Dependence logic and team semantics

Fan Yang

University of Helsinki, Finland

TACL 2022 Coimbra, 20-24 June 2022

Let I be a subset of \mathbb{R} .

Definition:

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

A function $f:I\to\mathbb{R}$ is said to be <u>continuous</u> on I if for any $x_0\in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x\in I$,

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

$$\delta \\ \bullet \\ \epsilon$$

Let I be a subset of \mathbb{R} .

Definition:

A function $f:I\to\mathbb{R}$ is said to be <u>continuous</u> on I if for any $x_0\in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x\in I$,

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

Let I be a subset of \mathbb{R} .

Definition:

A function $f:I\to\mathbb{R}$ is said to be <u>continuous</u> on I if for any $x_0\in I$, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x\in I$,

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

$$\delta$$

Let I be a subset of \mathbb{R} .

such that for any $x \in I$,

Definition:

A function $f: I \to \mathbb{R}$ is said to be <u>continuous</u> on I if for any $x_0 \in I$, for any $\epsilon > 0$ there exists $\delta > 0$

 $|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$

continuity:
$$\forall x_0 \forall \epsilon \exists \delta \forall x \phi$$

Let I be a subset of \mathbb{R} .

Definition:

A function $f: I \to \mathbb{R}$ is said to be continuous on I if for any $x_0 \in I$, for any $\epsilon > 0$ there exists $\delta > 0$ such that for any $x \in I$, which does not depend on x_0

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

$$\delta$$

Let I be a subset of \mathbb{R} .

Definition:

A function $f: I \to \mathbb{R}$ is said to be $\frac{\text{uniformly}}{\text{continuous}}$ on I

if for any $\epsilon > 0$ there exists $\delta > 0$ such that for any $x_0 \in I$ and any $x \in I$,

$$|x-x_0|<\delta\Longrightarrow |f(x)-f(x_0)|<\epsilon.$$

continuity: $\forall x_0 \forall \epsilon \exists \delta \forall x \phi$

uniform continuity: $\forall \epsilon \exists \delta \forall x_0 \forall x \phi$

$$\forall u \exists v \forall x \exists y \phi$$

Henkin Quantifiers (1961):

$$\left(\begin{array}{c} \forall u \; \exists v \\ \forall x \; \exists y \end{array}\right) \phi$$

$$\forall u \exists v \forall x \exists y \phi$$

Henkin Quantifiers (1961):

$$\left(\begin{array}{c} \forall u \ \exists v \\ \forall x \ \exists y \end{array} \right) \phi$$
 meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u)/v, g(x)/y)$

$$\forall u \exists v \forall x \exists y \phi$$

Henkin Quantifiers (1961):

$$\begin{pmatrix} \forall u \ \exists v \\ \forall x \ \exists y \end{pmatrix} \phi$$
meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u)/v, g(x)/y)$

(Enderton, Walkoe, 1970) first-order logic+Henkin quantifiers ≡ existential second-order logic (ESO)

$$\forall u \exists v \forall x \exists y \phi$$

Henkin Quantifiers (1961):

$$\left(\begin{array}{c} \forall u \ \exists v \\ \forall x \ \exists y \end{array}\right) \phi$$

meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u)/v, g(x)/y)$

$$\forall u \exists v \forall x \exists v / \{u\} \phi$$

Independence-Friendly Logic (Hintikka and Sandu, 1989):

imperfect information game

(Enderton, Walkoe, 1970) first-order logic+Henkin quantifiers \equiv existential second-order logic (ESO) \equiv independence-friendly logic

$$\forall u \exists v \forall x \exists y \phi$$

Henkin Quantifiers (1961):

$$\begin{pmatrix} \forall u \; \exists v \\ \forall x \; \exists y \end{pmatrix} \phi$$
meaning $\exists f \exists g \forall u \forall x \phi(u, x, f(u)/v, g(x)/y)$

Independence-Friendly Logic (Hintikka and Sandu, 1989):

$$\forall u \exists v \forall x \exists y / \{u\} \phi$$

imperfect information game

(Enderton, Walkoe, 1970)
first-order logic+Henkin quantifiers ≡ existential second-order logic (ESO)
≡ independence-friendly logic

Dependence logic (Väänänen 2007): $\forall u \exists v \forall x \exists y (\phi \land =(x,y))$

Dependence atoms (Väänänen 2007)

"x completely determines y"

$$=(x, y)$$

Dependence atoms (Väänänen 2007)

"x completely determines y"

$$=(x,y)$$

Dependence atoms (Väänänen 2007)

"x completely determines y"

$$=(x,y)$$

Given a model M, and an assignment s: $Var \rightarrow M$,

 $M \models_s$ "x completely determines y"??

	X	У	Z
s	$\sqrt{2}$	2	0

Given a model M, and an assignment s: $Var \rightarrow M$,

 $M \models_s$ "x completely determines y"??

2

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_X$$
 " x completely determines y " iff for all $s, s' \in X$, $s(x) = s'(x) \Longrightarrow s(y) = s'(y)$.

	X	У	Z
s_0	$\sqrt{2}$	2	0
s_1	$\sqrt{2}$	2	1
s ₂	-2	4	$\sqrt{2}$
s 3	-2	4	2
s_4	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_{X}$$
 " x completely determines y " iff for all $s, s' \in X$, $s(x) = s'(x) \Longrightarrow s(y) = s'(y)$.

	X	y	Z
s_0	$\sqrt{2}$	2	0
s_1	$\sqrt{2}$	2	1
s ₂	-2	4	$\sqrt{2}$
s 3	-2	4	2
s_4	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_X$$
 " x completely determines y " iff for all $s, s' \in X$, $s(x) = s'(x) \Longrightarrow s(y) = s'(y)$.

	X	y	Z
s_0	$\sqrt{2}$	2	0
<i>S</i> ₁	$\sqrt{2}$	2	1
s ₂	-2	4	$\sqrt{2}$
<i>S</i> ₃	-2	4	2
s_4	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_{X}$$
 " x completely determines y " iff for all $s, s' \in X$, $s(x) = s'(x) \Longrightarrow s(y) = s'(y)$.

	X	У	Z
s_0	$\sqrt{2}$	2	0
<i>S</i> ₁	$\sqrt{2}$	2	1
s ₂	-2	4	$\sqrt{2}$
s 3	-2	4	2
<i>S</i> ₄	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_{\mathbf{X}} = (x, y)$$
 iff for all $s, s' \in X$, $s(x) = s'(x) \Longrightarrow s(y) = s'(y)$.

	X	У	Z
s ₀	$\sqrt{2}$	2	0
s_1	$\sqrt{2}$	2	1
<i>S</i> ₂	-2	4	$\sqrt{2}$
<i>S</i> ₃	-2	4	2
s_4	$-\sqrt{2}$	2	0

A team: a set of assignments $s: V \to M$

Given a model M, and a team X,

$$M \models_{\mathbf{X}} = (\vec{x}, \vec{y}) \text{ iff for all } s, s' \in X,$$
 $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y}).$

A team: a set of assignments $s: V \rightarrow M$

Given a model
$$M$$
, and a team X .

$$M \models_{\mathbf{X}} = (\vec{x}, \vec{y})$$
 iff for all $s, s' \in X$,

 $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y}).$ $M \models_X = (\langle \rangle, \vec{x}) \quad \text{iff for all } s, s' \in X, s(\vec{x}) = s'(\vec{x}).$

A team: a set of assignments $s: V \rightarrow M$

Given a model M, and a team X,

$$M \models_{\mathbf{X}} = (\vec{x}, \vec{y}) \text{ iff for all } s, s' \in X,$$

 $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y}).$

• Constancy atom: $M \models_X = (\vec{x})$ iff for all $s, s' \in X$, $s(\vec{x}) = s'(\vec{x})$.

Connection with database theory

	X	У	Z	V
s ₀	С	d	а	а
<i>S</i> ₁	С	d	а	b
<i>S</i> ₂	а	е	С	С
<i>s</i> ₃	а	е	С	d

- A team can be viewed as a relational database.
- Dependence atoms $=(\vec{x}, \vec{y})$ correspond exactly to functional dependencies $\vec{x} \to \vec{y}$ in database theory
- Armstrong's Axioms (1974) for functional dependencies:

```
• =(\vec{x}, \vec{x}) (identity)

• =(\vec{x}\vec{y}, \vec{z}) implies =(\vec{y}\vec{x}, \vec{z}) (commutativity)

• =(\vec{x}\vec{x}, \vec{y}) implies =(\vec{x}, \vec{y}) (contraction)

• =(\vec{y}, \vec{z}) implies =(\vec{x}\vec{y}, \vec{z}) (weakening)

• =(\vec{x}, \vec{y}) and =(\vec{y}, \vec{z}) imply =(\vec{x}, \vec{z}) (transitivity)
```

Connection with database theory

	X	У	Ζ	V
s_0	С	d	а	а
<i>S</i> ₁	С	d	а	b
<i>S</i> ₂	а	e	С	С
s ₃	а	е	С	d

- A team can be viewed as a relational database.
- Dependence atoms $=(\vec{x}, \vec{y})$ correspond exactly to functional dependencies $\vec{x} \to \vec{y}$ in database theory
- Armstrong's Axioms (1974) for functional dependencies:

```
• =(\vec{x}, \vec{x}) (identity)

• =(\vec{x}\vec{y}, \vec{z}) implies =(\vec{y}\vec{x}, \vec{z}) (commutativity)

• =(\vec{x}\vec{x}, \vec{y}) implies =(\vec{x}, \vec{y}) (contraction)

• =(\vec{y}, \vec{z}) implies =(\vec{x}\vec{y}, \vec{z}) (weakening)

• =(\vec{x}, \vec{y}) and =(\vec{y}, \vec{z}) imply =(\vec{x}, \vec{z}) (transitivity)
```

Connection with database theory

	X	У	Z	V
s ₀	С	d	а	а
<i>s</i> ₁	С	d	а	b
s_2	а	e	С	С
<i>s</i> ₃	а	е	С	d

- A team can be viewed as a relational database.
- Dependence atoms $=(\vec{x}, \vec{y})$ correspond exactly to functional dependencies $\vec{x} \to \vec{y}$ in database theory
- Armstrong's Axioms (1974) for functional dependencies:

```
 \begin{array}{ll} \bullet & = (\vec{x}, \vec{x}) & \text{(identity)} \\ \bullet & = (\vec{x}\vec{y}, \vec{z}) \text{ implies } = (\vec{y}\vec{x}, \vec{z}) & \text{(commutativity)} \\ \bullet & = (\vec{x}\vec{x}, \vec{y}) \text{ implies } = (\vec{x}, \vec{y}) & \text{(contraction)} \\ \bullet & = (\vec{y}, \vec{z}) \text{ implies } = (\vec{x}\vec{y}, \vec{z}) & \text{(weakening)} \\ \bullet & = (\vec{x}, \vec{y}) \text{ and } = (\vec{y}, \vec{z}) \text{ imply } = (\vec{x}, \vec{z}) & \text{(transitivity)} \end{array}
```

Dependence Logic (FO(=(...)))

• First-order logic (FO): $\alpha ::= t = t' \mid R\vec{t} \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \exists x \alpha \mid \forall x \alpha \mid \exists x \alpha$

• Dependence logic (Väänänen 2007):

first-order logic $+ = (\vec{x}, \vec{y})$

Dependence Logic (FO(=(...)))

• First-order logic (FO):

$$\alpha ::= t = t' \mid R\vec{t} \mid \neg \alpha \mid \alpha \wedge \alpha \mid \alpha \vee \alpha \mid \exists x \alpha \mid \forall x \alpha$$

• Dependence logic (Väänänen 2007):

first-order logic
$$+ = (\vec{x}, \vec{y})$$

Dependence Logic (FO(=(...)))

• First-order logic (FO):

$$\alpha ::= t = t' \mid R\vec{t} \mid \neg \alpha \mid \alpha \wedge \alpha \mid \alpha \vee \alpha \mid \exists x \alpha \mid \forall x \alpha$$

• Dependence logic (Väänänen 2007):

$$\phi ::= \alpha \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid \exists x \phi \mid \forall x \phi \mid = (\vec{x}, \vec{y})$$
where α is an FO-formula

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{X} \neg \alpha$ iff for all $s \in X$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \exists V \text{ iff}$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

Χ	У	Z
3	4	5
2	3	0
1	2	3
0	1	0

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula

•
$$M \models_{Y} \phi \lor \psi$$
 iff there exist $Y, Z \subseteq X$ w

•
$$M \models_X \exists v \text{ iff}$$

•
$$M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$$
, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

Let *X* be a team, i.e., a set of assignments $s : Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ III $M \models_X \phi$ and $M \models_X \psi$
- \bullet $M \models_X \exists v \text{ iff}$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi, \text{ where } X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

x < y

Let X be a team, i.e., a set of assignments $s : Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ III $M \models_X \phi$ and $M \models_X \psi$
- \bullet $M \models_X \exists V$ iff
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi, \text{ where } X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

x < y

Let *X* be a team, i.e., a set of assignments $s : Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ III $M \models_X \phi$ and $M \models_X \psi$
- \bullet $M \models_X \exists V$ iff
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

x < y

Let *X* be a team, i.e., a set of assignments $s : Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ III $M \models_X \phi$ and $M \models_X \psi$
- $M \models_X \exists v \text{ iff}$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

 $M \not\models_X x < y$

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{X} \neg \alpha$ iff for all $s \in X$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ III $M \models_X \phi$ and $M \models_X \psi$
- \bullet $M \models_X \exists v$ iff
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

$$M \not\models_X x < y$$
$$M \not\models_X \neg x < y$$

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathcal{X}} \neg \alpha$ iff for all $s \in \mathcal{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathcal{X}} \neg \alpha$ iff for all $s \in \mathcal{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.

Let *X* be a team, i.e., a set of assignments $s : Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathcal{X}} \neg \alpha$ iff for all $s \in \mathcal{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $VV = X \supseteq V \sqcup V$
 - $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

X	У	Z	
3	4	5	
2	0	0	
1	2	3	Ī
0	1	0	

 $\alpha \vee \beta$

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathcal{X}} \neg \alpha$ iff for all $s \in \mathcal{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathsf{X}} \neg \alpha$ iff for all $s \in \mathsf{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \alpha \text{ iff } \forall s \in X : M \models_s \exists v \alpha$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

Χ	У	Z
3	4	5
2	0	0
1	2	3
0	1	0

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathsf{X}} \neg \alpha$ iff for all $s \in \mathsf{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \alpha \text{ iff } \forall s \in X : M \models_s \exists v \alpha$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi, \text{ where } X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathsf{X}} \neg \alpha$ iff for all $s \in \mathsf{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \alpha \text{ iff } \forall s \in X : M \models_s \exists v \alpha$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi, \text{ where } X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_{\mathsf{X}} \neg \alpha$ iff for all $s \in \mathsf{X}$, $M \not\models_{\mathsf{s}} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \phi$ iff there exists $F : X \to \wp(M) \setminus \{\emptyset\}$, s.t. $M \models_{X(F/v)} \phi$, where $X(F/v) = \{s(a/v) \mid s \in X \text{ and } a \in F(s)\}$.

X	У	Ζ	V	
3	4	5	0	
2	0	0	1	Μ
1	2	3	2	
0	1	0	3	
			1	

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{\mathsf{X}} \alpha$ iff for all $s \in \mathsf{X}$, $M \models_{\mathsf{S}} \alpha$, whenever α is a first-order formula
- $M \models_{\mathsf{X}} \neg \alpha$ iff for all $s \in \mathsf{X}$, $M \not\models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \phi$ iff there exists $F : X \to \wp(M) \setminus \{\emptyset\}$, s.t. $M \models_{X(F/v)} \phi$, where $X(F/v) = \{s(a/v) \mid s \in X \text{ and } a \in F(s)\}.$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi$, where $X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}$.

Let X be a team, i.e., a set of assignments s: $Var \rightarrow M$.

- $M \models_X = (\vec{x}, \vec{y})$ iff for all $s, s' \in X$: $s(\vec{x}) = s'(\vec{x}) \Longrightarrow s(\vec{y}) = s'(\vec{y})$.
- $M \models_{X} \alpha$ iff for all $s \in X$, $M \models_{s} \alpha$, whenever α is a first-order formula
- $M \models_X \neg \alpha$ iff for all $s \in X$, $M \not\models_s \alpha$, whenever α is a first-order formula
- $M \models_X \phi \land \psi$ iff $M \models_X \phi$ and $M \models_X \psi$.
- $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.
- $M \models_X \exists v \phi$ iff there exists $F : X \to \wp(M) \setminus \{\emptyset\}$, s.t. $M \models_{X(F/v)} \phi$, where $X(F/v) = \{s(a/v) \mid s \in X \text{ and } a \in F(s)\}.$
- $M \models_X \forall v \phi \text{ iff } M \models_{X(M/v)} \phi, \text{ where } X(M/v) = \{s(a/v) \mid s \in X \& a \in M\}.$

Empty team property: $M \models_{\emptyset} \phi$.

Downward closure: $M \models_X \phi$ and $Y \subseteq X \Longrightarrow M \models_Y \phi$.

For every formula α of the standard first-order logic,

Union closure: $M \models_{X_i} \alpha$ for all $i \in I \neq \emptyset$, then $M \models_{\bigcup_{i \in I} X_i} \alpha$.

Flatness: $M \models_X \alpha \iff \forall s \in X : M \models_{\{s\}} \alpha \iff \forall s \in X : M \models_s \alpha$.

- $M \models_X \vec{x} \perp \vec{y}$ iff for all $s, s' \in X$, there exists $s'' \in X$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.
- $M \models_X \vec{X} \perp_{\vec{Z}} \vec{y}$ iff for all $s, s' \in X$ s.t. $s(\vec{z}) = s'(\vec{z})$, there exists $s'' \in X$ s.t. $s''(\vec{z}) = s(\vec{z})$

Χ	У	Ζ
а	b	е
С	d	d
С	b	e
а	d	а

- $M \models_X \vec{x} \perp \vec{y}$ iff for all $s, s' \in X$, there exists $s'' \in X$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.
- $M \models_X \vec{x} \perp_{\vec{z}} \vec{y}$ iff for all $s, s' \in X$ s.t. $s(\vec{z}) = s'(\vec{z})$, there exists $s'' \in X$ s.t. $s''(\vec{z}) = s(\vec{z})$

Χ	У	Ζ
а	b	е
С	d	d
С	b	е
а	d	а

- $M \models_X \vec{x} \perp \vec{y}$ iff for all $s, s' \in X$, there exists $s'' \in X$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.
- $M \models_X \vec{x} \perp_{\vec{z}} \vec{y}$ iff for all $s, s' \in X$ s.t. $s(\vec{z}) = s'(\vec{z})$, there exists $s'' \in X$ s.t. $s''(\vec{z}) = s(\vec{z})$

Χ	У	Ζ
а	b	е
С	d	d
С	b	е
а	d	а

- $M \models_X \vec{x} \perp \vec{y}$ iff for all $s, s' \in X$, there exists $s'' \in X$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.
- $M \models_X \vec{x} \perp_{\vec{z}} \vec{y} \text{ iff for all } s, s' \in X \text{ s.t. } s(\vec{z}) = s'(\vec{z}),$ $\text{there exists } s'' \in X \text{ s.t. } s''(\vec{z}) = s(\vec{z})$

Χ	У	Ζ
а	b	e
С	d	d
С	b	e
а	d	а

- $M \models_X \vec{x} \perp \vec{y}$ iff for all $s, s' \in X$, there exists $s'' \in X$ such that $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.
- $M \models_X \vec{x} \perp_{\vec{z}} \vec{y}$ iff for all $s, s' \in X$ s.t. $s(\vec{z}) = s'(\vec{z})$, there exists $s'' \in X$ s.t. $s''(\vec{z}) = s(\vec{z})$, $s''(\vec{x}) = s(\vec{x})$ and $s''(\vec{y}) = s'(\vec{y})$.

... correspond to embedded multivalued dependencies $\vec{z} \rightarrow \vec{x} \mid \vec{y}$ in database theory

Fact: $=(x, y) \equiv y \perp_x y$, thus $FO(=(...)) \leq FO(\perp)$ (i.e., $FO + \vec{x} \perp_{\vec{z}} \vec{y}$).

The following dependence relation:

$$\forall u \exists v \forall \widehat{x \exists y} \phi$$

can be expressed in dependence logic as

- $\bullet \ \forall u \exists v \forall x \exists y (\phi \land =(x,y))$
- or $\forall u \exists v \forall x \exists y (\phi \land =(x,y) \land =(u,v))$ (to be more rigorous)
- or even $\forall u \forall x \exists v \exists y (\phi \land =(x, y) \land =(u, v))$

The following dependence relation:

$$\forall u \exists v \forall \widehat{x \exists y} \phi$$

can be expressed in dependence logic as

- $\bullet \ \forall u \exists v \forall x \exists y (\phi \land =(x,y))$
- or $\forall u \exists v \forall x \exists y (\phi \land =(x, y) \land =(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y (\phi \land =(x, y) \land =(u, v))$

The following dependence relation:

$$\forall u \exists v \forall x \exists y \phi$$

can be expressed in dependence logic as

- $\bullet \ \forall u \exists v \forall x \exists y (\phi \land =(x,y))$
- or $\forall u \exists v \forall x \exists y (\phi \land =(x, y) \land =(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y (\phi \land =(x,y) \land =(u,v))$.

The following dependence relation:

$$\forall u \exists v \, \forall \widehat{x \exists y} \, \phi$$

can be expressed in dependence logic as

- $\bullet \ \forall u \exists v \forall x \exists y (\phi \land =(x,y))$
- or $\forall u \exists v \forall x \exists y (\phi \land =(x, y) \land =(u, v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y (\phi \land =(x,y) \land =(u,v))$.

Lemma. For any formula ϕ of FO(=(...)),

$$\exists y \forall x \phi(x, y, \vec{v}) \equiv \forall x \exists y (=(\vec{v}, y) \land \phi).$$

The following dependence relation:

$$\forall u \exists v \forall \widehat{x \exists y} \phi$$

can be expressed in dependence logic as

- $\bullet \ \forall u \exists v \forall x \exists y (\phi \land =(x,y))$
- or $\forall u \exists v \forall x \exists y (\phi \land =(x,y) \land =(u,v))$ (to be more rigorous),
- or even $\forall u \forall x \exists v \exists y (\phi \land =(x,y) \land =(u,v))$.

Lemma. For any formula ϕ of FO(=(...)),

$$\exists y \forall x \phi(x, y, \vec{v}) \equiv \forall x \exists y (=(\vec{v}, y) \land \phi).$$

Prop. For any formula ϕ of FO(=(...)), we have that

$$\phi \equiv \forall \vec{\mathbf{x}} \exists \vec{\mathbf{y}} \theta$$

for some quantifier-free formula θ .

Pf. First transform ϕ into an equivalent formula in prenex normal form $Q_1x_1 \dots Q_nx_n\theta$, where each $Q_i \in \{\forall, \exists\}$ and θ is quantifier-free. Then apply Lemma exhaustedly.

Defining infinity

$$|M| = \infty$$

An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \to x_0 = x_1) \land f(x_0) \neq v \big)$$

• An FO(=(...))-sentence:

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

Defining infinity

$$|M| = \infty$$
 iff $\exists f$:

An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \to x_0 = x_1) \land f(x_0) \neq v \big)$$

An FO(=(...))-sentence:

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

Defining infinity

$$|M| = \infty$$
 iff $\exists f$:

An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \to x_0 = x_1) \land f(x_0) \neq v \big)$$

• An FO(=(...))-sentence:

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

$$|M| = \infty$$
 iff $\exists f$:

An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \to x_0 = x_1) \land f(x_0) \neq v \big)$$

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

$$|M| = \infty$$
 iff $\exists f$:

• An existential second-order (ESO) sentence:

$$\exists f\exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \rightarrow x_0 = x_1) \land f(x_0) \neq v \big)$$

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

$$|M| = \infty$$
 iff $\exists f$:

• An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 ((f(x_0) = f(x_1) \rightarrow x_0 = x_1) \land f(x_0) \neq v)$$

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

$$|M| = \infty$$
 iff $\exists f$:

• An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \rightarrow x_0 = x_1) \land f(x_0) \neq v \big)$$

$$\phi_{\infty} := \exists v \forall x \exists y (=(x,y) \land =(y,x) \land (v \neq y))$$

$$|M| = \infty$$
 iff $\exists f$:

• An existential second-order (ESO) sentence:

$$\exists f \exists v \forall x_0 \forall x_1 \big((f(x_0) = f(x_1) \rightarrow x_0 = x_1) \land f(x_0) \neq v \big)$$

$$\phi_{\infty} := \exists v \forall x \exists y (=(x, y) \land =(y, x) \land (v \neq y))$$

$FO(=(...)) \equiv ESO$

Theorem (Väänänen 2007)

For any ESO-sentence ϕ , there is an FO(=(...))-sentence ψ such that for any model M, $M \models \phi \iff M \models \psi$:

and vice versa.

Proof (Idea):

- ESO \Longrightarrow FO(=(...)): E.g., $M \models \exists f \forall \vec{x} \alpha(\vec{x}, f(\vec{x_i})) \iff M \models \forall \vec{x} \exists y (=(\vec{x_i}, y) \land \alpha(\vec{x}, y)).$
- FO(=(...)) \Longrightarrow ESO(R): Observation: A team X over the domain $\{v_1, \ldots, v_n\}$ induces an n-ary relation $rel(X) = \{s(\vec{v}) \mid s \in X\}$:

	<i>V</i> ₁	<i>V</i> ₂	 V _n
<i>S</i> ₁	a ₁₁	a ₁₂	 a _{1n}
s ₂	a ₂₁	a ₂₂	 a _{2n}
s ₃	a ₃₁	<i>a</i> ₃₂	 a_{3n}

FO(=(...)) ≡ ESO

Theorem (Väänänen 2007 & Grädel, Väänänen 2013 & Galliani 2012)

For any ESO-sentence ϕ , there is an FO(=(...))- or FO(\perp)-sentence ψ such that for any model M,

$$M \models \phi \iff M \models \psi;$$

and vice versa.

Proof (Idea):

- ESO \Longrightarrow FO(=(...)): E.g., $M \models \exists f \forall \vec{x} \alpha(\vec{x}, f(\vec{x_i})) \iff M \models \forall \vec{x} \exists y (=(\vec{x_i}, y) \land \alpha(\vec{x}, y)).$
- FO(=(...)) \Longrightarrow ESO(R): Observation: A team X over the domain $\{v_1, \ldots, v_n\}$ induces an n-ary relation $rel(X) = \{s(\vec{v}) \mid s \in X\}$:

	<i>V</i> ₁	<i>V</i> ₂	 Vn
s_1	a ₁₁	a ₁₂	 a _{1n}
s ₂	a ₂₁	a ₂₂	 a _{2n}
s 3	a ₃₁	<i>a</i> ₃₂	 a _{3n}

$FO(=(...)) \equiv ESO$

Theorem (Väänänen 2007 & Grädel, Väänänen 2013 & Galliani 2012)

For any ESO-sentence ϕ , there is an FO(=(...))- or FO(\perp)-sentence ψ such that for any model M,

$$\mathbf{M} \models \phi \iff \mathbf{M} \models \psi;$$

and vice versa.

Proof (Idea):

- ESO \Longrightarrow FO(=(...)): E.g., $M \models \exists f \forall \vec{x} \alpha(\vec{x}, f(\vec{x_i})) \iff M \models \forall \vec{x} \exists y (=(\vec{x_i}, y) \land \alpha(\vec{x}, y)).$
- FO(=(...)) \Longrightarrow ESO(R): Observation: A team X over the domain $\{v_1, \ldots, v_n\}$ induces an n-ary relation $rel(X) = \{s(\vec{v}) \mid s \in X\}$:

	<i>V</i> ₁	<i>V</i> ₂	 Vn
s_1	a ₁₁	a ₁₂	 a _{1n}
s ₂	a ₂₁	a ₂₂	 a _{2n}
s 3	a ₃₁	<i>a</i> ₃₂	 a _{3n}

Corollary. The classes of finite structures definable in FO(=(...)) and $FO(\perp)$ are exactly the ones recognized in NP. (follows from Fagin 1973)

Theorem ()
$$\Gamma \models \phi \iff \Gamma \vdash \phi$$

Theorem (Kontinen, Väänänen 2013 & Hannula 2015)

There are (sound) systems of natural deduction for FO(=(...)) and $FO(\perp)$ such that

$$\Gamma \models \alpha \iff \Gamma \vdash \alpha$$

for any set Γ of sentences and first-order sentence α .

Theorem (Kontinen, Väänänen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and $FO(\perp)$ such that

$$\Gamma \models \alpha \iff \Gamma \vdash \alpha$$

for any set Γ of formulas and essentially first-order/negatable formula α .

Def. A formula θ in L is called negatable if there exists a formula η in L s.t. $\eta \equiv \dot{\sim} \theta$, where the weak classical negation $\dot{\sim}$ is defined as

$$M \models_{\mathsf{X}} \dot{\sim} \phi \iff \mathsf{X} = \emptyset \text{ or } M \not\models_{\mathsf{X}} \phi.$$

- Remark: Neither FO(=(...)) nor FO(\perp) is closed under $\dot{\sim}$, since FO(\perp) \equiv FO(=(...)) \equiv ESO.
- First-order formulas α are negatable in FO(=(...)) and FO(\perp).
- Thm. (Y. 2016) For any formula α in FO(\perp), $\sim \alpha$ exists in FO(\perp) iff the ESO-translation χ_{α} of α is equiv. to a first-order formula.
- Cor. The class of negatable formulas is undecidable.

Theorem (Kontinen, Väänänen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and $FO(\bot)$ such that

$$\Gamma \models \alpha \iff \Gamma \vdash \alpha$$

for any set Γ of formulas and essentially first-order/negatable formula $\alpha.$

Def. A formula θ in L is called negatable if there exists a formula η in L s.t. $\eta \equiv \dot{\sim} \theta$, where the weak classical negation $\dot{\sim}$ is defined as

$$M \models_X \dot{\sim} \phi \iff X = \emptyset \text{ or } M \not\models_X \phi.$$

- Remark: Neither FO(=(...)) nor FO(\perp) is closed under $\dot{\sim}$, since FO(\perp) \equiv FO(=(...)) \equiv ESO.
- First-order formulas α are negatable in FO(=(...)) and FO(\perp).
- Thm. (Y. 2016) For any formula α in FO(\perp), $\dot{\sim} \alpha$ exists in FO(\perp) iff the ESO-translation χ_{α} of α is equiv. to a first-order formula.
- Cor. The class of negatable formulas is undecidable.

Theorem (Kontinen, Väänänen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and $FO(\perp)$ such that

$$\Gamma \models \alpha \iff \Gamma \vdash \alpha$$

for any set Γ of formulas and essentially first-order/negatable formula $\alpha.$

Examples:

- ullet Dependence and independence atoms are all negatable in FO($oldsymbol{\perp}$).
 - Armstrong's axioms for functional dependencies are derivable.
 - → Some facts concerning independence notions in quantum theory are derivable. (Abramsky, Puljujärvi, Väänänen 2021)
- If $\Gamma \models \bot$, then $\Gamma \vdash \bot$.

Theorem (Kontinen, Väänänen 2013 & Hannula 2015 & Y. 2016)

There are (sound) systems of natural deduction for FO(=(...)) and $FO(\perp)$ such that

$$\Gamma \models \alpha \iff \Gamma \vdash \alpha$$

for any set Γ of formulas and essentially first-order/negatable formula $\alpha.$

Examples:

- Dependence and independence atoms are all negatable in FO(⊥).
 → Armstrong's axioms for functional dependencies are derivable.
 → Some facts concerning independence notions in quantum
 - theory are derivable. (Abramsky, Puljujärvi, Väänänen 2021)
- If $\Gamma \models \bot$, then $\Gamma \vdash \bot$.
 - \sim Arrow's Impossibility Theorem can be formalized in FO(\perp) as Γ_{Arrow} , $\dot{\sim} \phi_{\mathsf{dictator}} \models \bot$ or $\Gamma_{\mathsf{Arrow}} \models \phi_{\mathsf{dictator}}$, and it is derivable in the system of FO(\perp), i.e., $\Gamma_{\mathsf{Arrow}} \vdash \phi_{\mathsf{dictator}}$. (Pacuit, Y. 2016)

Weaker (and axiomatizable) team-based logics

- (Kontinen, Y. 2020) A variant of dependence logic with weaker quantifiers \forall^1, \exists^1 and global disjunction \vee
- \bullet (Lück 2018) First-order logic with the (strong) classical negation \sim
- (Baltag, van Benthem 2021) Dependence logic with a "local" version of functional dependence

Local v.s. global disjunction

Local disjunction:

• $M \models_X \phi \lor \psi$ iff there exist $Y, Z \subseteq X$ with $X = Y \cup Z$ s.t. $M \models_Y \phi \& M \models_Z \psi$.

Global disjunction:

• $M \models_X \phi \lor \psi$ iff $M \models_X \phi$ or $M \models_X \psi$

Fact:
$$\phi \lor \psi \equiv \exists xy (=(x) \land =(y) \land ((\phi \land x = y) \lor (\psi \land x \neq y)))$$

Implication

• $M \models_X \phi \to \psi$ iff for all $Y \subseteq X$, $M \models_Y \phi$ implies $M \models_Y \psi$.

— introduced by Abramsky & Väänänen (2009)

Properties:

- If ϕ and ψ are downward closed, so is $\phi \to \psi$.
- $\bullet = (x_1 \ldots x_n, y) \equiv = (x_1) \wedge \ldots = (x_n) \rightarrow = (y)$
- Thm (Y. 2013). $FO(=(...), \rightarrow) \equiv \text{full second-order logic}$

Propositional dependence logic

A first-order team: a set of assignments $s: V \to M$ with $V \subseteq Var$

	X	У	Z
<i>S</i> ₁	а	С	b
<i>s</i> ₂	а	С	С
s ₃	b	d	d
<i>S</i> ₄	b	d	С

$$M \models_X = (\vec{x}, \vec{y})$$

"Energy is determined by mass" (via the function $e = mc^2$)

$$=(\vec{p},\vec{q})$$

"Whether I will take my umbrella depends on whether it is raining."

A first-order team: a set of assignments $s: V \to M$ with $V \subseteq Var$

	X	У	Z
<i>S</i> ₁	а	С	b
<i>s</i> ₂	а	С	С
s ₃	b	d	d
<i>S</i> ₄	b	d	С

$$M \models_X = (\vec{x}, \vec{y})$$

"Energy is determined by mass" (via the function $e = mc^2$)

A propositional team:

a set of valuations / possible worlds $v: V \rightarrow \{0, 1\}$ with $V \subset \mathsf{Prop}$

	р	q	r
<i>V</i> ₁	1	1	1
<i>V</i> ₂	1	1	0
<i>V</i> ₃	0	0	0
<i>V</i> ₄	0	0	1

$$=(\vec{p},\vec{q})$$

"Whether I will take my umbrella depends on whether it is raining."

A first-order team: a set of assignments $s: V \to M$ with $V \subseteq Var$

	X	У	Z
<i>S</i> ₁	а	С	b
<i>s</i> ₂	а	С	С
s ₃	b	d	d
<i>S</i> ₄	b	d	С

$$M \models_X = (\vec{x}, \vec{y})$$

"Energy is determined by mass" (via the function $e = mc^2$)

A propositional team: a set of valuations / possible worlds $v: V \rightarrow \{0, 1\}$ with $V \subset Prop$

"Whether I will take my umbrella depends on whether it is raining."

A first-order team: a set of assignments $s: V \to M$ with $V \subseteq Var$

	X	У	Z
<i>S</i> ₁	а	С	b
s ₂	а	С	С
s ₃	b	d	d
<i>S</i> ₄	b	d	С

$$M \models_X = (\vec{x}, \vec{y})$$

"Energy is determined by mass" (via the function $e = mc^2$)

A propositional team:

a set of valuations / possible worlds $v: V \rightarrow \{0,1\}$ with $V \subset \mathsf{Prop}$

$$X \models =(\vec{p}, \vec{q})$$
 iff for all $v, u \in X$
 $v(\vec{p}) = u(\vec{p}) \Longrightarrow v(\vec{q}) = u(\vec{q})$

"Whether I will take my umbrella depends on whether it is raining."

Constancy atoms revisited

•
$$X \models = (\vec{p})$$
 iff for all $v, u \in X$: $v(\vec{p}) = u(\vec{p})$.

 р		 р	
 1		 0	
 1	 or	 0	
 1		 0	
 1		 0	

Fact:
$$=(p) \equiv p \vee \neg p$$

Constancy atoms revisited

•
$$X \models = (\vec{p})$$
 iff for all $v, u \in X$: $v(\vec{p}) = u(\vec{p})$.

 р		 р	
 1		 0	
 1	 or	 0	
 1		 0	
 1		 0	
	'		

Fact:
$$=(p) \equiv p \lor \neg p$$

 $=(p_1 \ldots p_n, q) \equiv =(p_1) \land \cdots \land =(p_n) \rightarrow =(q)$

Constancy atoms revisited

•
$$X \models = (\vec{p})$$
 iff for all $v, u \in X$: $v(\vec{p}) = u(\vec{p})$.

 р		 р	
 1		 0	
 1	 or	 0	
 1		 0	
 1		 0	

Fact:
$$=(p) \equiv p \lor \neg p \equiv ?p$$

= $(p_1 \ldots p_n, q) \equiv =(p_1) \land \cdots \land =(p_n) \rightarrow =(q)$

Remark: Team semantics was adopted independently also in inquisitive semantics (Ciardelli and Roelofsen 2011) to model questions in natural language.

Propositional team-based logic

Language of standard logic: $\alpha := p \mid \bot \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \to \alpha$ Language of team-based logic (tCPC):

$$\phi ::= \mathbf{p} \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \phi \lor \phi \mid = (\vec{\mathbf{p}}, \vec{\mathbf{q}}) \qquad \neg \phi := \phi \rightarrow \bot$$

Propositional team-based logic

Language of standard logic: $\alpha := p \mid \bot \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \to \alpha$ Language of team-based logic (tCPC):

$$\phi ::= \mathbf{p} \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \phi \lor \phi \mid = (\vec{p}, \vec{q}) \qquad \neg \phi := \phi \rightarrow \bot$$

Team semantics: Let $t \subseteq 2^{Prop}$ be a team, i.e., a set of possible worlds.

- $t \models p$ iff v(p) = 1 for all $v \in t$
 - $t \models \bot$ iff $t = \emptyset$ • $t \models \phi \land \psi$ iff $t \models \phi$ and $t \models \psi$
 - $t \models \phi \lor \psi$ iff $t \models \phi$ or $t \models \psi$
 - $t \models \phi \lor \psi$ iff $\exists s, r \subseteq t$ s.t. $t = s \cup r$, $s \models \phi$ and $r \models \psi$ • $t \models \phi \to \psi$ iff $\forall s \subseteq t$: $s \models \phi$ implies $s \models \psi$
 - $t \models \neg \phi$ iff $t \models \phi \rightarrow \bot$ iff $\{v\} \not\models \phi$ for all $v \in t$

Empty team property: $\emptyset \models \phi$ for all ϕ

Downward Closure: If $s \subseteq t \models \phi$, then $s \models \phi$.

For any standard formula α (i.e., formula of the standard logic), Union closure: $t \models \alpha$ and $s \models \alpha \Longrightarrow t \cup s \models \alpha$

Flatness:
$$t \models \alpha \iff \forall v \in t : \{v\} \models \alpha \iff \forall v \in t : v \models \alpha$$

Propositional team-based logic

Language of standard logic: $\alpha := p \mid \bot \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \to \alpha$ Language of team-based logic (tCPC):

$$\phi ::= \mathbf{p} \mid \bot \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \phi \lor \phi \mid = (\vec{p}, \vec{q}) \qquad \neg \phi := \phi \rightarrow \bot$$

Team semantics: Let $t \subseteq 2^{Prop}$ be a team, i.e., a set of possible worlds.

• $t \models p$ iff v(p) = 1 for all $v \in t$

• $t \models \bot$ iff $t = \emptyset$

- $t \models \phi \land \psi$ iff $t \models \phi$ and $t \models \psi$
- $t \models \phi \lor \psi$ iff $t \models \phi$ or $t \models \psi$
- $t \models \phi \lor \psi$ iff $\exists s, r \subseteq t$ s.t. $t \subseteq s \cup r$, $s \models \phi$ and $r \models \psi$ • $t \models \phi \to \psi$ iff $\forall s \subseteq t$: $s \models \phi$ implies $s \models \psi$
- $t \models \neg \phi$ iff $t \models \phi \rightarrow \bot$ iff $\{v\} \not\models \phi$ for all $v \in t$
- Empty team property: $\emptyset \models \phi$ for all ϕ

Downward Closure: If $s \subseteq t \models \phi$, then $s \models \phi$.

For any standard formula α (i.e., formula of the standard logic), Union closure: $t \models \alpha$ and $s \models \alpha \Longrightarrow t \cup s \models \alpha$

Flatness: $t \models \alpha \iff \forall v \in t : \{v\} \models \alpha \iff \forall v \in t : v \models \alpha$

Fix a finite set $\text{Prop}_n = \{p_1, \dots, p_n\}$ of propositional variables.

- 11 10
- 01 00
- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; & team implication = intuitionistic implication: • $t \models \phi \rightarrow \psi$ iff for all $s \in \phi(W)$ with $t \supseteq s$, $s \models \phi$ implies $s \models \psi$
- ullet Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet} = (\wp(W) \setminus \{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee -free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML $^{\neg}$ of ML. (Ciardelli, Roelfsen 2011)
 - $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi) \text{ holds (over } M^{\circ})$ (Split axiom)

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$ of propositional variables. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^{\circ} = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; & team implication = intuitionistic implication:
 - $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s$, $s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet} = (\wp(W) \setminus \{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee -free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML $^{\neg}$ of ML. (Ciardelli, Roelfsen 2011)

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$ of propositional variables. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^\circ = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; & team implication = intuitionistic implication:
 - $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s$, $s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet} = (\wp(W) \setminus \{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee -free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML $^{\neg}$ of ML. (Ciardelli, Roelfsen 2011)
- $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ holds (over M°)

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$ of propositional variables. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^\circ = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; & team implication = intuitionistic implication:
 - $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s$, $s \models \phi$ implies $s \models \psi$
- Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet} = (\wp(W) \setminus \{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee -free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML $^{\neg}$ of ML. (Ciardelli, Roelfsen 2011)
- $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ holds (over M°)

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$ of propositional variables. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^{\circ} = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

- $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$; & team implication = intuitionistic implication:
 - $t \models \phi \rightarrow \psi$ iff for all $s \in \wp(W)$ with $t \supseteq s$, $s \models \phi$ implies $s \models \psi$
- ullet Persistency / Downward closure: If $t \models \phi$ and $t \supseteq s$, then $s \models \phi$.
- The model $M^{\bullet} = (\wp(W) \setminus \{\emptyset\}, \supseteq, V)$ is a model for the intermediate logic Medvedev logic ML, and the \vee -free fragment of tCPC (i.e., inquisitive logic) is the negative variant ML $^{\neg}$ of ML. (Ciardelli, Roelfsen 2011)
- $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ holds (over M°) (Split axiom)

Disjunctive normal form

ullet Prop (disjunctive normal form). For any formula ϕ , we have that

$$\phi \equiv \bigvee_{i \in I} \alpha_i,$$

for some standard (i.e., \vee -free) formulas α_i .

Pf. By
$$(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$$
 (Split axiom).

• Disjunction property: If $\models \phi \lor \psi$, then $\models \phi$ or $\models \psi$

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\bot, \land, \lor\lor, \rightarrow]$, i.e.,
 - :
 - $\phi \rightarrow (\phi \lor \psi), \psi \rightarrow (\phi \lor \psi)$
 - $\bullet \ (\phi \to \chi) \to \big((\psi \to \chi) \to ((\phi \lor \psi) \to \chi) \big)$
 - \bullet $\perp \to \phi$
- $\bullet (\alpha \to \phi \vee \psi) \to (\alpha \to \phi) \vee (\alpha \to \psi)$
- $\bullet \ \phi \lor (\psi \lor \chi) \to (\phi \lor \psi) \lor (\phi \lor \chi)$
- $\bullet (\phi \to \chi) \to (\phi \lor \psi \to \chi \lor \psi)$
- $(\phi \to \alpha) \to ((\psi \to \alpha) \to (\phi \lor \psi \to \alpha))$
- \bullet $\phi \lor \psi \to \psi \lor \phi$
- $(\phi \lor \psi) \lor \chi \to \phi \lor (\psi \lor \chi)$

No uniform substitution!

and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

• (Ciardelli, lemhoff, Y. 2020): tIPC = tCPC $\ominus \neg \neg \alpha \rightarrow \alpha$ is complete for team semantics over intuitionistic Kripke models, where a team is a set of possible worlds in an intuitionistic Kripke model.

(Split)

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\bot, \land, \lor, \rightarrow]$, i.e.,
 - :
 - $\bullet \ \phi \to (\phi \vee \psi), \, \psi \to (\phi \vee \psi)$
 - $\bullet \ (\phi \to \chi) \to \big((\psi \to \chi) \to ((\phi \lor \psi) \to \chi) \big)$
 - \bullet $\perp \to \phi$
- $\bullet \ \phi \lor (\psi \lor \chi) \to (\phi \lor \psi) \lor (\phi \lor \chi)$
- \bullet $\phi \to \phi \lor \psi$
- $(\phi \to \alpha) \to ((\psi \to \alpha) \to (\phi \lor \psi \to \alpha))$
- $\bullet \phi \lor \psi \to \psi \lor \phi$
- $\bullet \ (\phi \lor \psi) \lor \chi \to \phi \lor (\psi \lor \chi)$
- $\bullet \neg \neg \alpha \rightarrow \alpha$

No uniform substitution!

and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

• (Ciardelli, lemhoff, Y. 2020): tIPC = tCPC $\ominus \neg \neg \alpha \rightarrow \alpha$ is complete for team semantics over intuitionistic Kripke models, where a team is a set of possible worlds in an intuitionistic Kripke model.

(Split)

Axiomatization

The sound and complete Hilbert system tCPC consists of the axioms:

- All IPC axioms for the language $[\bot, \land, \lor\lor, \to]$
- $\bullet (\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$
- $\bullet \phi \lor (\psi \lor \chi) \to (\phi \lor \psi) \lor (\phi \lor \chi)$
- $\bullet \phi \rightarrow \phi \lor \psi$
- $\bullet \ (\phi \to \chi) \to (\phi \lor \psi \to \chi \lor \psi)$

- $\neg \neg \alpha \rightarrow \alpha$ No uniform substitution! and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

 - Given an intermediate logic $L = IPC \oplus \alpha_1 \oplus \cdots \oplus \alpha_n$ with each $\alpha_i \in [\bot, \land, \lor, \rightarrow]$, define $tL = tIPC \oplus \alpha_1 \oplus \cdots \oplus \alpha_n$.

 (Quadrellaro 2021), cf. (Punčochář 2021)

Thm. For any L that is complete w.r.t. a class F_L of frames, if L has the disjunction property or is canonical, then tL is complete w.r.t. F_L too.

(Bezhanishvili, Y. 2022)

(Split)

- tCPC = tIPC $\oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $L = IPC \oplus \Delta$, $tL = tIPC \oplus \Delta$
- Conservativity: For any set $\Delta \cup \{\alpha\}$ of standard formulas,

$$\Delta \vdash_{\mathsf{tIPC}} \alpha \iff \Delta \vdash_{\mathsf{IPC}} \alpha$$

- $\bullet \ \phi \equiv \bigvee \setminus_{i \in I} \alpha_i \quad \text{ (by Split axiom } (\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi))$
- Glivenko-type theorem (Ciardelli, lemhoff, Y. 2020):

$$\vdash_{\mathsf{tCPC}} \bigvee_{i \in I} \alpha_i \iff \vdash_{\mathsf{tIPC}} \bigvee_{i \in I} \neg \neg \alpha_i.$$

(Recall: Glivenko's theorem : $\vdash_{CPC} \alpha \iff \vdash_{IPC} \neg \neg \alpha$.)

- tCPC = tIPC $\oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $L = IPC \oplus \Delta$, $tL = tIPC \oplus \Delta$.
- Conservativity: For any set $\Delta \cup \{\alpha\}$ of standard formulas,

$$\Delta \vdash_{\mathsf{tIPC}} \alpha \iff \Delta \vdash_{\mathsf{IPC}} \alpha$$

- $\phi \equiv \bigvee_{i \in I} \alpha_i$ (by Split axiom $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$)
- Glivenko-type theorem (Ciardelli, lemhoff, Y. 2020):

$$\vdash_{\mathsf{tCPC}} \bigvee_{i \in I} \alpha_i \iff \vdash_{\mathsf{tIPC}} \bigvee_{i \in I} \neg \neg \alpha_i.$$

(Recall: Glivenko's theorem : $\vdash_{\mathsf{CPC}} \alpha \iff \vdash_{\mathsf{IPC}} \neg \neg \alpha$

- tCPC = tIPC $\oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $L = IPC \oplus \Delta$, $tL = tIPC \oplus \Delta$.
- Conservativity: For any set $\Delta \cup \{\alpha\}$ of standard formulas,

$$\Delta \vdash_{\mathsf{tIPC}} \alpha \iff \Delta \vdash_{\mathsf{IPC}} \alpha$$

- $\phi \equiv \bigvee_{i \in I} \alpha_i$ (by Split axiom $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$)
- Glivenko-type theorem (Ciardelli, lemhoff, Y. 2020):

$$\vdash_{\mathsf{tCPC}} \bigvee_{i \in I} \alpha_i \iff \vdash_{\mathsf{tIPC}} \bigvee_{i \in I} \neg \neg \alpha_i.$$

(Recall: Glivenko's theorem : $\vdash_{CPC} \alpha \iff \vdash_{IPC} \neg \neg \alpha$

- tCPC = tIPC $\oplus \neg \neg \alpha \rightarrow \alpha$.
- Given $L = IPC \oplus \Delta$, $tL = tIPC \oplus \Delta$.
- Conservativity: For any set $\Delta \cup \{\alpha\}$ of standard formulas,

$$\Delta \vdash_{\mathsf{tIPC}} \alpha \iff \Delta \vdash_{\mathsf{IPC}} \alpha$$

- $\phi \equiv \bigvee_{i \in I} \alpha_i$ (by Split axiom $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$)
- Glivenko-type theorem (Ciardelli, Iemhoff, Y. 2020):

$$\vdash_{\mathsf{tCPC}} \bigvee_{i \in I} \alpha_i \iff \vdash_{\mathsf{tIPC}} \bigvee_{i \in I} \neg \neg \alpha_i.$$

(Recall: Glivenko's theorem : $\vdash_{\mathsf{CPC}} \alpha \iff \vdash_{\mathsf{IPC}} \neg \neg \alpha$.)

Changing the team layer? (work in progress with N. Bezhanishvili)

Changing the team layer? (work in progress with N. Bezhanishvili)

Replace the Split axiom $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ by other axioms?

Changing the team layer? (work in progress with N. Bezhanishvili)

The sound and complete Hilbert system tCPC consists of the axioms:

• All IPC axioms for the language $[\bot, \land, \lor, \rightarrow]$, i.e.,

- All IPC axioms for the language $[\pm, \wedge, \ \lor, \rightarrow]$, i.e. \vdots
- $\bullet (\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ (Split)
 - $\bullet \phi \lor (\psi \lor \chi) \to (\phi \lor \psi) \lor (\phi \lor \chi)$
 - $\bullet \ \phi \to \phi \lor \psi$
 - $\bullet \ (\phi \to \chi) \to (\phi \lor \psi \to \chi \lor \psi)$

 - $\phi \lor \psi \to \psi \lor \phi$
 - $\bullet \ (\phi \lor \psi) \lor \chi \to \phi \lor (\psi \lor \chi)$

 $\bullet \neg \neg \alpha \rightarrow \alpha$

No uniform substitution!

and the Modus Ponens rule. (Ciardelli, Roelfsen 2011), (Y., Väänänen 2016)

Replace the Split axiom $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ by other axioms?

The powerset model revisited

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^{\circ} = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

• $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$

- Over M° , Split axiom always holds.
- The structure $(\wp(W), \supseteq, V)$ is an intuitionistic Kripke model with each $V(p) = t^{\uparrow}$ a principal upset w.r.t. \supseteq , where $t = \{v \in W \mid v(p) = 1\}$.
- The structure $(\wp(W), \cup, \emptyset)$ forms a bounded join-semilattice with \subseteq the induced partial orderd (i.e., $s \subseteq t$ iff $s \cup t = t$).

The powerset model revisited

Fix a finite set $\operatorname{Prop}_n = \{p_1, \dots, p_n\}$. The teams $t \subseteq 2^{\operatorname{Prop}_n}$ over $W = 2^{\operatorname{Prop}_n}$ induce a powerset model $M^{\circ} = (\wp(W), \emptyset, \cup, \supseteq, V)$, where the valuation $V : \operatorname{Prop}_n \to \wp(\wp(W))$ is defined as

$$t \in V(p)$$
 iff $t \models p$ iff $v(p) = 1$ for all $v \in t$.

• $t \models \phi$ iff $M^{\circ}, t \Vdash \phi$

- Over M° , Split axiom always holds.
- The structure $(\wp(W), \supseteq, V)$ is an intuitionistic Kripke model with each $V(p) = t^{\uparrow}$ a principal upset w.r.t. \supseteq , where $t = \{v \in W \mid v(p) = 1\}$.
- The structure $(\wp(W), \cup, \emptyset)$ forms a bounded join-semilattice with \subseteq the induced partial orderd (i.e., $s \subseteq t$ iff $s \cup t = t$).

Definition

A general team model is a tuple $M = (\wp(W), \emptyset, \cup, \succ, V)$, where

- $(\wp(W), \uplus, \emptyset)$ is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff $s \uplus t = t$);
- $V: \mathsf{Prop} \to \wp(\wp(W))$ is such that V(p) is a principle upset w.r.t. \succcurlyeq , i.e., $V(p) = t^{\uparrow} = \{s \in \wp(W) \mid t \succcurlyeq s\}$ for some $t \in \wp(W)$.

cf. (Punčochář 2017), (Dmitrieva 2021)

Definition

A general team model is a tuple $M = (A, 0, \cup, >, V)$, where

- $(A, \cup, 0)$ is a bounded join semi-lattice with \preccurlyeq the induced partial order (i.e., $s \preccurlyeq t$ iff $s \cup t = t$);
- $V : \mathsf{Prop} \to \wp(A)$ is such that V(p) is a principle upset w.r.t. \succcurlyeq , i.e., $V(p) = t^{\uparrow} = \{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.

cf. (Punčochář 2017), (Dmitrieva 2021)

Definition

A general team model is a tuple $M = (A, 0, \cup, >, V)$, where

- $(A, \cup, 0)$ is a bounded join semi-lattice with \leq the induced partial order (i.e., $s \leq t$ iff $s \cup t = t$);
- $V : \text{Prop} \to \wp(A)$ is such that V(p) is a principle upset w.r.t. \succcurlyeq , i.e., $V(p) = t^{\uparrow} = \{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.

cf. (Punčochář 2017), (Dmitrieva 2021)

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see.

Definition

A general team model is a tuple $M = (A, 0, \cup, \succ, V)$, where

- $(A, \uplus, 0)$ is a bounded join semi-lattice with \leq the induced partial order (i.e., $s \leq t$ iff $s \uplus t = t$);
- $V : \mathsf{Prop} \to \wp(A)$ is such that V(p) is a principle upset w.r.t. \succcurlyeq , i.e., $V(p) = t^{\uparrow} = \{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.

cf. (Punčochář 2017), (Dmitrieva 2021)

Def. A bounded semi-lattice $(A, \uplus, 0)$ is called atomistic if every non-zero element $t \in A$ is a finite join of atoms, i.e., $t = v_1 \uplus \cdots \uplus v_n$ for some atoms $v_1, \ldots, v_n \in A$.

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see (especially in atomistic semi-lattices).

Definition

A general team model is a tuple $M = (A, 0, \cup, >, V)$, where

- $(A, \uplus, 0)$ is a bounded join semi-lattice with \leq the induced partial order (i.e., $s \leq t$ iff $s \uplus t = t$);
- $V : \mathsf{Prop} \to \wp(A)$ is such that V(p) is a principle upset w.r.t. \succcurlyeq , i.e., $V(p) = t^{\uparrow} = \{s \in A \mid t \succcurlyeq s\}$ for some $t \in A$.

cf. (Punčochář 2017), (Dmitrieva 2021)

Def. A bounded semi-lattice $(A, \uplus, 0)$ is called atomistic if every non-zero element $t \in A$ is a finite join of atoms, i.e., $t = v_1 \uplus \cdots \uplus v_n$ for some atoms $v_1, \ldots, v_n \in A$.

Note: We shall (still) call an element $t \in A$ a team, as t can be viewed as the team of the atoms it can see (especially in atomistic semi-lattices).

Functional dependence

Standard team semantics: Given the powerset model $M = (\wp(2^{\mathsf{Prop}_n}), \emptyset, \cup, \supseteq, V)$, and a team $t \subseteq 2^{\mathsf{Prop}_n}$,

• $M, t \models = (p, q)$ iff for all $\{u\}, \{v\} \subseteq t$: $u \models p \Leftrightarrow v \models p$ implies $u \models q \Leftrightarrow v \models q$

Amstrong's axioms for functional dependence still hold

Functional dependence

Generalized team semantics: Given a general team model $M = (A, 0, \cup, \succ, V)$ and a team $t \in A$,

• $M, t \models = (p, q)$ iff for all atoms $u, v \leq t$: $u \models p \Leftrightarrow v \models p \text{ implies } u \models q \Leftrightarrow v \models q$

Amstrong's axioms for functional dependence still hold.

Functional dependence

Generalized team semantics: Given a general team model $M = (A, 0, \cup, \succ, V)$ and a team $t \in A$,

• $M, t \models = (p, q)$ iff for all atoms $u, v \leq t$: $u \models p \Leftrightarrow v \models p$ implies $u \models q \Leftrightarrow v \models q$

Amstrong's axioms for functional dependence still hold.

Standard team semantics:

Given the powerset model $M=(\wp(W),\emptyset,\cup,\supseteq,V)$ with $W=2^{\mathsf{Prop}},$ and a team $t\subset W.$

- $M, t \models \bot$ iff $t = \emptyset$
- $M, t \models \phi \lor \psi$ iff there are $s, r \in \wp(W)$ such that $t \subseteq s \cup r, M, s \models \phi$ and $M, r \models \psi$
- $\bullet \ \textit{M}, t \models \phi \rightarrow \psi \ \ \text{iff} \ \ \text{for all } \textit{s} \in \wp(\textit{W}) \text{ with } t \supseteq \textit{s}, \textit{M}, \textit{s} \models \phi \text{ implies } \textit{M}, \textit{s} \models \psi$

Given a general team model $M = (A, 0, \cup, \succ, V)$, and a team $t \in A$.

- $M, t \models \bot$ iff $t = \emptyset$
- $M, t \models \phi \lor \psi$ iff there are $s, r \in \wp(W)$ such that $t \subseteq s \cup r, M, s \models \phi$ and $M, r \models \psi$
- $\bullet \ \textit{M}, t \models \phi \rightarrow \psi \ \ \text{iff} \ \ \text{for all } \textit{s} \in \wp(\textit{W}) \text{ with } t \supseteq \textit{s}, \textit{M}, \textit{s} \models \phi \text{ implies } \textit{M}, \textit{s} \models \psi$

Given a general team model $M = (A, 0, \cup, \succ, V)$, and a team $t \in A$.

- $M, t \models \bot$ iff t = 0
- $M, t \models \phi \lor \psi$ iff there are $s, r \in A$ such that $t \preccurlyeq s \uplus r, M, s \models \phi$ and $M, r \models \psi$
- $\textit{M}, t \models \phi \rightarrow \psi$ iff for all $\textit{s} \in \textit{A}$ with $t \succcurlyeq \textit{s}$, $\textit{M}, \textit{s} \models \phi$ implies $\textit{M}, \textit{s} \models \psi$

Given a general team model $M = (A, 0, \cup, \succ, V)$, and a team $t \in A$.

- $M, t \models \bot$ iff t = 0
- $M, t \models \phi \lor \psi$ iff there are $s, r \in A$ such that $t \preccurlyeq s \uplus r, M, s \models \phi$ and $M, r \models \psi$
- $\textit{M}, \textit{t} \models \phi \rightarrow \psi$ iff for all $\textit{s} \in \textit{A}$ with $\textit{t} \succcurlyeq \textit{s}$, $\textit{M}, \textit{s} \models \phi$ implies $\textit{M}, \textit{s} \models \psi$

Persistency / Downward closure: If $M, t \models \phi$ and $t \succcurlyeq s$, then $M, s \models \phi$. Empty team property: $M, 0 \models \phi$ for all ϕ .

The logic of the generalized semantics

Under the generalized semantics, all tCPC axioms hold except for

- **1** $\neg \neg \alpha \rightarrow \alpha$ (Double negation elimination)
- $(\alpha \to \phi \lor \psi) \to (\alpha \to \phi) \lor (\alpha \to \psi)$ (Split)

where $\alpha \in [\bot, \land, \lor, \rightarrow]$ is a standard formula

The logic of the generalized semantics

Under the generalized semantics, all tCPC axioms hold except for

- **1** $\neg \neg \alpha \rightarrow \alpha$ (Double negation elimination)

where $\alpha \in [\bot, \land, \lor, \rightarrow]$ is a standard formula

Standard formulas are not any more closed under joins, where: Join Closure Property: $M, t \models \alpha$ and $M, s \models \alpha \Longrightarrow M, t \uplus s \models \alpha$ (If $\uplus = \cup$, join closure is the union closure property)

The logic of the generalized semantics, and distributivity

Under the generalized semantics, all tCPC axioms hold except for

where $\alpha \in [\bot, \land, \lor, \rightarrow]$ is a standard formula

Standard formulas are not any more closed under joins, where: Join Closure Property: $M, t \models \alpha$ and $M, s \models \alpha \Longrightarrow M, t \uplus s \models \alpha$ (If $\uplus = \cup$, join closure is the union closure property)

Fact: Split axiom holds over distributive frames F, i.e., semi-lattices $F = (A, 0, \cup, \geq)$ s.t.

$$t \preccurlyeq r \uplus s \Longrightarrow \exists r', s' \in A : r' \preccurlyeq r, s' \preccurlyeq s, \text{ and } t = r' \uplus s'.$$

Thm. For finite frames F, we have that F satisfies join closure over standard formulas and validates \mathfrak{G} and \mathfrak{G} iff F is distributive.

Flatness of standard formulas

Over standard team semantics:

Def. A formula ϕ is said to be flat, if

$$t \models \phi \iff \text{for all } \{v\} \subseteq t : \{v\} \models \phi$$

Prop. Standard formulas $\alpha \in [\bot, \land, \lor, \rightarrow]$ are flat.

Flatness of standard formulas

Over generalized team semantics:

Def. A formula ϕ is said to be flat over M, if

$$M, t \models \phi \iff \text{for all atoms } v \preccurlyeq t : M, v \models \phi$$

Prop. Standard formulas $\alpha \in [\bot, \land, \lor, \rightarrow]$ are flat.

Flatness of standard formulas

Over generalized team semantics:

Def. A formula ϕ is said to be flat over M, if

$$M, t \models \phi \iff \text{for all atoms } v \preccurlyeq t : M, v \models \phi$$

Prop. Standard formulas $\alpha \in [\pm, \wedge, \vee, \rightarrow]$ are flat.

Thm. Let F be a finite frame. Then,

F is atomistic iff all standard formulas α are flat over F iff $F \models \neg \neg \alpha \rightarrow \alpha$ for all standard formulas α .