# Frames and Frame Relations 

M. Andrew Moshier ${ }^{1}$ Imanol Mozo ${ }^{2}$ September 2018

Chapman University Euskal Herriko Unibertsitatea

## The Next Poem - Dana Gioia

## How much better it seems now

than when it is finally done the unforgettable first line, the cunning way the stanzas run.

The rhymes soft-spoken and suggestive are barely audible at first, an appetite not yet acknowledged like the inkling of a thirst.

While gradually the form appears as each line is coaxed aloud the architecture of a room seen from the middle of a crowd.

The music that of common speech but slanted so that each detail sounds unexpected as a sharp inserted in a simple scale.

No jumble box of imagery dumped glumly in the readers lap or elegantly packaged junk the unsuspecting must unwrap.

But words that could direct a friend precisely to an unknown place, those few unshakeable details that no confusion can erase.

And the real subject left unspoken but unmistakable to those who dont expect a jungle parrot in the black and white of prose.

How much better it seems now than when it is finally written. How hungrily one waits to feel the bright lure seized, the old hook bitten.

## The Idea

We take seriously

## Background

## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk


## Background

## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)


## Background

## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales


## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point


## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

- The assembly of a frame comes about as a sublocale $\mathcal{Q}(L)$ of a particular completely distributive lattice.


## The Idea

## We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) - in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

- The assembly of a frame comes about as a sublocale $\mathcal{Q}(L)$ of a particular completely distributive lattice.
- Proof that $\mathcal{Q}(L)$ has the universal property of the assembly using simple combinatorial reasoning - essentially via a kind of sequent calculus.


## First step: Weakening Relations

Definition
For posets $A$ and $B$, a weakening relation is a relation
$R \subseteq A \times B$ so that

$$
\frac{x \leq x x^{\prime} R y^{\prime} \leq_{y} y}{x R y}
$$

We denote this by $R: X \xrightarrow{\rightarrow} Y$.
$\overline{\text { Pos }}$ will denote the category of posets and weakening relations.

- id $_{X}$ is simply $\leq_{x}$.
- Composition is relational product (but I write $R$; $S$ instead of $S \circ R$.


## Low Hanging Fruit

- $\overline{\operatorname{Pos}}(A, B)=\operatorname{Up}\left(A^{\partial} \times B\right)$, so it is a completely distributive lattice.


## Low Hanging Fruit

- $\overline{\operatorname{Pos}}(A, B)=\operatorname{Up}\left(A^{\partial} \times B\right)$, so it is a completely distributive lattice.
- Composition is residuated $R ; S \subseteq T \Leftrightarrow R \subseteq S \backslash T \Leftrightarrow S \subseteq T / R$.


## Low Hanging Fruit

- $\overline{\operatorname{Pos}}(A, B)=\operatorname{Up}\left(A^{\partial} \times B\right)$, so it is a completely distributive lattice.
- Composition is residuated $R ; S \subseteq T \Leftrightarrow R \subseteq S \backslash T \Leftrightarrow S \subseteq T / R$.
- A w. relation $R: A \rightarrow B$ satisfies $\mathrm{id}_{A} \subseteq\left(\mathrm{id}_{B} / R\right) ; R$ if and only if it is determined by a monotone function $f: A \rightarrow B$ by $x R y$ iff $f(x) \leq y$.


## Low Hanging Fruit

- $\overline{\operatorname{Pos}}(A, B)=\operatorname{Up}\left(A^{\partial} \times B\right)$, so it is a completely distributive lattice.
- Composition is residuated $R ; S \subseteq T \Leftrightarrow R \subseteq S \backslash T \Leftrightarrow S \subseteq T / R$.
- A w. relation $R: A \leftrightarrow B$ satisfies $\mathrm{id}_{A} \subseteq\left(\mathrm{id}_{B} / R\right) ; R$ if and only if it is determined by a monotone function $f: A \rightarrow B$ by $x R y$ iff $f(x) \leq y$.
- If $A$ has binary meets and $B$ has binary joins, Heyting arrows in $\overline{\operatorname{Pos}(A, B) \text { are defined by }}$

$$
\frac{\forall x, y . x R y \Rightarrow x \wedge a S b \vee x}{a(R \rightarrow S) b}
$$

## Background

## Meet and Sup Stability

Definition

- If $B$ is a (unital) meet semilattice, say $R: A \rightarrow B$ is meet-stable if

$$
\overline{x R 1} \quad \frac{x R y \quad x R y^{\prime}}{x R y \wedge y^{\prime}}
$$

## Meet and Sup Stability

Definition

- If $B$ is a (unital) meet semilattice, say $R: A \rightarrow B$ is meet-stable if

$$
\overline{x R 1} \quad \frac{x R y \quad x R y^{\prime}}{x R y \wedge y^{\prime}}
$$

- If $A$ is a sup lattice, say $R: A \rightarrow B$ is sup-stable if

$$
\frac{\left\{x_{i} R y\right\}_{i}}{\bigvee_{i} x_{i} R y}
$$

## Meet and Sup Stability

Definition

- If $B$ is a (unital) meet semilatice, say $R: A \rightarrow B$ is meet-stable if

$$
\overline{x R 1} \quad \frac{x R y \quad x R y^{\prime}}{x R y \wedge y^{\prime}}
$$

- If $A$ is a sup lattice, say $R: A \rightarrow B$ is sup-stable if

$$
\frac{\left\{x_{i} R y\right\}_{i}}{V_{i} x_{i} R y}
$$

- $\overline{\text { SLat: }}$ category of meet semilattices with meet stable relations
Sup: category of sup lattices with sup-stable relations. Frm: category of frames with meet-sup-stable relations.


## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;


## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\operatorname{Sup}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;


## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Sup}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\operatorname{Frm}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$.


## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Sup}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\operatorname{Frm}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$.


## Proof.

## More Low Hanging Fruit

Lemma
If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Sup}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\operatorname{Frm}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$.


## Proof.

- Clearly stable relations (either kind) are closed under intersection.


## More Low Hanging Fruit

## Lemma

If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Sup}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Frm}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$.


## Proof.

- Clearly stable relations (either kind) are closed under intersection.
- We then use our nice characterization of Heyting arrow to check that if $S$ is stable, so is $R \rightarrow S$.


## More Low Hanging Fruit

## Lemma

If $A$ and $B$ are frames, then

- $\overline{\operatorname{SLat}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\overline{\operatorname{Sup}}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$;
- $\operatorname{Frm}(A, B)$ is a sublocale of $\overline{\operatorname{Pos}}(A, B)$.


## Proof.

- Clearly stable relations (either kind) are closed under intersection.
- We then use our nice characterization of Heyting arrow to check that if $S$ is stable, so is $R \rightarrow S$.
- $\overline{\operatorname{Frm}}(A, B)=\overline{\operatorname{SLat}}(A, B) \cap \overline{\operatorname{Sup}}(A, B)$.


## Fruit Requiring a Small Step Stool

Lemma
The construct $A \mapsto \overline{F r m}(A, A)$ is an endofunctor in Frm (it is only a lax functor on $\overline{F r m}$ ).

## Fruit Requiring a Small Step Stool

Lemma
The construct $A \mapsto \overline{F r m}(A, A)$ is an endofunctor in Frm (it is only a lax functor on Frm).
Proof.

## Fruit Requiring a Small Step Stool

Lemma
The construct $A \mapsto \overline{\operatorname{Frm}}(A, A)$ is an endofunctor in Frm (it is only a lax functor on Frm).
Proof.

- The frame homomorphisms are bijective with frame relations $F: A \rightarrow B$ satisfying $\mathrm{id}_{A} \subseteq \mathrm{id}_{B} / F$.


## Fruit Requiring a Small Step Stool

Lemma
The construct $A \mapsto \overline{F r m}(A, A)$ is an endofunctor in Frm (it is only a lax functor on Frm).

Proof.

- The frame homomorphisms are bijective with frame relations $F: A \rightarrow B$ satisfying $\mathrm{id}_{A} \subseteq \mathrm{id}_{B} / F$.
- Using this, check that

$$
R ; F \subseteq F ; S
$$

is a frame relation from $\overline{\operatorname{Frm}}(A, A)$ to $\overline{\operatorname{Frm}}(B, B)$ that has an adjoint. So it determines a frame homomorphism.

## Fruit Requiring a Small Step Stool

Lemma
The construct $A \mapsto \overline{F r m}(A, A)$ is an endofunctor in Frm (it is only a lax functor on Frm).

Proof.

- The frame homomorphisms are bijective with frame relations $F: A \rightarrow B$ satisfying $\mathrm{id}_{A} \subseteq \mathrm{id}_{B} / F$.
- Using this, check that

$$
R ; F \subseteq F ; S
$$

is a frame relation from $\overline{\operatorname{Frm}}(A, A)$ to $\overline{\operatorname{Frm}}(B, B)$ that has an adjoint. So it determines a frame homomorphism.

- Checking that this respects identity and composition is easy.


## Picking Things We Dropped on the Ground

Definition
Let $\mathcal{E}(A)=\overline{\operatorname{Frm}}(A, A)$.
Let $\mathcal{R}(A)=$ the closed sublocale of $\mathcal{E}(A)$ determined by $\mathrm{id}_{A}$.
Let $\mathcal{L}(A)=$ the open sublocale of $\mathcal{E}(A)$ determined by id ${ }_{A}$.

## Picking Things We Dropped on the Ground

## Definition

Let $\mathcal{E}(A)=\overline{\operatorname{Frm}}(A, A)$.
Let $\mathcal{R}(A)=$ the closed sublocale of $\mathcal{E}(A)$ determined by $\mathrm{id}_{A}$.
Let $\mathcal{L}(A)=$ the open sublocale of $\mathcal{E}(A)$ determined by id ${ }_{A}$.
Easy to check

## Picking Things We Dropped on the Ground

## Definition

Let $\mathcal{E}(A)=\overline{\operatorname{Frm}}(A, A)$.
Let $\mathcal{R}(A)=$ the closed sublocale of $\mathcal{E}(A)$ determined by id $_{A}$.
Let $\mathcal{L}(A)=$ the open sublocale of $\mathcal{E}(A)$ determined by id ${ }_{A}$.
Easy to check

- $\mathcal{R}$ is also functorial - exactly as $\mathcal{E}$.


## Picking Things We Dropped on the Ground

## Definition

Let $\mathcal{E}(A)=\overline{\operatorname{Frm}}(A, A)$.
Let $\mathcal{R}(A)=$ the closed sublocale of $\mathcal{E}(A)$ determined by id $_{A}$.
Let $\mathcal{L}(A)=$ the open sublocale of $\mathcal{E}(A)$ determined by id ${ }_{A}$.
Easy to check

- $\mathcal{R}$ is also functorial - exactly as $\mathcal{E}$.
- Define relations $\gamma_{a}, v_{a} \in \mathcal{R}(A)$.

$$
\frac{x \leq a \vee y}{x \gamma_{a} y} \quad \frac{x \wedge a \leq y}{x v_{a} y}
$$

These not only contain id $_{A}$, but are transitive relations.

## Requiring a Ladder

Definition
Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.

## Requiring a Ladder

Definition
Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

## Requiring a Ladder

Definition
Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.

## Requiring a Ladder

Definition
Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.
2. $\mathcal{Q}$ is functorial.

## Requiring a Ladder

Definition
Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.
2. $\mathcal{Q}$ is functorial.
3. In $\mathcal{Q}(A)$, for each $a \in A, \gamma_{a}$ and $v_{a}$ are complements.

## Requiring a Ladder

## Definition

Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.
2. $\mathcal{Q}$ is functorial.
3. In $\mathcal{Q}(A)$, for each $a \in A, \gamma_{a}$ and $v_{a}$ are complements.
4. For any $R \in \mathcal{Q}(A)$, it is the case that $R=\bigcup\left\{\gamma_{a} \cap v_{b} \mid a R b\right\}$.

## Requiring a Ladder

## Definition

Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.
2. $\mathcal{Q}$ is functorial.
3. In $\mathcal{Q}(A)$, for each $a \in A, \gamma_{a}$ and $v_{a}$ are complements.
4. For any $R \in \mathcal{Q}(A)$, it is the case that $R=\bigcup\left\{\gamma_{a} \cap v_{b} \mid a R b\right\}$.
5. The frame relation $\Gamma: A \rightarrow A$ defined by $\gamma_{a} \subseteq R$ satisfies $i d_{A} \subseteq \Gamma ;\left(i d_{\mathcal{A}} / \Gamma\right)$.

## Requiring a Ladder

## Definition

Let $\mathcal{Q}(A)=$ transitive relations in $\mathcal{R}(A)$.
Lemma

1. $\mathcal{Q}(A)$ is a sublocale of $\mathcal{R}(A)$.
2. $\mathcal{Q}$ is functorial.
3. In $\mathcal{Q}(A)$, for each $a \in A, \gamma_{a}$ and $v_{a}$ are complements.
4. For any $R \in \mathcal{Q}(A)$, it is the case that $R=\bigcup\left\{\gamma_{a} \cap v_{b} \mid a R b\right\}$.
5. The frame relation $\Gamma: A \rightarrow A$ defined by $\gamma_{a} \subseteq R$ satisfies $i d_{A} \subseteq \Gamma ;\left(i d_{\mathcal{A}} / \Gamma\right)$.

## Proof:

(1) and (2) are now routine. ...

## Proof continued

We need this
Lemma
A frame relation $R \in R(A)$ is transitive iff it admits Gentzen's
Cut:

$$
\frac{u R v \vee w \quad w \wedge x R y}{u \wedge x R v \vee y}
$$

"lf" is easy. "Only if"

$$
\frac{\frac{u R v \vee w \quad x R x}{u \wedge x R(v \vee w) \wedge x} \quad \frac{w \wedge x R y \quad v R v}{v \vee(w \wedge x) R v \vee y}}{u \wedge x R v \vee y}
$$

## Proof continued

$$
\frac{x \gamma_{a} a \quad a v_{a} y}{x \gamma_{a} ; v_{a} y}
$$

But any transitive relation containing $\gamma_{a}$ and $v_{a}$ contains $\gamma_{a} ; v_{a}$.

- For any $a, b, a \gamma_{a} b$ and $a v_{b} b$. So $R \subseteq \bigcup_{a R b}\left(\gamma_{a} \cap v_{b}\right)$. And suppose $a R b$ and $x\left(\gamma_{a} \cap v_{b}\right) y$. Then

$$
\frac{x R y \vee a \quad a R b}{\frac{x R y \vee b}{x R y}} b \wedge x R y
$$

## Proof continued

$$
\frac{x \gamma_{a} a \quad a v_{a} y}{x \gamma_{a} ; v_{a} y}
$$

But any transitive relation containing $\gamma_{a}$ and $v_{a}$ contains $\gamma_{a} ; v_{a}$.

- If $x \gamma_{a} y$ and $x v_{a} y$, then

$$
\frac{x \leq y \vee a \quad a \wedge x \leq y}{x \leq y}
$$

So $\gamma_{a} \cap v_{a}=\mathrm{id}_{A}$.

- For any $a, b, a \gamma_{a} b$ and $a v_{b} b$. So $R \subseteq \bigcup_{a R b}\left(\gamma_{a} \cap v_{b}\right)$. And suppose $a R b$ and $x\left(\gamma_{a} \cap v_{b}\right) y$. Then

$$
\frac{x R y \vee a \quad a R b}{\frac{x R y \vee b}{x R y}} b \wedge x R y
$$

## Definitely Need a Proper Ladder Now

Definition
Define on any frame $B, \prec_{B}: B \rightarrow B$ by

$$
\frac{w \wedge x \leq 0 \quad 1 \leq y \vee w}{\Longrightarrow}
$$

This is meet stable, not sup stable.

## Definitely Need a Proper Ladder Now

Definition
Define on any frame $B, \prec_{B}: B \rightarrow B$ by

$$
\frac{w \wedge x \leq 0 \quad 1 \leq y \vee w}{x \prec_{B} y}
$$

This is meet stable, not sup stable.
Theorem
For any frame $A, \Gamma: A \rightarrow \mathcal{Q}(A)$ is universal with respect to functional frame relations for $R: A \leftrightarrow B$ satisfying

1. $i d_{A} \subseteq R ;\left(i d_{B} / R\right) ;$
2. $\left(i d_{B} / R\right) ; R \subseteq \prec_{B}$.

## Definitely Need a Proper Ladder Now

Definition
Define on any frame $B, \prec_{B}: B \rightarrow B$ by

$$
\frac{w \wedge x \leq 0 \quad 1 \leq y \vee w}{x \prec_{B} y}
$$

This is meet stable, not sup stable.
Theorem
For any frame $A, \Gamma: A \rightarrow \mathcal{Q}(A)$ is universal with respect to functional frame relations for $R: A \rightarrow B$ satisfying

1. $i d_{A} \subseteq R ;\left(i d_{B} / R\right)$;
2. $\left(i d_{B} / R\right) ; R \subseteq \prec_{B}$.

Proof.
Not in a 30 minute talk!

## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{\partial}$.


## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{\partial}$.
- $\mathcal{Q}(A)$ sits as a sublocale in $\mathcal{E}(A)$ which sits as a sublocale of the completely distributive lattice of all endo-weakening relations.


## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{\partial}$.
- $\mathcal{Q}(A)$ sits as a sublocale in $\mathcal{E}(A)$ which sits as a sublocale of the completely distributive lattice of all endo-weakening relations.
- Recall that rl mentioned the open sublocale of $\mathcal{E}(A)$ determined by id ${ }_{A}$.


## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{\partial}$.
- $\mathcal{Q}(A)$ sits as a sublocale in $\mathcal{E}(A)$ which sits as a sublocale of the completely distributive lattice of all endo-weakening relations.
- Recall that rl mentioned the open sublocale of $\mathcal{E}(A)$ determined by id $_{A}$.
- Inside that, one finds the dense sub-identities: $R \subseteq R$; $R$ and $R \subseteq \mathrm{id}_{A}$.


## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{\partial}$.
- $\mathcal{Q}(A)$ sits as a sublocale in $\mathcal{E}(A)$ which sits as a sublocale of the completely distributive lattice of all endo-weakening relations.
- Recall that rl mentioned the open sublocale of $\mathcal{E}(A)$ determined by id $_{A}$.
- Inside that, one finds the dense sub-identities: $R \subseteq R$; $R$ and $R \subseteq \mathrm{id}_{A}$.
- The dense sub-identities correspond exactly to subframes of $A$.


## What Did We Just Harvest?

- $\mathcal{Q}(A)$ has the universal property of $S(A)^{d}$.
- $\mathcal{Q}(A)$ sits as a sublocale in $\mathcal{E}(A)$ which sits as a sublocale of the completely distributive lattice of all endo-weakening relations.
- Recall that rl mentioned the open sublocale of $\mathcal{E}(A)$ determined by $\mathrm{id}_{A}$.
- Inside that, one finds the dense sub-identities: $R \subseteq R ; R$ and $R \subseteq \mathrm{id}_{A}$.
- The dense sub-identities correspond exactly to subframes of $A$.
- So $\mathcal{E}(A)$ is a frame in which all sublocales (transitive relations containing $\mathrm{id}_{A}$ ) and all subframes (dense relations contained in $\mathrm{id}_{A}$ ) reside.


## Happy Birthday, Ales. And thank you for your next poem theorem.

