Frames and Frame Relations

M. Andrew Moshier¹ Imanol Mozo² September 2018

Chapman University Euskal Herriko Unibertsitatea

◆□ > ◆□ > ◆臣 > ◆臣 > □ □ ○ ○ ○ ○

The Next Poem — Dana Gioia

How much better it seems now than when it is finally done – the unforgettable first line, the cunning way the stanzas run.

The rhymes soft-spoken and suggestive are barely audible at first, an appetite not yet acknowledged like the inkling of a thirst.

While gradually the form appears as each line is coaxed aloud – the architecture of a room seen from the middle of a crowd.

(日)

The music that of common speech but slanted so that each detail sounds unexpected as a sharp inserted in a simple scale.

No jumble box of imagery dumped glumly in the readers lap or elegantly packaged junk the unsuspecting must unwrap.

But words that could direct a friend precisely to an unknown place, those few unshakeable details that no confusion can erase.

And the real subject left unspoken but unmistakable to those who dont expect a jungle parrot in the black and white of prose.

Δ

(日)

How much better it seems now than when it is finally written. How hungrily one waits to feel the bright lure seized, the old hook bitten.

<ロ> (四) (四) (三) (三)

We take seriously

We take seriously

 Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk

ヘロア ヘロア ヘビア ヘビア

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)

<ロ> (四) (四) (三) (三) (三) (三)

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales

<ロ> (四) (四) (三) (三) (三) (三)

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

<ロ> <同> <同> <同> <同> <同> <同> = □

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

<ロ> <同> <同> <同> <同> <同> <同> = □

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

► The assembly of a frame comes about as a sublocale Q(L) of a particular completely distributive lattice.

We take seriously

- Injectivity of frames as semilattices (Bruns-Lakser and Horn-Kimura) – in the background for this talk
- Order enrichment (of the category of frames with semilattice morphisms)
- Locales and sublocales
- Completely distributive lattices as a starting point

In particular,

- ► The assembly of a frame comes about as a sublocale Q(L) of a particular completely distributive lattice.
- Proof that Q(L) has the universal property of the assembly using simple combinatorial reasoning – essentially via a kind of sequent calculus.

First step: Weakening Relations

Definition

For posets *A* and *B*, a weakening relation is a relation $R \subseteq A \times B$ so that

$$\frac{x \leq_X x' R y' \leq_Y y}{x R y}$$

We denote this by $R: X \hookrightarrow Y$.

Pos will denote the category of posets and weakening relations.

- id_X is simply \leq_X .
- Composition is relational product (but I write R; S instead of S ∘ R.

(日)

▶ $\overline{\text{Pos}}(A, B) = \text{Up}(A^{\partial} \times B)$, so it is a completely distributive lattice.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

- ▶ $\overline{\text{Pos}}(A, B) = \text{Up}(A^{\partial} \times B)$, so it is a completely distributive lattice.
- Composition is residuated $R; S \subseteq T \Leftrightarrow R \subseteq S \setminus T \Leftrightarrow S \subseteq T/R.$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < ⊙ < ⊙

- ▶ $\overline{\text{Pos}}(A, B) = \text{Up}(A^{\partial} \times B)$, so it is a completely distributive lattice.
- Composition is residuated $R; S \subseteq T \Leftrightarrow R \subseteq S \setminus T \Leftrightarrow S \subseteq T/R.$
- A w. relation R: A ↔ B satisfies id_A ⊆ (id_B/R); R if and only if it is determined by a monotone function f: A → B by x R y iff f(x) ≤ y.

- ▶ $\overline{\text{Pos}}(A, B) = \text{Up}(A^{\partial} \times B)$, so it is a completely distributive lattice.
- Composition is residuated $R; S \subseteq T \Leftrightarrow R \subseteq S \setminus T \Leftrightarrow S \subseteq T/R.$
- A w. relation R: A ↔ B satisfies id_A ⊆ (id_B/R); R if and only if it is determined by a monotone function f: A → B by x R y iff f(x) ≤ y.
- If A has binary meets and B has binary joins, Heyting arrows in Pos(A, B) are defined by

$$\frac{\forall x, y. x R y \Rightarrow x \land a S b \lor x}{a (R \rightarrow S) b}$$

Meet and Sup Stability

Definition

If B is a (unital) meet semilattice, say R: A ↔ B is meet-stable if

$$\frac{x R y x R y'}{x R y \land y'}$$

<ロ> <四> <四> <四> <三</p>

Meet and Sup Stability

Definition

If B is a (unital) meet semilattice, say R: A ↔ B is meet-stable if

$$\frac{x R y x R y'}{x R y \wedge y'}$$

• If A is a sup lattice, say $R: A \hookrightarrow B$ is sup-stable if

$$\frac{\{x_i \ R \ y\}_i}{\bigvee_i x_i \ R \ y}$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回</p>

Meet and Sup Stability

Definition

If B is a (unital) meet semilattice, say R: A ↔ B is meet-stable if

$$\frac{x R y x R y'}{x R y \wedge y'}$$

▶ If A is a sup lattice, say $R: A \hookrightarrow B$ is sup-stable if

$$\frac{\{x_i \ R \ y\}_i}{\bigvee_i x_i \ R \ y}$$

 SLat: category of meet semilattices with meet stable relations

Sup: category of sup lattices with sup-stable relations. Frm: category of frames with meet-sup-stable relations.

Lemma If A and B are frames, then

Lemma If A and B are frames, then

• $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;

<ロ> <四> <四> <四> <三</p>

Lemma

- If A and B are frames, then
 - $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
 - $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;

<ロ> <四> <四> <四> <三> <三> <三> <三

Lemma If A and B are frames, then

- $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Frm}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$.

Lemma

If A and B are frames, then

- $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Frm}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$.

Proof.

Lemma If A and B are frames, then

- $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Frm}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$.

Proof.

 Clearly stable relations (either kind) are closed under intersection.

Lemma If A and B are frames, then

- $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Frm}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$.

Proof.

- Clearly stable relations (either kind) are closed under intersection.
- We then use our nice characterization of Heyting arrow to check that if S is stable, so is R → S.

(日) (四) (日) (日) (日)

Lemma If A and B are frames, then

- $\overline{SLat}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Sup}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$;
- $\overline{Frm}(A, B)$ is a sublocale of $\overline{Pos}(A, B)$.

Proof.

- Clearly stable relations (either kind) are closed under intersection.
- We then use our nice characterization of Heyting arrow to check that if S is stable, so is R → S.

Frm
$$(A, B) = \overline{\text{SLat}}(A, B) \cap \overline{\text{Sup}}(A, B)$$
.

(日) (四) (日) (日) (日)

Lemma

The construct $A \mapsto \overline{Frm}(A, A)$ is an endofunctor in Frm (it is only a lax functor on \overline{Frm}).

Lemma

The construct $A \mapsto \overline{Frm}(A, A)$ is an endofunctor in Frm (it is only a lax functor on \overline{Frm}).

Proof.

Lemma

The construct $A \mapsto \overline{Frm}(A, A)$ is an endofunctor in Frm (it is only a lax functor on \overline{Frm}).

Proof.

The frame homomorphisms are bijective with frame relations *F* : *A* ↔ *B* satisfying id_A ⊆ id_B/*F*.

Lemma

The construct $A \mapsto \overline{Frm}(A, A)$ is an endofunctor in Frm (it is only a lax functor on \overline{Frm}).

Proof.

- The frame homomorphisms are bijective with frame relations *F* : *A* ↔ *B* satisfying id_A ⊆ id_B/*F*.
- Using this, check that

$$R; F \subseteq F; S$$

is a frame relation from $\overline{\text{Frm}}(A, A)$ to $\overline{\text{Frm}}(B, B)$ that has an adjoint. So it determines a frame homomorphism.

Lemma

The construct $A \mapsto \overline{Frm}(A, A)$ is an endofunctor in Frm (it is only a lax functor on \overline{Frm}).

Proof.

- The frame homomorphisms are bijective with frame relations *F* : *A* ↔ *B* satisfying id_A ⊆ id_B/*F*.
- Using this, check that

$$R; F \subseteq F; S$$

is a frame relation from $\overline{\text{Frm}}(A, A)$ to $\overline{\text{Frm}}(B, B)$ that has an adjoint. So it determines a frame homomorphism.

 Checking that this respects identity and composition is easy.

← □ → ← ○ → ← ○ → ← ○ → ← ○
 Frames and Frame Relations

Picking Things We Dropped on the Ground

Definition Let $\mathcal{E}(A) = \overline{\operatorname{Frm}}(A, A)$. Let $\mathcal{R}(A) =$ the closed sublocale of $\mathcal{E}(A)$ determined by id_A. Let $\mathcal{L}(A) =$ the open sublocale of $\mathcal{E}(A)$ determined by id_A.

(日)

Picking Things We Dropped on the Ground

Definition Let $\mathcal{E}(A) = \overline{\text{Frm}}(A, A)$. Let $\mathcal{R}(A) =$ the closed sublocale of $\mathcal{E}(A)$ determined by id_A. Let $\mathcal{L}(A) =$ the open sublocale of $\mathcal{E}(A)$ determined by id_A.

Easy to check

Picking Things We Dropped on the Ground

Definition Let $\mathcal{E}(A) = \overline{\operatorname{Frm}}(A, A)$. Let $\mathcal{R}(A) =$ the closed sublocale of $\mathcal{E}(A)$ determined by id_A. Let $\mathcal{L}(A) =$ the open sublocale of $\mathcal{E}(A)$ determined by id_A.

Easy to check

• \mathcal{R} is also functorial – exactly as \mathcal{E} .

Picking Things We Dropped on the Ground

Definition Let $\mathcal{E}(A) = \overline{\text{Frm}}(A, A)$. Let $\mathcal{R}(A) =$ the closed sublocale of $\mathcal{E}(A)$ determined by id_A. Let $\mathcal{L}(A) =$ the open sublocale of $\mathcal{E}(A)$ determined by id_A.

Easy to check

• \mathcal{R} is also functorial – exactly as \mathcal{E} .

=

• Define relations $\gamma_a, v_a \in \mathcal{R}(A)$.

$$\frac{x \le a \lor y}{x \gamma_a y} \qquad \frac{x \land a \le y}{x \upsilon_a y}$$

These not only contain id_A , but are transitive relations.

Definition Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Definition Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

1. Q(A) is a sublocale of $\mathcal{R}(A)$.

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

<ロト イラト イミト イミト ミークへで Frames and Frame Relations 13/18

.

Lemma

- 1. Q(A) is a sublocale of $\mathcal{R}(A)$.
- **2.** Q is functorial.

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

- 1. Q(A) is a sublocale of $\mathcal{R}(A)$.
- **2.** Q is functorial.
- 3. In Q(A), for each $a \in A$, γ_a and v_a are complements.

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

- 1. Q(A) is a sublocale of $\mathcal{R}(A)$.
- 2. Q is functorial.
- 3. In Q(A), for each $a \in A$, γ_a and v_a are complements.

<ロト イラト イミト イミト ミークへで Frames and Frame Relations 13/18

.

4. For any $R \in Q(A)$, it is the case that $R = \bigcup \{\gamma_a \cap v_b \mid a R b\}.$

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

- 1. Q(A) is a sublocale of $\mathcal{R}(A)$.
- 2. Q is functorial.
- 3. In Q(A), for each $a \in A$, γ_a and v_a are complements.
- 4. For any $R \in Q(A)$, it is the case that $R = \bigcup \{\gamma_a \cap v_b \mid a R b\}.$
- The frame relation Γ: A ↔ A defined by γ_a ⊆ R satisfies id_A ⊆ Γ; (id_A/Γ).

<ロト < 合ト < Eト < Eト E のへで Frames and Frame Relations 13/18

Definition

Let Q(A) = transitive relations in $\mathcal{R}(A)$.

Lemma

- 1. Q(A) is a sublocale of $\mathcal{R}(A)$.
- 2. Q is functorial.
- 3. In Q(A), for each $a \in A$, γ_a and v_a are complements.
- 4. For any $R \in Q(A)$, it is the case that $R = \bigcup \{\gamma_a \cap v_b \mid a R b\}.$
- The frame relation Γ: A ↔ A defined by γ_a ⊆ R satisfies id_A ⊆ Γ; (id_A/Γ).

Proof:

(1) and (2) are now routine. ...

Proof continued

We need this

Lemma

A frame relation $R \in R(A)$ is transitive iff it admits Gentzen's Cut:

 $\frac{u R v \lor w}{u \land x R v \lor y}$

"If" is easy. "Only if"

 $\frac{u R v \lor w \quad x R x}{u \land x R (v \lor w) \land x} \quad \frac{w \land x R y \quad v R v}{v \lor (w \land x) R v \lor y}$

Frames and Frame Relations 14 / 18

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Proof continued

But any transitive relation containing γ_a and v_a contains γ_a ; v_a .

► For any *a*, *b*, $a\gamma_a b$ and $a\upsilon_b b$. So $R \subseteq \bigcup_{aRb} (\gamma_a \cap \upsilon_b)$. And suppose *a R b* and $x(\gamma_a \cap \upsilon_b)y$. Then

$$\frac{x R y \lor a \quad a R b}{x R y \lor b} \quad b \land x R y}{x R y}$$

Frames and Frame Relations 15 / 18

Proof continued

$$\frac{x\gamma_a a}{x\gamma_a; v_a y}$$

But any transitive relation containing γ_a and v_a contains γ_a ; v_a .

• If $x\gamma_a y$ and $x\upsilon_a y$, then

$$\frac{x \le y \lor a \qquad a \land x \le y}{x \le y}$$

So $\gamma_a \cap v_a = id_A$.

► For any *a*, *b*, $a\gamma_a b$ and $a\upsilon_b b$. So $R \subseteq \bigcup_{aRb} (\gamma_a \cap \upsilon_b)$. And suppose *a R b* and $x(\gamma_a \cap \upsilon_b)y$. Then

$$\frac{x R y \lor a \quad a R b}{x R y \lor b} \quad b \land x R y}{x R y}$$

Frames and Frame Relations 15 / 18

Definitely Need a Proper Ladder Now

Definition Define on any frame $B, \prec_B : B \hookrightarrow B$ by $w \land x \le 0 \qquad 1 \le y \lor w$ $x \prec_B y$

This is meet stable, not sup stable.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Definitely Need a Proper Ladder Now

Definition Define on any frame $B, \prec_B : B \hookrightarrow B$ by $w \land x \le 0 \qquad 1 \le y \lor w$ $x \prec_B y$

This is meet stable, not sup stable.

Theorem

For any frame $A, \Gamma : A \hookrightarrow Q(A)$ is universal with respect to functional frame relations for $R : A \hookrightarrow B$ satisfying

<ロ > < 合 > < E > < E > E の へ ペ Frames and Frame Relations 16/18

- 1. $id_A \subseteq R$; (id_B/R) ;
- **2**. (id_B/R) ; $R \subseteq \prec_B$.

Definitely Need a Proper Ladder Now

Definition Define on any frame $B, \prec_B : B \hookrightarrow B$ by $w \land x \leq 0 \qquad 1 \leq y \lor w$ $x \prec_B y$

This is meet stable, not sup stable.

Theorem

For any frame $A, \Gamma : A \hookrightarrow Q(A)$ is universal with respect to functional frame relations for $R : A \hookrightarrow B$ satisfying

1.
$$id_A \subseteq R$$
; (id_B/R) ;

2. (id_B/R) ; $R \subseteq \prec_B$.

Proof.

Not in a 30 minute talk!

• Q(A) has the universal property of $S(A)^{\partial}$.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- Q(A) has the universal property of $S(A)^{\partial}$.
- ► Q(A) sits as a sublocale in E(A) which sits as a sublocale
 of the completely distributive lattice of all endo-weakening
 relations.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

- Q(A) has the universal property of $S(A)^{\partial}$.
- ► Q(A) sits as a sublocale in E(A) which sits as a sublocale
 of the completely distributive lattice of all endo-weakening
 relations.
- ► Recall that rI mentioned the open sublocale of *E*(*A*) determined by id_A.

- Q(A) has the universal property of $S(A)^{\partial}$.
- ► Q(A) sits as a sublocale in E(A) which sits as a sublocale
 of the completely distributive lattice of all endo-weakening
 relations.
- ► Recall that rI mentioned the open sublocale of *E*(*A*) determined by id_A.
- Inside that, one finds the dense sub-identities: R ⊆ R; R and R ⊆ id_A.

- Q(A) has the universal property of $S(A)^{\partial}$.
- ► Q(A) sits as a sublocale in E(A) which sits as a sublocale
 of the completely distributive lattice of all endo-weakening
 relations.
- ► Recall that rI mentioned the open sublocale of *E*(*A*) determined by id_A.
- Inside that, one finds the dense sub-identities: R ⊆ R; R and R ⊆ id_A.
- The dense sub-identities correspond exactly to subframes of A.

- Q(A) has the universal property of $S(A)^{\partial}$.
- ► Q(A) sits as a sublocale in E(A) which sits as a sublocale
 of the completely distributive lattice of all endo-weakening
 relations.
- ► Recall that rI mentioned the open sublocale of *E*(*A*) determined by id_A.
- Inside that, one finds the dense sub-identities: R ⊆ R; R and R ⊆ id_A.
- The dense sub-identities correspond exactly to subframes of A.
- So *E*(*A*) is a frame in which all sublocales (transitive relations containing id_A) and all subframes (dense relations contained in id_A) reside.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Happy Birthday, Ales. And thank you for your next poem theorem.

<ロ> (四) (四) (日) (日) (日)