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Motivation

D = bounded distributive lattice

Booleanization of D: unique (up to isomorphism) Boolean algebra D−,

together with a bounded lattice embedding D
ι

↪−−−−→ D− satisfying the
following universal property:

D D−

B
h

ι

h−

D− is the unique (up to isomorphism) Boolean algebra containing D as a
bounded sublattice and generated as a Boolean algebra by D.

Fact: Every element of D− may be written as a difference chain of the form

a1 − (a2 − · · · − (an−1 − an) . . . ),

for some a1, . . . , an ∈ D.
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Priestley duality

Priestley spaces1 ! Bounded distributive lattices

X = Priestley space  UpClopen(X )

(XD , τ,≤), where  D = bounded distributive lattice

◦ XD = {prime filters of D}

◦ τ has basis of (cl)opens {â, (â)c | a ∈ D}, with â = {x ∈ XD | a ∈ x}

◦ ≤ is inclusion of prime filters

D ∼= UpClopen(XD) and X ∼= XUpClopen(X )

In particular, D− ∼= Clopen(XD).

1Compact and totally order disconnected topological space
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The topological formulation

X = Priestley space, V ⊆ X = clopen subset.

Then, there are clopen upsets W1, . . . ,Wn of X such that

V = W1 − (W2 − (· · · − (Wn−1 −Wn)) . . . ).

Our question: Is there a “canonical form” for such a writing?
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An example

1 2

. . .

y

x

X =

UpClopen(X ) = Pfin(N) ∪ {W |W ⊆ X is cofinite and y ∈W }

V = {x} is clopen, V = W −W ′ =⇒ ↑V = {x , y} ⊆W is not open!

There is no smallest clopen upset containing V :

those are precisely the sets of the form W = S ∪ {x , y}, with S ⊆ N cofinite.

Moreover, W ′ = W − {x} = ↑(W − V ) is also a clopen upset and V = W −W ′.

However, ↑V is closed and V = ↑V − ↑(↑V − V ).
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We will see:

1. Every clopen subset of a Priestley space may be canonically written as a
difference chain of closed upsets of the space.

Such writing has a nice topological interpretation.

2. This provides a canonical writing as a difference chain for the elements
in the Booleanization of a co-Heyting algebra.

3. This provides a topological proof of the fact that every element in the
Booleanization of a bounded distributive lattice D may be written as a
difference chain

a1 − (a2 − (· · · − (an−1 − an) . . . )),

with a1, . . . , an ∈ D.

4. The point-free version of 1. allows for an elegant generalization having
an application to Logic on Words.
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The degree of an element of a poset

P = poset, S ⊆ P, p ∈ P

p1 < p2 < · · · < pn in P is an alternating sequence of length n for p
(with respect to S) provided

pn = p and pi ∈ S if and only if i is odd.

The degree of p (wrt S), degS (p), is the largest k for which there is an
alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Example: p has degree 4.
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of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

◦ The elements of degree 0 are precisely those of (P − ↑S).

◦ An element of finite degree is of odd degree if and only if it belongs to S .

◦ If S is convex1, then every element of S has degree 1, while every
element of ↑S − S has degree 2.

1S is convex if x ≤ y ≤ z with x , z ∈ S implies y ∈ S .
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An example

In general, there are posets where

every element has an infinite degree:
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The case of a Priestley space

Proposition

X = Priestley space, V ⊆ X = clopen subset.

Then, every element of X has finite degree with respect to V .

Proof’s idea:

◦ Any element of the Booleanization of a bounded distributive lattice D may be
written as a finite disjunction of differences (a− b) with a, b ∈ D.

◦ Thus, V =
⋃n

i=1(Ui −Wi ), with Ui ,Wi ∈ UpClopen(X ).

◦ (Pigeonhole Principle + convexity of (Ui −Wi )) =⇒ degV (x) ≤ 2n, for
x ∈ X .
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Difference chains of closed upsets



Difference chains of closed upsets

X = Priestley space, V = clopen subset of X

V = G1 − (G2 − (· · · − (Gn−1 − Gn)) . . . )

for some closed upsets G1 ⊇ · · · ⊇ Gn.

V ⊆ G1 =⇒ ↑V ⊆ G1

K1 = ↑V is the smallest possible choice for G1, and

K1 = {x ∈ X | degV (x) ≥ 1}.

G1 − G2 ⊆ V and K1 ⊆ G1 =⇒ ↑(K1 − V ) ⊆ ↑(G1 − V ) ⊆ G2

K2 = ↑(K1 − V ) is the smallest possible choice for G2, and

K2 = {x ∈ X | degV (x) ≥ 2}.

In particular, K1 − K2 = {x ∈ X | degV (x) = 1}.
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for some closed upsets G1 ⊇ · · · ⊇ Gn.

K1 = {x ∈ X | degV (x) ≥ 1} ⊆ G1

K2 = {x ∈ X | degV (x) ≥ 2} ⊆ G2

K1 − K2 = {x ∈ X | degV (x) = 1}

K3 = {x ∈ X | degV (x) ≥ 3} ⊆ G3, K4 = {x ∈ X | degV (x) ≥ 4} ⊆ G4

K3 − K4 = {x ∈ X | degV (x) = 3}

G ′3−G ′4 = (G3−G4)∩K2 ⊆ K3−K4 =⇒ G3−G4 ⊆ (K1−K2)∪(K3−K4)
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Difference chains of closed upsets

Theorem

X = Priestley space, V = clopen subset of X , define:

K1 = ↑V , K2i = ↑(K2i−1 − V ), K2i+1 = ↑(K2i ∩ V ).

Then, Kn = {x ∈ X | degV (x) ≥ n} and so,

V =
m⋃

i=1
(K2i−1 − K2i ) = K1 − (K2 − (· · · − (K2m−1 − K2m)) . . . ),

where 2m − 1 = max{degV (x) | x ∈ V }.

Moreover, if G1 ⊇ G2 ⊇ · · · ⊇ G2p is a chain of closed upsets satisfying

V = G1 − (G2 − (· · · − (G2p−1 − G2p)) . . . ), then

p ≥ m, Ki ⊆ Gi ,
n⋃

i=1
(G2i−1 − G2i ) ⊆

n⋃
i=1

(K2i−1 − K2i )

(i = 1, . . . 2m) (n = 1, . . .m)
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The case of a co-Heyting algebra

Recall: A co-Heyting algebra is a bounded distributive lattice D equipped

with a binary operation / such that for every a ∈ D,

( /a) is lower adjoint of (a ∨ ) : (x/a ≤ b ⇐⇒ x ≤ a ∨ b).

Fact

A bounded distributive lattice D admits a co-Heyting structure if and only if it is
equipped with a ceiling function

D− −→ D, b 7→ dbe =
∧
{c ∈ D | b ≤ c}.

When that is the case, taking upsets preserves clopens of the dual XD and the
functions

d e : D− → D and ↑ : Clopen(XD)→ UpClopen(XD)

are naturally isomorphic.
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The case of a co-Heyting algebra

Corollary

D = co-Heyting algebra, b ∈ D−.

Define:

a1 = dbe, a2i = da2i−1 − be, and a2i+1 = da2i ∧ be,

for i ≥ 1.

Then, the sequence {ai}i≥0 is decreasing, and there exists m ≥ 1 such that
a2m+1 = 0 and

b = a1 − (a2 − (. . . (a2m−1 − a2m) . . . )),

and this is a canonical writing!
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A topological proof of an algebraic result

◦ Every finite distributive lattice is a co-Heyting algebra.

◦ Every bounded distributive lattice is the direct limit of its finite
sublattices.

◦ Booleanization commutes with direct limits of bounded distributive
lattices: (lim

→
Di )
− = lim

→
D−i .

Corollary

Every Boolean element over any bounded distributive lattice may be written
as a difference chain of elements of the lattice.
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The point-free approach



Going point-free...

Recall: If D is a bounded distributive lattice, its canonical extension is an
embedding D ↪→ Dδ into a complete lattice Dδ such that:

◦ D is dense in Dδ, ie, each element of Dδ is a join of meets and a meet of
joins of elements of D;

◦ the embedding is compact, ie, for every S ,T ⊆ D, if
∧
S ≤

∨
T , then there

are finite subsets S ′ ⊆ S and T ′ ⊆ S so that
∧
S ′ ≤

∨
T ′.

The filter elements of Dδ, F (Dδ), are those in the meet-closure of D.

Set B = D−, X = Priestley space of D.

◦ F (Dδ) ∼= UpClosed(X ) and F (Bδ) ∼= Closed(X ).

◦ D ↪→ B extends to a complete embedding Dδ ↪→ Bδ.

◦ This embedding has a lower adjoint ( ) : Bδ → Dδ given by
u = min{v ∈ Dδ | u ≤ v}, which preserves filter elements.

In particular, ( ) : F (Bδ)→ F (Dδ) and ↑ : Closed(X )→ UpClosed(X ) are
naturally isomorphic.
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Going point-free...

Our previous result may be stated as follows:

Theorem

D = bounded distributive lattice, b ∈ D−, define

k1 = b, k2n = k2n−1 − b, k2n+1 = k2n ∧ b.

Then,
b = k1 − (k2 − (. . . (k2n−1 − k2n)) . . . ).

C. Borlido (LJAD) Difference hierarchies over lattices September 28, 2018 21



Going point-free...

B = Boolean algebra, I = directed poset,

{Si}i∈I = family of meet-semilattices, {fi : B � Si : gi}i∈I = family of adjunctions

st: Im(gi ) ⊆ Im(gj ) when i ≤ j ;
⋃

i∈I Im(gi ) = D is a bounded sublattice of B.

Proposition

◦ ( )
i

= gi fi : B → B is a closure operator,

◦ for every x ∈ B, we have x =
∧

i∈I x
i , where the meet is taken in Bδ.

Theorem

For b ∈ B, define

c1,i = b
i
, c2k,i = c2k−1,i − b

i
, c2k+1,i = c2k,i ∧ b

i

If b ∈ D− ⊆ B, then there is n ∈ N, i ∈ I so that, for every j ≥ i we have

b = c1,j − (c2,j − (· · · − (c2n−1,j − c2n)) . . . ).
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An application on Logic on Words

Using the most general form of our result, we may prove the following:

BΣ1[arb] ∩ Reg = BΣ1[Reg ]

Meaning: A regular language is given by a Boolean combination of purely universal
sentences using arbitrary numerical predicates if and only if it is given by a Boolean
combination of purely universal sentences using only regular numerical predicates.

Idea: Take B = Reg , Sn = Σn
1[Reg ] and use Σ1[arb] ∩ Reg = Σ1[Reg ].
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Thank you!
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