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Recap (of Célia’s talk)
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Recap (of Célia’s talk)

— is relative complement: f — g := {(x,y) | (x,y) € f and (x,y) € g}.
> is domain restriction: f > g := {(x,y) | x € dom(f) and (x,y) € g}.

A representation of an algebra 2( of the signature {—, >} is an embedding
0: A — PF(X),

where PF(X) is the algebra of partial functions on X equipped with relative
complement and domain restriction.

The representation 6 is complete if for every S C 2 such that }_ S exists

00> S)={JoIS].

The representable algebras form a finitely based variety and the completely
representable algebras are the subclass of atomic representable algebras.
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This talk

Think of:

@ ‘Discrete’ duality between complete atomic Boolean algebras and sets

o Extension to
complete atomic Boolean algebras with completely additive operators
and relational structures (Kripke frames)
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This talk

Think of:

@ ‘Discrete’ duality between complete atomic Boolean algebras and sets

o Extension to
complete atomic Boolean algebras with completely additive operators
and relational structures (Kripke frames)

@ Discrete duality

@ Extension with additional operators
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Outline

Duality between CABA and Set is restriction to complete algebras of an
adjunction between ABA and Set®?

o F: AtRepAlg 4 Set*" : G
The category AtRepAlg:

» objects: atomic and representable algebras of the signature {—, >},
» morphisms: complete homomorphisms of {—, >}-algebras.

(complete homomorphism: > S exists then 0(>S) = > 0[S].)
@ Compatibly complete, compatible completion, duality

@ Extension of results to algebras equipped with additional operators
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The category Set,
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The category Set,

objects: set quotients (surjective functions between sets) 7: X — Xp,

morphism: from w: X — Xy to p: Y — Yp is a partial function p: X —= Y
satisfying the following conditions:

@ ¢ preserves equivalence: if both ¢(x) and ¢(x’) are defined, then
m(x) = 7(x') = p(p(x)) = ple(x))-
In particular, ¢ induces a partial function @: Xg — Yp given by

¢ = {(m(x), p(p(x))) | x € dom(¢p)}.
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The category Set,

objects: set quotients (surjective functions between sets) 7: X — Xp,

morphism: from w: X — Xy to p: Y — Yp is a partial function p: X —= Y
satisfying the following conditions:

@ ¢ preserves equivalence: if both ¢(x) and ¢(x’) are defined, then
m(x) =7(x") = plp(x)) = p(p(x)).

In particular, ¢ induces a partial function @: Xg — Yp given by
¢ = A{(m(x), p((x))) | x € dom(e)}.

@ ¢ is fibrewise injective: for every (xp, o) € @, the restriction and
co-restriction of ¢ induces an injective partial map

Qp(xo,yg): ﬂ_l(XO) - p_l(yO)a

@ ¢ is fibrewise surjective: for every (xo, ¥0) € @, the induced partial
MaPp P(xo,y0) IS SUTjECtiVE (that is, the image of ©(x0.y0) 1S the whole of
1 ’
P~ (n)).
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F: AtRepAlg — Set

Recall ‘same domain’ relation a~ b <= a>b=>band b>a = a.
F(21) is the canonical projection my: At(2A) — At(2)/~gy

Given h: 2 — B a complete homomorphism, want to define partial
function Fh: At(B) — At()

For y € At(*B), if there is a € 2 with h(a) > y then there is a unique atom
x with h(x) > y. When this happens, define Fh(y) = x, otherwise
undefined.
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G: Set,"® — AtRepAlg

Given m: X — Xy

G(7) is the algebra consisting of all partial functions f: Xo — X that are a
subset of 771 = {(7(x), x) | x € X}.
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G: Set,"® — AtRepAlg

Given m: X — Xy
G(7) is the algebra consisting of all partial functions f: Xo — X that are a
subset of 771 = {(7(x), x) | x € X}.

Given a morphism ¢ from (7: X — Xp) to (p: Y — Yp) in Setq

Go(g) = {(m(x),x) € Xo x X | Iy € Y: (x,y) € p and (p(y),y) € g}
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Compatibility of partial functions

Some pairs of partial functions have no ‘upper bound’: if their union is not
a partial function, then they cannot have a common extension.
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Compatibility of partial functions
Some pairs of partial functions have no ‘upper bound’: if their union is not
a partial function, then they cannot have a common extension.

Our signature can express ‘agree on shared domain’:
abb=>bra

If ar> b = b> a then union is partial function in any representation.
If ar> b # b> a then union is partial function in no representation.

This extends to set S of elements:
Union is partial function in some/every representation <= pairwise
apb=>bp a.

So we can only demand joins of such sets. ..
...and notion of completeness (w.r.t. joins) should demand joins of all such
sets.
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Compatibility: a general notion

Definition

Let 3 be a poset. A binary relation C on ‘3 is a compatibility relation if
it is reflexive, symmetric, and downward closed in 3 x 3. We say that two
elements aj, ay € B are compatible if a; Ca;.
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it is reflexive, symmetric, and downward closed in 3 x 3. We say that two
elements a1, a € P are compatible if a; Ca;.

One can show that ‘reflexive, symmetric, and downward closed’ is an
axiomatisation of a rather general conception of compatibility in the
following sense.

] 9/23



Compatibility: a general notion
Definition
Let 3 be a poset. A binary relation C on ‘3 is a compatibility relation if

it is reflexive, symmetric, and downward closed in 3 x 3. We say that two
elements ai, ap € ‘B are compatible if a; Ca,.

One can show that ‘reflexive, symmetric, and downward closed’ is an
axiomatisation of a rather general conception of compatibility in the
following sense.

Proposition

Let (P, <, C) be a poset equipped with a binary relation C. Then (P, <, C)
is isomorphic to a poset (P', C, C') of partial functions ordered by inclusion
and equipped with the relation ‘agree on the intersection of their domains’
if and only if C is reflexive, symmetric, and downward closed.
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Compatibility: a general notion
Definition
Let 3 be a poset. A binary relation C on ‘3 is a compatibility relation if

it is reflexive, symmetric, and downward closed in 3 x 3. We say that two
elements ai, ap € ‘B are compatible if a; Ca,.

One can show that ‘reflexive, symmetric, and downward closed’ is an
axiomatisation of a rather general conception of compatibility in the
following sense.

Proposition

Let (P, <, C) be a poset equipped with a binary relation C. Then (P, <, C)
is isomorphic to a poset (P’, C, C') of partial functions ordered by inclusion
and equipped with the relation ‘agree on the intersection of their domains’
if and only if C is reflexive, symmetric, and downward closed.

Proof:
0(p) = {({p'}.P) [ P <P U{({F.q}.P) | P < pand p' € q}.
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Compatibily complete
Definition

A poset B3 equipped with a compatibility relation is said to be compatibly
complete provided it has joins of all subsets of pairwise-compatible
elements.

We say B is meet complete if it has meets of all nonempty subsets.

] 10/23



Compatibily complete

Definition

A poset B3 equipped with a compatibility relation is said to be compatibly
complete provided it has joins of all subsets of pairwise-compatible

elements.
We say B is meet complete if it has meets of all nonempty subsets.

When speaking about compatibility for representable {—, >>}-algebras, we
mean the relation that makes two elements compatible precisely when

aibay=axbl aj.

] 10/23



Compatibily complete
Definition
A poset B3 equipped with a compatibility relation is said to be compatibly

complete provided it has joins of all subsets of pairwise-compatible
elements.

We say B is meet complete if it has meets of all nonempty subsets.

When speaking about compatibility for representable {—, >>}-algebras, we
mean the relation that makes two elements compatible precisely when

aibay=axbl aj.

In the case that all pairs of elements are compatible, compatibly complete is
equivalent to complete.

] 10/23



Compatibily complete
Definition

A poset B3 equipped with a compatibility relation is said to be compatibly
complete provided it has joins of all subsets of pairwise-compatible
elements.

We say B is meet complete if it has meets of all nonempty subsets.

When speaking about compatibility for representable {—, >>}-algebras, we
mean the relation that makes two elements compatible precisely when

ail>ay=axl ar.

In the case that all pairs of elements are compatible, compatibly complete is
equivalent to complete.

If S has an upper bound u, then by reflexivity and downward closure of
compatibility, S is pairwise compatible.
Thus compatibly complete =—> bounded complete.

] 10/23



Compatibily complete
Definition

A poset B3 equipped with a compatibility relation is said to be compatibly
complete provided it has joins of all subsets of pairwise-compatible
elements.

We say B is meet complete if it has meets of all nonempty subsets.

When speaking about compatibility for representable {—, >>}-algebras, we
mean the relation that makes two elements compatible precisely when

ail>ay=axl ar.
In the case that all pairs of elements are compatible, compatibly complete is
equivalent to complete.

If S has an upper bound u, then by reflexivity and downward closure of
compatibility, S is pairwise compatible.
Thus compatibly complete =—> bounded complete.

Similarly compatibly complete = directed complete.
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Compatibly complete (continued)

For representable {—, > }-algebras:
compatibly complete =—> meet complete.

The converse is false.

The three-element {—, > }-algebra consisting of the partial functions 0,
{(1,1)}, and {(2,2)} provides a counterexample.
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Compatible completions

Definition

A compatible completion of a representable {—, >}-algebra 2l is an
embedding ¢: 20 < € of {—, >}-algebras such that € is representable and
compatibly complete and ¢[2] is join dense in €.
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Compatible completions

Definition

A compatible completion of a representable {—, >}-algebra 2l is an
embedding ¢: 20 < € of {—, >}-algebras such that € is representable and
compatibly complete and ¢[2] is join dense in €.

Lemma

Let v: A < B be an embedding of representable {—, > }-algebras. If ([] is
Join dense in B then v is complete.

v
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Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.
Proposition

Ifi: A — € and/: A — ¢ are compatible completions of the

representable {—, > }-algebra U then there is a unique isomorphism
0: € — & satisfying the condition @ o v = 1.
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Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.
Proposition
Ifi: A — € and/: A — ¢ are compatible completions of the

representable {—, > }-algebra U then there is a unique isomorphism
0: € — & satisfying the condition @ o v = 1.

(So we may say ‘the’ compatible completion.)
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Compatible completion using the adjunction
Theorem

For every atomic representable {—, >}-algebra 21, the homomorphism
mo A — (G o F)(RA) = {f: At(A)/~g — AL(A) | F C my'}
a— {([x],x) | x € At(2() and x < a}

is the compatible completion of 2.
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Compatible completion using the adjunction

Theorem
For every atomic representable {—, >}-algebra 21, the homomorphism
mo A — (G o F)(RA) = {f: At(A)/~g — AL(A) | F C my'}
a— {([x],x) | x € At(2() and x < a}

is the compatible completion of 2.

Corollary

There is a duality between CAtRepAlg and Setq, where CAtRepAlg is the
full subcategory of AtRepAlg consisting of the compatibly complete
algebras.

Corollary

CAtRepAlg is a reflective subcategory of AtRepAlg.
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Aside: Completion in cat. with complete homomorphisms

Say that earlier definition was of compatible completion in RepAlg

RepAlg_: representable {—, >}-algebras with complete
{—, >}-homomorphisms

Definition

A compatible completion in RepAlg__ of a representable {—, >}-algebra
2 is a complete embedding ¢: A — € of {—, >>}-algebras such that € is
representable and compatibly complete and ¢[2l] is join dense in €.

“compatible completions in RepAlg_, are unique, and we know how to
construct them for atomic algebras”
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Completion in cat. with complete homomorphisms (cont.)

Proposition

Let v: A — € be a complete embedding of representable {—, > }-algebras.
Consider the following statements about .

© < is compatibly complete, and the image of 2l is join dense in €.

@ C is the ‘smallest’ extension of A that is compatibly complete. That is,
¢ is compatibly complete, and for every other complete embedding
k: 2 — B into a compatibly complete and representable
{—,>}-algebra B, there exists a complete embedding : € — B
making the following diagram commute.

r

Q\\\\K\\N ~

B
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Completion in cat. with complete homomorphisms (cont.)
Proposition

© C is the ‘largest’ extension of 2L in which the image of 2l is join dense.
That is, L[] is join dense in €, and for every other complete
embedding r: A — B into a representable {—, >}-algebra B in which
the image of 2 is join dense, there exists a complete embedding
k: B < € making the following diagram commute.

Thenl = 2, and 1 = 3, and if A has a completion then all three
conditions are equivalent.
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Completion in cat. with complete homomorphisms (cont.)
Proposition

© C is the ‘largest’ extension of 2L in which the image of 2l is join dense.
That is, L[] is join dense in €, and for every other complete
embedding r: A — B into a representable {—, >}-algebra B in which
the image of 2 is join dense, there exists a complete embedding
k: B < € making the following diagram commute.

Thenl = 2, and 1 = 3, and if A has a completion then all three
conditions are equivalent.

(The RepAlg version of this statement does not hold.)

] 17/23



Additional operators

Definition

Let Q be an n-ary operation on 2. Then Q is compatibility preserving if:
aj, a, compatible, for all i = Q(a1,...,an), Q(&], ..., a),) compatible.
Q is completely additive if whenever the supremum »_ S exists, for S C 2,

Q(ala"'aaifh E 5,3,’+1,...,3n): E Q(ala"-7ai717573i+17'-‘7an)

v
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Additional operators

Definition

Let Q be an n-ary operation on 2. Then Q is compatibility preserving if:

aj, a; compatible, for all i = Q(a1,...,an), Q(a},...,a),) compatible.

Q is completely additive if whenever the supremum ) S exists, for S C 2,
Q(al, 000 g Ei=ilg Z 5, Ajt1s---y an) = ZQ(al, 0009 Gi=ily 5, Ajt1y.--y a,,)

v

Definition
The category AtRepAlg(o) has

@ objects: algebras of the signature {—,>} U o whose {—, >}-reduct is
atomic and representable, and such that the symbols of ¢ are
interpreted as compatibility preserving completely additive operations,

@ morphisms: complete homomorphisms of ({—, >} U o)-algebras.
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Dually: additional relations

From compatibility preserving and completely additive n-ary Q, can define
(n + 1)-ary relation Rg on atoms of A:

RQXl. . Xpp1 — Q(Xl, - ,Xn) > Xp4-1-
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RQXl. . Xpp1 — Q(Xl, - ,Xn) > Xp4-1-

Definition

Given: sets X, Xo, surjection m: X — Xp, and R an (n+1)-ary relation on X.
The compatibility relation C C X x X is given by

x C yif and only if 7(x) =7(y) = x=y.

Then R has the compatibility property (with respect to 7) if given
x1Cxq, ..., xnCx) and Rxq...Xpy1 and Rxj...x; . 1, we have x,,1Cx; ;.
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Dually: additional relations
From compatibility preserving and completely additive n-ary Q, can define
(n + 1)-ary relation Rg on atoms of A:

RQXl. . Xpp1 — Q(Xl, - ,Xn) > Xp4-1-

Definition

Given: sets X, Xo, surjection m: X — Xp, and R an (n+1)-ary relation on X.
The compatibility relation C C X x X is given by

x C yif and only if 7(x) =7(y) = x=y.

Then R has the compatibility property (with respect to 7) if given
x1Cxq, ..., xnCx) and Rxq...Xpy1 and Rxj...x; . 1, we have x,,1Cx; ;.

Given R satisfying compatibility property, can define n-ary operation Qg on
the dual A of m: X — Xy by conflating elements of 2, with their image,
and setting

QR(Xl,...,Xn) = U {Xn+1 e X ’ RX1...X,,+1}.
X1EX1 ey Xn€Xn

] 19/23



Morphisms and the dual category

Definition

Given: ¢: X — Y and (n+ 1)-ary relations Rx and Ry on X and Y.
Then ¢ satisfies the reverse forth condition if whenever Rxxj...x,+1 and
©(x1),...,¢(x,) are defined, then p(xp41) is defined and

Ryp(x1). . .¢(xn+1).

And ¢ satisfies the back condition if whenever ¢(x,41) is defined and

Ryyi...yn@(xnt+1), then there exist xi, ..., x, € dom(p) such that
@(Xl) =Y1---5 QD(Xn) = ¥n and Rxx1.. .Xnq1.
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Morphisms and the dual category

Definition

Given: ¢: X — Y and (n+ 1)-ary relations Rx and Ry on X and Y.
Then ¢ satisfies the reverse forth condition if whenever Rxxj...x,+1 and
©(x1),...,¢(x,) are defined, then p(xp41) is defined and

Ryp(x1). . .¢(xn+1).

And ¢ satisfies the back condition if whenever ¢(x,41) is defined and
Ryyi...yn@(xnt+1), then there exist xi, ..., x, € dom(p) such that

@(x1) = y1,...,0(xn) = yn and Rxxi.. .Xn41.

Definition
The category Setq(c) has

@ objects: the objects of Setq equipped with, for each €2 € o, an

(n + 1)-ary relation Rq that has the compatibility property, where n is
the arity of €,

@ morphisms: morphisms of Setq that satisfy the reverse forth condition
and the back condition with respect to Rq, for every Q € o.
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Extended adjunction
Theorem
There is an adjunction F': AtRepAlg(c) - Setq(c)°P : G’ extending

F: AtRepAlg  Sety°P : G in the sense that the appropriate reducts of
F'(A) and G'(m: X — Xo) equal F(A) and G(m: X — Xy), respectively.
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Extended adjunction

Theorem

There is an adjunction F': AtRepAlg(c) - Setq(c)°P : G’ extending
F: AtRepAlg - Sety° : G in the sense that the appropriate reducts of
F'(A) and G'(m: X — Xo) equal F(A) and G(m: X — Xy), respectively.

Corollary

For every algebra 21 in AtRepAlg(c), the embedding
no: A < (G' o F') () is the compatible completion of 2.

Corollary

There is a duality between CAtRepAlg(c) and Setq(c)°P, where
CAtRepAlg(o) is the full subcategory of AtRepAlg(o) consisting of the
compatibly complete algebras.

Corollary

The category CAtRepAlg(o) is a reflective subcategory of AtRepAlg(c).
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@ Which representable {—, >>}-algebras have a compatible completion in
RepAlg_? Describe a general method to construct these completions.
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Problems

@ Which representable {—, >>}-algebras have a compatible completion in
RepAlg_? Describe a general method to construct these completions.

o Weaken the base signature {—,>}.
@ Relax constraints on additional operators.

o Find a non-discrete duality for full class of representable algebras.

] 22/23



References

[3 Célia Borlido and Brett McLean.
Difference—restriction algebras of partial functions: axiomatisations and
representations.
Algebra Universalis (in press), 2022.

[ Célia Borlido and Brett McLean.
Difference—restriction algebras of partial functions with operators:
Discrete duality and completion.
Journal of Algebra 604 (2022), 760-789.

] 23/23



