Łukasiewicz logic properly displayed

Giuseppe Greco Vrije Universiteit

Joint work (in progress) with:

Sabine Frittella, Daniil Kozhemiachenko & Apostolos Tzimoulis

21 June 2022

- TACL 2022, Coimbra -

General plan

Mathematical fuzzy logics: reasoning about truth degrees.

Hilbert systems: tool for presenting logics corresponding to algebras.

Structural proof theory studies structure and properties of proofs.

Sequent calculi: tool for organizing proofs as to preserve *analitycity*. Recent line of research: *algorithmic generation of rules*.

Problem: The distinctive axiom of <u>Lukasiewicz logic</u> is NOT analytic-inductive (not even canonical).

Desiderata (work in progress): refinement of the general theory where

- √ logical rules reflect basic order-theoretic properties
 - w division of labour
- √ all rules are automatically generated via the algorithm ALBA

 → uniformity
- × canonical cut elimination ???

General methodology

Multi-type (algebraic) proof theory

canonical extensions algebraunified correspondence theory duality

proper display calculi structural proof theory

Proof calculi with a uniform metatheory

- (supporting an inferential theory of meaning)
- canonical cut elimination and subformula property
- soundness, completeness, conservativity

Range

- LEs and their analytic-inductive axiomatic extensions
- if not analytic-inductive, provide a multi-type presentation

Examples: bi-lattices, semi-De Morgan logic, (monotone) modal logics, dynamic epistemic logic, linear logic, non classical (first order) logics...

Łukasiewicz logic ???

Łukasiewicz connectives

(standard) evaluations are $v : Form \longrightarrow [0, 1]$.

$$(A \to B) \to B \equiv A \lor B = \max\{a, b\}$$

$$A \odot (A \to B) \equiv A \ominus (A \ominus B) \equiv A \land B = \min\{a, b\}$$

$$\neg (A \to \neg B) \equiv \neg (\neg A \oplus \neg B) \equiv A \ominus B = \max\{0, a + b - 1\}$$

$$\neg A \oplus B \equiv A \to B = \min\{1, 1 - a + b\}$$

$$\neg (A \to B) \equiv A \ominus B = \max\{0, a - b\}$$

$$A \to B \equiv A \ominus B = \max\{0, a - b\}$$

$$A \to B \equiv A \ominus B = \max\{0, a - b\}$$

$$A \to B \equiv A \ominus B = \max\{0, a - b\}$$

Algebraic semantics and logic

An MV-algebra $\langle X, \oplus, \neg, 0 \rangle$ is a set X s.t.:

$$\mathsf{MV1} \ \ x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

$$MV2 x \oplus y = y \oplus x$$

MV3
$$x \oplus 0 = x$$

$$MV4 \neg \neg x = x$$

MV5
$$x \oplus \neg 0 = \neg 0$$

MV6
$$\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$$

Examples: (i) [0, 1] with \oplus and \neg as defined above. Subalgebras of [0, 1]: (ii) The fragment (X, \vee, \neg, \bot) of a Boolean algebra, (iii) The rational numbers in [0, 1], and (iv) n-el. set $\{0, 1/(n-1), \ldots, (n-2)/(n-1), 1\}$.

A Hilbert-style axiomatization in the fragment $\{\rightarrow, \mathbf{0}\}$ is the following:

$$\&$$
2 (A → B) → ((B → C) → (A → C))

Ł3
$$((A \rightarrow B) \rightarrow B)$$
 → $((B \rightarrow A) \rightarrow A)$ recall $(B \rightarrow A) \rightarrow A \equiv B \lor A$

recall
$$(B \rightarrow A) \rightarrow A \equiv B \lor A$$

$$44 ((A \rightarrow \mathbf{0}) \rightarrow (B \rightarrow \mathbf{0})) \rightarrow (B \rightarrow A)$$

Display sequent calculi

- Natural generalization of Gentzen's sequent calculi;
- ▶ sequents $X \Rightarrow Y$, where X and Y are structures:
 - formulas are atomic structures
 - built-up: **structural connectives** (generalizing comma in sequents $\varphi_1, \ldots, \varphi_n \Rightarrow \psi_1, \ldots, \psi_m$)
 - generation **trees** (generalizing sets, multisets, sequences)
- Display property:

$$\frac{\begin{array}{c} Y \Rightarrow X > Z \\ \hline X; Y \Rightarrow Z \\ \hline Y; X \Rightarrow Z \\ \hline X \Rightarrow Y > Z \end{array}$$

display rules semantically justified by adjunction / residuation / Galois connection

Canonical proof of cut elimination (via metatheorem)

Multi-type proper display calculi

Definition

A **proper display calculus** verifies each of the following conditions:

- 1. structures can disappear, formulas are forever;
- 2. **tree-traceable** structure-occurrences, via suitably defined *congruence* relation (same shape, position, non-proliferation)
- 3. principal = displayed
- rules are closed under uniform substitution of congruent parameters within each type (Properness!);
- 5. reduction strategy exists when cut formulas are principal.
- 6. type-uniformity of derivable sequents;
- 7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elimination and subformula property hold for any **proper display** calculus.

Which logics are properly displayable?

Complete characterization:

- the logics of any basic normal (D)LE;
- axiomatic extensions of these with analytic inductive inequalities:
 unified correspondence

Analytic inductive \Rightarrow Inductive \Rightarrow Canonical

Fact: cut-elim., subfm. prop., sound-&-completeness, conservativity **guaranteed** by metatheoem + ALBA-technology.

Examples

The definition of **analytic inductive inequalities** is uniform in each signature.

Analytic inductive axioms

$$(A \to B) \lor (B \to A)$$
$$(\diamondsuit A \to \Box B) \to \Box (A \to B)$$

Sahlqvist but non-analytic axioms

$$A \to \Diamond \Box A$$
$$(\Box A \to \Diamond B) \to (A \to B)$$

Łukasiewicz operators: basic properties

normal binary diamond

normal binary box

$$A \odot \mathbf{0} = \mathbf{0} = \mathbf{0} \odot A$$

$$(A \lor B) \odot C = (A \odot C) \lor (B \odot C)$$

$$C \odot (A \lor B) = (C \odot A) \lor (C \odot B)$$

$$A \ominus \mathbf{1} = \mathbf{0} = \mathbf{0} \ominus A$$

$$(A \lor B) \ominus C = (A \ominus C) \lor (B \ominus C)$$

$$C \ominus (A \land B) = (C \ominus A) \lor (C \ominus B)$$

$$A \ominus \mathbf{1} = \mathbf{0} = \mathbf{0} \ominus A$$

$$(A \lor B) \ominus C = (A \ominus C) \lor (B \ominus C)$$

$$C \ominus (A \land B) = (C \ominus A) \lor (C \ominus B)$$

$$A \to \mathbf{1} = \mathbf{1} = \mathbf{0} \to A$$

$$(A \lor B) \to C = (A \to C) \land (B \to C)$$

$$(A \lor B) \to C = (A \to C) \land (B \to C)$$

$$C \to (A \land B) = (C \to A) \land (C \to B)$$

residuation

$$A \odot B \le C$$
 iff $B \le A \rightarrow C$
 $C < B \oplus A$ iff $C \ominus A < B$

The basic language of D.Ł

Our choice:

- a fully residuated structural language
- non-positional reading of structural symbols

formulas
$$A::=p$$

$$A \land A \mid A \lor A$$

$$1 \mid 0$$

$$A \odot A \mid A \oplus A \mid A \to A \mid A \ominus A \mid \neg A$$
structures $X::=A$

$$X \hat{\land} X \mid X \check{\lor} X \mid X \check{\supset} X \mid X \hat{\subset} X$$

$$1 \mid \check{0}$$

$$X \hat{\odot} X \mid X \check{\oplus} X \mid X \check{\rightarrow} X \mid X \hat{\ominus} X \mid \neg X$$

		additive				multiplicative						
	structural connectives	Â	V	ž	ĉ	î	Ŏ	ô	Ď	$\check{ o}$	ê	۲̈
	logical connectives	٨	٧	(⊃)	(⊂)	1	0	0	0	\rightarrow	Ф	_

\Rightarrow is a preorder

Identity and Cut rules (preorder)

$$\operatorname{Id} \frac{}{p \Rightarrow p} \quad \frac{X \Rightarrow A \quad A \Rightarrow Y}{X \Rightarrow Y} \operatorname{Cut}$$

Display postulates

adjunction / residuation / Galois connection

$$\frac{X \odot Y \Rightarrow Z}{Y \Rightarrow X \check{\rightarrow} Z} \qquad \frac{Z \Rightarrow Y \check{\oplus} X}{Z \odot X \Rightarrow Y}$$

$$\frac{\tilde{\neg} X \Rightarrow Y}{\tilde{\neg} Y \Rightarrow X} \qquad \frac{X \Rightarrow \tilde{\neg} Y}{Y \Rightarrow \tilde{\neg} X}$$

Logical rules

arity and tonicity

$$\frac{A \circ B \Rightarrow X}{A \circ B \Rightarrow X} \qquad \frac{X \Rightarrow A}{X \circ Y \Rightarrow A \circ B}$$

$$\frac{A \Rightarrow X}{A \oplus B \Rightarrow X \otimes Y} \qquad \frac{X \Rightarrow A \otimes B}{X \circ Y \Rightarrow A \odot B}$$

$$\frac{X \Rightarrow A}{A \oplus B \Rightarrow X \otimes Y} \qquad \frac{X \Rightarrow A \otimes B}{X \Rightarrow A \oplus B}$$

$$\frac{X \Rightarrow A}{A \oplus B \Rightarrow X \otimes Y} \qquad \frac{X \Rightarrow A \otimes B}{X \Rightarrow A \oplus B}$$

$$\frac{X \Rightarrow A}{A \oplus B} \Rightarrow X \Rightarrow Y \qquad X \Rightarrow A \Rightarrow B$$

$$\frac{B \Rightarrow Y}{A \Rightarrow B \Rightarrow X} \qquad \frac{X \Rightarrow A \Rightarrow B}{X \Rightarrow A \Rightarrow B}$$

$$\frac{B \Rightarrow Y}{Y \circ X \Rightarrow B \ominus A} \qquad \frac{B \circ A \Rightarrow X}{B \ominus A \Rightarrow X}$$

$$\frac{\tilde{A} \Rightarrow X}{\tilde{A} \Rightarrow X} \qquad \frac{X \Rightarrow \tilde{A} \Rightarrow X}{X \Rightarrow \tilde{A} \Rightarrow A}$$

$$\frac{\tilde{A} \Rightarrow X}{\tilde{A} \Rightarrow X} \qquad \frac{\tilde{A} \Rightarrow \tilde{A} \Rightarrow \tilde{A}}{\tilde{A} \Rightarrow \tilde{A} \Rightarrow A}$$

$$\frac{\tilde{A} \Rightarrow X}{\tilde{A} \Rightarrow B} \Rightarrow Y \qquad \tilde{A} \Rightarrow \tilde{A} \Rightarrow$$

Structural rules

logic specific

Uniformity and modularity

Łukasiewicz can be presented as the (exponential-free fragment of) affine linear logic expanded with \ominus + lattice distributivity + prelinearity + \pm 3.

This presentation charts Łukasiewicz logic as sub-structural logic in a modular way, where all axioms are analytic-inductive but £3.

Prelinearity is derivable using the ALBA-generated structural rule *pre*:

$$\frac{A \Rightarrow A \qquad B \Rightarrow B}{\hat{1} \Rightarrow (A \stackrel{\checkmark}{\rightarrow} B) \stackrel{\lor}{\lor} (A \stackrel{\checkmark}{\rightarrow} B)} \text{ pre}$$

$$\frac{1 \Rightarrow (A \stackrel{\checkmark}{\rightarrow} B) \stackrel{\lor}{\lor} (A \stackrel{\checkmark}{\rightarrow} B)}{1 \Rightarrow (A \stackrel{\checkmark}{\rightarrow} B) \Rightarrow A \stackrel{\checkmark}{\rightarrow} B}$$

$$\frac{1 \stackrel{?}{\ominus} (A \stackrel{\checkmark}{\rightarrow} B) \Rightarrow A \rightarrow B}{1 \Rightarrow (A \rightarrow B) \stackrel{\lor}{\lor} (A \stackrel{\checkmark}{\rightarrow} B)}$$

$$\frac{1 \Rightarrow (A \rightarrow B) \stackrel{\lor}{\lor} (A \rightarrow B)}{1 \Rightarrow (A \rightarrow B) \lor (A \rightarrow B)}$$

Some variations on negation

$$\frac{\hat{\neg}_f A \Rightarrow X}{\neg_f A \Rightarrow X} \qquad \frac{A \Rightarrow X}{\hat{\neg}_f X \Rightarrow \neg_f A} \qquad \frac{X \Rightarrow A}{\neg_g A \Rightarrow \check{\neg}_g X} \qquad \frac{X \Rightarrow \check{\neg}_g A}{X \Rightarrow \neg_g A}$$
pseudo cont
$$\frac{A \Rightarrow A}{\hat{\neg}_f A \Rightarrow \check{\neg}_g A}$$

$$\frac{A \Rightarrow A}{\neg_f A \Rightarrow \check{\neg}_g A}$$

$$\frac{A \Rightarrow A}{\neg_f A \Rightarrow \check{\neg}_g A}$$
pseudo double neg
$$\frac{A \Rightarrow A}{\hat{\neg}_f \check{\neg}_g \neg_g A \Rightarrow \neg_f A}$$

$$\frac{A \Rightarrow A}{\neg_g A \Rightarrow \check{\neg}_f A}$$

$$\frac{A \Rightarrow A}{\hat{\neg}_A A \Rightarrow \check{\neg}_A A}$$

Łukasiewicz operators: additional properties

regular binary diamond

regular binary box

$$(A \lor B) \oplus C = (A \oplus C) \lor (B \oplus C) C \oplus (A \lor B) = (C \oplus A) \lor (C \oplus B)$$

$$(A \land B) \odot C = (A \odot C) \land (B \odot C) C \odot (A \land B) = (C \odot A) \land (C \odot B)$$

$$(A \land B) \rightarrow C = (A \rightarrow C) \lor (B \rightarrow C) C \rightarrow (A \lor B) = (C \rightarrow A) \lor (C \rightarrow B)$$

$$(A \land B) \ominus C = (A \ominus C) \land (B \ominus C) C \ominus (A \lor B) = (C \ominus A) \land (C \ominus B)$$

The full language and a first attempt to define D.Ł

We expand the language of D.Ł with the following structural symbols:

$$\check{o}$$
, $\hat{\oplus}$, \check{o} , $\hat{\rightarrow}$.

We extend D.Ł with the following rules:

Display Postulates (notice that ⊕ can be introduced only via the rule Ł3: see next slide)

$$\frac{X \oplus Y \Rightarrow Z}{X \Rightarrow Z \widecheck{\ominus} Y} \quad \frac{Z \Rightarrow Y \widecheck{\odot} X}{Y \widehat{\rightarrow} Z \Rightarrow X}$$

Logical Rules ??? (the following naive proposal is problematic)

$$\begin{array}{ccc}
 A \oplus B \Rightarrow X \\
 \overline{A} \oplus B \Rightarrow X
\end{array}
\qquad
\begin{array}{c}
 X \Rightarrow A \otimes B \\
 X \Rightarrow A \otimes B
\end{array}$$

$$\begin{array}{c}
 A \rightarrow B \Rightarrow X \\
 \overline{A} \rightarrow B \Rightarrow X
\end{array}
\qquad
\begin{array}{c}
 X \Rightarrow B \otimes A \\
 \overline{X} \Rightarrow B \otimes A
\end{array}$$

Ł3 is sound and structures are displayable

We use ALBA (specialized to regular operators) to generate the rule £3:

Modulo additional structural rules, we have $(X_1 \stackrel{\checkmark}{\to} Y_2) \stackrel{?}{\to} X_2 = (X_1 \stackrel{?}{\ominus} Y_2) \stackrel{?}{\oplus} X_2$.

Assume $x_1 \le y_1$, $x_2 \le y_2$ and $x_2 \le y_3$. Then, the following hold:

- 1. $(x_1 \ominus y_2) \oplus x_2 \leq y_3 \vee y_1$,
- $2. x_2 \leq (y_3 \vee y_1) \ominus (x_1 \ominus y_2),$
- 3. $(x_1 \ominus y_2) \leq (y_3 \vee y_1) \ominus x_2$.

Relativized display property: Every structure occurring in a D.Ł-derivable sequent is displayable.

Proof

If $(x_1 \ominus y_2) = 0$ then the first two inequalities are equivalent to $x_2 \le y_1 \lor y_3$, which follows from $x_2 \le y_3$ and the third is trivially true. So, let's assume that $(x_1 \ominus y_2) > 0$.

- 1. From $(x_1 \ominus y_2) > 0$ and $x_2 \le y_2$ it follows $(x_1 \ominus y_2) \oplus x_2 \le x_1$ holds. Since $x_1 \le y_1$ it follows that $x_1 \le y_1 \lor y_3$ which implies that $(x_1 \ominus y_2) \oplus x_2 \le y_3 \lor y_1$ holds.
- 2. We work in cases.

$$(x_1 \ominus y_2) \oplus x_2 < 1$$
: Then $(x_1 \ominus y_2) \oplus x_2 = (x_1 \ominus y_2) + x_2$. Therefore, from (1), $(x_1 \ominus y_2) + x_2 \le y_3 \lor y_1$. Hence

$$x_2 \leq (y_3 \vee y_1) - (x_1 \ominus y_2) \leq (y_3 \vee y_1) \ominus (x_1 \ominus y_2).$$

$$(x_1 \ominus y_2) \oplus x_2 = 1$$
: Since $(x_1 \ominus y_2) \oplus x_2 \le x_1$ we have that $x_1 = 1 = y_1$. Then $(y_3 \lor y_1) \ominus (x_1 \ominus y_2) = 1 \ominus (1 \ominus y_2) = y_2$. Hence

$$x_2 \leq y_2 = (y_3 \vee y_1) \ominus (x_1 \ominus y_2).$$

3. Finally, $x_1 \le y_3 \lor y_1$ and $x_2 \le y_2$ imply by the tonicity of \ominus that $(x_1 \ominus y_2) \le (y_3 \lor y_1) \ominus x_2$.

Deriving Ł3

$$\begin{array}{c|c}
A \Rightarrow A & B \Rightarrow B & B \Rightarrow B \\
\hline
(A \circ B) \circ B \Rightarrow A \vee B \\
\hline
(A \circ B) \circ B \Rightarrow A \vee B \\
\hline
A \circ B \Rightarrow (A \vee B) \circ B \\
\hline
A \circ B \Rightarrow (A \vee B) \circ B \\
\hline
(A \circ B) \circ B \Rightarrow A \vee B
\end{array}$$

Conclusions

- √ Division of labour between logical and structural rules, modularity, and uniformity.
- Generalize the Belnap's conditions defining (proper) display calculi as to capture regular operators and show canonical cut-elimination.
- Multi-type presentation of Łukasiewicz logic?

References

- A. Ciabattoni, R. Ramanayake, Power and limits of structural display rules, 2016.
- G. Greco, M. Ma, A. Palmigiano, A. Tzimoulis, Z. Zhao, *Unified correspondence as a proof-theoretic tool*, 2016.
- S. Frittella, G. Greco, A. Kurz, A. Palmigiano, V. Sikimić, *Multi-type sequent calculi*, 2014.
- W. Fussner, M. Gehrke, S. van Gool, V. Marra, Priestley duality of MV-algebras and beyond, 2021.
- G. Metcalfe, N. Olivetti, D. Gabbay, Proof theory for fuzzy logics, 2009.
- S. Balco, G. Greco, A. Kurz, A. Moshier, A. Palmigiano, A. Tzimoulis,
 First order logic properly displayed, arxiv.