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Recap (of Célia’s talk)

− is relative complement: f − g := {(x , y) | (x , y) ∈ f and (x , y) ̸∈ g}.
▷ is domain restriction: f ▷ g := {(x , y) | x ∈ dom(f ) and (x , y) ∈ g}.

A representation of an algebra A of the signature {−,▷} is an embedding

θ : A → PF(X ),

where PF(X ) is the algebra of partial functions on X equipped with relative
complement and domain restriction.

The representation θ is complete if for every S ⊆ A such that
∑

S exists

θ(
∑

S) =
⋃

θ[S ].

The representable algebras form a finitely based variety and the completely
representable algebras are the subclass of atomic representable algebras.
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This talk

Think of:

‘Discrete’ duality between complete atomic Boolean algebras and sets

Extension to
complete atomic Boolean algebras with completely additive operators
and relational structures (Kripke frames)

Discrete duality

Extension with additional operators
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Outline

Duality between CABA and Set is restriction to complete algebras of an
adjunction between ABA and Setop

F : AtRepAlg ⊣ Setq
op :G

The category AtRepAlg:
▶ objects: atomic and representable algebras of the signature {−,▷},
▶ morphisms: complete homomorphisms of {−,▷}-algebras.

(complete homomorphism:
∑

S exists then θ(
∑

S) =
∑

θ[S ].)

Compatibly complete, compatible completion, duality

Extension of results to algebras equipped with additional operators
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The category Setq
objects: set quotients (surjective functions between sets) π : X ↠ X0,

morphism: from π : X ↠ X0 to ρ : Y ↠ Y0 is a partial function φ : X ⇀ Y
satisfying the following conditions:

1 φ preserves equivalence: if both φ(x) and φ(x ′) are defined, then

π(x) = π(x ′) =⇒ ρ(φ(x)) = ρ(φ(x ′)).

In particular, φ induces a partial function φ̃ : X0 ⇀ Y0 given by

φ̃ := {(π(x), ρ(φ(x))) | x ∈ dom(φ)}.

2 φ is fibrewise injective: for every (x0, y0) ∈ φ̃, the restriction and
co-restriction of φ induces an injective partial map

φ(x0,y0) : π
−1(x0) ⇀ ρ−1(y0),

3 φ is fibrewise surjective: for every (x0, y0) ∈ φ̃, the induced partial
map φ(x0,y0) is surjective (that is, the image of φ(x0,y0) is the whole of
ρ−1(y0)).
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F : AtRepAlg → Setq
op

Recall ‘same domain’ relation a ∼ b ⇐⇒ a▷ b = b and b ▷ a = a.

F (A) is the canonical projection πA : At(A) ↠ At(A)/∼A

Given h : A → B a complete homomorphism, want to define partial
function Fh : At(B) ⇀ At(A)

For y ∈ At(B), if there is a ∈ A with h(a) ≥ y then there is a unique atom
x with h(x) ≥ y . When this happens, define Fh(y) = x , otherwise
undefined.
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G : Setq
op → AtRepAlg

Given π : X ⇀ X0

G (π) is the algebra consisting of all partial functions f : X0 ↠ X that are a
subset of π−1 = {(π(x), x) | x ∈ X}.

Given a morphism φ from (π : X ↠ X0) to (ρ : Y ↠ Y0) in Setq

Gφ(g) = {(π(x), x) ∈ X0 × X | ∃y ∈ Y : (x , y) ∈ φ and (ρ(y), y) ∈ g}.
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Compatibility of partial functions

Some pairs of partial functions have no ‘upper bound’: if their union is not
a partial function, then they cannot have a common extension.

Our signature can express ‘agree on shared domain’:

a▷ b = b ▷ a

If a▷ b = b ▷ a then union is partial function in any representation.

If a▷ b ̸= b ▷ a then union is partial function in no representation.

This extends to set S of elements:
Union is partial function in some/every representation ⇐⇒ pairwise
a▷ b = b ▷ a.

So we can only demand joins of such sets. . .
. . . and notion of completeness (w.r.t. joins) should demand joins of all such
sets.
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Compatibility: a general notion

Definition

Let P be a poset. A binary relation C on P is a compatibility relation if
it is reflexive, symmetric, and downward closed in P×P. We say that two
elements a1, a2 ∈ P are compatible if a1Ca2.

One can show that ‘reflexive, symmetric, and downward closed’ is an
axiomatisation of a rather general conception of compatibility in the
following sense.

Proposition

Let (P,≤,C ) be a poset equipped with a binary relation C. Then (P,≤,C )
is isomorphic to a poset (P ′,⊆,C ′) of partial functions ordered by inclusion
and equipped with the relation ‘agree on the intersection of their domains’
if and only if C is reflexive, symmetric, and downward closed.

Proof:

θ(p) := {({p′}, p′) | p′ ≤ p} ∪ {({p′, q}, p′) | p′ ≤ p and p′ /C q}.
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Compatibily complete

Definition

A poset P equipped with a compatibility relation is said to be compatibly
complete provided it has joins of all subsets of pairwise-compatible
elements.
We say P is meet complete if it has meets of all nonempty subsets.

When speaking about compatibility for representable {−,▷}-algebras, we
mean the relation that makes two elements compatible precisely when

a1 ▷ a2 = a2 ▷ a1.

In the case that all pairs of elements are compatible, compatibly complete is
equivalent to complete.

If S has an upper bound u, then by reflexivity and downward closure of
compatibility, S is pairwise compatible.
Thus compatibly complete =⇒ bounded complete.

Similarly compatibly complete =⇒ directed complete.
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Compatibly complete (continued)

For representable {−,▷}-algebras:

compatibly complete =⇒ meet complete.

The converse is false.

The three-element {−,▷}-algebra consisting of the partial functions ∅,
{(1, 1)}, and {(2, 2)} provides a counterexample.
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Compatible completions

Definition

A compatible completion of a representable {−,▷}-algebra A is an
embedding ι : A ↪→ C of {−,▷}-algebras such that C is representable and
compatibly complete and ι[A] is join dense in C.

Lemma

Let ι : A ↪→ B be an embedding of representable {−,▷}-algebras. If ι[A] is
join dense in B then ι is complete.
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Compatible completions: uniqueness

Compatible completions are unique up to unique isomorphism.

Proposition

If ι : A ↪→ C and ι′ : A ↪→ C′ are compatible completions of the
representable {−,▷}-algebra A then there is a unique isomorphism
θ : C → C′ satisfying the condition θ ◦ ι = ι′.

(So we may say ‘the’ compatible completion.)
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Compatible completion using the adjunction

Theorem

For every atomic representable {−,▷}-algebra A, the homomorphism

ηA : A → (G ◦ F )(A) = {f : At(A)/∼A ⇀ At(A) | f ⊆ π−1
A }

a 7→ {([x ], x) | x ∈ At(A) and x ≤ a}

is the compatible completion of A.

Corollary

There is a duality between CAtRepAlg and Setq, where CAtRepAlg is the
full subcategory of AtRepAlg consisting of the compatibly complete
algebras.

Corollary

CAtRepAlg is a reflective subcategory of AtRepAlg.
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Aside: Completion in cat. with complete homomorphisms

Say that earlier definition was of compatible completion in RepAlg

RepAlg∞: representable {−,▷}-algebras with complete
{−,▷}-homomorphisms

Definition

A compatible completion in RepAlg∞ of a representable {−,▷}-algebra
A is a complete embedding ι : A ↪→ C of {−,▷}-algebras such that C is
representable and compatibly complete and ι[A] is join dense in C.

“compatible completions in RepAlg∞ are unique, and we know how to
construct them for atomic algebras”
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Completion in cat. with complete homomorphisms (cont.)

Proposition

Let ι : A ↪→ C be a complete embedding of representable {−,▷}-algebras.
Consider the following statements about ι.

1 C is compatibly complete, and the image of A is join dense in C.

2 C is the ‘smallest’ extension of A that is compatibly complete. That is,
C is compatibly complete, and for every other complete embedding
κ : A ↪→ B into a compatibly complete and representable
{−,▷}-algebra B, there exists a complete embedding κ̂ : C ↪→ B
making the following diagram commute.

A C

B

ι

κ κ̂

. . .
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Completion in cat. with complete homomorphisms (cont.)

Proposition
. . .

3 C is the ‘largest’ extension of A in which the image of A is join dense.
That is, ι[A] is join dense in C, and for every other complete
embedding κ : A ↪→ B into a representable {−,▷}-algebra B in which
the image of A is join dense, there exists a complete embedding
κ̂ : B ↪→ C making the following diagram commute.

A B

C

κ

ι κ̂

Then 1 =⇒ 2, and 1 =⇒ 3, and if A has a completion then all three
conditions are equivalent.

(The RepAlg version of this statement does not hold.)
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Additional operators

Definition

Let Ω be an n-ary operation on A. Then Ω is compatibility preserving if:

ai , a
′
i compatible, for all i =⇒ Ω(a1, . . . , an), Ω(a

′
1, . . . , a

′
n) compatible.

Ω is completely additive if whenever the supremum
∑

S exists, for S ⊆ A,

Ω(a1, . . . , ai−1,
∑

S , ai+1, . . . , an) =
∑

Ω(a1, . . . , ai−1,S , ai+1, . . . , an)

Definition

The category AtRepAlg(σ) has

objects: algebras of the signature {−,▷} ∪ σ whose {−,▷}-reduct is
atomic and representable, and such that the symbols of σ are
interpreted as compatibility preserving completely additive operations,

morphisms: complete homomorphisms of ({−,▷} ∪ σ)-algebras.
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Dually: additional relations
From compatibility preserving and completely additive n-ary Ω, can define
(n + 1)-ary relation RΩ on atoms of A:

RΩx1. . .xn+1 ⇐⇒ Ω(x1, . . . , xn) ≥ xn+1.

Definition

Given: sets X ,X0, surjection π :X ↠ X0, and R an (n+1)-ary relation on X.
The compatibility relation C ⊆ X × X is given by

x C y if and only if π(x) = π(y) =⇒ x = y .

Then R has the compatibility property (with respect to π) if given
x1Cx

′
1, . . . , xnCx

′
n and Rx1. . .xn+1 and Rx ′1. . .x

′
n+1, we have xn+1Cx

′
n+1.

Given R satisfying compatibility property, can define n-ary operation ΩR on
the dual Aπ of π : X ↠ X0 by conflating elements of Aπ with their image,
and setting

ΩR(X1, . . . ,Xn) =
⋃

x1∈X1,...,xn∈Xn

{xn+1 ∈ X | Rx1. . .xn+1}.
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Morphisms and the dual category

Definition

Given: φ : X ⇀ Y and (n + 1)-ary relations RX and RY on X and Y .
Then φ satisfies the reverse forth condition if whenever RX x1. . .xn+1 and
φ(x1), . . . , φ(xn) are defined, then φ(xn+1) is defined and
RYφ(x1). . .φ(xn+1).
And φ satisfies the back condition if whenever φ(xn+1) is defined and
RY y1. . .ynφ(xn+1), then there exist x1, . . . , xn ∈ dom(φ) such that
φ(x1) = y1, . . . , φ(xn) = yn and RX x1. . .xn+1.

Definition

The category Setq(σ) has

objects: the objects of Setq equipped with, for each Ω ∈ σ, an
(n + 1)-ary relation RΩ that has the compatibility property, where n is
the arity of Ω,

morphisms: morphisms of Setq that satisfy the reverse forth condition
and the back condition with respect to RΩ, for every Ω ∈ σ.
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Extended adjunction

Theorem

There is an adjunction F ′ : AtRepAlg(σ) ⊣ Setq(σ)op :G ′ extending
F : AtRepAlg ⊣ Setq

op :G in the sense that the appropriate reducts of
F ′(A) and G ′(π : X ↠ X0) equal F (A) and G (π : X ↠ X0), respectively.

Corollary

For every algebra A in AtRepAlg(σ), the embedding
ηA : A ↪→ (G ′ ◦ F ′)(A) is the compatible completion of A.

Corollary

There is a duality between CAtRepAlg(σ) and Setq(σ)op, where
CAtRepAlg(σ) is the full subcategory of AtRepAlg(σ) consisting of the
compatibly complete algebras.

Corollary

The category CAtRepAlg(σ) is a reflective subcategory of AtRepAlg(σ).
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Problems

Which representable {−,▷}-algebras have a compatible completion in
RepAlg∞? Describe a general method to construct these completions.

Weaken the base signature {−,▷}.
Relax constraints on additional operators.

Find a non-discrete duality for full class of representable algebras.
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