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Background

The Next Poem — Dana Gioia

How much better it seems now
than when it is finally done –
the unforgettable first line,
the cunning way the stanzas run.

The rhymes soft-spoken and suggestive
are barely audible at first,
an appetite not yet acknowledged
like the inkling of a thirst.

While gradually the form appears
as each line is coaxed aloud –
the architecture of a room
seen from the middle of a crowd.
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Background

The music that of common speech
but slanted so that each detail
sounds unexpected as a sharp
inserted in a simple scale.

No jumble box of imagery
dumped glumly in the readers lap
or elegantly packaged junk
the unsuspecting must unwrap.
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Background

But words that could direct a friend
precisely to an unknown place,
those few unshakeable details
that no confusion can erase.

And the real subject left unspoken
but unmistakable to those
who dont expect a jungle parrot
in the black and white of prose.

4 / 18
Frames and Frame Relations

N



Background

How much better it seems now
than when it is finally written.
How hungrily one waits to feel
the bright lure seized, the old hook bitten.
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Background

The Idea

We take seriously

I Injectivity of frames as semilattices (Bruns-Lakser and
Horn-Kimura) – in the background for this talk

I Order enrichment (of the category of frames with
semilattice morphisms)

I Locales and sublocales
I Completely distributive lattices as a starting point

In particular,

I The assembly of a frame comes about as a sublocale Q(L)
of a particular completely distributive lattice.

I Proof that Q(L) has the universal property of the assembly
using simple combinatorial reasoning – essentially via a
kind of sequent calculus.
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Background

First step: Weakening Relations

Definition
For posets A and B, a weakening relation is a relation
R ⊆ A× B so that

x ≤X x ′ R y ′ ≤Y y
x R y

We denote this by R : X # Y .
Pos will denote the category of posets and weakening relations.

I idX is simply ≤X .
I Composition is relational product (but I write R; S instead

of S ◦ R.
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Background

Low Hanging Fruit

I Pos(A,B) = Up(A∂ × B), so it is a completely distributive
lattice.

I Composition is residuated
R; S ⊆ T ⇔ R ⊆ S\T ⇔ S ⊆ T/R.

I A w. relation R : A # B satisfies idA ⊆ (idB/R); R if and
only if it is determined by a monotone function f : A→ B by
x R y iff f (x) ≤ y .

I If A has binary meets and B has binary joins, Heyting
arrows in Pos(A,B) are defined by

∀x , y .x R y ⇒ x ∧ a S b ∨ x

a (R→S) b
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Background

Meet and Sup Stability

Definition
I If B is a (unital) meet semilattice, say R : A # B is

meet-stable if

x R 1
x R y x R y ′

x R y ∧ y ′

I If A is a sup lattice, say R : A # B is sup-stable if

{xi R y}i∨
i xi R y

I SLat: category of meet semilattices with meet stable
relations
Sup: category of sup lattices with sup-stable relations.
Frm: category of frames with meet-sup-stable relations.
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More Low Hanging Fruit

Lemma
If A and B are frames, then

I SLat(A,B) is a sublocale of Pos(A,B);
I Sup(A,B) is a sublocale of Pos(A,B);
I Frm(A,B) is a sublocale of Pos(A,B).

Proof.

I Clearly stable relations (either kind) are closed under
intersection.

I We then use our nice characterization of Heyting arrow to
check that if S is stable, so is R→ S.

I Frm(A,B) = SLat(A,B) ∩ Sup(A,B).
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Background

Fruit Requiring a Small Step Stool

Lemma
The construct A 7→ Frm(A,A) is an endofunctor in Frm (it is only
a lax functor on Frm).

Proof.

I The frame homomorphisms are bijective with frame
relations F : A # B satisfying idA ⊆ idB/F .

I Using this, check that

R; F ⊆ F ; S

is a frame relation from Frm(A,A) to Frm(B,B) that has an
adjoint. So it determines a frame homomorphism.

I Checking that this respects identity and composition is
easy.
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Background

Picking Things We Dropped on the Ground

Definition
Let E(A) = Frm(A,A).
Let R(A) = the closed sublocale of E(A) determined by idA.
Let L(A) = the open sublocale of E(A) determined by idA.

Easy to check

I R is also functorial – exactly as E .
I Define relations γa, υa ∈ R(A).

x ≤ a ∨ y
xγay

x ∧ a ≤ y
xυay

These not only contain idA, but are transitive relations.
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Background

Requiring a Ladder

Definition
Let Q(A) = transitive relations in R(A).

Lemma

1. Q(A) is a sublocale of R(A).
2. Q is functorial.
3. In Q(A), for each a ∈ A, γa and υa are complements.
4. For any R ∈ Q(A), it is the case that

R =
⋃
{γa ∩ υb | a R b}.

5. The frame relation Γ: A #A defined by γa ⊆ R satisfies
idA ⊆ Γ; (idA/Γ).

Proof:
(1) and (2) are now routine. ...
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Background

Proof continued

We need this

Lemma
A frame relation R ∈R (A) is transitive iff it admits Gentzen’s
Cut:

u R v ∨ w w ∧ x R y
u ∧ x R v ∨ y

“If” is easy. “Only if”

u R v ∨ w x R x
u ∧ x R (v ∨ w) ∧ x

w ∧ x R y v R v
v ∨ (w ∧ x) R v ∨ y

u ∧ x R v ∨ y
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Background

Proof continued
I

xγaa aυay
xγa; υay

But any transitive relation containing γa and υa contains
γa; υa.

I If xγay and xυay , then

x ≤ y ∨ a a ∧ x ≤ y
x ≤ y

So γa ∩ υa = idA.

I For any a,b, aγab and aυbb. So R ⊆
⋃

aRb(γa ∩ υb).
And suppose a R b and x(γa ∩ υb)y . Then

x R y ∨ a a R b
x R y ∨ b b ∧ x R y

x R y
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Background

Definitely Need a Proper Ladder Now

Definition
Define on any frame B, ≺B : B # B by

w ∧ x ≤ 0 1 ≤ y ∨ w
x ≺B y

This is meet stable, not sup stable.

Theorem
For any frame A, Γ: A # Q(A) is universal with respect to
functional frame relations for R : A # B satisfying

1. idA ⊆ R; (idB/R);
2. (idB/R); R ⊆≺B.

Proof.
Not in a 30 minute talk!
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Background

What Did We Just Harvest?

I Q(A) has the universal property of S(A)∂ .

I Q(A) sits as a sublocale in E(A) which sits as a sublocale
of the completely distributive lattice of all endo-weakening
relations.

I Recall that rI mentioned the open sublocale of E(A)
determined by idA.

I Inside that, one finds the dense sub-identities: R ⊆ R; R
and R ⊆ idA.

I The dense sub-identities correspond exactly to subframes
of A.

I So E(A) is a frame in which all sublocales (transitive
relations containing idA) and all subframes (dense relations
contained in idA) reside.
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Background

Happy Birthday, Ales.
And thank you for your next ����poem theorem.
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