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László Györfi (p. 17)

Saturday, June 28
Chairman: Carlos Tenreiro
9.30–10.30
Computationally tractable statistical estimation when there are more

variables than observations

Emmanuel Candès (p. 18)

Saturday, June 28
Chairman: Paulo Oliveira
16.40–17.40
Smoothing non equispaced heavy noisy data with wavelets kernels

Irène Gijbels (p. 19)

7



Scientific Program – WNI2008

Contributed Sessions

Session 1
Thursday, June 26
Room Pedro Nunes

Chairman: Jacobo de Uña-Álvarez
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J. Uña-Álvarez, H.-Y. Liang (p.37)
12.20–12.40 Nonparametric Mixture Regression

A. Rojas, C. Genovese, L. Wasserman (p. 38)

Session 3B
Friday, June 27
Room 2.4

Chairwoman: Manuela Neves

11.00–11.20 Longitudinal modeling when response and time-dependent

covariates are measured at different timepoints

J.A. Dubin, X. Xiong (p. 39)
11.20–11.40 IRT analysis of STAIC data

B. Oliveiros, A. Gomes da Silva, E. Ponciano (p. 40)
11.40–12.00 A semiparametric estimator for spatial count data

regression analysis

J.A. Santos, M.M. Neves, C. Barroso,
F. Costigliola, F. Maia (p. 41)

12.00–12.20 Forecasting M3 competition data - another approach

C. Cordeiro, M. Neves (p. 43)
12.20–12.40 Estimation of the restricted conditional mean gap time:

the induced dependent censoring aspect

A.-C. Andrei (p. 44)

9



Contributed sessions – WNI2008

Session 4A
Friday, June 27
Room Pedro Nunes

Chairman: Michel Delecroix

14.30–14.50 A geometric interpretation of the multiresolution criterion

T. Mildenberger (p. 45)
14.50–15.10 Nonparametric Bayesian inference for integrals with

respect to an unknown finite measure

T. Erhardsson (p. 46)
15.10–15.30 Multiresolution and model choice

A. Kovac (p. 48)
15.30–15.50 Weak convergence of the supremum distance for

supersmooth kernel deconvolution

B. van Es, S. Gugushvili (p. 49)
15.50–16.10 Nonparametric model checking for dynamic load

sharing models

E. Beutner (p. 50)

Session 4B
Friday, June 27
Room 2.4

Chairwoman: Natalie Neumeyer

14.30–14.50 A SDE growth model: nonparametric estimation

of the drift and the diffusion coefficients

P.A. Filipe, C.A. Braumann (p. 51)
14.50–15.10 Smoothing non-stationary correlated data

P. Foster (p. 52)
15.10–15.30 On confidence intervals for a distribution function

under association

C. Azevedo (p. 53)
15.30–15.50 Stability estimating in optimal sequential

hypotheses testing

E. Gordienko, A. Novikov, E. Zaitseva (p. 54)
15.50–16.10 MAP estimation for curve modeling with

free-knot splines

L. Amate, M.J. Rendas (p. 55)

10



Contributed sessions – WNI2008

Session 5
Saturday, June 28
Room Pedro Nunes

Chairman: Juan Carlos Pardo-Fernández

11.00–11.20 Nonparametric adaptive Bayesian oracle projection

estimation in the white noise model

A. Babenko, E. Belitser (p. 57)
11.20–11.40 B-splines regression smoothing and difference

type of penalties

I. Gijbels, A. Verhasselt (p. 58)
11.40–12.00 Principal points and elliptical distributions from the

multivariate setting to the functional case

G. Boente, J.L. Bali (p. 59)
12.00–12.20 Length and surface area estimation under convexity

type assumptions
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On nonparametric functional data analysis
Frederic Ferraty
Laboratoire de Statistique et Probabilités, Univ. Paul Sabatier, Toulouse,
France, ferraty@cict.fr

Philippe Vieu

Laboratoire de Statistique et Probabilités, Univ. Paul Sabatier, Toulouse,
France, vieu@cict.fr

Abstract. Statistics for Functional Data is a recent field of researches that
was popularized by the monographes [5] and [6]. Various statistical ques-
tions have been studied with functional data, but the previous literature
(see references in [1], [5] and [6]) was concentrated around parametric mod-
els and methods. Starting with [2] nonparametric models have been devel-
oped for analyzing functional variables, and the monograph [3] presents a
wide scope of the literature in this field (including theoretical and applied
issues). The main difficulty in developing nonparametric statistics for func-
tional variable is to control the dimensional effects which are much more
important than in standard nonparametric statistics (since functional data
are realizations of infinite-dimensional random variables). This control can
be made by suitable topological considerations.
The aim of this talk is to present the main ideas going with Nonparametric
Functional Data Analysis. After giving precise definitions and discussing
the meaning of the words nonparameric and functional variables, it will
be explained how usual kernel smoothing ideas can be adapted to infinite
dimensional variables. Then, some among the most important results of
[3] will be exposed. The monography [3] is accompanied by a web site [4]
containing S+/R routines and applications to various curve datasets. This
talk will be illustrated by means of examples extracted of [4].

1. Bosq, D. (2000) Linear processes in functions spaces. Theory and Ap-
plications. Lecture Notes in Statistics 149, Springer-Verlag, New York.

2. Ferraty, F., Vieu, P. (2000). Dimension fractale et estimation de la
régression dans des espaces vectoriels semi-normés (in french). Comptes
Rendus Acad. Sci. Paris 330, 403–406.

3. Ferraty, F., Vieu, P. (2006). Nonparametric functional data analysis.
Springer Series in Statistics, New York.

4. Ferraty, F., Vieu, P. (2006). NPFDA in practice. Free access on line at
http://www.lsp.ups-tlse.fr/staph/npfda/

5. Ramsay, J., Silverman, B. (1997). Functional data analysis. Springer
Series in Statistics, New York.

6. Ramsay, J. and Silverman, B. (2005). Functional data analysis (Second
edition). Springer Series in Statistics, New York.
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On nonparametric estimation of boundary
measures

Antonio Cuevas

Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain,
antonio.cuevas@uam.es

Abstract. The measure of the boundary ∂G of a compact body G ⊂ [0, 1]d

can be expressed in terms of the Minkowski content defined by

L0(G) = lim
ǫ→0

µ (B(∂G, ǫ))

2ǫ
.

Here µ denotes the Lebesgue measure on R
d and B(G, ǫ) stands for the

parallel set B(G, ǫ) = ∪x∈GB(x, ǫ), where B(x, ǫ) is the closed ball with
center x ∈ R

d and radius ǫ > 0.
This concept is less general than the (d−1)-dimensional Hausdorff measure
of ∂G (which coincides with L0(G) in regular cases) but it is more suitable
for the estimation of the boundary measure with statistical methods.
To be more concrete, our methods can be used in those cases where the
sampling information consist of random observations in [0, 1]d in such a way
that for each observation we are able to decide whether or not it belongs
to G.
In these situations a natural nonparametric estimator of L0(G) can be
defined. We will present some results concerning consistency, convergence
rates and asymptotic normality of such estimator.
The practical aspects of these ideas in image analysis will be also briefly
commented.
Most of this talk is a summary of recent joint work with Inés Armendáriz,
Ricardo Fraiman (both from Universidad de San Andrés, Buenos Aires, Ar-
gentina) and Alberto Rodŕıguez-Casal (Universidad de Santiago de Com-
postela, Spain).

1. Armendáriz, I., Cuevas, A., Fraiman, R. (2008)Ṅonparametric estima-
tion of boundary measures and related functionals: Asymptotic results.
Submitted.

2. Cuevas, A., Fraiman, R., Rodŕıguez-Casal, A. (2007). A nonparametric
approach to the estimation of lengths and surface areas. Ann. Statist.
35, 1031–1051.

3. Pateiro-López, B., Rodŕıguez-Casal, A. (2008). Length and surface area
estimation under convexity-type restrictions. Submitted.

16



Plenary session – WNI2008

Nonparametric prediction of time series

László Györfi

Budapest University of Technology and Economics, Hungary,
gyorfi@szit.bme.hu

Abstract. We study the problem of sequential prediction of a real valued
sequence. At each time instant t = 1, 2, . . ., the predictor is asked to guess
the value of the next outcome Yt of a sequence of real numbers Y1, Y2, . . .
with knowledge of the pasts Y t−1

1 = (Y1, . . . , Yt−1) (where Y 0
1 denotes the

empty string) and the side information vectors X t
1 = (X1, . . . , Xt), where

Xt ∈ R
d. Thus, the predictor’s estimate, at time t, is based on the value of

X t
1 and Y t−1

1 . A prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
R

d
)t × R

t−1 → R

so that the prediction formed at time t is gt(X
t
1, Y

t−1
1 ).

In this paper we assume that (X1, Y1), (X2, Y2), . . . is a stationary and er-
godic process. After n time instants, the normalized cumulative prediction
error is

Ln(g)
def
=

1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 ) − Yt)

2.

We show a universally consistent prediction strategy g such that for any
stationary ergodic process {(Xn, Yn)}∞−∞ with EY 4

0 < ∞,

lim
n→∞

Ln(g) = L∗ almost surely,

where
L∗ def

= E
(
Y0 − EY0

∣∣X0
−∞, Y −1

−∞
)2

is the minimal mean squared error of any prediction for the value of Y0

based on the infinite past X0
−∞, Y −1

−∞.
The previous prediction may result in universally consistent classification
rule as follows.Here Yi is binary valued, and the classifier formed at time
t is ft(X

t
1, Y

t−1
1 ). We show a classification strategy f such that for any

stationary ergodic process {(Xn, Yn)}∞−∞, the normalized cumulative 0 − 1
loss converges to the minimal error probability:

Rn(f)
def
=

1

n

n∑

t=1

I{ft(Xt

1
,Y t−1

1
)6=Yt}

→ R∗ def
= E

{
min

(
P{Y0 = 1|X0

−∞, Y −1
−∞}, P{Y0 = 0|X0

−∞, Y −1
−∞}

)}
,

where I{·} denotes the indicator function.
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Computationally tractable statistical estimation
when there are more variables than observations

Emmanuel Candès

California Institute of Technology, USA, emmanuel@acm.caltech.edu

Abstract. In many important statistical applications, the number of vari-
ables or parameters is much larger than the number of observations. In
radiology and biomedical imaging for instance, one is typically able to col-
lect far fewer measurements about an image of interest than the unknown
number of pixels. Examples in functional MRI and tomography immedi-
ately come to mind. Other examples of high-dimensional data in genomics,
signal processing and many other fields abound. In the context of multiple
linear regression for instance, this setup raises the question of whether or
not it is possible to estimate a vector of parameters of size p from a vector
of observations of size n when n ≪ p, or whether it is possible to estimate
the mean response reliably under the same circumstances.
This talk will survey very recent progress in this area showing that L1-
methods such as the Dantzig selector and/or the lasso enjoy remarkable
statistical properties. For instance, we will show that under reasonable
sparsity assumptions, the Dantzig selector achieves an accuracy which
nearly equals that one would achieve with an oracle that would supply
perfect information about which coordinates of the unknown parameter
vector are nonzero and which were above the noise level. This is connected
with the important model selection problem since we will show that one can
effectively tune L1-based methods as to automatically select the subset of
covariates with nearly the best predictive power, by solving convenient op-
timization programs. We will discuss a few engineering applications where
this could have a large pay-off.
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Smoothing non equispaced heavy noisy data with
wavelets kernels

Anestis Antoniadis
Laboratoire de Modélisation et Calcul (LMC), IMAG,
Université de Grenoble I, France, Anestis.Antoniadis@imag.fr

Irène Gijbels

Katholieke Universiteit Leuven, Belgium, irene.gijbels@wis.kuleuven.be

Jean-Michel Poggi
Laboratoire de Mathématiques, Université de Paris XI, France,
jean-michel.poggi@math.u-psud.fr

Abstract. We consider a nonparametric noisy data regression model where
the unknown regression function is assumed to belong to a wide range of
function classes (including discontinuous functions). The distribution of
the noise is assumed to be unknown and satisfying some weak conditions.
We allow for error distributions that may have heavy tails, so that, for
example, no moments of the noise exist. The error is assumed to have
zero median. The design points are assumed to be deterministic points,
not necessarily equispaced. Since the functions can be nonsmooth and
the noise may have heavy tails, traditional estimation methods cannot be
applied directly in this situation. We first use local medians to construct
variables that are structured as a Gaussian nonparametric regression, as
in Brown et al. (2008). The difference here is though that the resulting
data are not equispaced. We therefore rely on a wavelet block penalizing
procedure (see Amato et al. (2006)) adapted to non equidistant designs to
construct an estimator of the regression function. Under mild assumptions
on the design it is shown that the estimator simultaneously attains the
optimal rate of convergence over a wide range of Besov classes, without
prior knowledge of the smoothness of the underlying functions or prior
knowledge of the error distribution. The performances of the procedure
is illustrated via a simulation study covering a broad variety of settings.
Applications to real data examples are also given.

1. Amato, U., Antoniadis, A., Pensky, M. (2006). Wavelet kernel penalized
estimation for non-equispaced design regression. Stat. Comp. 16, 37-56.

2. Brown, L.D., Cai, T., Zhou, H. (2008). Robust nonparametric estima-
tion via wavelet median regression. Ann. Statist, to appear.
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The shorth plot

John H.J. Einmahl
Tilburg University, Netherlands, j.h.j.einmahl@uvt.nl

Maria Gantner

Tilburg University, Netherlands, m.gantner@uvt.nl

Günther Sawitzki
University of Heidelberg, Germany, gs@stablab.uni-heidelberg.de

Abstract. For a probability measure P on R, the length of the shorth at a
point x ∈ R and for a coverage level α ∈ (0, 1) is defined as

Sα(x) = inf {|I| : P (I) ≥ α, I ∈ Ix} ,

where Ix is the class of closed intervals which contain x ∈ R. Then the
shorth plot is defined as the graph of the function

x 7→ Sα(x), x ∈ R

for (all or) a selection of coverages α. The empirical shorth plot is the
graph of

x 7→ Sn,α(x), x ∈ R,

where Sn,α(x) is the empirical counterpart of Sα(x).
The shorth plot is a tool to investigate probability mass concentration.
Because of its monotonicity in α, different choices of α can be plotted in
one picture and give a good overview over local as well as global features of
the probability distribution simultaneously. Compared to nonparametric
kernel density estimators, the shorth has the advantage of avoiding band-
width selection problems. Its easy computation makes it a valuable tool
for a first exploration of the data.
Under weak assumptions, we can show that the rate of convergence of the
localized empirical length of the shorth to the theoretical length is n−1/2,
uniformly in α and the point of localization x.
Some real-data examples as well as a sketch of the proof will be shown.

1. Einmahl, J.H.J., Gantner, M. and Sawitzki, G. (2008), “The Shorth
Plot”, CentER Discussion Paper, 2008-24, Tilburg University.

2. Einmahl, J.H.J., and Mason, D.M. (1992), “Generalized Quantile Pro-
cesses”, The Annals of Statistics, 20, 1062–1078.

3. Sawitzki, G. (1994), Diagnostic Plots for One-Dimensional Data, In:
R. Ostermann and P. Dirschedl, ed., “Computational Statistics, 25th
Conference on Statistical Computing at Schloss Reisensburg”. Physica-
Verlag/Springer, Heidelberg, 237–258.
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Spatial prediction via the kernel method
with cross-validation approaches for
bandwidth selection

Raquel Menezes

University of Minho, Portugal, rmenezes@mct.uminho.pt

Célia Ferreira
University of Minho, Portugal, celia40991@yahoo.com.br

Pilar Garćıa-Soidán
University of Vigo, Spain, pgarcia@uvigo.es

Abstract. In this work, a nonparametric predictor will be considered, based
on the kernel method, which will be applied to the stochastic processes
where a random design is assumed for choice of the spatial locations.
The kriging techniques are typically used for the latter purpose, providing
us with predictors that are optimal in some sense. In fact, the referred
approaches are derived by minimizing the mean-squared prediction error,
subject to some constraints that are dependent on the hypotheses assumed
from the random process.
However, the results of the kriging equations rely on the validity of the
conditions required, so that a failure in the hypotheses may have a signi-
ficative effect. For instance, misspecification of the distribution, the mean
or the second-order structure may lead to poor predictions.
Taking the above in mind, an alternative may be obtained via the kernel
method, which will be proved to be valid under rather general conditions.
In particular, the nonparametric kernel predictor satisfies that the mean-
squared prediction error tends to be negligible, as the sample size increases.
In addition, an adequate estimation of the bandwidth could be achieved
by asymptotically minimizing the corresponding error.
The use of the optimal bandwidth in practice demands estimation on un-
known quantities, dependent on the first and second order structures of the
random process. Implementation of the latter approximations in an accu-
rate way often turns out to be difficult. Hence, alternative cross-validation
approaches will be provided for selection of the bandwidth, more easily
attainable for a given data set.
Finally, we will describe some numerical studies carried out in order to
analyze the performance of the nonparametric predictor, when adopting
different selections of the bandwidth, which will be compared with the
results achieved by kriging predictors, for gaussian and non-gaussian data.
An application of the proposed predictor to a real data set is also included.
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Nonparametric estimation of a log-concave
density

Madeleine Cule

University of Cambridge, UK, mlc40@cam.ac.uk

Richard Samworth
University of Cambridge, UK, rjs57@cam.ac.uk

Robert Gramacy
University of Cambridge, UK, bobby@statslab.cam.ac.uk

Michael Stewart
University of Sydney, Australia, michaels@maths.usyd.edu.au

Abstract. We will show that, given an i.i.d. sample X1, . . . , Xn in R
d from a

distribution with log-concave density f , a unique nonparametric maximum
likelihood estimator of f exists. We will see that a simple reformulation
allows us to compute the estimator using non-differentiable convex opti-
mization techniques. Unlike kernel density estimation (where the choice
of bandwidth can be critical), this is a fully automatic procedure, and no
additional tuning parameters are required. The method will be illustrated
with simulated data in one and two dimensions, and we will briefly consider
asymptotic performance. Finally, an example application to clustering (us-
ing the EM aglorithm) of breast cancer data will be discussed.
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Multivariate plug-in bandwidth selection with
unconstrained pilot bandwidth matrices

J. E. Chacón

Departamento de Matemáticas, Universidad de Extremadura, Spain,
jechacon@unex.es

T. Duong
Imaging and Modeling Group, Institut Pasteur, Paris, France,
tduong@pasteur.fr

Abstract. Multivariate kernel density estimation is an important technique
in statistical exploratory data analysis. Its utility relies on its ease of
interpretation, especially by graphical means. The crucial factor which
determines the performance of kernel density estimation is the bandwidth
matrix. Research in finding optimal bandwidth matrices began with re-
stricted parameterizations of the bandwidth matrix which mimicked uni-
variate selectors. Progressively these restrictions were relaxed to develop
more flexible selectors. We propose a plug-in bandwidth selector with
unconstrained parametrizations of both the final and pilot selectors. We
quantify its asymptotic and finite sample properties. For target densities
whose structure is corrupted by pre-sphering (or pre-whitening) transforms,
our unconstrained selector shows the most improvement over the existing
plug-in selectors.
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A copula-based test for independence

Natalie Neumeyer

University of Hamburg, Department of Mathematics, Germany,
neumeyer@math.uni-hamburg.de

Sebastian Kiwitt
University of Hamburg, Department of Mathematics, Germany,
kiwitt@math.uni-hamburg.de

Abstract. We suggest a new nonparametric estimator for a bivariate cop-
ula density, which is based on an orthogonal series expansion, and is it-
self a copula density. As application we consider a new asymptotically
distribution-free test for independence of the components of bivariate ran-
dom variables, which applies methods of order-selection tests. We deduce
the asymptotic distribution and investigate the small sample performance
by means of a simulation study. As further applications of the copula den-
sity estimator we discuss the estimation of bivariate densities in situations
where informations about the marginals are available.
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Advances in data depth

Claudio Agostinelli
Department of Statistics, Ca’ Foscari University, Venice, Italy,
claudio@unive.it

Mario Romanazzi

Department of Statistics, Ca’ Foscari University, Venice, Italy,
romanaz@unive.it

Abstract. Data depth provides several tools for nonparametric multivariate
analysis. Of particular interest here are geometrical depth functions, like
Tukey’s halfspace depth, Liu’s simplicial depth and Oja’s simplicial vol-
ume depth, which derive information from simple geometrical structures.
The main applications are a center-outward ordering of multivariate ob-
servations according to the values of the depth functions, location estima-
tors with the meaning of multivariate medians, depth-weighted and depth-
trimmed estimators of multivariate parameters and some new graphical
presentations (scale curve, DD-plot) for both single-sample and paired-
samples inspection and comparison. The present contribution is a review
on some recent developments in the field.
The first topic is the robustness of depth ranks. Using the explicit ex-
pressions of the influence functions of both halfspace and simplicial depth
values, a more precise understanding of the two definitions and an evalua-
tion of their relative merits is now possible.
Next, there is an increased evidence that depth functions provide informa-
tion not just on location but also on dispersion of a multivariate distri-
bution. It has been proved that the Lebesgue integral of simplicial depth
is the expected volume of a random simplex whose vertices are p + 1 in-
dependent observations from the reference distribution. This measure is
known as the multivariate Gini’s index, because in the scalar case it gives
Gini’s mean difference. The same result holds for Oja’s and Tukey’s depth
functions, that is, the Lebesgue integral of both of them is equal to a
specific multivariate dispersion measure. This opens a new research direc-
tion because depth methods appear to be successful both in location and
dispersion investigations.
The final topic is local depth. By definition, depth provides a measure of
centralness which is monotonically decreasing along any given ray from the
deepest point. This implies that any depth function is unable to account
for multimodality. To overcome this problem, a generalized notion of depth
is required. We suggest to evaluate the centrality of a point conditional
on a bounded neighbourhood. For example, the local version of simplicial
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depth is the ordinary simplicial depth, conditional on random simplices
whose volume is not greater than a prescribed threshold. Local versions of
Oja’s and Tukey’s depths are similarly defined. These generalized depth
functions are indeed able to record local fluctuations of the density function
and can be useful in mode detection and cluster analysis.
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Variable selection and weighting by nearest
neighbor ensembles
Jan Gertheiss
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Abstract. In the field of statistical discrimination nearest neighbor methods
are a well known, quite simple but successful nonparametric classification
tool. In higher dimensions, however, predictive power normally deterio-
rates. In general, if some covariates are assumed to be noise variables,
variable selection is a promising approach. In this presentation feature se-
lection problems of small scale are investigated. In a first step the benefit
of an extended forward as well as backward variable selection procedure
for nearest neighbor classifiers is examined. The main focus however is
on the development and testing of a nearest neighbor ensemble with im-
plicit variable selection: Let ŷ(j) be the k nearest neighbor prediction, if
the distance measure in the p-dimensional predictor space is only based on
predictor xj. Now the prediction ŷ is constructed as an ensemble, i.e. a
weighted average

ŷ =

p∑

j=1

cj ŷ(j),

p∑

j=1

cj = 1, cj ≥ 0∀j.

The weights - or coefficients - cj have to be estimated, variable selection
means setting cj = 0 for some j. The latter can be done for example
by hard thresholding. Coefficient estimation is performed via certain loss
functions and quadratic programming. Finally the set of predictions can
be augmented by including interactions of predictors. That means adding
all nearest neighbor predictions based on two or even three predictors.
In contrast to other nearest neighbor approaches we are not primarily inter-
ested in classification, but in estimating the (posterior) class probabilities.
So the used loss functions are mainly motivated that way. Ensemble adjust-
ment is not necessary: If single predictions ŷ(j) are replaced by estimated
probabilities, the resulting ensemble can be interpreted in a similar way.
In simulation studies and for real world data the investigated methods
are compared to alternative well established classification tools (that offer
probability estimates as well). Despite their simple structure, the proposed
methods’ performance is quite good - especially if relevant covariates can
be separated from noise variables.
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Peak preserving spectral density estimation

Lieven Desmet
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Abstract. Building on ideas developed in Gijbels, Lambert and Qiu, 2007
and on Gijbels and Desmet, 2007, on jump-preserving and peak-preserving
regression, we look at the problem of spectral density estimation in sta-
tionary time series with short range dependence. The focus is on the
estimation of prominent peaks which indicate the presence of important
periodic components in the time series.

We propose a modification of the maximum likelihood estimator (based on
the Whittle likelihood) of the log spectral density as developed by Fan and
Kreutzberger, 1998. Those authors take a maximum likelihood approach
and exploit the known distribution of the log periodogram ordinates Yk,
obtaining an estimator α̂ of the log spectral density in some frequency ω
by maximizing the weighted sum

Lα,β(ω) =
n∑

i=1

[− exp{Yk −α−β(ωk −ω)}+Yk −α−β(ωk −ω)]Kh(ωk −ω)

where localization is achieved by means of kernel weights (h is a suitable
bandwidth).

We introduce one-sided versions of the weighted sum (based on one-sided
versions of the kernel) which lead to an enhanced estimation near peaks,
and also provide an objective quantity indicating when this alternative
estimation should be considered.
An extensive numerical study is provided as well as illustrations on real
data.

1. Desmet, L., Gijbels, I. (2007) Peak preserving regression using local
linear fitting. Manuscript.

2. Fan, J., Kreutzberger, E. (1998). Automatic Local Smoothing for Spec-
tral Density Estimation. Scand. J. Statist. 25, 359–369.

3. Gijbels, I., Lambert, A., Qiu, P. (2007). Jump-preserving regression and
smoothing using local linear fitting: a compromise. Ann. Inst. Statist.
Math. 59, 235–272.
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The additive-interactive nonlinear volatility
model, its estimation and some testing issues

Michael Levine
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Tony (Jinguang) Li
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Abstract. We consider a new separable nonparametric volatility model that
allows for “interactions” in both mean and conditional variance (volatility)
function. It can be concisely described as an additive-interactive nonlinear
ARCH model. We propose this model as a possible alternative to the gen-
eralized additive nonlinear ARCH (GANARCH) model of Kim and Linton
(2004), with which it shares the common origin. Unlike the GANARCH
model, it does not assume the known link function but includes second-
order interaction terms in both mean and variance functions instead. This
ensures a much more data-driven model compared to GANARCH of Kim
and Linton (2004) since our assumptions do not assume that anything know
about the data distribution. This is very beneficial since in practice the
data distribution has to be selected based on the exploratory data analysis
which is very difficult for multivariate data. Thus, the proposed model is
much more flexible compared to GANARCH.
Motivated by the local instrumental variable estimation method (LIVE),
also introduced in Kim and Linton (2004), we propose instrumental variable-
based estimators of the components of the mean and volatility functions.
The estimators are shown to be consistent and asymptotically normal. Ex-
plicit expressions for asymptotic means and variances of these estimators
are also obtained. Several simulation experiments are conducted that show
a very good performance of our algorithm for moderate sample sizes. Fi-
nally, the method is applied to the real data set of currency exchange rates
where it leads to some interesting conclusions.
Historically, multiple functional component testing in nonparametric mod-
els has been a fairly difficult problem. We introduce a novel F-type ap-
proach to testing the significance of the two-way interactive terms in the
mean function based on the unbalanced design ANOVA with unequal vari-
ances. Simulation studies show that the method performs very well for
sample sizes of about 5000 which are easily available in financial applica-
tions.
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Specification tests for the distribution
of errors in nonparametric regression:
a martingale approach

Juan Mora
Universidad de Alicante, Spain, juan@merlin.fae.ua.es

Alicia Pérez-Alonso
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Abstract. We discuss how to test whether the distribution of regression
errors belongs to a parametric family of continuous distribution functions,
making no parametric assumption about the conditional mean or the con-
ditional variance in the regression model. More specifically, let (X, Y )
be a bivariate continuous random vector such that E(Y 2) is finite, denote
m(x) ≡ E(Y |X = x), σ2(x) ≡ Var(Y |X = x) and consider the error term
ε ≡ {Y −m(X)}/σ(X), which is, by definition, a zero-mean unit-variance
random variable. If Fε(·) denotes the c.d.f. of ε and F ≡ {F (·, θ), θ ∈ Θ ⊂
R

m} denotes a parametric family of zero-mean unit-variance continuous
c.d.f.’s, each of them known except for the parameter vector θ, we propose
a testing procedure to face the hypotheses

H0 : ∃ θ0 ∈ Θ such that Fε(·) = F (·, θ0), vs.

H1 : Fε(·) /∈ F ,

when independent and identically distributed observations {(Xi, Yi)}n
i=1,

with the same distribution as (X, Y ), are available. In principle, one could
think of using a Kolmogorov-Smirnov or a Cramér-von Mises statistic, con-
structed replacing errors by residuals and parameters by estimates. How-
ever, using the results derived in Akritas and Van Keilegom (2001, Scand.
J. Statist.) the asymptotic distribution of these residual-based statistics
can be derived, and it proves to be not asymptotically distribution-free,
a property that is already well-known in the literature. Then, we fol-
low the methodology introduced in Khmaladze (1993, Ann. Statist.) to
derive asymptotically distribution-free martingale-transformed test statis-
tics. Finally, we derive the asymptotic distribution and the consistency of
these martingale-transformed statistics under appropriate conditions. Two
Monte Carlo experiments show that the transformed statistics work rea-
sonably well in terms of size and power, and that their behaviour is not
very sensitive to the choice of the smoothing value.
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Representation of the conditional distribution
function of a censored variable given a linear
combination of a d-vector of covariates

Maŕıa Carmen Iglesias-Pérez
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Wenceslao González-Manteiga
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Abstract. An important aim in survival analysis is to study how an ex-
planatory covariate vector, X, influences the survival or duration time, Y ,
when this duration time is not completely observed because, for example,
the presence of censoring. This dependence may be modeled in a differ-
ent numbers of ways but, typically, the key idea is to assume some kind
of functional relationship for the conditional distribution function (cdf) or
some other conditional curve, as the conditional hazard function or the
conditional hazard rate (see Cao and González Manteiga, 2007). We focus
our attention on the estimation of the cdf when we have a random d-vector
of covariates with d > 1. Even for small values of d, the conventional
nonparametric estimators can suffer poor accuracy and then a solution to
this difficulty can be achieved via the estimation of the cdf of Y given θt

0X,
where θ0 is a certain vector of parameters (see Hall and Yao (2005) for this
approach with complete data).
Here we consider the estimation of the cdf of Y given θt

0X for censored data.
We obtain a representation when θ0 is replaced by some n1/2-consistent
estimator, θ̂. Specifically, in the multivariate context (d > 1) and under

several conditions which include θ̂ − θ0 = oP

(
n−2/5

)
, we prove that

F̂
(
y | θ̂tx

)
= F̂

(
y | θt

0x
)

+ oP

(
n−2/5

)
,

where the estimator F̂ (• | x) of F (• | x), the conditional distribution
function of Y | X = x, is the estimator introduced by Iglesias-Pérez and
González-Manteiga (1999) in the single covariate context (d = 1).

This representation and the asymptotic properties of F̂ (• | x) prove that

F̂
(
y | θ̂tx

)
and F̂ (y | θt

0x) have the same asymptotic distribution.

Some examples are included to illustrate this estimation.

1. Cao, R., González-Manteiga, W. (2008). Goodness-of fit tests forcondi-
tional models under censoring and truncation. J. of Econometrics 143,
166–190.
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2. Hall, P., Yao, Q. (2005). Approximating conditional distribution func-
tions using dimension reduction. Ann. Statist. 33, 1404–1421.

3. Iglesias-Pérez, M.C., González-Manteiga, W. (1999). Strong representa-
tion of a generalized product-limit estimator for truncated and censored
data with some applications. J. Nonparametr. Statist. 10, 213–244.
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A test for comparing regression curves versus
one-sided alternatives

Juan Carlos Pardo-Fernández
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Natalie Neumeyer
Universität Hamburg, Germany, neumeyer@math.uni-hamburg.de

Abstract. Consider two pairs of random variables (Xj, Yj), for j = 1, 2,
related via nonparametric regression models

Yj = mj(Xj) + εj,

where mj(x) = E(Yj|Xj = x) is the conditional mean. We assume that
the covariates X1 and X2 have common support RX . Under this setup it is
of practical interest to test for the equality of the regression curves, which
means that effect of the covariate over the response is the same in both
populations. In some situations, additional information can be given about
the alternative hypothesis. In this talk, we study the problem of testing
for the null hypothesis

H0 : m1(x) = m2(x) for all x ∈ RX ,

versus one-sided alternatives, that is, one function is always equal or bigger
than the other:

H1 : m1(x) ≤ m2(x) for all x ∈ RX and
m1(x) < m2(x) in a set of positive measure.

We propose a very simple testing procedure, which is based on the following
idea. Let m be any function verifying m1(x) ≤ m(x) ≤ m2(x), for all
x ∈ RX . Define the random variables, for j = 1, 2,

εj0 = Yj − m(Xj),

which can also be expressed as

εj0 = εj + (mj(Xj) − m(Xj)).

Obviously, under the null hypothesis, m1(x) = m(x) = m2(x), and εj0 = εj.
However, under the alternative hypothesis it happens that

E(ε10) < 0 and E(ε20) > 0.

Therefore the comparison of the expectations of the regression errors under
the null hypothesis can be used to detect the alternative hypothesis H1.
In practice, the regression errors are replaced by residuals estimated in a
nonparametric way.
In this talk, we will explain the testing procedure, and we will show some
related theoretical results and simulations.
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Nonlinear wavelet regression for left-truncated,
dependent data

Jacobo de Uña-Álvarez
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hyliang83@yahoo.com

Abstract. Left-truncated data appear in a number of applications, including
Astronomy, Survival Analysis, and Economics. Most papers dealing with
left-truncated data assume that the data are independent. However, when
sampling cluster of individuals (e.g. family members, or repeated mea-
surements taken on the same subject), the observations will be typically
correlated. In this talk we introduce a new nonlinear wavelet-based estima-
tor of the regression function when the response variable is left-truncated.
It is assumed that the observations form a stationary α-mixing sequence.
The nonlinear wavelet-based estimator of the covariate’s density is consid-
ered as well. We establish asymptotic results for the new estimators, as
an asymptotic expression of the mean integrated squared error (MISE).
Under standard conditions, it is seen that the rate of convergence of the
MISE is not affected by the presence of discontinuities in the underlying
curves, nor by the dependence structure of the data.
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Nonparametric mixture regression
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Abstract. In this talk we consider the problem of estimating conditional
densities functions. Conditional density estimation is a technique that,
compared to usual regression methods, allows for a better understanding
of the relation- ship between a response variable and a set of covariates. We
present a new conditional density estimator based on finite mixture models.
This estimator summarizes the relationship between the covariates and the
response with a set of parameter functions, which describes the conditional
behavior succinctly. This feature gives the proposed model the advantage
of being parsimonious and easily interpretable. We consider two methods
for fitting the model: local likelihood and a conditional minimum distance
approach. We apply the proposed estimator to study the role environment
plays in the process of galaxy evolution.
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Longitudinal modeling when response and time-
dependent covariates are measured at different
timepoints

Joel A. Dubin
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Xiaoqin Xiong
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Abstract. In this talk, we will discuss a flexible method to handle both as-
sociation and temporal sequencing of distinct longitudinal measures, where
the measures may be of mixed type (e.g., one continuous, the other binary)
and recorded on non-uniform grids and different time points from one an-
other. A smoothing step will be involved. The approach will be demon-
strated on a dataset of hemodialysis patients, where longitudinal measures
of health outcomes (e.g., infection) were recorded at different time points
than longitudinal physiologic measures such as serum C-reactive protein
levels (a marker for inflammation). An interesting scientific question to
answer is whether experiences of infection follow or predate inflammation.
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IRT analysis of STAIC data
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Emanuel Ponciano
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Abstract. STAIC studies like other studies involving Likert-type surveys
are commonly analyzed compiling data and reporting means and standard
deviations. More recently confirmatory factor analysis is also used to ex-
plore this kind of data. This study presents the analysis of STAIC type
data using item response theory. The data consist of Portuguese students.
Individual performances and items consistency were analyzed. Properties
of item theory are discussed.
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Abstract. We present a semiparametric estimator for count data regres-
sion analysis based on two covariates. This is an extension of the model
concerning only one covariate that was already developed [1].
A local maximum likelihood estimator based on Poisson regression is pre-
sented as well as its asymptotic bias, variance and distribution.
This semiparametric estimator is an alternative to the parametric count
data regression models that does not depend on regularity conditions and
model specification accuracy.
Consider Y as a count random variable with support IN0 and two covariates
X1, X2. The conditional mean of Y is:

E[Y |X1 = x1i, X2 = x2i] = λ(x1i, x2i) = exp [m(x1i, x2i)] , (1)

where m(x1i, x2i) is an unknown function of interest to be estimated through
local polynomial smoothing.
Considering a Taylor development of degree one as an approximation to
m(x1i, x2i), where (x1i, x2i) is in a neighborhood of (x1, x2), we have:

λ(x1i, x2i) ≈ exp [β0 + β1(x1i − x1) + β2(x2i − x2)] . (2)

In the context of the Poisson regression the logarithm of the local likelihood
function is:

L1(β0, β1, β2|X,y, (x1, x2), h) =
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h−2
n∑

i=1

{
(−λ(x1i, x2i) + yi ln λ(x1i, x2i) − ln(yi!)) (3)

×K ((x1 − x1i)/h, (x2 − x2i)/h)
}

,

where λ(x1i, x2i) = exp [β0 + β1(x1i − x1) + β2(x2i − x2)].
Additionally other topics deserve special interest here such as the band-
width selection procedure (sample splitting), the spatial dependence of the
observations and the spatial nature of the covariates.
The main motivation for the model we present is to study the spatial
distribution of Nassarius reticulatus in Ria de Aveiro (NW Portugal). This
species is an abundant mollusc of the Portuguese coast that has been widely
used as a bioindicator of tributyltin (TBT) pollution, a serious problem
caused by ship antifouling paints. The data are counts of N. reticulatus
gastropods that were collected randomly along the eight channels of Ria
de Aveiro and the covariates refer to the geographical position (east/west,
north/south) where each sample was collected.
The results are compared to those arising from other approaches particu-
larly spatial statistics.

1. Santos, J. A., Neves, M. M. (2007). A Local Maximum Likelihood
Estimator for Poisson Regression. Metrika, to appear.
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Abstract. The M3 competition data is often used by many researchers in
their investigation. These 3003 time series are a good database for testing
new methodologies using previous results. The results in Makridakis and
Hibon (2000) are frequently used as a benchmark in comparative studies.
This article presents 24 forecasting methods and several accuracy measures
are used to analyze and classify the performance of the various methods.
The method proposed in this work combines the use of exponential smooth-
ing methods with the resampling technique bootstrap to forecast time se-
ries and it works in an automatic way. The procedure starts by selecting
the best exponential smoothing method according to the characteristics
that a times series reveals. After adjusting the best method, our atten-
tion is drawn to the residual part. The bootstrap is then used after an
autoregressive adjustment, selected by AIC criterion. The time series is
then reconstructed, adding the initial characteristics (if they exist) to the
bootstrapped residuals, see Cordeiro and Neves (2007a, b) for more details.
Forecasts are finally obtained using the model initially selected.
To evaluate this procedure some accuracy measures such as the symmetric
mean absolute percentage error and the root mean squared error are calcu-
lated in order to compared with the competition results in Makridakis and
Hibon (2000). All this computational work is performed with the software
R 2.6.2 (R Development Core Team (2008)).

1. Cordeiro, C., Neves, M. (2007a). Bootstrap prediction intervals: a case-
study. In: Joan del Castillo, Anna Espinal and Pere Puig (Eds.): Pro-
ceedings of the 22nd International Workshop on Statistical Modelling
(IWSM2007), 191-194.

2. Cordeiro, C., Neves, M. (2007b). Resampling techniques in time series
prediction: a look at accuracy measures. In: Gomes, M.I., Pestana,
D., Silva, P.(eds): Proceedings of the 56th Session of the International
Statistical Institute(ISI 2007), pag. 353 extended abstrat in CD-ROM.

3. Makridakis, S., Hibon, M. (2000). The M3-Competition: results, con-
clusions and implications. Internat. J. Forecasting 16, 451-476.
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Abstract. In numerous clinical trials, information is available on a series of
successive landmark events. Such sequences may include: randomization
time, date of first and second hospitalization and death date. The time
elapsed between two successive events is called a gap time. In the presence
of censoring, one may not observe the gap times of interest in their entirety.
Even under independent censoring, all but the first gap time are subject to
induced dependent censoring (IDC). Via simulation studies, we investigate
the magnitude of the IDC problem in the estimation of the restricted con-
ditional mean of the most recent gap time, given all prior gap times. We
propose, as a possible solution, estimators based on inverse probability-
of-censoring weighting techniques, and show that they are consistent and
asymptotically normal. Simulations are performed in a variety of scenarios
and an example is used to illustrate these methodological developments.
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Abstract. A recent approach to choosing the amount of smoothing or reg-
ularization in nonparametric regression is to select the simplest estimate
for which the residuals “look like noise”. This can be checked with the
so-called multiresolution criterion, which Davies and Kovac introduced in
connection with their taut-string procedure [Davies and Kovac (2001): Lo-
cal extremes, runs, strings and multiresolution (with discussion and rejoin-
der), AOS(29) 1-65]. It has also been used in several other nonparametric
procedures like spline smoothing [Davies and Meise (2008): Approximating
Data with weighted smoothing splines, to appear in JNPS; Davies, Kovac
and Meise (2008): Nonparametric regression, confidence regions and reg-
ularization, to appear in AOS] or piecewise constant regression [Boysen,
Kempe, Munk, Liebscher and Wittich (2007): Consistencies and rates of
convergence of jump penalized least squares estimators, to appear in AOS].
We show that this criterion is related to a norm, the multiresolution norm
(MR-norm). We point out some important differences between this norm
and p-norms: The MR-norm is not invariant w.r.t. sign changes and per-
mutations and this makes it useful for detecting runs of residuals of the
same sign. We also give sharp upper and lower bounds for the MR-norm
in terms of p-norms.
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Abstract. In this talk we consider the following problem:
Problem 1. Let µ be an unknown finite measure on a measurable space
(S,S). Define g :S → R

n by g = (g1, . . . , gn), where the functions gi :S →
R, i = 1, . . . , n, are measurable and linearly independent. Let T (µ) =∫

S g(x)dµ(x) ∈ R
n. We observe an (Rk-valued) random variable Y whose

distribution given the value of T (µ) is known. The goal is to estimate T (µ)
(or µ itself).
Problem 1 belong to the large class of inverse problems, which often arise
in applications. An inverse problem involves a mapping T :S1 → S2. For
an unknown µ ∈ S1 one observes the value Y , which is T (µ) contaminated
with random “noise”. Typically, the problem of solving the “equation”
T (µ) = Y is ill-posed, since either Y 6∈ Im(T ), T is not invertible, or T−1

exists but is very irregular.
The approach taken in this talk, which has grown in importance in recent
years, is to view inverse problems as statistical problems, for which it is
natural to use Bayesian inference. Thus, both µ and Y are considered to be
random quantities, the probability distribution of which (called the “prior”
distribution) represents initial beliefs about µ and Y . Bayesian inference
consists in computing the conditional distribution of µ given Y (called the
“posterior” distribution), which represents beliefs about µ after observing
Y .
A number of examples of successful applications of Bayesian methods to
inverse problems have appeared in recent years. Recently, Wolpert et
al. (2003) proposed a nonparametric Bayesian approach to Problem 1,
in which a random measure with independent increments is used as a prior
for µ, and where a Metropolis-Hastings type MCMC algorithm is used to
sample from an approximation to the posterior distribution.
The main result presented in this talk is a new method to carry out
Bayesian inference for T (µ) in Problem 1. In the case when µ is a proba-
bility measure, we use a Dirichlet process as a prior for µ, and construct an
approximation to the posterior distribution of the integrals using the SIR
algorithm and samples from a new multidimensional version of a Markov
chain by Feigin and Tweedie. The method can be modified to handle the
case when µ is a finite measure; we then use a Gamma process as a prior
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for µ. We prove that the Markov chain is positive Harris recurrent, and
that the approximating distribution converges weakly to the posterior as
the sample size increases, under a mild integrability condition. Further-
more, the rate of convergence seems quite fast in typical applications. The
method is therefore a promising alternative to the previously suggested
approach to Problem 1.
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Abstract. We consider various settings of the nonparametric regression
problem and consider the multiresolution criterion where for given data
y1, . . . , yn at time points t1, . . . , tn we require an approximation f to satisfy

|
∑

i∈I

yi − fi| ≤ cI

for all I ∈ I where I is some family of subintervals of {1, . . . , n}. Overall
aim is to find functions that satisfy this criterion while at the same being
smooth and simple in the sense of avoiding artificial local extreme values.
We explore this concept in the usual regression context, but also expand
it to inverse problems, estimation of parameters in differential equations,
bivariate curves and online data.

1. Davies, P. L., Kovac, A., Meise, M. (2008). Confidence Regions, Regu-
larization and Non-Parametric Regression. Ann. Statist., (to appear).

2. Davies, P. L., Kovac, A. (2001). Local extremes, runs, strings and
multiresolution (with discussion). Ann. Statist. 29, 1–65.

3. Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J., (2007). Pa-
rameter estimation for differential equations: a generalized smoothing
approach (with discussion). J. Royal Statist. Soc., Series B 69, 741–
796.

48



Session 4A – WNI2008

Weak convergence of the supremum distance for
supersmooth kernel deconvolution

Bert van Es
Korteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam,
The Netherlands, vanes@science.uva.nl

Shota Gugushvili

Eurandom, Technische Universiteit Eindhoven, The Netherlands,
gugushvili@eurandom.tue.nl

Abstract. Let fnh(x) denote the deconvolution kernel density estimator. We
establish the asymptotic distribution of the supremum distance
supx∈[0,1] |fnh(x) − E[fnh(x)]|, which provides a global measure of perfor-
mance of the deconvolution kernel density estimator. We consider the
supersmooth deconvolution problem, in particular deconvolution for error
distributions with characteristic functions that have an exponential tail like
the characteristic function of a normal density. It turns out that the asymp-
totics are essentially different from corresponding results in the ordinary
smooth deconvolution. We also briefly discuss the method of construction
of the uniform confidence intervals for the target density f .

49



Session 4A – WNI2008

Nonparametric model checking for dynamic load
sharing models

Eric Beutner

Department of Quantitative Economics, Maastricht University, Nether-
lands, e.beutner@ke.unimaas.nl

Abstract. Recently, nonparametric statistical methods have been success-
fully applied to dynamic reliability models and sequential k-out-of-n sys-
tems. Load-share models assume that the failure rates of the components
depend on the operating status of the other system components. An im-
portant element of the load-share model is the rule which governs how
failure rates change after some components failed in the system. In this
talk, we focus on nonparametric model checks for dynamic reliability mod-
els where the conditional cumulative hazard rates of the failure times are
proportional. It will be shown that for a (n − 1)-out-of-n dynamic relia-
bility model the asymptotic distribution of our test statistic is the sup of
a time transformed Brownian bridge. We establish consistency of the test.
For the general case our test statistic will be based on weighted martin-
gale residuals. It turns out that the asymptotic distribution of the test
statistic is rather intractable. Using Khmaladze’s goodness-of-fit idea we
construct a test statistic which has asymptotically a much more tractable
distribution.

1. Beutner, E., (2008). Nonparametric inference for sequential k-out-of-n
systems. Ann. Inst. Statist. Math., to appear

2. Hollander, M., Peña, E.A. (1995). Dynamic reliability models with
conditional proportional hazards. Lifetime Data Analysis 1, 377–401.

3. Kvam, P.H., Peña, E.A. (2005). Estimating load-sharing properties in
a dynamic reliability system. J. Amer. Statist. Associ. 100, 262–272.
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A SDE growth model: nonparametric estimation
of the drift and the diffusion coefficients

Patŕıcia A. Filipe

CIMA - Universidade de Évora, Portugal, pasf@uevora.pt

Carlos A. Braumann
CIMA - Universidade de Évora, Portugal, braumann@uevora.pt

Abstract. We study a stochastic differential equation (SDE) growth model
to describe individual growth in random environments. In particular, in
this work, we discuss the estimation of the drift and the diffusion coeffi-
cients using non-parametric methods. We illustrate the methodology by
using bovine growth data.
Considering the diffusion process Xt, describing the weight of an ani-
mal at age t, characterized by the stochastic differential equation dXt =
a(Xt)dt + b(Xt)dWt, with Wt being the Wiener process, we estimate the
infinitesimal coefficients a(x) and b(x) nonparametrically. Our goal was to
analyse which of the parametric models (with specific functional forms for
a(x) and b(x)) previously used by us to describe the evolution of bovine
weight were good choices and also to see whether some alternative spe-
cific parametrized functional forms of a(x) and b(x) might be suggested for
further parametric analysis of this data.
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Smoothing non-stationary correlated data

Peter Foster

School of Mathematics, University of Manchester, UK,
peter.foster@manchester.ac.uk

Abstract. The smoothing technique we will be focussing on is local linear
regression while the non-stationary covariance model we assume is the
structured ante-dependance model of order one, denoted SAD(1), which
will be fully explained. An expression for the asymptotic MISE of the
smoother is derived and shown to be dependent, amongst other things, on
parameters defining the SAD(1) model. A new non-linear least squares
approach is used to nonparametrically fit the SAD(1) model and this will
be described in detail. The strategy is to choose the smoothing parameter
for the regression by minimizing the asymptotic MISE which we can do in a
practical way by plugging-in estimates of the values of unknown quantities.
Finally, simulations show the benefits of modeling the non- stationarity in
the data rather than erroneously assuming stationarity.
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On confidence intervals for a distribution
function under association
Cećılia Azevedo

Universidade do Minho, Portugal, cecilia@math.uminho.pt

Abstract. In this paper we construct confidence sets for a marginal distri-
bution function F of a strictly stationary sequence of associated random
variables.
We address the question of the nonparametric estimation of the asymptotic
variance of

√
n F̂n(x), where F̂n(x) is the kernel estimator of F (x). We con-

sider two estimators and study their asymptotic properties. The first esti-
mator (denoted by σ̂n(x)) is obtained by using a family of kernel estimators
for bivariate distribution functions Fk(x, y), with fixed k = 1, 2, . . . , n − 1,
of pairs of associated random variables (Xj, Xk+j), j ≥ 1 [1] and the other
one, which can be viewed as an empirical variance (denoted by σ̃n(x)),
is inspired by the paper of Guillou and Merlevède [3]. Results on weak

consistency of F̂n(x) [2] and of the proposed estimator for the bivariate

distribution function, F̂n,k(x, y) [1], and also the asymptotic normality of

F̂n(x) [2], enable us to construct approximate confidence intervals for F (x)

for every x. We denote these intervals by Î in the first case and by Ĩ in
the second case.
A simulation study is presented to assess the finite sample performance of
the proposed confidence intervals, Î and Ĩ. We consider segments of asso-
ciated random variables from two different populations, of size n (large),
and for each of them we generate m (much larger than n) independent sets
of associated Monte Carlo random segments from each population. Also,
for each population and each value of x and sample size n, based on m
confidence intervals from simulation, we evaluate the lower and upper con-
fidence limits of Î and Ĩ with the same confidence level. We also present
several illustrative graphics.

1. Azevedo, C., Oliveira, P.E. (2000). Kernel-type estimation of bivari-
ate distribution function for associated random variables. New Trends
in Probability and Statistics, Proceedings of the 6th Tartu Conference,
VSP 5, 17-25.

2. Cai, Z., Roussas,G.G. (1996). Berry-Esseen Bounds for Smooth Esti-
mator of a Distribution Function under Association, J. Nonparametr.
Statist. 11, 79-106.

3. Guillou, A., Merlevède, F. (2001). Estimation of the Asymptotic Vari-
ance of Kernel Density Estimators for Continuous Time Processes, J.
Multivariate Anal. 79, 114-137.
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Stability estimating in optimal sequential
hypotheses testing

Evgueni Gordienko

Autonomous Metropolitan University - Iztapalapa, Mexico City, Mexico,
gord@xanum.uam.mx

Andrey Novikov
Autonomous Metropolitan University - Iztapalapa, Mexico City, Mexico,
an@xanum.uam.mx

Elena Zaitseva
Autonomous Metropolitan University - Iztapalapa, Mexico City, Mexico,
lenagordi@hotmail.com

Abstract. We study the stability of the classical optimal sequential proba-
bility ratio test based on independent identically distributed observations
X1, X2, . . . when testing two simple hypotheses about their common den-
sity f : f = f0 versus f = f1. As a functional to be minimized, it is used a
weighted sum of the average (under f0) sample number and the two types
error probabilities. We prove that the problem is reduced to stopping time
optimization for the likelihood ratio process generated by X1, X2, . . . with
the density f0. For τ∗ being the corresponding optimal stopping time we
consider asituation when this rule is applied for testing between f0 and
an alternative f̃1, where f̃1 is some approximation to f1. An inequality is
obtained which gives an upper bound for the cost excess, when τ∗ is used
instead of the rule τ̃∗ optimal for the pair (f0, f̃1). The inequality found
also estimates the difference between the minimal costs for optimal tests
corresponding to the pairs (f0, f1) and (f0, f̃1).
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MAP estimation for curve modeling with free-
knot splines

Laure Amate

Laboratoire I3S, CNRS-UNSA, amate@i3s.unice.fr

Maria João Rendas
Laboratoire I3S, CNRS-UNSA, rendas@i3s.unice.fr

Abstract. In the context of curve modeling, splines have been widely used
and studied ([1], [2], [3], [4]). Main arguments for using spline functions as
function approximators are their ability to fit complex forms with arbitrary
good accuracy, and the existence of basis functions, the B-splines, with
attractive numerical properties. Our use of splines is motivated by the
desire to find a parsimonious parametric description of a curve s(t) of
which we observe noisy samples:

Zn = s(tn)+ǫ(tn) ≃ f(tn; θ̂(Z
N
1 ))+ε(tn), n = 1, . . . , N, tn ∈ [0, 1]

In this equation, f(t; θ) is a spline function, and ε(t) represents observation
noise (ǫ(t)) and modeling errors. The approximating spline is an element
of

G = ∪k∈{kmin,kmax}$
m
k ,

where, inspired by [1], $m
k is the space of splines of degree m with k knots.

Vector θ = (k, ξ, β) identifies f(·; θ) as a member of G: the number of
knots, k, identifies $m

k , the knot vector ξ indicates that f ∈ $m
k,ξ, and β are

the B-Spline.
We use a Bayesian approach and θ̂(ZN

1 ) are the MAP estimates in G for
a postulated prior. While MAP estimation of s(t) has been addressed by
other authors, leading to a model ŝ(t) 6∈ G, the problem of building a para-
metric model for s in G has received much less attention. An exception is
[5], where in a slightly different context, MAP estimation in “union mod-
els” is also addressed. We depart in a significant way from the work of these
authors, in the crucial issue of defining MAP estimates for spaces with this
composite structure. A careful interpretation of the notation p(θ|ZN

1 ) –
that we prefer to decompose as p(ξ, β|k, ZN

1 )P (k|ZN
1 ) – is required: for dif-

ferent values of k, densities p(ξ, β|k, Z) are defined with respect to distinct
measures, and their direct comparison is meaningless, invalidating direct
maximization of the numbers p(θ|ZN

1 ).
We advocate that MAP estimation in models with the union structure of
G must proceed in a stepwise manner:
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ZN
1

k̂MAP

(ξ̂, β̂)MAP

Our implementation is inspired of BARS [4], using MC methods to sample
from the joint posterior on (k, ξ). By marginalizing over ξ, we approximate
P (k|ZN

1 ). Optimization is based on a simulated annealing chain over ξ for

k fixed at k̂MAP (β̂MAP is determined analytically). We note that we also
estimate the noise variance. In the experiments presented, the approxima-
tion accuracy (MSE) of our MAP model f(t; θ̂MAP ) is comparable to that
of BARS’s estimates ŝBARS, with the advantage of providing a compact
data description with 2k̂MAP + 1 parameters.

1. DeBoor, C. (1978). A Practical Guide to Splines. Springer, 1978.
2. Luo, Z., Wahba, G. (1997). Hybrid adaptive splines. J. Amer. Statist.

Assoc. 92, 107-116.
3. Lindstrom, M. J. (1999). Penalized estimation of free-knot splines. J.

Comput. Graph. Statist. 8, 333-352.
4. DiMatteo, I., Genovese, C., Kass, R. (2001). Bayesian curve-fitting with

free-knot splines. Biometrika 88, 1055-1071.
5. Andrieu, C., Freitas, N. D., Doucet, A. (2001). Robust full bayesian

learning for radial basis networks. Neural Comput. 13, 2359-2407.
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Nonparametric adaptive Bayesian oracle
projection estimation in the white noise model

Aleksandra Babenko

Utrecht University, Netherlands, babenko@math.uu.nl

Eduard Belitser
Utrecht University, Netherlands, belitser@math.uu.nl

Abstract. We consider an oracle projection estimator in Gaussian white
noise model. Under appropriate hierarchical prior we construct a Bayes
estimator for the cut-off parameter of the projection estimator and show
that the resulting adaptive projection estimator for the signal satisfies an
oracle quadratic risk inequality. The main tool in our approach is the ex-
ponential inequality for the posterior probabilities of the cut-off parameter.
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B-splines regression smoothing and difference
type of penalties

Irène Gijbels
Katholieke Universiteit Leuven, Belguim, irene.gijbels@wis.kuleuven.be

Anneleen Verhasselt

Katholieke Universiteit Leuven, Belgium,
anneleen.verhasselt@wis.kuleuven.be

Abstract. P-splines were first introduced by Eilers and Marx (1996) to ap-
proximate the unknown mean-function via a regression with B-splines and
a penalty on the sum of squared k-th order differences of the regression
coefficients. These P-splines are an extension of ordinary least squares
regression which provides a solution to the problem of overfitting of the
latter. Other frequently used penalties, which were first proposed in the
model selection context, are LASSO, bridge and elastic net. In the opti-
mization problem of B-splines regression with penalties, some parameters
such as the smoothing parameter, the degree of the B-splines, the number
of knots and the penalty should be chosen. A particular method, based on
the minimization of the Akaike information criterion, to choose the order
of the penalty and the smoothing parameter for generalized linear models
is presented. Notably, a theoretical ‘best’ value of the difference order is
investigated.

1. Eilers, P., Marx, B. (1996). Flexible smoothing with B-splines and
penalties. Statist. Sci., 11, 89–102.
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Principal points and elliptical distributions from
the multivariate setting to the functional case

Juan Lucas Bali

Universidad de Buenos Aires - FONCyT, Argentina,
lucasbl3@yahoo.com.ar

Graciela L. Boente Boente
Universidad de Buenos Aires-CONICET, Argentina, gboente@dm.uba.ar

Abstract. The k principal points of a random vector X are defined as a
set of points which minimize the expected squared distance between X

and the nearest point in the set. They are thoroughly studied in [1], [2],
[5] and [7]. For their treatment, the examination is usually restricted to
the family of elliptical distributions ([3] and [4]), requiring some auxiliary
results regarding self-consistency of distributions([6]). In this talk we will
present an extension of the previous results to the functional case. That
is, we think of random elements over a separable Hilbert space H and we
generalize the concepts of principal points, self-consistent points and of el-
liptical distributions so as to fit them in this functional framework. Results
linking self-consistency and the eigenvectors of the covariance operator are
re-obtained in this new setting. We also generalize the explicit formula
for the k = 2 case in [1] so as to include elliptically distributed random
elements in H.

1. Flury, B. A. (1990). Principal Points, Biometrika 77, 33–41.
2. Flury, B. A. (1993). Estimation of Principal Points, Appl. Statist. 42,

139–151.
3. Frahm, G. (2004). Generalized Elliptical Distributions: Theory and Ap-

plications. PhD thesis from the University of Cologne, Germany.
4. Muirhead R. J. (1982). Aspects of Multivariate Statistical Theory. John

Wiley and Sons Canada.
5. Tarpey, T. (1995). Principal Points and Self–Consistent Points of Sym-

metric Multivariate Distributions. J. Multivariate Anal. 53, 39–51.
6. Tarpey T. y Flury B. (1996). Self-Consistency: A Fundamental Concept

in Statistics, Statist. Sci. 11, 229–243.
7. Tarpey T., Li L., Flury B. (1995). Principal Points and Self-Consistent

Points of Elliptical Distributions. Ann. Statist. 23, 103–112.
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Length and surface area estimation under
convexity type assumptions

Beatriz Pateiro-López

Universidade de Santiago de Compostela, Spain, beatriz.pateiro@usc.es

Alberto Rodŕıguez Casal
Universidade de Santiago de Compostela, Spain, alrodcas@usc.es

Abstract. The reconstruction of a compact set S ⊂ R
d from a finite set

of points taken in it is an interesting problem that have been addressed
in many fields like computational geometry. The case where S is assumed
to be convex has been extensively analyzed in the literature. In this case
there exists a quite natural estimator of S: the convex hull of the sample.
The perimeter and surface area of the convex hull of the sample can be
successfully used for estimating the length and surface area of S. In this
paper a less restrictive assumption on the set we want to estimate is con-
sidered. It is assumed that S and its complementary are both α-convex,
which means that a ball of radius α can roll freely outside and inside the
set. Under this assumption the α-convex hull of the sample is the natural
estimator. We show that this estimator performs well not only as a support
estimator but also as an estimator of the surface area of the set.
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Functional data classification based on
reproducing kernel regularization

Alberto Muñoz
Universidad Carlos III de Madrid, Spain, alberto.munoz@uc3m.es

Javier González
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Abstract. Functional data are difficult to manage for most traditional pat-
tern recognition techniques, given the very high (or intrinsically infinite)
dimensionality. The reason is that functional data are functions and most
algorithms are designed to work with vectors.
In this paper we propose a functional analysis technique to obtain finite
dimensional representations of functional data. The key idea is to consider
each functional datum as a point in a general function space and then to
project these points on to a Reproducing Kernel Hilbert subspace. For this
aim we will use Regularization Theory, using the Tikonov approach and
the quadratic loss function.
In addition, we show some theoretical properties of the method: The repre-
sentation is continuous with respect to the original representation function
and the finite sample approximation of the representation converges to the
true representation in terms of the eigenfunctions of the covariance function
that defines the Reproducing Kernel Space. We also explain the perfor-
mance of the method when the covariance function is changed in several
ways.
Regarding experimental work, we illustrate the performance of the pro-
posed representation method in several classification and clustering prob-
lems of functional data sets. In particular, we show the performance of
the proposed representation when we apply the procedure to cluster the
Canadian temperature series data set, and compare the results to others
obtained in the literature.
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Smoothing parameter selection in hazard rate
estimation

Francois Van Graan

North-West University, South Africa, Francois.VanGraan@nwu.ac.za

Abstract. Kernel type estimators of ratio functions such as the hazard rate
have been studied by a number of authors. The kernel estimator of a hazard
function involves evaluation of a cumulative distribution function estimate.
The so-called internal estimator is obtained by convolution of a kernel and
a cumulative hazard estimator. However, the practical use of the estimator
heavily depends on the choice of the smoothing parameter. It is known that
the least squares cross-validation bandwidth is asymptotically optimal in
the case of hazard rate estimation in the settings of both complete and
randomly right-censored samples. However the rate of convergence is slow.
An alternative to the previous method is using a bandwidth selector based
on the bootstrap. The purpose of this presentation is to compare the
empirical performances of the different bandwidth selectors in hazard rate
estimation for moderate sample sizes and different models.
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A copula approach to conditional density
estimation

Olivier P. Faugeras

Laboratoire de Statistique Théorique et Appliquée (LSTA),
University Pierre et Marie Curie - Paris 6, France,
olivier.faugeras@gmail.com

Abstract. We present a new kernel estimator of the conditional density of
a real valued random variable Y given X = x. It is based on an efficient
transformation of the data by an empirical approximation of the quan-
tile transform. By use of the copula representation, the estimator turns
out to have an appealing product form, whereas competitors based either
on the ratio of estimations of the joint and marginal densities or on non-
parametric regression have a quotient shape. Thanks to this structure, its
asymptotic properties are derived by simple combination of the results ob-
tained on (unconditional) density estimation. In particular, a comparison
of its asymptotic bias and variance and simulation evidence shows that the
proposed estimator does not suffer from instability issues of its quotient
shaped rivals, especially when their denominator is close to zero, e.g. for
large values of x in the tails of the distribution of X.
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A bootstrap comparison of generalized linear
models against non-parametric alternatives with
binomial stimulus-response data
Kamila Żychaluk

School of Electrical and Electronic Engineering, University of Manchester,
UK, kamila.zychaluk@manchester.ac.uk

David H. Foster
School of Electrical and Electronic Engineering, University of Manchester,
UK, d.h.foster@manchester.ac.uk

Abstract. Many experiments involve recording a binary response at dif-
ferent levels of a stimulus. The underlying stimulus-response function is
usually represented parametrically as a generalized linear model (GLM)
with the requirement that it should be monotonic with the stimulus level
x. Monotonicity can be ensured by modelling the linear predictor as
η(x) = ax + b. The shape of the stimulus-response function is then deter-
mined by the chosen link function, relating probability of success to linear
prediction.
There is often little to guide the choice of the link function, and testing for
its adequacy is thus crucial. Here, a test is explored using the difference
in deviances DGLM and Dloc between the GLM and a local linear model,
that is, S = DGLM − Dloc. This test is a special case of the generalized
likelihood ratio test proposed in [1].
The difference in deviances for nested GLMs is distributed asymptotically
as χ2

l−k, where k, l are the degrees of freedom for the two models [3]. The
same may also be true for local models [2], with degrees of freedom for the
local model defined as the trace of the hat matrix. But these asymptotic
results may not hold for finite samples, and the simulations undertaken here
show that the significance level for such a test is not at its nominal level.
An alternative method investigated here is to calculate the p-values using
the bootstrap method, with the bootstrap samples generated from the null
parametric model. Simulations suggest that these bootstrap p-values have
a uniform distribution if the null model is correct. The test also has good
power for the alternatives considered.

1. Fan, J., Jiang, J. (2007). Nonparametric inference with generalized
likelihood ratio tests. Test 16, 409–444.

2. Hastie, T. J., Tibshirani, R. J. (1990). Generalized Additive Models.
Chapman and Hall, London.

3. McCullagh, P., Nelder, J. A. (1990). Generalized Linear Models. Chap-
man & Hall, London.
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Nonparametric surveillance under weak
dependence to detect structural changes

Ansgar Steland

Institute of Statistics, RWTH Aachen, Germany,
University, steland@stochastik.rwth-aachen.de

Abstract. Suppose we are given a series of observations Y1, Y2, . . . arriving
sequentially, i.e., at the nth time instance the data Y1, . . . , Yn are avail-
able for inference. We consider the problem to analyze nonparametrically
whether there is a change in the mean when the observations behave as a
random walk.
This is a problem with applications in many areas, for instance in engineer-
ing and econometrics. In engineering a departure from a (reference) signal
f0 may indicate that an information channel is no longer reliable or that
the current compression has to be updated. In econometrics changes may
indicate that the economic regime governing the data generating process
has changed. Methods to deal with this (classic) problem based on kernel
smoothers related to the Nadaraya Watson estimator have been studied
in detail by the author for mixing processes (Steland, 2004, Metrika) and
random walks with dependent increments (Steland, 2005, JTSA) under
non-standard conditions. For the related problem to detect a change from
integration to stationarity, and vice versa, we refer to (Steland, 2007, JSPI)
and the references given there. In the latter papers there are also extensive
references to the literature.
Local polynomial fitting is nowadays a common and well established ap-
proach to estimate nonparametrically conditional means. For asymptotic
results under mixing conditions see, for instance, (Masry and Fan, 1997,
Scand. J. Statist.)
In the present paper we study the local linear estimator under a different
sampling model, namely the classic time series approach where observa-
tions are observed at equidistant time instances. We base our detection
procedure on the canonical process associated to that estimator. Assum-
ing weak dependent errors a functional central limit theorem is established.
Our result implies a central limit theorem for the proposed detection rule,
which can be used to design surveillance procedures.
We discuss applications of our results, which also cover certain discretely
observed continuous time models based on Brownian motion. In addition,
we also present new results on the related problem of nonparametric detec-
tion of mean changes in weak dependent time series, which can be applied
to the analysis of sparse signals.
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Adaptive maximum and proxy maximum
probability estimation of multidimensional
Poisson intensities

José Carlos Simon de Miranda

Institute of Mathematics and Statistics University of São Paulo, Brazil,
simon@ime.usp.br

Abstract. We propose a non parametric methodology of estimation of the
intensity for Poisson point processes on R

m. We assume the observation re-
gion, O, is a bounded R

m interval. The space of positive functions formed
by composition of L2(O)-functions with the exponential is endowed with
a probability induced from another one defined on the set of wavelet co-
efficients. This is a convenient space for the intensity to belong to and
we choose as our first estimate for the intensity the function that maxi-
mizes the posterior probability, given a trajectory of the Poisson process
on O, by means of determining the wavelet coefficients of its logarithm. A
second estimate is obtained by suitably writing the posterior probability
as a product of functions that are maximized separately giving raise to
a proxy maximum posterior probability estimate. This approach presents
the desired feature of furnishing everywhere non negative amplitude-scale
invariant estimates of the intensity that exhibit not only a minimization of
the energy, relative to the wavelet basis, but also a maximization of the en-
tropy of the process on O conditional to the realization. A novel adaptive
thresholding procedure based on jointly testing hypothesis, on the wavelet
coefficients, and adjusting the priors’ locations is given. We define expo-
nentially decaying invariance and, as an example of the general estimating
procedure above, we specialize to self affine and self similar probability
prior Poisson processes.
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Maŕıa Carmen Iglesias-Pérez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Universidad de Vigo, Spain, mcigles@uvigo.es

K

Arne Kovac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
University of Bristol, United Kingdom, a.kovac@bristol.ac.uk

L

Michael Levine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Purdue University, USA, mlevins@stat.purdue.edu

M

Cristina Martins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
University of Coimbra, Portugal, cmtm@mat.uc.pt

Raquel Menezes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Universidade do Minho, Portugal, rmenezes@mct.uminho.pt

Thoralf Mildenberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Technische Universitat Dortmund, Germany,
mildenbe@statistik.uni-dortmund.de

Anthea Monod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
University of Neuchâtel, Switzerland, anthea.monod@unine.ch
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