Sublocales of d-frames

Anna Laura Suarez

University of Birmingham

axs1431@cs.bham.ac.uk

September 28, 2018

Bitopological spaces

- Intuition and motivation
- The category **BiTop**

D-frames

- Intuition and motivation
- The category **dFrm**

3 Sublocales of d-frames

- The general case
- Concrete examples

• The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.
- For a Priestley space (X, ≤) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r) : r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty) : r \in \mathbb{R}\}$.
- For a Priestley space (X, ≤) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.
- The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets {X\U : U ∈ Ω(X)}.

- The Euclidian topology on ℝ is generated by the lower open intervals {(-∞, r) : r ∈ ℝ} and the upper ones {(r,∞) : r ∈ ℝ}.
- For a Priestley space (X, ≤) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.
- The Vietoris hyperspace VX of a compact Hausdorff space X has as underlying set the closed subsets {X\U: U ∈ Ω(X)}. The topology is the join of *upper* and *lower* topologies, with bases:
 - $\Box U = \{C \in VX : C \subseteq U\}.$
 - $\Diamond U = \{C \in VX : C \cap U \neq \emptyset\}$

Where U varies over $\Omega(X)$.

A bitopological space is a structure (X, τ^+, τ^-) where X is a set and τ^+ and τ^- two topologies on it. We call τ^+ the *upper*, or *positive*, topology. We call τ^- the *negative*, or *lower*, topology.

The category **BiTop** has bitopological spaces as objects, *bicontinuous* functions as maps.

D-frames are quadruples $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames, and con, tot $\subseteq L^+ \times L^-$; satisfying some axioms. The intuition is:

- L^+ and L^- are the frames of positive and negative opens respectively.
- The pairs of opens in **con** are the **disjoint** pairs.
- The pairs of opens in **tot** are the **covering** pairs (i.e. those whose union covers the whole space).

D-frames: example

- For any two frames L⁺ and L⁻ we can set con and tot to be as small as the axiom allow. That is we set:
 - $x^+x^- \in \text{con if and only if } x^+ = 0^+ \text{ or } x^- = 0^-.$
 - $x^+x^- \in \text{tot if and only if } x^+ = 1^+ \text{ or } x^- = 1^-.$

D-frames: example

- For any two frames L⁺ and L⁻ we can set con and tot to be as small as the axiom allow. That is we set:
 - $x^+x^- \in \text{con if and only if } x^+ = 0^+ \text{ or } x^- = 0^-.$
 - $x^+x^- \in \text{tot if and only if } x^+ = 1^+ \text{ or } x^- = 1^-.$
- The following is a bitopological space with its d-frame of opens.

D-frames: the two orders

On the product $L^+ \times L^-$ we have:

- The information order \sqsubseteq : we define $a^+a^- \sqsubseteq b^+b^-$ if and only if $a^+ \le b^+$ and $a^- \le b^-$.
- The logical order ≤: we define a⁺a⁻ ≤ b⁺b⁻ if and only if a⁺ ≤ b⁺ and b⁻ ≤ a⁻.

D-frames: axioms

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following four axioms hold:

• (D1) con is a \sqsubseteq -downset and tot is a \sqsubseteq -upset.

D-frames: axioms

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following four axioms hold:

- (D1) con is a ⊑-downset and tot is a ⊑-upset.
- (D2) con and tot are \leq -sublattices. In particular $1^+0^-, 0^+1^- \in \text{con} \cap \text{tot.}$
- (D3) The set con is Scott closed.

D-frames: axioms

A quadruple $(L^+, L^-, \text{con}, \text{tot})$ where L^+ and L^- are frames and con, tot $\subseteq L^+ \times L^-$ is a *d*-frame if the following four axioms hold:

- (D1) con is a \sqsubseteq -downset and tot is a \sqsubseteq -upset.
- (D2) con and tot are \leq -sublattices. In particular $1^+0^-, 0^+1^- \in \text{con} \cap \text{tot.}$
- (D3) The set con is Scott closed.
- (D4). Whenever $a^+b^- \in \text{con and } a^+c^- \in \text{tot}$ we have $b^- \leq c^-$. Similarly whenever $b^+a^- \in \text{con and } c^+a^- \in \text{tot}$ we have $b^+ \leq c^+$.

The category **dFrm** has d-frames as objects. A morphism $f: (L^+, L^-, \operatorname{con}_L, \operatorname{tot}_L) \to (M^+, M^-, \operatorname{con}_M, \operatorname{tot}_M)$ is defined to be a pair of frame maps $(f^+, f^-): (L^+, L^-) \to (M^+, M^-)$ such that $f^+ \times f^-: L^+ \times L^- \to M^+ \times M^-$ preserves con and tot.

э

Definition

For $a^+ \in L^+$, the element $\sim a^+ := \bigvee \{x^- \in L^- : a^+x^- \in \operatorname{con}\}$ is the *pseudocomplement* of a^+ .

Definition

For $a^+ \in L^+$, the element $\sim a^+ := \bigvee \{x^- \in L^- : a^+x^- \in \operatorname{con}\}$ is the *pseudocomplement* of a^+ . This is a *complement* if $(a^+, \sim a^+) \in \operatorname{tot.}$ Pseudocomplementation of elements of L^- is defined similarly.

Definition

For $a^+ \in L^+$, the element $\sim a^+ := \bigvee \{x^- \in L^- : a^+x^- \in \operatorname{con}\}$ is the *pseudocomplement* of a^+ . This is a *complement* if $(a^+, \sim a^+) \in \operatorname{tot.}$ Pseudocomplementation of elements of L^- is defined similarly.

Definition

L is *Boolean* if every element from L^+ and L^- is complemented.

For a frame L the following are interdefinable:

- Extremal epimorphisms (in **Frm)** from *L*.
- Frame surjections from L.
- Congruences on *L*.

For a frame L the following are interdefinable:

- Extremal epimorphisms (in Frm) from L.
- Frame surjections from L.
- Congruences on L.

Given any relation R on L we can compute the smallest congruence containing it. This gives a quotient $q_R : L \rightarrow L/R$.

Let $L = (L^+, L^-, \text{con}, \text{tot})$ be a d-frame.

Definition

Let (C^+, C^-) be a pair of congruences where C^{\pm} is on L^{\pm} . Consider the quotient map $q_C : L^+ \times L^- \twoheadrightarrow (L^+/C^+) \times (L^-/C^-)$.

Let $L = (L^+, L^-, \text{con}, \text{tot})$ be a d-frame.

Definition

Let (C^+, C^-) be a pair of congruences where C^{\pm} is on L^{\pm} . Consider the quotient map $q_C : L^+ \times L^- \twoheadrightarrow (L^+/C^+) \times (L^-/C^-)$. The pair (C^+, C^-) is called *reasonable* if the structure $(L^+/C^+, L^-/C^-, q_C[\text{con}], q_C[\text{tot}])$ is a d-frame.

Let $L = (L^+, L^-, \text{con}, \text{tot})$ be a d-frame.

Definition

Let (C^+, C^-) be a pair of congruences where C^{\pm} is on L^{\pm} . Consider the quotient map $q_C : L^+ \times L^- \twoheadrightarrow (L^+/C^+) \times (L^-/C^-)$. The pair (C^+, C^-) is called *reasonable* if the structure $(L^+/C^+, L^-/C^-, q_C[\text{con}], q_C[\text{tot}])$ is a d-frame.

We have a *theorem*. The following are interdefinable:

- Extremal epimorphisms (in dFrm) from L.
- D-frame surjections $s : L \rightarrow M$ satisfying some extra conditions.
- Reasonable pairs of congruences (C^+, C^-) on (L^+, L^-) .

Let $L = (L^+, L^-, \text{con}, \text{tot})$ be a d-frame.

Definition

Let (C^+, C^-) be a pair of congruences where C^{\pm} is on L^{\pm} . Consider the quotient map $q_C : L^+ \times L^- \twoheadrightarrow (L^+/C^+) \times (L^-/C^-)$. The pair (C^+, C^-) is called *reasonable* if the structure $(L^+/C^+, L^-/C^-, q_C[\text{con}], q_C[\text{tot}])$ is a d-frame.

We have a *theorem*. The following are interdefinable:

- Extremal epimorphisms (in **dFrm**) from *L*.
- D-frame surjections $s : L \rightarrow M$ satisfying some extra conditions.
- Reasonable pairs of congruences (C^+, C^-) on (L^+, L^-) .

Given a pair of relations (R^+, R^-) where R^{\pm} is on L^{\pm} , we can compute the smallest **reasonable** congruence pair containing it. This gives a quotient $q_R : L \rightarrow L/R$ in **dFrm**.

However, this is difficult to compute.

Anna Laura Suarez (University of Birminghan

- Changing the starting relations (R^+, R^-) gives different kinds of sublocales. For $a^+ \in L^+$ we want to know what are the reasonable congruence pairs that the following induce.
 - $(R(\mathfrak{op}(a^+)), \mathrm{id}^-)$ (positive open sublocale).

- Changing the starting relations (R^+, R^-) gives different kinds of sublocales. For $a^+ \in L^+$ we want to know what are the reasonable congruence pairs that the following induce.
 - $(R(\mathfrak{op}(a^+)), \mathrm{id}^-)$ (positive open sublocale).
 - $(R(\mathfrak{cl}(a^+)), \mathrm{id}^-)$ (positive closed sublocale).

Changing the starting relations (R^+, R^-) gives different kinds of sublocales. For $a^+ \in L^+$ we want to know what are the reasonable congruence pairs that the following induce.

- $(R(\mathfrak{op}(a^+)), \mathrm{id}^-)$ (positive open sublocale).
- $(R(\mathfrak{cl}(a^+)), \mathrm{id}^-)$ (positive closed sublocale).
- $(R_{\sim\sim}, R_{\sim\sim})$ (double pseudocomplementation).

Here $R_{\sim\sim}$ identifies a^+ and b^+ precisely when $\sim\sim a^+ = \sim\sim b^+$, similarly for elements of L^- .

Given a d-frame (L^+ , L^- , con, tot) and some $a^+a^- \in L^+ \times L^-$ we have the following.

Proposition

Whenever L^+ is linear, or L Boolean, or con and tot are minimal, $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^-)$ induces $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(\sim a^+)))$.

Given a d-frame (L^+ , L^- , con, tot) and some $a^+a^- \in L^+ \times L^-$ we have the following.

Proposition

Whenever L^+ is linear, or L Boolean, or con and tot are minimal, $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^-)$ induces $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(\sim a^+)))$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Given a d-frame (L^+ , L^- , con, tot) and some $a^+a^- \in L^+ \times L^-$ we have the following.

Proposition

Whenever L^+ is linear, or L Boolean, or con and tot are minimal, $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^-)$ induces $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(\sim a^+)))$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Proposition

Whenever a^+a^- is a complemented pair, the relations $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^$ and $(R^-(\mathfrak{cl}(a^-)), \mathrm{id}^-$ both induce the reasonable pair of congruences $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(a^-))).$

Given a d-frame (L^+ , L^- , con, tot) and some $a^+a^- \in L^+ \times L^-$ we have the following.

Proposition

Whenever L^+ is linear, or L Boolean, or con and tot are minimal, $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^-)$ induces $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(\sim a^+)))$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Proposition

Whenever a^+a^- is a complemented pair, the relations $(R^+(\mathfrak{op}(a^+)), \mathrm{id}^$ and $(R^-(\mathfrak{cl}(a^-)), \mathrm{id}^-$ both induce the reasonable pair of congruences $(R^+(\mathfrak{op}(a^+)), R^-(\mathfrak{cl}(a^-)))$. That is, every open sublocale induces the negative closed sublocale of its complement and vice-versa.

イロト イポト イヨト イヨト

Consider the map $\sim \sim : L^+ \to L^+$ as $a^+ \mapsto \sim \sim a^+$. Similarly for L^- . This always is a closure operator.

Proposition

Whenever $\sim \sim$ preserves finite meets, the relation *B* induces itself. This happens whenever *L* is Boolean or linear.

A partial Booleanization

- 一司

æ

Define $tot_M := \uparrow (\{((a^+, \sim a^+) : a^+ \in L^+\} \cup \{\sim a^-, a^-) : a^- \in L^-\})$. Let **HdFrm** be the subcategory of **dFrm** of d-frames and pseudocomplement-preserving maps.

Define $tot_M := \uparrow (\{((a^+, \sim a^+) : a^+ \in L^+\} \cup \{\sim a^-, a^-) : a^- \in L^-\})$. Let **HdFrm** be the subcategory of **dFrm** of d-frames and pseudocomplement-preserving maps.

Proposition

Whenever $\sim \sim$ preserves finite meets, the quotient $q_B : L \twoheadrightarrow (L^+/B^+, L^-/B^-, q_B[con], q_B[tot_M])$ is the Booleanization of L.

Define $tot_M := \uparrow (\{((a^+, \sim a^+) : a^+ \in L^+\} \cup \{\sim a^-, a^-) : a^- \in L^-\})$. Let **HdFrm** be the subcategory of **dFrm** of d-frames and pseudocomplement-preserving maps.

Proposition

Whenever $\sim \sim$ preserves finite meets, the quotient $q_B : L \rightarrow (L^+/B^+, L^-/B^-, q_B[con], q_B[tot_M])$ is the Booleanization of L. That is, any morphism $f : L \rightarrow C$ of **HdFrm** to a Boolean d-frame Cfactors through it uniquely.

References

A. Jung, M. A. Moshier (2006)

On the bitopological nature of Stone duality *Preprint*.

T. Jakl (2018)

D-frames as algebraic duals of bitopological spaces

PhD thesis, University of Birmingham.

• D-frames are order-theoretical duals of bitopological spaces.

- < A

э

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.
- However in several cases open, closed, and double pseudocomplementation sublocales are easy to compute.

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.
- However in several cases open, closed, and double pseudocomplementation sublocales are easy to compute. In particular, the last one gives a bitopological Booleanization.