Manuela Sobral

Department of Mathematics, University of Coimbra, Portugal

Strict monadic topology: first separation axioms and reflections

Given a monad T on the category of sets, we consider reflections of Alg(T) into the full subcategories formed by algebras satisfying natural counterparts of topological separation axioms T_0, T_1, T_2 and T_{ts} (where "ts" stands for "totally separated"). We ask whether these reflections satisfy simple conditions useful in categorical Galois theory, and we give some partial answers in easy cases; for that, we use Birkhoff's well-known characterization of distributive lattices [1], and some results of [2]-[5].

References

- G. Birkhoff, Applications of lattice algebra, Mathematical Proceedings of the Cambridge Philosophical Society 2 (1934) 115–122.
- [2] A. Carboni, G. Janelidze, G. M. Kelly, and R. Paré, On localization and stabilization of factorization systems, *Applied Categorical Structures* 5 (1997) 1–58.
- [3] G. Janelidze and G. M. Kelly, Galois theory and a general notion of a central extension, Journal of Pure and Applied Algebra 97 (1994) 135–161.
- [4] G. Janelidze, V. Laan, and L. Márki, Limit preservation properties of the greatest semilattice image functor on semigroups, *International Journal of Algebra and Computation* 18, 5 (2008) 853–867.
- [5] T. Tamura, Attainability of systems of identities on semigroups, Journal of Algebra 3 (1966) 261-276.

Joint work with George Janelidze, Department of Mathematics and Applied Mathematics, University of Cape Town, South Africa.