism A_B of Mono.Â. n Epi':B', with A E ':B' and B E ':B, is a reflection


morphism from A to ':B.
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Assume that k: A D is a monomorphism with A, D E 'j$' and let


be the (Epi'B" ,StrMono~rn-factorization of rD.k. It is obvious that B E'j$ because 'j$ is


closed in 'j$' under Str Mono'Bt-subobjects and then, as we have just seen, B ~ R(A) and


R(k) =j.i E Str Mono'B". Thus,


1. Hence j.i.rA =j.p=rD.k=R(k).rA ' which implies that


R: 'j$' --- 'j$ maps monomorphisms into strong


p = i.rA ' for some isomorphism


monomorphisms of 'j$'. Since R' preserves monornorphisms, as we observed m 2.8,


R: .A ~ preserves monomorphisms sending them into strong monomorphisms of 'j$' ,
which are regular monomorphisms in ~', also by 2.8. Furthermore, this functor is additive


(note that ~, being a reflective subcategory of .A, is additive) being a left adjoint of an


additive functor.


Since the functor R is additive then it suffices that it preserves kernels in order to be


a localization.


Assuming that m = ker f m .A, we can write f = n.q where q = coker m and n IS a


monomorphism.


m fA--==---· B • C


\/
D


Let us prove that R(m) = ker R( q):


Since R 1S a left adjoint then R( q) 1S the cokernel of R(m) m 'j$. Let


e:R(B) E be the cokernel of R(m) in 'j$'. Since R(q).R(m)=O then there exists a


uriique morphism t such that t.e = R( q) implying the existence of a uni que morphism t


such that t.rE = t. On the other hand, rE.e.R(m) = O, thus there exists a unique morphism


h such that h.R( q) = rE.e. The situation is the following:
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from which easily foIlows that Lh = 1 and h.t = 1.


But R(m) 13 a regular monomorphism m ~' (recall that R assigns regular


monomorphisms of ~' to monomorphisms) and e=cokerR(m) in ~' whence R(m)=kere


in ~' and so in Á. Then R( m) = ker R( q), since rE is a monomorphism and t is an


isomorphism.


Finally, R(m) = ker R(f) since R(n) is a monomorphisrn, o


3. SOME CLASSICAL CASES


Assume that Á is finitely complete.


REMARK 3.1. The bijection referred to in 1.12, according to the results from which


it is derived, is defined by the maps <I> and \]i in the following way:


From a localizing subcategory ':B, with reflector R, we get g as the class ER of


morphisms whose images by R are isomorphisms (which are precisely the morphisms which


are orthogonal to every object B of ':B) and .AI, as the class of morphisms m for which the


diagram


rAA _-=o.....~> R(A)


m R(m)


B --rB---> R(B)


is a pullback. The «(g,.AI, )-factorization m.e of a morphism f is obtained taking m as the


pullback of R( f) along fB:
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R(A) R(f)' R(B)


Conversely, from a local factorization system, (~,A), we get the localizing


subcategory ':B = AjT, whose class of objects consist of the orthogonal objects with respect to


every e E b. The reflection morphism from A to ':B is the g-morphism of the


(b,A )-factorization of A --+ T.


The following proposition [5] is a refinement of the fact that ':B = b -L.


PROPOSITION 3.2. Under the conditions of 3.1 we have that ':B= (g n Mono.Á.)..l.


ProM: Obviously, ':B = s- C (b n Mono.Á.)..l.


Conversely, -Iet B E (b n Mono.Á.)-L. Then B E ':B if and only if rB lS an


isomorphism. Let us consider the diagram


A ---j----i.~ C --"v,----- •.: B --r-B--"· R(B)
u


where (u,v) is the kernel pair of "n and j is theequalizer of u and v. Since R(rB) 1San


isomorphism, the fact that R is left exact implies that R(u) = R(v). Thus RO) lS an


isomorphism and, consequently, j E ~ n Mono.Á.. Hence j -LB, and therefore u=v smce


u.j = v.j. Then rB is a monomorphism and so rB E g n Mono.A. Consequently,rB..l B,


which implies the existence of a unique morphism t such that t.rB = 1. Then rB·t.rB =rB


and, since rS -LR(B), we have that rB't= 1. Thus rB is an isomorphism. O


DEFINITIONS 3.3. (1) An ep1-cosource (ei\ E I of morphisms of .A. is called


strong if, given a monomorphism m and morphisms u and (v;)j E I such that m,vi = u.ej,


for each i E I, there exists a unique morphism d for which the diagram
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..
m


commutes.


(2) A class y of objects of Á is called a strong generator if, for each A E Obj A, the


family of all morphisms with domain in y and codomain A is a strong epi-cosource,


When the strong generator y is a set then it is called a small strong generator.


In [5], a more precise description of 53 is given by the following proposition:


PROPOSITION 3.4. Assume that Á has a stron q qenerator y. Then, uruler the


conditions of 3.1, 53 = {e E ~ n MonoÁ I cod(e) E y}..L.


Proof: Let us denote {e E ~ n MonoÁ I cod(e) E y} by 'r.
Let B E~..L and consider the diagram of 3.2. We concluded that j E b n MonoÁ.


For each g: Gg ----+ C with domain in y, let us consider the pullback


g (1)


A---- ....••.~C
j


III which 's E ~ smce ~ and MonoÁ are classes stable under pullbacks. It is obvious that
..L


u.g.tg=v.g.tg and, since B E ~ , then u.g=v.g. This implies that u=v because y is a


strong generator. Therefore fB E b n Mono A.


Next we consider, for each h: Gh ----+ R(B) with domain in Çl, the pullback


Ph
xh •. G


h


Yh j h


B tB • R(B)
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1-
Then xh E 'r. There exists a uni que morphism zh such that zh .xh = Yh because B E 'J .


Then rB .zh .xh = h.xh' and so rB .zh = h because xh E b and R(B) E 'j\ = s1-. Therefore for


each morphism h with domain in y and codomain R(B), h= rWzh and rB IS a


monomorphism, thus, by definition of strong generator, there exists a morphism d such that


rB.d= 1, i. e. rB is a split epimorphism. Since, moreover it is a monomorphism, then rB IS


an isomorphism. O


The class of all objects of .Â is always a strong generator and in this case the


proposition 3.4 reduces to 3.2. Clearly the most interesting situation occurs when there exists a


small strong generator. ln this case the class of all localizing subcategories of .Â is a set and if


.Â is complete this set is a complete lattice (cf. [5], 6.4 and 6.5).


PROPOSlTlON 3.5. Under the assumptions of 3.4, a monomorphism j: A--+C


belongs to 8 if and only if for every morphism g:Gg--+C with domain in y, the pullback


tg of j along g belongs to 'J.


Proof: ln the proof of 3.4 we concIuded that tg belongs to 'J whenever j belongs to


Conversely, let us consider the image of the pullback (1) of 3.4 by R. Since tg E 8,


then R(tg) is an isomorphism and R(g) = R(j).R(sg).R(tg)-l. But j isa monomorphism as


well as RO), because R is left exacto On the other hand, the proof that a left adjoint


preserves strong epi-cosources is essentially a technical one and is omitted. Then, from the


diagram


R(Gg)
R(g)


• R(C)


R(sg).R(tg)-l j 1


R(A)
RO)


•. R(C)


where the family of morphisms R(g) is a strong epi-cosource, for every morphism g with


domain in y and codomain C, and RO) is a monomorphism, we conclude that RO) IS a


split epimorphism and, therefore, an isomorphism. Hence j E ~. o
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Now let us analyse these results when .A. is the category R-Mod of left modules over


a ring R with identity. We will see that the sets ~ considered in 3.4 are the well-known


Gabriel topologies, defined by Gabriel in [24).


PROPOSITION 3.6. The ring R, considered as R-module, is a strong qeneraior of


the category R-Mod.


Proof: Let us show first that, for each R-module M, the family HomR_Mod (R,M) is


an epi-cosource. Indeed, if f and g are distinct paralleI morphisms with domain M, i. e. if


there exists a m E M such that f(m) =1= g( m) then defining h: R - M by h( r) = rm, for


each r E R, we conclude that f.h =1= g.h, Finally, we verify that this epi-cosource is strong.


It is obvious that


Given a monomorphism n:N_N' and morphisms u:M_N' and (vm)mEM such that


n'Vm =u.tpm' for each mE M, we can define an homomorphism of R-modules, d: M-N,


by d(m) =vm(1), for each mE M, which is easily seen to be the unique morphism for which


the diagram


tpm
R--==---' M


""""d /
""""/


)I
N ---n--~" N'.


u


commutes. D


Since, for every monomorphism f: M-R, f(M) is a left ideal of R, we can identify


the set ~ of 3.4 with the set of left ideaIs 1 of .A. for which the inclusion 1_ A belongs to ~.


DEFINITION 3.7. For a ring R, a family GJ of left ideaIs of R IS called a


Gabriel topology of R if it satisfies the following conditions:


(G1) R E GJ.


(G2) (I E ~ and r E R) => (I: r):= {b E R I br E I} E '!F.


(G3) The left ideal J belongs to ~ whenever there exists some I E ~ such that


(J : i) E '3=, for every i E L
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REMARK 3.8. (i) Conditions (Gl) and (G3) irnply that if I and J are left ideals


of R suchthat IEG} and ICJ then JEG}. Infact,foreach iEI, (J:i)=RE<:f.


(ii) From (G2) and (G3) we infer that I n J E G} whenever I, J E G} since


(1nJ:j)=(1:j)n(J:j)=(I:j) foreach jEJ.


Therefore, a Gabriel topology is a filter for the ordered set of ideals of R.


PROPOSITION 3.9. The sei <J defined in 3.4 ís a Gabriel topology of R.


Proof:


(Gl) It is obvious that R E <J smce IsoÁ C S.


(G2) Let rER and IE<J, i.e.let j:I--tR be an embedding belonging to b. Ifwe


consider the morphism g: R--t R defined by g(x) = xr, we saw in the proof of 3.4 that the


pullback tg of j along g lies in <J. But


P g = { (i,s) E IxR I j(i) = g(s) } = { (i,s) E IxR I i = sr },


and so, by the previous identification, tg(P g) = (I: r) E <J.


(G3) Let us suppose that the left ideal I belongs to <J and that, for every i E I,


(J:i)E<J.


If J C I it suffices to verify that the diagram


(J : i) m • R


~j cp.
1


J m • I


is a pullback, where m and m are the inclusions and cp. and lj5 are the morphisms which
1


send each element r of their domain to ri. By hypothesis mE b and so mE b by 3.5.


Since the inclusion from 1 to R belongs to ~ we can conclude that J E <J, because b is


closed under composition.


Finally, if J ct I we consider the left ideal 1+J. Since I C I+J then, by 3.8, I+J E <J.


If x= i+j E I+J we have that


(J: i+j) = {r E R I ri-l-rj E J} = {r E R I ri E J} = (J: i) E <J.


But J C 1+J and so we reduce this situation to the one already considered. o
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By the propositions 3.4 and 3.9 the function e which maps each localizing


subcategory ':B to the corresponding set 5' is injective, has codomain in the set Top(R) of


the Gabriel topologies of the ring R and reverses the order defined by inclusion. Therefore,


the existence in R-Mod of a strong generator allows us to describe the subcategory ':B by a


set '5" contained in B, instead of using the equality B 1- =~; This is the suitable topology.


ln fact a classical result states that '5" belongs to the codomain of e precisely when'5" is a


Gabriel topology of R, i. e. there exists a bijection between the set of the localizing


subcategories of R-Mod and Top(R) (cf. [24] or [43]). These sets '5" are much easier to deal


with. This is clear for instance in [7] and [8], where alI Gabriel topologies of valuation rings


and of the respective quotient rings are described. The surjectivity of e can be checked


directly by proving that, given a Gabriel topology '5", the subcategory ~ whose class of


objects is the class {M E R-Mod I t(M) = O}, where t(M) = {x E M I An(x) E 5'} and An(x)


denotes the left ideal { r E R I rx = O} of R, is a localizing subcategory of ~ and that,


moreover, 8(':B) = 5'.


This bijection as welI as the one we referred to in 2.11, make clear the reason why the


concept of hereditary torsion theory has been very useful in the study of localizations in rings


and modules. ln fact, the Gabriel topologies determine the rings and modules of quotients (cf.


[43], chapters IX and X).


Another classical situation where we can apply these results is the category of presheafs


.A= [eoP,:fet), where e is a small category.


Consider the contravariant functors Home(-,C): eOP -~-det, associated to each


object C of e.


PROPOSITION 3.10. The set ~={Home(-'C) I CEObje} ss a strong qetieraior


of .A=[eoP,:fet).


Proof: For each F E Obj.A and each C E Obj C consider


First, we prove that, for every F E Obj.A, the family


IS an epi-cosource. Assume that a and (3 are two natural transformations such that


a.)..Cj= (3.)..Cj, for every )..CjE~. Then we have that aB,()..Cj)B=(3B,()..Cj)B' for each


,\C i E g: and B E Obje. For each C E Obje and each x E F(C), if we consider


,Cx:Home(-,C)~F defined by (,CX)B(f) = Ff(x),
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for each B E Objô and f E Home(B,C), it lS obvious that


Q:C·C,Cx)C = j3 C·C,C x)C implies that


(Q:C·( 'YC x)C)(1C) = (/3C·( 'YC x)C)(lC)'


C'Y x E~. The equality


l.e. Q:C(x)=/3C(x) and, consequently, cx=j3.


Finally, we prove that the epi-cosource c:J is strong. Indeed, consider a
Cmonomorphism Q: and morphisms p and (O" i)C E Obj C, i E IC for which the following


diagram is commutative:


..\C.
Home(-'C)


,
• F


C jpO" i


G Q: •.H


For each B E Obj C we get the following commutative diagrarn in fet:


•. H(B)


But cxB is a rnonomorphism, for every B E Obj C, since the monornorphisms in .Á. are the


natural transformations whose component morphisms are monomorphisms in fet (cf. [25],


I.2.1). Let us show that, for each B E Obj C, the family


C«À ;)B)C E oue, i EIC


lS an epi-cosource. Consider two morphisms f and g such that f.(,,\Ci)B=g.(,,\Ci)B' for


each C E ObjC and i E IC. For each x E F(B) consider


'YBx:Home(-,B)~F defined by ('YBx)A(h) = Fh(x),


for A E ouc and h E Home(A,B). Then, since


(f.( 'YB x)B)(1B) = (g.( 'YB x)B)(lB)'
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we concl ude that f( x) = g( x) and so that f = g.


But, in a category with coproducts in which every monomorphism is strong, any small


epi-cosource is strong, as can be easily observed. Thus, for each B E Obj C, the family
C((>. i)B)C E ObjC, i E lC is a strong epi-cosource and then we can conclude that there exists a


unique morphism d such that aB"d=PB and d.(>,Ci)B=(o-Ci)B' for each CEObje and


i E lC' lt is easy to. see that this way we get a natural transformation 8: F ~ G such that


a.8=p and 8.>.Ci=o-C;, for every CEObje and every iElC' By the unicity of d it is


obvious that (j is the unique natural transformation satisfying these conditions. Hence the


epi-cosource 'f is strong, as we claimed. O


ln this category, the set 'J of 3.4 is equal to U 'f(Home(-'C)), where
C E oue


'f(Home(-,C)) = {a E g n MonoÁ I Cod(a) = Home(-,C)}.


A subobject of Home(-'C) isa natural transformation a: U --=---+Home(-'C) such


that, for every object B of e, UB is a subset of Home(B,C). Since a is a natural


transformation then, for objects B and B' of ~, the morphism g.h E UB' whenever


g E UB and h E Home(B',B). Therefore, each element of 'f(Home(--',C)) is precisely a


family


U UB
B E Obje


of morphisms with codomain C such that g.h E UB' if g E UB and h E Home(B',B), i. e.


each element of 'f(Home(-,C)) is a sieve ([32], [41]).


According to the Yoneda embedding [27], y;e---,-t[ep,:I'et), e is isomorphic to a ful!


subcategory of [eoP,~et) and we can identify Home(-'C) with the object C when there


arises no ambiguity. It can be verified, giving a similar proof to that one of 3.9, that


'J= U 'f(C)
C E oejc


is a Grothendieck topology ([32], [41]) in e.


So, it is possible to describe 'J by a topology which is the "good" one in the sense


that the function which maps the localizing subcategory ~ to 'J is not only injective (3.4),


but it is even a bijection with the class of Grothendieck topologies in e (cf. [41)).


This example is a particular case of a topos. ln toposes the existence of a classifier


subobject allows the explicit description of the class g by the intersection ~ n Mono. ln this


case, the "good" topology is the Lawvere-Tierney topology [32]: in a topos IE there exists a


bijection between isomorphic classes of left exact idempotent monads m IE and


Lawvere-Tierney topologies in IE.
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In ([4J, 2.4) Barr proved that in a category .A there exists a bijection between


isomorphic classes of idempotent monads in .A: and reflective subcategories of .A, which leads


to the conclusion that there is a bijection between isomorphic classes of left exact idempotent


monads of .A and localizing subcategories of .A. We saw that in abelian categories with


enough injectives there exists a bijection between hereditary torsion theories and localizing


subcategories and that in module categories over a ring R these are in a one-to-one


correspondence with the Gabriel topologies of the ring R. This enables us to understand the


way that leads Barr to the generalization of hereditary torsion theories to non-abelian


categories given in [4], as well as the divergence between this way and the one followed by


Cassidy, Hébert and Kelly which we presented in this dissertation.
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