Sublocales of d-frames

Anna Laura Suarez
University of Birmingham
axs1431@cs.bham.ac.uk

September 28, 2018

Overview

(1) Bitopological spaces

- Intuition and motivation
- The category BiTop
(2) D-frames
- Intuition and motivation
- The category dFrm
(3) Sublocales of d-frames
- The general case
- Concrete examples

Bitopological spaces

Some topologies naturally arise as join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.

Bitopological spaces

Some topologies naturally arise as join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.

Bitopological spaces

Some topologies naturally arise as join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.
- The Vietoris hyperspace $V X$ of a compact Hausdorff space X has as underlying set the closed subsets $\{X \backslash U: U \in \Omega(X)\}$.

Bitopological spaces

Some topologies naturally arise as join of two other ones.

- The Euclidian topology on \mathbb{R} is generated by the lower open intervals $\{(-\infty, r): r \in \mathbb{R}\}$ and the upper ones $\{(r, \infty): r \in \mathbb{R}\}$.
- For a Priestley space (X, \leq) the topology is the join of two spectral spaces: the ones of open upsets and open downsets.
- The Vietoris hyperspace $V X$ of a compact Hausdorff space X has as underlying set the closed subsets $\{X \backslash U: U \in \Omega(X)\}$. The topology is the join of upper and lower topologies, with bases:
- $\square U=\{C \in V X: C \subseteq U\}$.
- $\Delta U=\{C \in V X: C \cap U \neq \emptyset\}$

Where U varies over $\Omega(X)$.

Bitopological spaces

A bitopological space is a structure $\left(X, \tau^{+}, \tau^{-}\right)$where X is a set and τ^{+} and τ^{-}two topologies on it. We call τ^{+}the upper, or positive, topology. We call τ^{-}the negative, or lower, topology.

The category BiTop has bitopological spaces as objects, bicontinuous functions as maps.

D-frames: intuition

D-frames are quadruples (L^{+}, L^{-}, con, tot) where L^{+}and L^{-}are frames, and con, tot $\subseteq L^{+} \times L^{-}$; satisfying some axioms. The intuition is:

- L^{+}and L^{-}are the frames of positive and negative opens respectively.
- The pairs of opens in con are the disjoint pairs.
- The pairs of opens in tot are the covering pairs (i.e. those whose union covers the whole space).

D-frames: example

- For any two frames L^{+}and L^{-}we can set con and tot to be as small as the axiom allow. That is we set:
- $x^{+} x^{-} \in$ con if and only if $x^{+}=0^{+}$or $x^{-}=0^{-}$.
- $x^{+} x^{-} \in$ tot if and only if $x^{+}=1^{+}$or $x^{-}=1^{-}$.

D-frames: example

- For any two frames L^{+}and L^{-}we can set con and tot to be as small as the axiom allow. That is we set:
- $x^{+} x^{-} \in$ con if and only if $x^{+}=0^{+}$or $x^{-}=0^{-}$.
- $x^{+} x^{-} \in$ tot if and only if $x^{+}=1^{+}$or $x^{-}=1^{-}$.
- The following is a bitopological space with its d-frame of opens.

D-frames: the two orders

On the product $L^{+} \times L^{-}$we have:

- The information order \sqsubseteq : we define $a^{+} a^{-} \sqsubseteq b^{+} b^{-}$if and only if $a^{+} \leq b^{+}$and $a^{-} \leq b^{-}$.
- The logical order \leq : we define $a^{+} a^{-} \leq b^{+} b^{-}$if and only if $a^{+} \leq b^{+}$ and $b^{-} \leq a^{-}$.

D-frames: axioms

A quadruple (L^{+}, L^{-}, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following four axioms hold:

- (D1) con is a \sqsubseteq-downset and tot is a \sqsubseteq-upset.

D-frames: axioms

A quadruple (L^{+}, L^{-}, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following four axioms hold:

- (D1) con is a \sqsubseteq-downset and tot is a \sqsubseteq-upset.
- (D2) con and tot are \leq-sublattices. In particular $1^{+} 0^{-}, 0^{+} 1^{-} \in$ con \cap tot.
- (D3) The set con is Scott closed.

D-frames: axioms

A quadruple (L^{+}, L^{-}, con, tot) where L^{+}and L^{-}are frames and con, tot $\subseteq L^{+} \times L^{-}$is a d-frame if the following four axioms hold:

- (D1) con is a \sqsubseteq-downset and tot is a \sqsubseteq-upset.
- (D2) con and tot are \leq-sublattices. In particular $1^{+} 0^{-}, 0^{+} 1^{-} \in$ con \cap tot.
- (D3) The set con is Scott closed.
- (D4). Whenever $a^{+} b^{-} \in$ con and $a^{+} c^{-} \in$ tot we have $b^{-} \leq c^{-}$. Similarly whenever $b^{+} a^{-} \in$ con and $c^{+} a^{-} \in$ tot we have $b^{+} \leq c^{+}$.

The category dFrm

The category dFrm has d-frames as objects. A morphism $f:\left(L^{+}, L^{-}, \operatorname{con}_{L}, \operatorname{tot}_{L}\right) \rightarrow\left(M^{+}, M^{-}, \operatorname{con}_{M}, \operatorname{tot}_{M}\right)$ is defined to be a pair of frame maps $\left(f^{+}, f^{-}\right):\left(L^{+}, L^{-}\right) \rightarrow\left(M^{+}, M^{-}\right)$such that $f^{+} \times f^{-}: L^{+} \times L^{-} \rightarrow M^{+} \times M^{-}$preserves con and tot.

Pseudocomplements

Let $L=\left(L^{+}, L^{-}\right.$con, tot $)$be a d-frame.

Pseudocomplements

Let $L=\left(L^{+}, L^{-}\right.$con, tot $)$be a d-frame.

Definition

For $a^{+} \in L^{+}$, the element $\sim a^{+}:=\bigvee\left\{x^{-} \in L^{-}: a^{+} x^{-} \in \operatorname{con}\right\}$ is the pseudocomplement of a^{+}.

Pseudocomplements

Let $L=\left(L^{+}, L^{-}\right.$con, tot $)$be a d-frame.

Definition

For $a^{+} \in L^{+}$, the element $\sim a^{+}:=\bigvee\left\{x^{-} \in L^{-}: a^{+} x^{-} \in \operatorname{con}\right\}$ is the pseudocomplement of a^{+}. This is a complement if $\left(a^{+}, \sim a^{+}\right) \in$ tot. Pseudocomplementation of elements of L^{-}is defined similarly.

Pseudocomplements

Let $L=\left(L^{+}, L^{-}\right.$con, tot $)$be a d-frame.

Definition

For $a^{+} \in L^{+}$, the element $\sim a^{+}:=\bigvee\left\{x^{-} \in L^{-}: a^{+} x^{-} \in \operatorname{con}\right\}$ is the pseudocomplement of a^{+}. This is a complement if $\left(a^{+}, \sim a^{+}\right) \in$ tot. Pseudocomplementation of elements of L^{-}is defined similarly.

Definition

L is Boolean if every element from L^{+}and L^{-}is complemented.

Recall: monotopological sublocales

For a frame L the following are interdefinable:

- Extremal epimorphisms (in Frm) from L.
- Frame surjections from L.
- Congruences on L.

Recall: monotopological sublocales

For a frame L the following are interdefinable:

- Extremal epimorphisms (in Frm) from L.
- Frame surjections from L.
- Congruences on L.

Given any relation R on L we can compute the smallest congruence containing it. This gives a quotient $q_{R}: L \rightarrow L / R$.

Bitopological sublocales

Let $L=\left(L^{+}, L^{-}\right.$, con, tot $)$be a d-frame.

Definition

Let $\left(C^{+}, C^{-}\right)$be a pair of congruences where $C^{ \pm}$is on $L^{ \pm}$. Consider the quotient map $q_{C}: L^{+} \times L^{-} \rightarrow\left(L^{+} / C^{+}\right) \times\left(L^{-} / C^{-}\right)$.

Bitopological sublocales

Let $L=\left(L^{+}, L^{-}\right.$, con, tot $)$be a d-frame.

Definition

Let $\left(C^{+}, C^{-}\right)$be a pair of congruences where $C^{ \pm}$is on $L^{ \pm}$. Consider the quotient map $q_{C}: L^{+} \times L^{-} \rightarrow\left(L^{+} / C^{+}\right) \times\left(L^{-} / C^{-}\right)$. The pair $\left(C^{+}, C^{-}\right)$ is called reasonable if the structure $\left(L^{+} / C^{+}, L^{-} / C^{-}, q_{C}[\right.$ con $], q_{C}[$ tot $\left.]\right)$ is a d-frame.

Bitopological sublocales

Let $L=\left(L^{+}, L^{-}\right.$, con, tot $)$be a d-frame.

Definition

Let $\left(C^{+}, C^{-}\right)$be a pair of congruences where $C^{ \pm}$is on $L^{ \pm}$. Consider the quotient map $q_{C}: L^{+} \times L^{-} \rightarrow\left(L^{+} / C^{+}\right) \times\left(L^{-} / C^{-}\right)$. The pair $\left(C^{+}, C^{-}\right)$ is called reasonable if the structure $\left(L^{+} / C^{+}, L^{-} / C^{-}, q_{C}[\right.$ con $], q_{C}[$ tot $\left.]\right)$ is a d-frame.

We have a theorem. The following are interdefinable:

- Extremal epimorphisms (in dFrm) from L.
- D-frame surjections $s: L \rightarrow M$ satisfying some extra conditions.
- Reasonable pairs of congruences $\left(C^{+}, C^{-}\right)$on $\left(L^{+}, L^{-}\right)$.

Bitopological sublocales

Let $L=\left(L^{+}, L^{-}\right.$, con, tot $)$be a d-frame.

Definition

Let $\left(C^{+}, C^{-}\right)$be a pair of congruences where $C^{ \pm}$is on $L^{ \pm}$. Consider the quotient map $q_{C}: L^{+} \times L^{-} \rightarrow\left(L^{+} / C^{+}\right) \times\left(L^{-} / C^{-}\right)$. The pair $\left(C^{+}, C^{-}\right)$ is called reasonable if the structure $\left(L^{+} / C^{+}, L^{-} / C^{-}, q_{C}[\right.$ con $], q_{C}[$ tot $\left.]\right)$ is a d-frame.

We have a theorem. The following are interdefinable:

- Extremal epimorphisms (in dFrm) from L.
- D-frame surjections $s: L \rightarrow M$ satisfying some extra conditions.
- Reasonable pairs of congruences $\left(C^{+}, C^{-}\right)$on $\left(L^{+}, L^{-}\right)$.

Given a pair of relations $\left(R^{+}, R^{-}\right)$where $R^{ \pm}$is on $L^{ \pm}$, we can compute the smallest reasonable congruence pair containing it. This gives a quotient $q_{R}: L \rightarrow L / R$ in dFrm.
However, this is difficult to compute.

Bitopological sublocales

Changing the starting relations (R^{+}, R^{-}) gives different kinds of sublocales. For $a^{+} \in L^{+}$we want to know what are the reasonable congruence pairs that the following induce.

- $\left(R\left(\mathfrak{o p}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$(positive open sublocale).

Bitopological sublocales

Changing the starting relations $\left(R^{+}, R^{-}\right)$gives different kinds of sublocales. For $a^{+} \in L^{+}$we want to know what are the reasonable congruence pairs that the following induce.

- $\left(R\left(\mathfrak{o p}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$(positive open sublocale).
- $\left(R\left(\mathfrak{c l}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$(positive closed sublocale).

Bitopological sublocales

Changing the starting relations $\left(R^{+}, R^{-}\right)$gives different kinds of sublocales. For $a^{+} \in L^{+}$we want to know what are the reasonable congruence pairs that the following induce.

- $\left(R\left(\mathfrak{o p}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$(positive open sublocale).
- $\left(R\left(\mathfrak{c l}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$(positive closed sublocale).
- ($\left.R_{\sim \sim}, R_{\sim \sim}\right)$ (double pseudocomplementation).

Here $R_{\sim \sim}$ identifies a^{+}and b^{+}precisely when $\sim \sim a^{+}=\sim \sim b^{+}$, similarly for elements of L^{-}.

Results: open and closed sublocales

Given a d-frame (L^{+}, L^{-}, con, tot $)$and some $a^{+} a^{-} \in L^{+} \times L^{-}$we have the following.

Proposition

Whenever L^{+}is linear, or L Boolean, or con and tot are minimal, $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$induces $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(\sim a^{+}\right)\right)\right)$.

Results: open and closed sublocales

Given a d-frame (L^{+}, L^{-}, con, tot $)$and some $a^{+} a^{-} \in L^{+} \times L^{-}$we have the following.

Proposition

Whenever L^{+}is linear, or L Boolean, or con and tot are minimal, $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right)\right.$, id $\left.{ }^{-}\right)$induces $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(\sim a^{+}\right)\right)\right)$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Results: open and closed sublocales

Given a d-frame (L^{+}, L^{-}, con, tot $)$and some $a^{+} a^{-} \in L^{+} \times L^{-}$we have the following.

Proposition

Whenever L^{+}is linear, or L Boolean, or con and tot are minimal, $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), \mathrm{id}^{-}\right)$induces $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(\sim a^{+}\right)\right)\right)$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Proposition

Whenever $a^{+} a^{-}$is a complemented pair, the relations $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right)\right.$, id^{-} and $\left(R^{-}\left(\mathfrak{c l}\left(a^{-}\right)\right), \mathrm{id}^{-}\right.$both induce the reasonable pair of congruences $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(a^{-}\right)\right)\right)$.

Results: open and closed sublocales

Given a d-frame (L^{+}, L^{-}, con, tot $)$and some $a^{+} a^{-} \in L^{+} \times L^{-}$we have the following.

Proposition

Whenever L^{+}is linear, or L Boolean, or con and tot are minimal, $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right)\right.$, id $\left.{ }^{-}\right)$induces $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(\sim a^{+}\right)\right)\right)$. That is, every positive open sublocale induces the negative closed sublocale of its pseudocomplement.

Proposition

Whenever $a^{+} a^{-}$is a complemented pair, the relations $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right)\right.$, id^{-} and $\left(R^{-}\left(\mathfrak{c l}\left(a^{-}\right)\right), \mathrm{id}^{-}\right.$both induce the reasonable pair of congruences $\left(R^{+}\left(\mathfrak{o p}\left(a^{+}\right)\right), R^{-}\left(\mathfrak{c l}\left(a^{-}\right)\right)\right)$. That is, every open sublocale induces the negative closed sublocale of its complement and vice-versa.

Results: double pseudocomplementation

Consider the map $\sim \sim: L^{+} \rightarrow L^{+}$as $a^{+} \mapsto \sim \sim a^{+}$. Similarly for L^{-}. This always is a closure operator.

Proposition

Whenever $\sim \sim$ preserves finite meets, the relation B induces itself. This happens whenever L is Boolean or linear.

A partial Booleanization

A partial Booleanization

Define $\operatorname{tot}_{M}:=\uparrow\left(\left\{\left(\left(a^{+}, \sim a^{+}\right): a^{+} \in L^{+}\right\} \cup\left\{\sim a^{-}, a^{-}\right): a^{-} \in L^{-}\right\}\right)$. Let HdFrm be the subcategory of dFrm of d-frames and pseudocomplement-preserving maps.

A partial Booleanization

Define $\operatorname{tot}_{M}:=\uparrow\left(\left\{\left(\left(a^{+}, \sim a^{+}\right): a^{+} \in L^{+}\right\} \cup\left\{\sim a^{-}, a^{-}\right): a^{-} \in L^{-}\right\}\right)$. Let HdFrm be the subcategory of dFrm of d-frames and pseudocomplement-preserving maps.

Proposition

Whenever $\sim \sim$ preserves finite meets, the quotient $q_{B}: L \rightarrow\left(L^{+} / B^{+}, L^{-} / B^{-}, q_{B}[\operatorname{con}], q_{B}\left[\operatorname{tot}_{M}\right]\right)$ is the Booleanization of L.

A partial Booleanization

Define $\operatorname{tot}_{M}:=\uparrow\left(\left\{\left(\left(a^{+}, \sim a^{+}\right): a^{+} \in L^{+}\right\} \cup\left\{\sim a^{-}, a^{-}\right): a^{-} \in L^{-}\right\}\right)$. Let HdFrm be the subcategory of dFrm of d-frames and pseudocomplement-preserving maps.

Proposition

Whenever $\sim \sim$ preserves finite meets, the quotient $q_{B}: L \rightarrow\left(L^{+} / B^{+}, L^{-} / B^{-}, q_{B}[\operatorname{con}], q_{B}\left[\operatorname{tot}_{M}\right]\right)$ is the Booleanization of L. That is, any morphism $f: L \rightarrow C$ of HdFrm to a Boolean d-frame C factors through it uniquely.

References

A. A. Jung, M. A. Moshier (2006)

On the bitopological nature of Stone duality Preprint.
T. T. Jakl (2018)

D-frames as algebraic duals of bitopological spaces
PhD thesis, University of Birmingham.

Summary

- D-frames are order-theoretical duals of bitopological spaces.

Summary

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.

Summary

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.
- However in several cases open, closed, and double pseudocomplementation sublocales are easy to compute.

Summary

- D-frames are order-theoretical duals of bitopological spaces.
- Computing the sublocale (extremal epi) induced by a pair of relations takes transfinitely many steps in general.
- However in several cases open, closed, and double pseudocomplementation sublocales are easy to compute. In particular, the last one gives a bitopological Booleanization.

