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A pointfree account of Carathéodory’s Extension Theorem

Carathéodory’s extension theorem says that any σ-finite finitely additive measure µ : Σ → R on
a Boolean algebra of subsets Σ ⊆ P(X) can be uniquely extended to a measure on the smallest
σ-algebra σ(Σ) containing Σ. In the proof, µ is first extended to an outer measure µ∗ : P(X)→ R
and then the resulting measure is obtained as the restriction of µ∗ to σ(Σ).

In the point-free context, one starts with a σ-finite (abstract) finitely additive measure µ : B → R,
for some Boolean algebra B. Then, in order to extend µ to an outer measure, one needs to find
an ambient Boolean frame which contains B and has the same set of points as the spectrum of B.
It turns out that the required Boolean frame can be obtained by the frame-theoretic discretisation
construction Sc(−), recently studied by Pultr, Ball, Picado, Tozzi, etc. As a result, we can prove
Carathéodory’s theorem in a purely point-free fashion.

Furthermore, we also discuss the relationship between Sc(−) and canonical extensions, which play
the role of discretisation in the context of lattices.
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