A Galois-theoretic approach to the covering theory
of quandles

Valérian Even

ucCL

25th January 2014, Universidade de Coimbra

1/19



@ Introduction to quandles
@ Central extension in the exact context

© Covering theory of quandles

2/19



Introduction to quandles

© Introduction to quandles

3/19



Introduction to quandles

Definition (D. Joyce, S. Matveev)

A quandle is a set A with two binary operations < and </~!
satisfying the following identities :

4/19



Introduction to quandles

Definition (D. Joyce, S. Matveev)

A quandle is a set A with two binary operations < and </~!
satisfying the following identities :

@a<a=aanda<g la=aforallacA:

4/19



Introduction to quandles

Definition (D. Joyce, S. Matveev)

A quandle is a set A with two binary operations < and </~!
satisfying the following identities :

@a<a=aanda<g la=aforallacA:
o (atb)<lb=aand (a< ' b)<b=aforall a beA;

4/19



Introduction to quandles

Definition (D. Joyce, S. Matveev)

A quandle is a set A with two binary operations < and </~!
satisfying the following identities :

@a<a=aanda<g la=aforallacA:
o (atb)<lb=aand (a< ' b)<b=aforall a beA;

o (adb)<dc=(axc)<(b<c)and
(a<tbh)<alc=(a<tc)at(batc)foralla, b, c€A

4

4/19



Introduction to quandles

Definition (D. Joyce, S. Matveev)

A quandle is a set A with two binary operations < and </~!
satisfying the following identities :

@a<a=aanda<g la=aforallacA:
o (atb)<lb=aand (a< ' b)<b=aforall a beA;

o (adb)<dc=(axc)<(b<c)and
(a<tbh)<alc=(a<tc)at(batc)foralla, b, c€A

4

Denote Qnd the corresponding category.
It is a variety of universal algebras.
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o Let A be a set, definea<tb=aand a<~! b= a for all
a, b € A. It defines a quandle named trivial quandle. The
corresponding category is denoted Qnd™.

o Let G be a group, define g<th=h"'ghand g<~1h= hgh!
for all g, h € G. It defines the conjugation quandle.

o Let G be a group, define g << h = hg~1h. This defines the core
quandle.
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Introduction to quandles

The right translation pp: A — A defined by pp(a) = a < b is an
automorphism.

Let Inn(A) be the subgroup of Aut(A) generated by the elements
pp With b € A.

Definition

A connected component of A is an orbit under the action of Inn(A).
Two elements a and b of a quandle A are in the same connected
component if there exist a1, a,...a, € A and <% € {<1, <!}
such that (... (((a < a1) <®2 ap)...) <*" a, = b.
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Introduction to quandles

The set of connected components of A is denoted by m(A).
It is a trivial quandle.
We have the following adjunction :

0

/M\
Qnd 1 Qnd* . (1)
\_._./

The category Qnd is not Mal'tsev neither Goursat (RoS =SoR
or RoSoR =S0RoS for any congruences R, S on an object A).
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@ C is an exact category;
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@ the functor / is left adjoint to the inclusion functor H.
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B x pig HX 2> HX
T

B

= HIB
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Central extension in the exact context

Definition
A Birkhoff subcategory H is admissible with respect to C when the
functor /| preserves a certain type of pullbacks :

B x pig HX 2> HX
T

B

= HIB

where
o XeH,;
@ ¢: X — HIB is a regular epimorphism.

@ ng: B — HIB is the unit of the adjunction at object B.
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Central extension in the exact context

A regular epimorphism f: A — B is a trivial extension when

A
A"~ HIA
a

/| |

B — HIB.

is a pullback.
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Central extension in the exact context

Definition

A regular epimorphism f: A — B is a central extension if there
exists a regular epimorphism p: E — B such that the pullback 7
of f along p is a trivial extension.
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Lemma

Given a quandle A, there exists a class of congruences ~y, where
N is a normal subgroup of Inn(A), such that
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for any congruence R on A.
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Covering theory of quandles

Lemma

Given a quandle A, there exists a class of congruences ~y, where
N is a normal subgroup of Inn(A), such that

~N OR - RO ~N,

for any congruence R on A.

The kernel pair of 74: A — m(A) is such a congruence.
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Covering theory of quandles

The adjunction

o
Qnd s Qnd* .
W
U

is admissible with respect to regular epimorphisms.

16/19
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Proposition

The adjunction

.
Qnd s Qnd* .
W
U

is admissible with respect to regular epimorphisms.

Remark

The reflection of Qnd onto Qnd* is not semi-left-exact.
(Cassidy-Heébert-Kelly, 1985)

B X HIB HX “ji3‘>' HX

l lHqﬁ

B “““;5;;“‘>‘ HIB
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Proposition

A surjective homomorphism f: A — B is a trivial extension if and
only if the condition (T) is verified :
(T): Va,a' € A, if f(a) = f(&') and [a] = [4'], then a = &'.
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A surjective homomorphism f: A — B is a trivial extension if and
only if the condition (T) is verified :
(T): Va,a' € A, if f(a) = f(&') and [a] = [4'], then a = &'.

Lemma
Given the pullback

f

E % B A
P1 l

9

where p is a surjective homomorphism, then :
f is an E-covering if and only if p1 is an E-covering.
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If f: A— B is a central extension then f: A — B is an E-covering.
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Covering theory of quandles

If f: A— B is a central extension then f: A — B is an E-covering.

3 m
{:if
D<—X

f: A— B is an E-covering if and only if it is a central extension. \
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