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Motivating example (due to Hodges 1997)

Let / be a subset of R.

Definition:

A function f : | — R is said to be continuous on /
if for any xo € [, for any € > 0 there exists § > 0
such that for any x € /,

|Xx — Xo| < 0 = |f(x) — f(x0)| < e.
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Definition: .
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Motivating example (due to Hodges 1997)

Let / be a subset of R.

Definition: .
uniformly
A function f : | — R is said to be continuous on /
Y if for any xg € [, for any € > 0 there exists § > 0
which does not
such that for any x € |, depend on X,
\ |Xx — Xo| < 0 = |f(x) — f(x0)| < e.
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Motivating example (due to Hodges 1997)

Let / be a subset of R.

Definition: .
uniformly
A function f : | — R is said to be continuous on /
Y if for any € > 0 there exists § > 0
such that for any xo € /and any x € |,
\ |Xx — Xo| < 0 = |f(x) — f(x0)| < e.
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continuity: VxgVe3dVxo
\

uniform continuity: Ve3dvVxpVx¢
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Characterizing dependencies among quantified variables

N\
Yu3dvvx3dy o

Yu 3Jv
< Vx dy ) ¢
meaning 3f3gvuvxeo(u, x, f(u)/v, g(x)/y)
Independence-Friendly Logic (Hintikka and Sandu, 1989):

Henkin Quantifiers (1961):

Yu3avvx3dy/{u}¢

imperfect information game

(Enderton, Walkoe, 1970)
first-order logic+Henkin quantifiers = existential second-order logic (ESO)
= independence-friendly logic

Dependence logic (Vadnanen 2007):  Vu3vvx3y(o A =(x,y))
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Dependence atoms (Vaananen 2007)

“x completely determines y”
=(x,y)
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Dependence atoms (Vaananen 2007) & team semantics (Hodges 1997)

1y

X y z
so| V2 2 0
S1 \/é 2 1

V2,2
] S| -2 4 V2
S3| -2 4 2
SX‘ Sy | —vV2 2 0

A team: a set of assignments s: V — M
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A team: a set of assignments s: V — M
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Given a model M, and a team X,
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Dependence atoms (Vaananen 2007) & team semantics (Hodges 1997)

w X y
S| ¢c a b
sl a a d
S| a a c¢
Ss3| b a e
S4 | ¢ a a

A team: a set of assignments s: V — M

Given a model M, and a team X,
M E=x=(X,y) iff forall s, s’ € X,
s(X) = §'(X) = s(y) = §'(¥).

° M Ex=((), %) iff foralls,s e X, s(¥X) = s'(X).
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Dependence atoms (Vaananen 2007) & team semantics (Hodges 1997)

w X y
S| ¢c a b
sl a a d
S| a a c¢
Ss3| b a e
S4 | ¢ a a

A team: a set of assignments s: V — M

Given a model M, and a team X,
M E=x=(X,y) iff forall s, s’ € X,
s(X) = §'(X) = s(y) = §'(¥).

@ Constancy atom: M =x =(X) iff foralls,s’ € X, s(X) = s'(X).
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Connection with database theory
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@ A team can be viewed as a relational database.
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'x y z v
S|l c d a a
si1|lec d a b
Ss|la e ¢ ¢
s3/a e ¢ d

@ A team can be viewed as a relational database.

@ Dependence atoms =(X, y) correspond exactly to functional
dependencies X — y in database theory

@ Armstrong’s Axioms (1974) for functional dependencies:

e =(X,X) (identity)
e =(Xy,Z2) implies =(yX, Z) (commutativity)
e =(XX,y) implies =(X, y) (contraction)
e =(y,Z) implies —()‘(’}7 2) (weakening)
e =(X,y)and =(y,Z) imply =(X, Z) (transitivity)
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Dependence Logic (FO(=(...)))

@ Dependence logic (Vaananen 2007):

first-order logic + =(X, y)
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Dependence Logic (FO(=(...)))

@ First-order logic (FO):

ax=t=t|Rf|-alara|aVal|Ixa|Vxa

@ Dependence logic (Vaananen 2007):
pu=al-aloAd| oV |3Ixd|Vxd|=(X,y)
P
where « is an FO-formula 3f
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Team semantics

Let X be ateam, i.e., a set of assignments s : Var — M.
@ MEx=(X,y)iffforall s,s" € X: s(X) = s'(X) = s(¥) = s'(y).
@ M Ex aiffforall s € X, M =s o, whenever « is a first-order formula

@ M Ex —aiffforall s € X, M s a, whenever « is a first-order formula
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Team semantics

Let X be ateam, i.e., a set of assignments s : Var — M.

@ MEx=(X,y)iffforall s,s" € X: s(X) = s'(X) = s(¥) = s'(y).
M =x aiff forall s € X, M =5 «, whenever « is a first-order formula
M =x -« iff for all s € X, M |5 a, whenever « is a first-order formula
MEx o N iff M=x ¢ and M Ex 4.

o
-]
o
@ MEx ¢V iffthere exist Y, ZC Xwith X=YUZstMEy ¢ & M =7 9.

aVp
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Team semantics

Let X be ateam, i.e., a set of assignments s : Var — M.
@ MEx=(X,y)iffforall s,s" € X: s(X) = s'(X) = s(¥) = s'(y).
M E=x o iff for all s € X, M =5 a, whenever « is a first-order formula
M =x -« iff for all s € X, M |5 a, whenever « is a first-order formula
MEx ¢ ANy iff MEx ¢ and M =x 4.
ME=x ¢V iffthere exist Y, ZC X with X=YUZst. My ¢ & M =z 4.

M =x 3ve iff there exists F : X — (M) \ {0}, s.t. M =xr/v) ¢, Where
X(F/v)={s(a/v)|se Xandac F(s)}.
@ MEx Vo ift M =xmyv) ¢, where X(M/v) = {s(a/v) | s€ X&ac M}.

Empty team property: M =y 6.

Downward closure: Ml=x pand Y C X = M vy ¢.

For every formula « of the standard first-order logic,
Union closure: M [=x, o for all i € 1 # 0, then M = _ x; o
Flatness: M Ex a <= Vse X : Mg a<+= Vse X M.

7/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

X1ly

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

@ ME=x X Ly iff foralls s’ € X, there exists s” € X such that
s"(X) = s(X) and s”(¥) = s'(¥).

Q T Q T
v O Q DN

>
i\
ML OO v|X

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

@ ME=x X Ly iff foralls s’ € X, there exists s” € X such that
s"(X) = s(X) and s”(¥) = s'(¥).

Q T Q T
v O Q DN

>
i\
ML OO v|X

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

@ ME=x X Ly iff foralls s’ € X, there exists s” € X such that
s"(X) = s(X) and s”(¥) = s'(¥).

Q T Q T
v O Q DN

>
i\
ML OO v|X

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

@ ME=x X Ly iff foralls s’ € X, there exists s” € X such that
s"(X) = s(X) and s”(¥) = s'(¥).

Q T Q T«
v O Q DN

>
i\
OO VX

/30



Independence atoms and independence logic FO(_L) (Gradel, Vaananen 2013)

@ ME=x X Ly iff foralls s’ € X, there exists s” € X such that
s"(X) = s(X) and s”(¥) = s'(¥).
@ MExX Ly iff foralls,s’ € Xs.t. s(Z) =5(2),
there exists s” € X s.t. s"(Z) = s(2),
s"(X) = s(X) and s"(y) = S'(y).

X y z X y z
a b e a b e
XG) |e d d XLlzylc d e
c b e c b e
a d a a d e

... correspond to embedded multivalued
dependencies Z — X | ¥ in database theory

Fact: =(x,y) =y Lxy, thus FO(=(...)) < FO(1) (i.e., FO+ X Lz y).
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Expressing dependencies and swapping quantifiers

The following dependence relation:

N\
Yu3dvVx3dy ¢
can be expressed in dependence logic as
@ Yuavvx3y(o A =(x,Y))

@ or Yuavvx3y(¢o A =(x, y)A =(u, v)) (to be more rigorous),
@ or even Yuvx3v3y(¢o A =(x, y)A =(u, v)).

Lemma. For any formula ¢ of FO(=(...)),
VXX, y, V) = VxIy(=(V, y) A ¢). J
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Expressing dependencies and swapping quantifiers

The following dependence relation:

P
Yu3dvVx3dy ¢

can be expressed in dependence logic as
@ Yuavvx3y(o A =(x,Y))
@ or Vuavvx3y(o A =(x, y)A =(u, v)) (to be more rigorous),
@ oreven VUVXHVHy(gbA =(x, y)A =(u, v)).

Lemma. For any formula ¢ of FO(=(...)),
AyVxe(x,y, V) = VxIy(=(V,y) A ¢).

Prop. For any formula ¢ of FO(=(...)), we have that
¢ = VX3yh
for some quantifier-free formula 6.

Pf. First transform ¢ into an equivalent formula in prenex normal form
Qix1 ... Qnxnl, where each Q; € {V,3} and 6 is quantifier-free. Then

apply Lemma exhaustedly. .
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IM| = oo iff 3f: o W

_

@ An existential second-order (ESO) sentence:
I IVxoVx1 ((F(X0) = F(x1) = Xo = X1) A f(xp) # V)

10/30



Defining infinity

V.
— H . ‘:/_\M )
IM| = oo iff 3f: & »

-

@ An existential second-order (ESO) sentence:
I IVxoVx1 ((F(X0) = F(x1) = Xo = X1) A f(xp) # V)
@ An FO(=(...))-sentence:

Poo 1= VXY (=(X, Y) A =y, X) A (V # ¥))

10/30



Defining infinity

-

M| = oo iff 3f - </\ ) )

,/'/‘

@ An existential second-order (ESO) sentence:
I IVxoVx1 ((F(X0) = F(x1) = Xo = X1) A f(xp) # V)
@ An FO(=(...))-sentence:

boe 1= XY YIN =) A (v # )

10/30



Defining infinity

VN
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M| = oo iff 3f: “ D

@ An existential second-order (ESO) sentence:
I IVxoVx1 ((F(X0) = F(x1) = Xo = X1) A f(xp) # V)
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6oe 1= PN = 00| (v # )
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FO(=(...)) = ESO

Theorem (Vaananen 2007)
For any ESO-sentence ¢, there is an FO(=(...))-sentence 1) such that

for any model M,
Y MEo¢ — Mg y;
and vice versa.
Proof (Idea):
@ ESO = FO(=(...)):
E.g. M= 3fvXa(X, f(X)) <= M = VX3y(=(X.y) A a(%.y)).

@ FO(=(...)) = ESO(R): Observation: A team X over the domain

{vy,..., vy} induces an n-ary relation rel(X) = {s(V) | s € X}:
Vi Vo 500 Vn
S1 | @1 | @2 |.-. | @n
So | @1 | @22 | ... aon
S3 | 831 | a2 | ... | @n

11/30



FO(=(...)) = ESO

Theorem (Vaananen 2007 & Gradel, Vaananen 2013 & Galliani 2012)

For any ESO-sentence ¢, there is an FO(=(...))- or FO(_L)-sentence 1
such that for any model M,

ME ¢ <= MEy;

and vice versa.

Proof (ldea):

® ESO = FO(=(...)):
E.g., M= IVZa(X, (X)) < M =vx3y(=(X,y) Aa(Z,y)).

® FO(=(...)) = ESO(R): Observation: A team X over the domain

{vy,...,vp} induces an n-ary relation rel(X) = {s(V) | s € X}:
Vi Vo 500 Vn
S1 | @1 | @2 |... | @n
So | @21 | @22 | ... aon
S3 | 831 | @32 | --- | E3n
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FO(=(...)) = ESO

Theorem (Vaananen 2007 & Gradel, Vaananen 2013 & Galliani 2012)

For any ESO-sentence ¢, there is an FO(=(...))- or FO(_L)-sentence 1
such that for any model M,

ME ¢ <= MEy;

and vice versa.

Proof (ldea):

® ESO = FO(=(...)):
E.g., M= IVZa(X, (X)) < M =vx3y(=(X,y) Aa(Z,y)).

® FO(=(...)) = ESO(R): Observation: A team X over the domain

{vy,...,vp} induces an n-ary relation rel(X) = {s(V) | s € X}:
Vi Vo 500 Vn
S1 | @1 | @2 |... | @n
So | @21 | @22 | ... aon
S3 | 831 | @32 | --- | E3n

Corollary. The classes of finite structures definable in FO(=(...)) and FO(L)

are exactly the ones recognized in NP. (follows from Fagin 1973)
11/30
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Partial axiomatization

Theorem ( Kontinen, Vaanéanen 2013 & Hannula 2015 )

There are (sound) systems of natural deduction for FO(=(...)) and
FO(L) such that

N=a <= lNkFa
for any set I of sentences and first-order sentence o.

12/30



Partial axiomatization

Theorem ( Kontinen, Vaanénen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and
FO(L) such that
lrNEa <<= Tlta

for any set I of formulas and essentially first-order/negatable formula c.

v

Def. A formula ¢ in L is called negatable if there exists a formula n in L
s.t. n = < 0, where the weak classical negation ~ is defined as

M):X&qu <~ X=0 or M%Xd)

@ Remark: Neither FO(=(...)) nor FO(_L) is closed under ~, since
FO(L) = FO(=(...)) = ESO.
@ First-order formulas « are negatable in FO(=(...)) and FO(.L).

12/30



Partial axiomatization

Theorem ( Kontinen, Vaanénen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and

FO(L) such that
lrNEa <<= Tlta

for any set I of formulas and essentially first-order/negatable formula c.

v

Def. A formula ¢ in L is called negatable if there exists a formula n in L
s.t. n = < 0, where the weak classical negation ~ is defined as

M):X&qu <~ X=0 or M%Xd)

@ Remark: Neither FO(=(...)) nor FO(_L) is closed under ~, since
FO(L) = FO(=(...)) = ESO.
@ First-order formulas « are negatable in FO(=(...)) and FO(.L).

@ Thm. (Y. 2016) For any formula « in FO(L), ~ « exists in FO(L)
iff the ESO-translation x,, of « is equiv. to a first-order formula.
@ Cor. The class of negatable formulas is undecidable.
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There are (sound) systems of natural deduction for FO(=(...)) and
FO(L) such that
lNEa <<= Tlta

for any set T of formulas and essentially first-order/negatable formula c.

Examples:

@ Dependence and independence atoms are all negatable in FO(L).
~» Armstrong’s axioms for functional dependencies are derivable.
~» Some facts concerning independence notions in quantum
theory are derivable. (Abramsky, Puljujarvi, Vaananen 2021)
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Partial axiomatization

Theorem ( Kontinen, Vaanénen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and
FO(L) such that
lNEa <<= Tlta

for any set T of formulas and essentially first-order/negatable formula c.

Examples:

@ Dependence and independence atoms are all negatable in FO(L).
~» Armstrong’s axioms for functional dependencies are derivable.
~» Some facts concerning independence notions in quantum
theory are derivable. (Abramsky, Puljujarvi, Vaananen 2021)

o Ifr= 1,thenTl - L.
~» Arrow’s Impossibility Theorem can be formalized in FO(_L) as
I_Arrow, ~ ¢d|ctator |: J_ or I_Arrow ): ¢d|ctator, and it iS derivable in the
SyStem Of FO(J_), i.e., rArrOW l_ ¢d|ctator. (PaCUit, Y. 201 6)
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Weaker (and axiomatizable) team-based logics

@ (Kontinen, Y. 2020) A variant of dependence logic with weaker
quantifiers V', 3" and global disjunction

@ (Lick 2018) First-order logic with the (strong) classical negation ~

@ (Baltag, van Benthem 2021) Dependence logic with a “local”
version of functional dependence

13/30



Local v.s. global disjunction

Local disjunction:
@ MEx oV iff thereexist Y,ZC X with X=YUZs.t.
MEy ¢ &Mz .

ol =N W o x

e S [SSIENA S

olw|lo ;o N
o

™ 2R
=

Gilobal disjunction:

o Mi=x v iff MEEx ¢ or Mx ¥

Fact: g v = 3xy(=(X)A=(¥)A (¢ AX=Y)V (W AX#Y)))

14/30



Implication

@ MExop—1 iff forall Y C X, My ¢ implies M =y 1.
— introduced by Abramsky & Vaananen (2009)
Properties:

@ If ¢ and v are downward closed, so is ¢ — .
@ =(X1...Xn,¥Y)==(x1) A ... =(xn) = =(¥)
@ Thm (Y. 2013). FO(=(...), —) = full second-order logic

15/30



Propositional dependence logic
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Propositional dependence atoms and propositional teams

A first-order team:
a set of assignments s: V — M
with V C Var

M Ex =(X, ) =(p,q)

“Energy is determined by mass” “Whether I will take my umbrella
(via the function e = mc?) depends on whether it is raining.”
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Propositional dependence atoms and propositional teams

A first-order team:
a set of assignments s: V — M

with V C Var

7 ':X:()?’y)

“Energy is determined by mass”
(via the function e = mc?)

A propositional team:
a set of valuations / possible worlds
v:V — {0,1} with V C Prop

p q r
i1 1 1
vl 1 0
;|0 0 0
|0 0 1
=(p, q)

“Whether I will take my umbrella
depends on whether it is raining.”
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v:V — {0,1} with V C Prop
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rO O

=(P. q)

“Whether I will take my umbrella
depends on whether it is raining.”

17/30



Propositional dependence atoms and propositional teams

A first-order team: A propositional team:
a set of assignments s: V — M a set of valuations / possible worlds
with V C Var v:V —{0,1} with V C Prop
ParQ ra O
rO O
M =x =(X,¥) XE =(p,G) iff forallv,ueX

v(p) = u(p) = v(q) = u(q)

“Energy is determined by mass” “Whether I will take my umbrella
(via the function e = mc?) depends on whether it is raining.”
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Constancy atoms revisited

o X E==(p) iff forallv,ue X: v(p)= u(p).

—_. = A aly

Fact: =(p)=pwv-p

or

O O O O
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—_. = A aly

O O O O
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Constancy atoms revisited

o X E==(p) iff forallv,ue X: v(p)= u(p). J

or

—_. = A aly
O O O O

Fact: =(p)=pv-p=7p
=(p1-..Pn,q) ==(P1) A -+ N =(pn) —=(q)

Remark: Team semantics was adopted independently also in
inquisitive semantics (Ciardelli and Roelofsen 2011) to model

questions in natural language.
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Propositional team-based logic

Language of standard logic: a« :=p| L |aAa|aVa|a— «a
Language of team-based logic (tCPC):
pu=p|L[oAd|dVP|d—=dlove|=(PG) —P=¢—1
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Propositional team-based logic

Language of standard logic: a« :=p| L |aAa|aVa|a— «a

Language of team-based logic (tCPC):
pu=p|lLlong|dVold—d|dve|=(B.q) —~d=¢— L

Team semantics: Let t C 27°P be a team, i.e., a set of possible worlds.
o t=piff vip)=1forallvet

t= L iff t=10

tEony iff tlE¢ and tEY

tEovy iff t=¢ or tlE=1

tEovy iff 3s,rCtst.t=sUr, sE¢andrEv¢

tE¢— ¢ iff VsCt: s ¢implies s
ot iff t=E¢p— L iff {viEoforallvet

Empty team property: () = ¢ for all ¢

Downward Closure: If s C t = ¢, then s = ¢.

For any standard formula « (i.e., formula of the standard logic),
Unionclosure: tFaandskEa=tUSsEF«a
Flatness: tEFa <= Vvet: {viFa < Vvet:vEa
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Team semantics: Let t C 27°P be a team, i.e., a set of possible worlds.
o t=piff vip)=1forallvet

t= L iff t=10

tEony iff tlE¢ and tEY

tEovy iff t=¢ or tlE=1

tEoVvy iff 3s,rCtst.tCsur, sEg¢andr =

tE¢— ¢ iff VsCt: s ¢implies s
ot iff t=E¢p— L iff {viEoforallvet

Empty team property: () = ¢ for all ¢

Downward Closure: If s C t = ¢, then s = ¢.
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The powerset model

Fix a finite set Prop,, = {p1, ..., pa} of propositional variables.

® @
® ®

20/30



The powerset model

Fix a finite set Prop, = {pi, ..., pn} of propositional variables. The teams
t C 2PoPn gver W = 2PPn induce a powerset model M° = (p(W), 0, U, D, V),
where the valuation V : Prop,, — o(p(W)) is defined as

teV(p) iff tEp iff v(p)=1forallvet

1 10 01 00

11,10 11,01 11,00 10,01 10,00 01,00
11,10,01  11,10,00 11,01,00 10,01,00

11,10,01,00

@t ¢ iff M° tIF ¢; & team implication = intuitionistic implication:
o tE=¢— vy iff forallse p(W)witht D s, s|=¢implies s =
@ Persistency / Downward closure: If { = ¢ and t O s, then s = ¢.
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teV(p) iff tEp iff v(p)=1forallvet

p
p11 /eo/ \01\ 00
()
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11,10,01,00
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The powerset model

Fix a finite set Prop, = {pi, ..., pn} of propositional variables. The teams
t C 2PoPn gver W = 2PPn induce a powerset model M° = (p(W), 0, U, D, V),
where the valuation V : Prop,, — o(p(W)) is defined as

teV(p) iff tEp iff v(p)=1forallvet

p
11 10 01 00
11,10 11,01 11,00 10,01 10,00 01,00
11,10,01 11,10,00 11,01,00 10,01,00

\C\\ /

11,10,01,00

@t ¢ iff M° tIF ¢; & team implication = intuitionistic implication:
o tE=¢— vy iff forallse p(W)witht D s, s|=¢implies s =
@ Persistency / Downward closure: If { = ¢ and t O s, then s = ¢.
@ The model M* = (p(W)\ {0}, D, V) is a model for the intermediate logic

Medvedev logic ML, and the v-free fragment of tCPC (i.e., inquisitive
logic) is the negative variant ML™ of ML. (Ciardelli, Roelfsen 2011)

@ (a— dpwp) = (a— ¢) v (a— ) holds (over M°) (Split axiom)
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Disjunctive normal form

@ Prop (disjunctive normal form). For any formula ¢, we have that

¢ = \ Qj,
i€l
for some standard (i.e., Vv-free) formulas «;.
Pf. By (¢ = ¢ Vv ¢)) = (a = @) Vv (o — 9) (Split axiom). O

@ Disjunction property: If = ¢ w1, then = ¢ or =9
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The sound and complete Hilbert system tCPC consists of the axioms:
@ All IPC axioms for the language [L, A, v, —], i.e.,

° ¢ (dV), ¥ = (¢ V1)
° (p—=x) = (¥ —=x) = (6v¥) = X))
o 1L =9
@ (a— dVvy) = (a— @)V (a— 1) (Split)
@ oV (Yvx)—=(eVY)v(oVX)
@ o>V
@ (p—=x)=(dVY—=xVY)
@ (p—a)=>((v—a)=(oVY —a))
@ pVY oYV
@ (pVY)Vx =0V (YVx)
@ —a—« No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Va&ananen 2016)

v
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The sound and complete Hilbert system tCPC consists of the axioms:
@ All IPC axioms for the language [L, A, v, —], i.e.,

o 6 ($V), ¥ (pv 1)
o (p—=x)—= (¥ —=x)—= ((6Vve¥) = X))
ol o
@ (a—dVv) = (a— @)V (a— ) (Split)
@ oV (pwvx)—(pVY)wv(oVx)
@ p—>oVY
@ (d—=x)—(pVY = xVY)
@ (p—a)=((¥—=a)=(pVeY—a))

@ pVY =1V

@ (pVY)VX =V (PVX)

@ —a—« No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Va&ananen 2016)

v

@ (Ciardelli, lemhoff, Y. 2020): tIPC = tCPC & ——a — « is complete for team
semantics over intuitionistic Kripke models, where a team is a set of
possible worlds in an intuitionistic Kripke model.
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The sound and complete Hilbert system tCPC consists of the axioms:
@ All IPC axioms for the language [ L, A, Vv, —]
@ (a—odVY) = (a— @)V (ax— ) (Split)
@ oV (YVx)—=(dVY)V(SVX)
@ ¢V
@ (p—=x)—=(oVY = xVY)
@ (p—a)=>((¥—a)—=(pVy —a))

@ VY =YV

@ (pvY)Vx—= oV (HVX)

Q@ -« No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Vaadnanen 2016)

v

@ (Ciardelli, lemhoff, Y. 2020): tIPC = tCPC & ——a — « is complete for team
semantics over intuitionistic Kripke models, where a team is a set of
possible worlds in an intuitionistic Kripke model.

@ Given an intermediate logic L = IPC & a4 & - - - @& «ay With each
aj € [L,A,V,—], definetL =tIPC® a1 ® - - - ® ap.

(Quadrellaro 2021), cf. (PunCochar 2021)
Thm. For any L that is complete w.r.t. a class F of frames, if L has the

disjunction property or is canonical, then tL is complete w.r.t. F_ too.
(Bezhanishvili , Y. 202222/30



Logics with two layers

o — A
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Logics with two layers

I
IPC | ICPC
V) wv | vV [wv

o

=

@ tCPC =tIPC & ——a — a.
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Logics with two layers

I
‘ KC ' CPC
‘\ Vv

=T

@ tCPC =tIPC ® ——a — a.
@ GivenL=IPCo A,tL=tIPCo A
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Logics with two layers

I
‘ KC ' CPC
‘\ Vv

=T

@ tCPC =tIPC & ——a — a.

@ GivenL=IPCo A,tL=tIPCo A
@ Conservativity: For any set A U {«} of standard formulas

AFypc o <= AFpca
(by Split axiom (o = ¢ Vv ¥) = (a = @) Vv (o — )

e o= \Viel Q;j
@ Glivenko-type theorem (Ciardelli, lemhoff, Y. 2020)
Fepe W @i <= Fupc \V —a.
il i€l
(Recall: Glivenko’s theorem : Fcpc @ <= bFipc v 2)3/30




Changing the team layer? (work in progress with N. Bezhanishvili)

E.g., KC . CPC
‘\ V AV}

-V

Spllt ‘. Split

(= d V1Y) = (o= d) V(o — )
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Changing the team layer? (work in progress with N. Bezhanishvili)

Replace the Split axiom (o — ¢V ) — (o — ¢) Vv (o — ) by other
axioms?
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Changing the team layer? (work in progress with N. Bezhanishvili)

The sound and complete Hilbert system tCPC consists of the axioms:
@ All IPC axioms for the language [L, A, v, —], i.e.,

o b= (B, ¥ = By )
o (¢ —=x) = (¥ —=x) = (6 V) = X))
e 1l =9
0 (a—dwv) = (a— @) v (a— ) (Split)
@ pV(Pvx) = (dVY)v(PVX)
@ o PV
@ (p—=x)—(oVY—=xVY)
@ (p—=a)=((v—=a)=(pVY—a))

@ pVY =Y Ve

@ (pVY)VXx— oV (YPVX)

Q@ —a—« No uniform substitution!
and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Va&nanen 2016)

v

Replace the Split axiom (o — ¢V ) — (o — ¢) Vv (o — ) by other

axioms?
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The powerset model revisited

Fix a finite set Prop, = {p1,. ..
induce a powerset model M°
V : Prop, — p(p(W)) is defined as

,Pn}. The teams t C 2P™P» over W = 2Props
(p(W),0,U, D, V), where the valuation

teV(ip) iff tE=p iff vip)=1forallvet.

® @
®

@ tEo iff Mo tIFo

p
p B/ N\
1 10 o1 00
p
11,10 11,01 11,00 10,01 10,00 01,00
11,10,01 11,10,00 11,01,00 10,01,00
\C\ 11,10,01,00

Over M°, Split axiom always holds.
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The powerset model revisited

Fix a finite set Prop,, = {p1,...,pn}. The teams t C 2P™P» over W = 2Pop»
induce a powerset model M° = (p(W),0,U, 2, V), where the valuation
V : Prop, — p(p(W)) is defined as

teV(ip) iff tE=p iff vip)=1forallvet.

p
p11 /’?0/ \01\ 00

™ p
11,10 11,01 11,00 10,01 10,00 01,00
11,10,01 11,10,00 11,01,00 10,01,00
N SRS S A~
=N 11,10,01,00
@tk iff MO tIFo Over M°, Split axiom always holds.

@ The structure (p(W), 2, V) is an intuitionistic Kripke model with each
V(p) = t" a principal upset w.r.t. O, where t = {v € W | v(p) = 1}.

@ The structure (p(W), U, 0) forms a bounded join-semilattice with C the
induced partial orderd (i.e., s C tiff sUt = t).
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General team models

A general team model is a tuple M= (p(W),0,u, =, V), where
- (p(W),u,0) is a bounded join semi-lattice with < the induced
partial order (i.e., s < tiffsUt=1t);
- V. Prop — p(p(W)) is such that V(p) is a principle upset w.r.t. =,
ie., V(p) =t"={sec p(W)|t:= s} forsometc p(W).

v

cf. (PunCochar 2017), (Dmitrieva 2021)
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- (A,U,0) is a bounded join semi-lattice with < the induced partial
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- V. Prop — p(A) is such that V(p) is a principle upset w.r.t. =, i.e.,
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General team models

Definition
A genera/ team model is a tuple M=(A,0,U, =, V), where
- (A,u,0) is a bounded join semi-lattice with < the induced partial
order (i.e., s tiffsut=t);
- V. Prop — p(A) is such that V(p) is a principle upset w.r.t. =, i.e.,
V(p) =t = {sc A|t:= s} forsomet c A.

v

cf. (PunCochar 2017), (Dmitrieva 2021)

Note: We shall (still) call an element t € A a team, as t can be viewed as the team of

the atoms it can see.
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General team models
Definition
A genera/ team model is a tuple M=(A,0,U, =, V), where

- (A,u,0) is a bounded join semi-lattice with < the induced partial
order (i.e., s tiffsut=t);

- V. Prop — p(A) is such that V(p) is a principle upset w.r.t. =, i.e.,
V(p) =t = {sc A|t:= s} forsomet c A.

v

cf. (PunCochar 2017), (Dmitrieva 2021)

Def. A bounded semi-lattice (A, U, 0) is called
atomistic if every non-zero element t € A
is a finite join of atoms, i.e., t=v; U---U v,
for some atoms vy, ..., vh € A

o}
t=viUwnU..-Uy,

Note: We shall (still) call an element t € A a team, as t can be viewed as the team of

the atoms it can see (especially in atomistic semi-lattices).
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General team models
Definition
A genera/ team model is a tuple M=(A,0,U, =, V), where

- (A,u,0) is a bounded join semi-lattice with < the induced partial
order (i.e., s tiffsut=t);

- V. Prop — p(A) is such that V(p) is a principle upset w.r.t. =, i.e.,
V(p) =t = {sc A|t:= s} forsomet c A.

v

cf. (PunCochar 2017), (Dmitrieva 2021)

{vi}

Def. A bounded semi-lattice (A, U, 0) is called
atomistic if every non-zero element t € A
is a finite join of atoms, i.e., t=v; U---U v,
for some atoms vy, ..., vh € A

t:{w}u{vz}u-«»u{vn}
Note: We shall (still) call an element t € A a team, as t can be viewed as the team of

the atoms it can see (especially in atomistic semi-lattices).
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Functional dependence

Standard team semantics: Given the powerset model
M = (p(2PrPn) ), U, D, V), and a team t C 2ProPn,

e Mt ==(p,q) iff forall {u},{v}Ct:
uEp&sviEp implies uEgeviEQ

{v}

o}
t={vitU{va}uU---U{vy}
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Functional dependence

Generalized team semantics: Given a general team model
M= (A0,u, = V)and ateamt € A,

e Mt ==(p,q) iff forallatomsu,v <t
uEp&sviEp implies uEgeviEQ
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Functional dependence

Generalized team semantics: Given a general team model
M= (A0,u, = V)and ateamt € A,

e Mt ==(p,q) iff forallatomsu,v <t
uEp&sviEp implies uEgeviEQ

@ Amstrong’s axioms for functional dependence still hold.
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Generalized team semantics

Standard team semantics:

Given the powerset model M = (p(W), 0,u, D, V) with W = 2P and a team
tCw.

@ Mt L iff t=0

@ M tl= ¢V iff thereares,re p(W)suchthatt Csur, M,s = ¢ and
M,r=q

@ Mt=¢ — v iff forallse p(W)withtD s, M,s | ¢implies M,s = v
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Generalized team semantics

Given a general team model M = (A,0,U, =, V), and ateam t € A.

@ Mt L iff t=0

@ M tl= ¢V iff thereares,re p(W)suchthatt Csur, M,s E ¢ and
M.ri=vy
@ Mt=¢ — v iff forallse p(W)withtD s, M,s | ¢implies M,s = v
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Generalized team semantics

Given a general team model M = (A,0,U, =, V), and ateam t € A.

@ Mt=L1 iff t=0

@ M t=¢Vvy iff thereares,re Asuchthatt<sur, M,s = ¢and
M.ri=
@ Mt=¢— v iff forallse Awithti=s, M,s = ¢ implies M,s E ¢
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Generalized team semantics

Given a general team model M = (A,0,U, =, V), and ateam t € A.

@ Mt=L1 iff t=0

@ M t=¢Vvy iff thereares,re Asuchthatt<sur, M,s = ¢and
M,r =

@ Mt=¢— v iff forallse Awithti=s, M,s = ¢ implies M,s E ¢

Persistency / Downward closure: If M, t = ¢ and t = s, then M, s = ¢.
Empty team property: M, 0 = ¢ for all ¢.
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The logic of the generalized semantics

Under the generalized semantics, all tCPC axioms hold except for
@ ——a — o (Double negation elimination)
Q (a—odvy) = (a— @)V (a—) (Split)
© (¢—x)—(pVvVy— x V) (Monotonicity)
Q(—a)=>(¥—a)= (VY —a)

where « € [L, A, V, —] is a standard formula
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The logic of the generalized semantics

Under the generalized semantics, all tCPC axioms hold except for
@ ——a — o (Double negation elimination)
Q (a—ovy) = (a—= @) v(a—1) (Split)
© (¢—x)—(pVvVy— x V) (Monotonicity)
Q@ (0—a)=> (¥ —a)=(oVe—a))
where « € [L, A, V, —] is a standard formula
Standard formulas are not any more closed under joins, where:
Join Closure Property: Mt Eaand M,s = a = M,tUs | «
(If w = U, join closure is the union closure property)
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The logic of the generalized semantics, and distributivity

Under the generalized semantics, all tCPC axioms hold except for
@ ——a — o (Double negation elimination)
Q (a—ovy) = (a—= @) v(a—1) (Split)
© (06— x)— (VY — x Vi) (Monotonicity)
Q@ (0—a)=> (¥ —a)=(oVe—a))
where « € [L, A, V, —] is a standard formula
Standard formulas are not any more closed under joins, where:
Join Closure Property: Mt Eaand M,s = a = M,tUs | «
(If w = U, join closure is the union closure property)

Fact: Split axiom holds over distributive frames F, i.e., semi-lattices
F=(AD0U,>)s.t.

t<xrus=3r,secA:r<xr, s <s, and t=r'vgs.
Thm. For finite frames F, we have that F satisfies join closure over

standard formulas and validates ® and @ iff F is distributive.

29/30)



Flatness of standard formulas

Over standard team semantics:
Def. A formula ¢ is said to be flat , if

tE¢ « forall {viCt: {vlE¢

{v}

O
t={vitu{va}uU---U{vy}

Prop. Standard formulas a € [L, A, v, —] are flat.
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Flatness of standard formulas
Over generalized team semantics:
Def. A formula ¢ is said to be flat over M, if
MtE ¢ < forallatomsv<t: MvE¢

Prop. Standard formulas « € [L, A, v, —] are flat.
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Flatness of standard formulas

Over generalized team semantics:
Def. A formula ¢ is said to be flat over M, if
MtE ¢ < forallatomsv<t: MvE¢

o}
t=viU.-.--Uv,

Thm. Let F be a finite frame. Then,

F is atomistic iff all standard formulas « are flat over F

iff F = ——a — « for all standard formulas «.
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