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General plan
Mathematical fuzzy logics: reasoning about truth degrees.
Hilbert systems: tool for presenting logics corresponding to algebras.

Structural proof theory studies structure and properties of proofs.

Sequent calculi: tool for organizing proofs as to preserve analitycity.
Recent line of research: algorithmic generation of rules.

Problem: The distinctive axiom of tukasiewicz logic is NOT analytic-
inductive (not even canonical).

Desiderata (work in progress): refinement of the general theory where

logical rules reflect basic order-theoretic properties
~v» division of labour

the specific features of the logic are captured by structural rules
~» modularity

all rules are automatically generated via the algorithm ALBA
~»  uniformity

X canonical cut elimination ???
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General methodology

Multi-type (algebraic) proof theory

» canonical extensions algebra
» unified correspondence theory duality
» proper display calculi structural proof theory

Proof calculi with a uniform metatheory
> (supporting an inferential theory of meaning)
» canonical cut elimination and subformula property
> soundness, completeness, conservativity

Range
> LEs and their analytic-inductive axiomatic extensions
» if not analytic-inductive, provide a multi-type presentation

Examples: bi-lattices, semi-De Morgan logic, (monotone) modal logics, dynamic
epistemic logic, linear logic, non classical (first order) logics. ..

> tukasiewicz logic ??7?
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t ukasiewicz connectives

(standard) evaluations are v : Form — [0, 1].

(A-B)-»B = AvB = max{a,b}
Aoc(A—-B)=Ao(AeB) = AAB = min{a,b}
-A->B = A®B = min{1,a+ b}
-(A—--B)==(-A®-B) = AoB = max{0,a+b-1}
-AeB = A—->B = min{l,1-a+ b}
-(A—-B) = AeB = max{0,a-b}
A—-0 -A = 1-a

1 -0 = 1
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Algebraic semantics and logic
An MV-algebra (X, ®, —,0) is a set X s.t.:
MVI x@(yoz)=(xey)®z
MV2 xey=y&x
MV3 x&0 = x
MV4 —=-x = x
MV5 x@® -0 = -0
MV6 —(-x@y)®y=-(-yex)&x

Examples: (i) [0, 1] with @ and — as defined above. Subalgebras of [0, 1]:
(ii) The fragment (X, v, -, L) of a Boolean algebra, (iii) The rational
numbers in [0, 1], and (iv) n-el. set {0,1/(n—1),...,(n=2)/(n—1),1}.
A Hilbert-style axiomatization in the fragment {—, 0} is the following:

1 A-> (B> A)

2 (A-B)—>((B—>C)—> (A—-0C))

k3 ((A-B)—»B)—>((B—>A)—>A) recall(B—-A)—->A=BVA

k4 (A->0)—>(B—-0)—>(B-A)
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Display sequent calculi

\4

Natural generalization of Gentzen’s sequent calculi;
sequents X = Y, where X and Y are structures:
- formulas are atomic structures
- built-up: structural connectives (generalizing comma in sequents

D1y sPn :>¢/1,...,l//m)
- generation trees (generalizing sets, multisets, sequences)

v

v

Display property:
Y=>X>2Z
X, Y=>Z
Y X=>Z
X=>Y>Z
display rules semantically justified by adjunction / residuation /
Galois connection

\{

Canonical proof of cut elimination (via metatheorem)
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Multi-type proper display calculi

Definition
A proper display calculus verifies each of the following conditions:
1. structures can disappear, formulas are forever;

2. tree-traceable structure-occurrences, via suitably defined
congruence relation (same shape, position, non-proliferation)

3. principal = displayed

4. rules are closed under uniform substitution of congruent
parameters within each type (Properness!);

5. reduction strategy exists when cut formulas are principal.
6. type-uniformity of derivable sequents;
7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elimination and subformula property hold for any proper display
calculus.
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Which logics are properly displayable?
Complete characterization:
1. the logics of any basic normal (D)LE;

2. axiomatic extensions of these with analytic inductive inequalities:
~» unified correspondence

+p -p +p +p

Analytic inductive = Inductive =  Canonical

Fact: cut-elim., subfm. prop., sound-&-completeness, conservativity
guaranteed by metatheoem + ALBA-technology.
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Examples

The definition of analytic inductive inequalities is uniform in each
signature.

> Analytic inductive axioms
(A->B)v(B—-A)
(¢A - oB) —» o(A — B)

» Sahlqvist but non-analytic axioms
A - OOA
(oA - ¢B) - (A - B)
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tukasiewicz operators: basic properties

normal binary diamond normal binary box

A0 =0 =00A Ael =1 =16A
(AvB)oC=(AoC)v(BoC)| (AAB)aC= (A C)A(BaC)
Co(AvB)=(CoA)v(CeB)| Cea(AAB)=(CeA)A(CaB)

A1 =0 =00A A-1=1=0-A
(AvB)eC=(AeC)v(BeC) | (AvB)-C=(A->C)A(B—- C)
Co(AAB)=(CeA)v(CeB) | C—>(AAB)=(C—>A)A(C > B)

residuation

AoB<C iff B<A->C
C<BoA iff CeA<B
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The basic language of D.t

Our choice:
» a fully residuated structural language
> non-positional reading of structural symbols

formulas A = p
AANAJAVA
110
ACA|AdA|A—-A|ABA|-A
structures X = A
XAX|IXVX|IXS3IX|XEX
110
XOX|XEX|XSX|XEX|=X

additive multiplicative
structural connectives A \Y o) & ‘,l\ 6 o} & > 8
logical connectives | A | V | D) | () [1|0]| o |® | > | ©
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= Is a preorder

> |dentity and Cut rules (preorder)

” X=A A=>YCut
p=p X=Y
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Display postulates

adjunction / residuation / Galois connection

XoY=Z Z=YdX
Y=>X52Z Z6X =Y
“X=Y X=35Y
AY =X Y = aX
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Logical rules

arity and tonicity

AOB= X X=A Y=B
AoB=X XO0Y=A0B
A= X B=Y X=>AdB
AdB=XdY X=>AoB
X=>A B=oY X=>A>B
A—-B= XY X=>A->B
B=Y X=A BAA = X
YEX=>BoA BeA=X
SA= X X = 5A
-A=X X =-A
X=0 i=>X
0=0 X=0 1=>X i=1
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Structural rules

logic specific

X=Y X=Y w eX(?)Y=:>Z Z=>XGV9Ye
X6Z=>Y X=>Y&Z YOX=Z Z=YEX

(XOY)6Z=>W W= (XeY)dZ
a a
XO(Y6Z) =W W= Xd(Yd2)

X=>Y X=>Y X=>Y

] ]

2EX = Y Y = =X X = 22y

Z=XdY XO6Y=2Z

= =

X6Z=Y Y= aXdZ

X=2Z W=Y
12 (X3Y)V (W3 2)

pre
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Uniformity and modularity

tukasiewicz can be presented as the (exponential-free fragment of) affine
linear logic expanded with © + lattice distributivity + prelinearity + £3.

This presentation charts tukasiewicz logic as sub-structural logic in a
modular way, where all axioms are analytic-inductive but 3.

Prelinearity is derivable using the ALBA-generated structural rule pre:

A=A B=B
1= (A3B)V(A3B)
1= (ASB)V (A>SB)

16(A3B)=>A%B
16(A3B)=>A—>B

pre
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Some variations on negation

A = X A= X

A=A

pseudo cont ———————
_|fA = —|gA

A = 1|gA

1A = —gA pseudo double neg

A=A
SA = SA
-A = SA
-A=>-A

L X=A L X2 A
—gA = 5gX X = —4A
A=A
A = A
A = H5gA

i|fx|g_|gA = —|fA

—oA = A

A=A
SA = SA
-A = 5A
-A = -A
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tukasiewicz operators: additional properties

regular binary diamond regular binary box

(AvB)eC=(AaC)Vv(BaC) (AAB)oC=(AoC)A(BoC)
Co(AvB)=(CeoA)Vv(CaB) Co(AAB)=(CoA)A(CoB)

(ANB)-C=(A->C)v(B—>C) | (AAB)eC=(AeC)Ar(Bo ()
C—»>(AvB)=(C—>A)v(C—->B)| Co(AvB)=(CeA)r(CeB)
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The full language and a first attempt to define D.L.
We expand the language of D.t. with the following structural symbols:

~

o, &, 6, 5.
We extend D.t with the following rules:

> Display Postulates
(notice that & can be introduced only via the rule £.3: see next slide)

X8Y=2Z Z=Y0OX
X=2Z38Y Y5HZ=X

> Logical Rules ???
(the following naive proposal is problematic)

AdB= X X=>A0B
AeB= X X=>A0B

AS5B=X X = BS&A
A—-B=X X=>BoA
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L3 is sound and structures are displayable

We use ALBA (specialized to regular operators) to generate the rule £3:

X1$Y1 X2$Y2 X2=>Y3

£3 (X1l>Y2)L>X2$ Y; \7Y3

X1=>Y1 X2:>Y2 X2=>Y3

3 p X v
(X1 GYQ)@XZ =YiVY;

Modulo additional structural rules, we have
(X153 Y2) D Xo = (X1 6Y2) Xo.

Assume X1 < ¥y, X2 < ¥» and x» < y3. Then, the following hold:
1. (x1ey2)®Xx2 < y3Vyy,

2. Xo < (y3 Vy1)9(X1 Gyz),
3. (x16y2) < (Y3Vy1)EXa.

Relativized display property: Every structure occurring in a D.t-derivable
sequent is displayable.
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Proof
If (x1 © y2) = 0 then the first two inequalities are equivalent to
X2 < ¥y V ys, which follows from x» < y3 and the third is trivially true.
So, let's assume that (x; © y») > 0.

1. From (xy © ¥2) > 0 and x» < y» it follows (x; © y») @ x» < x; holds.
Since x; < y; it follows that x; < y; Vv y3 which implies that
(x1©y2) ® X2 < y3 V yy holds.

2. We work in cases.
(x10y2)®x2 < 1: Then (x1 © y2) ® X2 = (X1 © y2) + Xo. Therefore,
from (1), (X1 © ¥2) + X2 < y3 V y1. Hence
X2 <(Y3Vyr)—(x1©y2) < (y3Vy1)©(x1 ©y2).
(X1 ©y2) ® xo = 1: Since (X1 © y2) ® X2 < X1 we have that
x1=1=y;.Then(ya3Vyi1)e(x10y2) =16 (16y2) = yo. Hence
X2 < y2 = (¥3Vy1)©(x1 ©y2).

3. Finally, x; < y3 V y1 and x2 < y» imply by the tonicity of © that
(X1 eyg) < (y3 \Y y1) O Xo.
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Deriving £3

L3A=>A B=B B=B

(AGB)&B=AVB
(AGB)&B=AVB

A6B= (AVB)&

B
AeB= (AVB)&B

(AeB)&B=AVB
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Conclusions

Division of labour between logical and structural rules, modularity,
and uniformity.

> Generalize the Belnap’s conditions defining (proper) display calculi
as to capture regular operators and show canonical cut-elimination.

> Multi-type presentation of Lukasiewicz logic?
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