DIFFERENCE HIERARCHIES OVER LATTICES¹

Célia Borlido

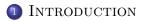
(based on joint work with Gerhke, Krebs, and Straubing)

LJAD, CNRS, Université Côte d'Azur

Workshop on Algebra, Logic and Topology in honour of Aleš Pultr, in the occasion of his 80th birthday

September 28, 2018

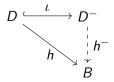
¹ The research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No.670624)



3 The point-free approach and an application to Logic on Words

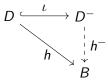
D = bounded distributive lattice

Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:



D = bounded distributive lattice

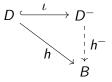
Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:



 D^- is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.

D = bounded distributive lattice

Booleanization of *D*: unique (up to isomorphism) Boolean algebra D^- , together with a bounded lattice embedding $D \xrightarrow{\iota} D^-$ satisfying the following universal property:



 D^- is the unique (up to isomorphism) Boolean algebra containing D as a bounded sublattice and generated as a Boolean algebra by D.

Fact: Every element of D^- may be written as a difference chain of the form

$$a_1-(a_2-\cdots-(a_{n-1}-a_n)\ldots),$$

for some $a_1, \ldots, a_n \in D$.

- **Priestley spaces**¹ *we Bounded distributive lattices*
 - X =Priestley space \rightsquigarrow UpClopen(X)
 - (X_D, τ, \leq) , where \Leftrightarrow D = bounded distributive lattice
- $\circ X_D = \{ \text{prime filters of } D \}$
- τ has basis of (cl)opens $\{\widehat{a}, \ (\widehat{a})^c \mid a \in D\}$, with $\widehat{a} = \{x \in X_D \mid a \in x\}$
- $\circ\ \leq$ is inclusion of prime filters

 $D \cong \mathsf{UpClopen}(X_D)$ and $X \cong X_{\mathsf{UpClopen}(X)}$

¹Compact and totally order disconnected topological space

C. Borlido (LJAD)

DIFFERENCE HIERARCHIES OVER LATTICES

4

- **Priestley spaces**¹ *we Bounded distributive lattices*
 - X =Priestley space \rightsquigarrow UpClopen(X)
 - (X_D, τ, \leq) , where \Leftrightarrow D = bounded distributive lattice
- $\circ X_D = \{ \text{prime filters of } D \}$
- τ has basis of (cl)opens $\{\widehat{a}, (\widehat{a})^c \mid a \in D\}$, with $\widehat{a} = \{x \in X_D \mid a \in x\}$
- $\circ\ \leq$ is inclusion of prime filters

 $D \cong \mathsf{UpClopen}(X_D)$ and $X \cong X_{\mathsf{UpClopen}(X)}$

In particular, $D^- \cong \text{Clopen}(X_D)$.

¹Compact and totally order disconnected topological space

C. Borlido (LJAD)

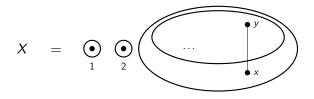
DIFFERENCE HIERARCHIES OVER LATTICES

X = Priestley space, $V \subseteq X =$ clopen subset.

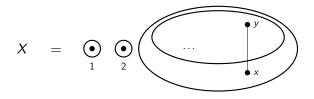
Then, there are clopen upsets W_1, \ldots, W_n of X such that

$$V = W_1 - (W_2 - (\cdots - (W_{n-1} - W_n)) \cdots).$$

Our question: Is there a "canonical form" for such a writing?

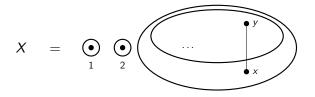


 $\mathsf{UpClopen}(X) = \mathcal{P}_{fin}(\mathbb{N}) \cup \{W \mid W \subseteq X \text{ is cofinite and } y \in W\}$



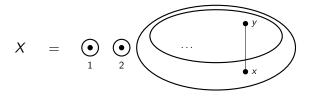
 $\mathsf{UpClopen}(X) = \mathcal{P}_{fin}(\mathbb{N}) \cup \{W \mid W \subseteq X \text{ is cofinite and } y \in W\}$

 $V = \{x\}$ is clopen



 $\mathsf{UpClopen}(X) = \mathcal{P}_{fin}(\mathbb{N}) \cup \{W \mid W \subseteq X \text{ is cofinite and } y \in W\}$

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

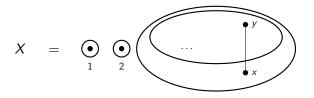


 $\mathsf{UpClopen}(X) = \mathcal{P}_{fin}(\mathbb{N}) \cup \{W \mid W \subseteq X \text{ is cofinite and } y \in W\}$

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

There is no smallest clopen upset containing V:

those are precisely the sets of the form $W = S \cup \{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite. Moreover, $W' = W - \{x\} = \uparrow (W - V)$ is also a clopen upset and V = W - W'.



 $\mathsf{UpClopen}(X) = \mathcal{P}_{fin}(\mathbb{N}) \cup \{W \mid W \subseteq X \text{ is cofinite and } y \in W\}$

 $V = \{x\}$ is clopen, $V = W - W' \implies \uparrow V = \{x, y\} \subseteq W$ is not open!

There is no smallest clopen upset containing V:

those are precisely the sets of the form $W = S \cup \{x, y\}$, with $S \subseteq \mathbb{N}$ cofinite. Moreover, $W' = W - \{x\} = \uparrow (W - V)$ is also a clopen upset and V = W - W'.

1. Every clopen subset of a Priestley space may be canonically written as a difference chain of closed upsets of the space.

Such writing has a nice topological interpretation.

1. Every clopen subset of a Priestley space may be canonically written as a difference chain of closed upsets of the space.

Such writing has a nice topological interpretation.

2. This provides a canonical writing as a difference chain for the elements in the Booleanization of a co-Heyting algebra.

1. Every clopen subset of a Priestley space may be canonically written as a difference chain of closed upsets of the space.

Such writing has a nice topological interpretation.

- **2.** This provides a canonical writing as a difference chain for the elements in the Booleanization of a co-Heyting algebra.
- **3.** This provides a topological proof of the fact that every element in the Booleanization of a bounded distributive lattice *D* may be written as a difference chain

$$a_1-(a_2-(\cdots-(a_{n-1}-a_n)\ldots)),$$

with $a_1, \ldots, a_n \in D$.

1. Every clopen subset of a Priestley space may be canonically written as a difference chain of closed upsets of the space.

Such writing has a nice topological interpretation.

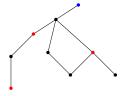
- **2.** This provides a canonical writing as a difference chain for the elements in the Booleanization of a co-Heyting algebra.
- **3.** This provides a topological proof of the fact that every element in the Booleanization of a bounded distributive lattice *D* may be written as a difference chain

$$a_1 - (a_2 - (\cdots - (a_{n-1} - a_n) \cdots)),$$

with $a_1, \ldots, a_n \in D$.

4. The point-free version of **1**. allows for an elegant generalization having an application to Logic on Words.

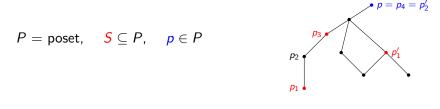
 $P = \text{poset}, \quad S \subseteq P, \quad p \in P$



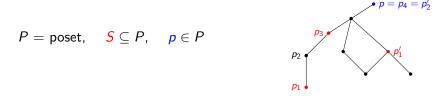
8

 $p_1 < p_2 < \cdots < p_n$ in P is an alternating sequence of length n for p (with respect to S) provided

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.



 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.



$$p_n = p$$
 and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Example: *p* has degree 4.

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

• The elements of degree 0 are precisely those of $(P - \uparrow S)$.

¹*S* is convex if $x \le y \le z$ with $x, z \in S$ implies $y \in S$.

DIFFERENCE HIERARCHIES OVER LATTICES

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

- The elements of degree 0 are precisely those of $(P \uparrow S)$.
- An element of finite degree is of odd degree if and only if it belongs to S.

¹*S* is convex if $x \le y \le z$ with $x, z \in S$ implies $y \in S$.

 $p_n = p$ and $p_i \in S$ if and only if *i* is odd.

The degree of p (wrt S), deg_S(p), is the largest k for which there is an alternating sequence of length k for p,

and p has degree 0 if there is no alternating sequence for p (wrt S).

Remarks:

- The elements of degree 0 are precisely those of $(P \uparrow S)$.
- An element of finite degree is of odd degree if and only if it belongs to S.
- If S is convex¹, then every element of S has degree 1, while every element of $\uparrow S S$ has degree 2.

¹*S* is convex if $x \le y \le z$ with $x, z \in S$ implies $y \in S$.

In general, there are posets where every element has an infinite degree:

PROPOSITION

X = Priestley space, $V \subseteq X =$ clopen subset.

Then, every element of X has finite degree with respect to V.

PROPOSITION

X =Priestley space, $V \subseteq X =$ clopen subset.

Then, every element of X has finite degree with respect to V.

Proof's idea:

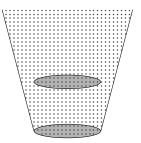
- Any element of the Booleanization of a bounded distributive lattice D may be written as a finite disjunction of differences (a b) with $a, b \in D$.
- Thus, $V = \bigcup_{i=1}^{n} (U_i W_i)$, with $U_i, W_i \in \text{UpClopen}(X)$.
- (Pigeonhole Principle + convexity of $(U_i W_i)$) $\implies \deg_V(x) \le 2n$, for $x \in X$.

Difference chains of closed upsets

 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

 $V \subseteq G_1 \implies \uparrow V \subseteq G_1$



 $X = \text{Priestley space}, \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

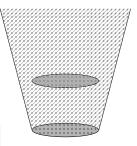
 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

••	• •	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•••
••	••	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	• •/
••	•••	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	• 1
••	••	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•1
••	••	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•/
••	•••	•	•	•	•	•	•	*	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠ <u>/</u>
																								3		τ.	7
17	::		1	:	1	1	1	1	:	1	:	1	:	:	:	1	1	:	:	1	1	1	1	1	:	Ξ.	1
11	::	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ξ.		Ξ.	1	1	1	1	1	Л	
١.	::		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	7	
1		-	÷	-	÷	÷	÷	-	-	÷	-	-	-	-	-	÷	÷			2	2	÷	÷	-	-	1	
1	••		÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	•	÷	÷	÷	÷	÷	÷	/	
- 1		٠	٠	٠	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	sł.		
	h •	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	4		
	٠ ا	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	1		
	1.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	1		
	1.	٠	٠	۰.	×	-	+	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	+	-	e.	٠	٠	٠	*			
	- ŀ	٠	٠	<	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•2	۰.	٠	٠	1			
	- 1	•	٠	٠	~	-	2		٠	٠	٠	٠	٠	٠	٠	٠	٠	سال	~	۶.	٠	٠	٠	1			
		۱.	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠,				
		v	•	•	•	•	•	*	•	•	•	*	•	•	•	•	•	•	•	•	•	•	1				
		7																					1				
		- \	1	:	1	1	1	1	:	1	:	1	:	:	:	1	1	:	:	1	2	Ξ.	1				
		1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	Ξ.		Ξ.	1	У					
			Ľ.	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	7					
			Ι	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	•	÷	÷	1					
			- 1	•	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠	٠	٠	•	٠	•1						
			1	۱۰	۰.	÷	-	Ŧ	٠	٠	٠	٠	٠	٠	٠	٠	-	-	۰.	٠	4						
				٧		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•		ſ						
					4	2		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰.	2	/							

 $X = \text{Priestley space}, \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for \mathcal{G}_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$

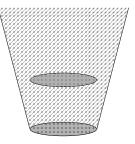


$$G_1 - G_2 \subseteq V$$
 and $K_1 \subseteq G_1 \implies \uparrow (K_1 - V) \subseteq \uparrow (G_1 - V) \subseteq G_2$

 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$



$$\mathsf{G}_1-\mathsf{G}_2\subseteq \mathsf{V}$$
 and $\mathsf{K}_1\subseteq \mathsf{G}_1\implies \uparrow(\mathsf{K}_1-\mathsf{V})\subseteq \uparrow(\mathsf{G}_1-\mathsf{V})\subseteq \mathsf{G}_2$

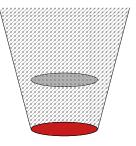
 $\mathcal{K}_2 = \uparrow (\mathcal{K}_1 - V)$ is the smallest possible choice for \mathcal{G}_2 , and $\mathcal{K}_2 = \{ x \in X \mid \deg_V(x) \ge 2 \}.$

C. Borlido (LJAD)

 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$V \subseteq G_1 \implies \uparrow V \subseteq G_1$$

 $\mathcal{K}_1 = \uparrow V$ is the smallest possible choice for G_1 , and $\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \ge 1\}.$



$${\sf G}_1-{\sf G}_2\subseteq {\sf V}$$
 and ${\sf K}_1\subseteq {\sf G}_1\implies \uparrow({\sf K}_1-{\sf V})\subseteq \uparrow({\sf G}_1-{\sf V})\subseteq {\sf G}_2$

 $K_2 = \uparrow (K_1 - V)$ is the smallest possible choice for G_2 , and $K_2 = \{x \in X \mid \deg_V(x) \ge 2\}.$

In particular, $K_1 - K_2 = \{x \in X \mid \deg_V(x) = 1\}.$

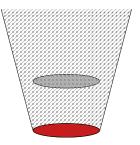
C. Borlido (LJAD)

 $X = \text{Priestley space}, \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$K_1 = \{x \in X \mid \deg_V(x) \ge 1\} \subseteq G_1$$

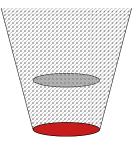
$$K_2 = \{x \in X \mid \deg_V(x) \ge 2\} \subseteq G_2$$

$$K_1 - K_2 = \{x \in X \mid \deg_V(x) = 1\}$$



$$X = \text{Priestley space,} \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

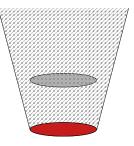
$$\begin{aligned} &\mathcal{K}_1 = \{ x \in X \mid \deg_V(x) \ge 1 \} \subseteq G_1 \\ &\mathcal{K}_2 = \{ x \in X \mid \deg_V(x) \ge 2 \} \subseteq G_2 \\ &\mathcal{K}_1 - \mathcal{K}_2 = \{ x \in X \mid \deg_V(x) = 1 \} \end{aligned}$$



Claim: All elements of $G_1 - G_2$ have degree 1, that is, $G_1 - G_2 \subseteq K_1 - K_2$.

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{aligned}$$



Claim: All elements of $G_1 - G_2$ have degree 1, that is, $G_1 - G_2 \subseteq K_1 - K_2$. <u>Proof's idea:</u>

Let $x \in G_1 - G_2$ and $x_1 < \cdots < x_n = x$ alternating sequence for x.

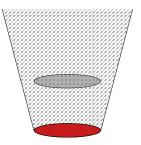
 $\circ x_1 \in V \subseteq G_1 \text{ and } G_1 \text{ upset} \implies x_1, \dots, x_n \in G_1;$

 $\circ x_n = x \notin G_2 \text{ and } G_2 \text{ upset} \implies x_1, \dots, x_n \notin G_2.$

Thus, $x_1, \ldots, x_n \in G_1 - G_2 \subseteq V$ and so n = 1.

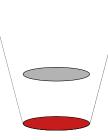
 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$\begin{split} \mathcal{K}_1 &= \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \\ \mathcal{K}_2 &= \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \\ \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{split}$$



 $X = \text{Priestley space,} \quad V = \text{clopen subset of } X$ $V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n)) \dots)$ for some closed upsets $G_1 \supseteq \dots \supseteq G_n$. $K_1 = \{x \in X \mid \deg_V(x) \ge 1\} \subseteq G_1$ $K_2 = \{x \in X \mid \deg_V(x) \ge 2\} \subseteq G_2$

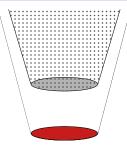
$$G_1 - G_2 \subseteq K_1 - K_2 = \{x \in X \mid \deg_V(x) = 1\}$$



 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \end{aligned}$

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \mathsf{deg}_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \mathsf{deg}_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \mathsf{deg}_V(x) = 1\} \end{aligned}$$

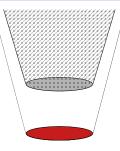


 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \quad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \end{aligned}$

 $K_3 = \uparrow V' = \uparrow (K_2 \cap V)$ is the smallest possible choice for $G'_3 \subseteq G_3$.

$$X = \text{Priestley space,} \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n)) \dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} \mathcal{K}_1 &= \{x \in X \mid \mathsf{deg}_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ \mathcal{K}_2 &= \{x \in X \mid \mathsf{deg}_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ \mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \mathsf{deg}_V(x) = 1\} \end{aligned}$$



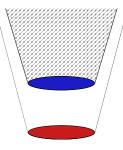
 $X' = K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X',$ $V' = G'_3 - (G'_4 - (\dots - (G'_{n-1} - G'_n)) \dots),$ where $G'_i = X' \cap G_i$ (because $G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset$)

 $K_3 = \uparrow V' = \uparrow (K_2 \cap V)$ is the smallest possible choice for $G'_3 \subseteq G_3$. $K_4 = \uparrow (K_3 - V') = \uparrow K_3 - V$ is the smallest possible choice for $G'_4 \subseteq G_4$.

C. Borlido (LJAD)

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{aligned}$$

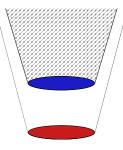


 $\begin{aligned} X' &= K_2 = \text{new Priestley space,} \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\dots - (G'_{n-1} - G'_n))\dots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \\ \hline K_3 &= \uparrow V' = \uparrow (K_2 \cap V) \text{ is the smallest possible choice for } G'_3 \subseteq G_3. \\ \hline K_4 &= \uparrow (K_3 - V') = \uparrow K_3 - V \text{ is the smallest possible choice for } G'_4 \subseteq G'_4. \end{aligned}$

 $K_3 = |V| = |(K_2 + V) \text{ is the smallest possible choice for } G_3 \subseteq G_3.$ $K_4 = \uparrow (K_3 - V') = \uparrow K_3 - V \text{ is the smallest possible choice for } G_4' \subseteq G_4.$ Also, $\deg_{V'}(x) = \deg_V(x) - 2$, thus $K_i = \{x \in X \mid \deg_V(x) \ge i\}$ (i = 3, 4), and $K_3 - K_4 = \{x \in X \mid \deg_V(x) = 3\}.$

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{aligned}$$



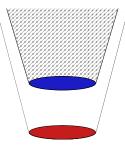
 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \qquad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \end{aligned}$

$$\begin{split} \mathcal{K}_3 &= \{x \in X \mid \deg_V(x) \geq 3\} \subseteq \mathcal{G}_3, \quad \mathcal{K}_4 = \{x \in X \mid \deg_V(x) \geq 4\} \subseteq \mathcal{G}_4 \\ \mathcal{K}_3 &- \mathcal{K}_4 = \{x \in X \mid \deg_V(x) = 3\} \end{split}$$

C. Borlido (LJAD)

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{aligned}$$



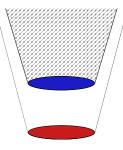
 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \quad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \end{aligned}$

$$\begin{split} \mathcal{K}_3 &= \{x \in X \mid \deg_V(x) \geq 3\} \subseteq \mathcal{G}_3, \quad \mathcal{K}_4 = \{x \in X \mid \deg_V(x) \geq 4\} \subseteq \mathcal{G}_4 \\ \mathcal{K}_3 - \mathcal{K}_4 &= \{x \in X \mid \deg_V(x) = 3\} \end{split}$$

 $G_3'-G_4'=(\,G_3-G_4)\cap K_2\subseteq K_3-K_4 \implies G_3-G_4\subseteq (K_1-K_2)\cup (K_3-K_4)$

$$X = \text{Priestley space}, \quad V = \text{clopen subset of } X$$
$$V = G_1 - (G_2 - (\dots - (G_{n-1} - G_n))\dots)$$
for some closed upsets $G_1 \supseteq \dots \supseteq G_n$.

$$egin{aligned} &\mathcal{K}_1 = \{x \in X \mid \deg_V(x) \geq 1\} \subseteq \mathcal{G}_1 \ &\mathcal{K}_2 = \{x \in X \mid \deg_V(x) \geq 2\} \subseteq \mathcal{G}_2 \ &\mathcal{G}_1 - \mathcal{G}_2 \subseteq \mathcal{K}_1 - \mathcal{K}_2 = \{x \in X \mid \deg_V(x) = 1\} \end{aligned}$$



 $\begin{aligned} X' &= K_2 = \text{new Priestley space}, \quad V' = X' \cap V = \text{clopen subset of } X', \\ V' &= G'_3 - (G'_4 - (\cdots - (G'_{n-1} - G'_n)) \dots), \\ \text{where } G'_i &= X' \cap G_i \quad (\text{because } G'_1 - G'_2 = (G_1 - G_2) \cap K_2 \subseteq (K_1 - K_2) = \emptyset) \end{aligned}$

$$\begin{split} \mathcal{K}_3 &= \{ x \in X \mid \deg_V(x) \geq 3 \} \subseteq \mathcal{G}_3, \quad \mathcal{K}_4 = \{ x \in X \mid \deg_V(x) \geq 4 \} \subseteq \mathcal{G}_4 \\ \mathcal{K}_3 - \mathcal{K}_4 &= \{ x \in X \mid \deg_V(x) = 3 \} \\ & (\mathcal{G}_1 - \mathcal{G}_2) \cup (\mathcal{G}_3 - \mathcal{G}_4) \subseteq (\mathcal{K}_1 - \mathcal{K}_2) \cup (\mathcal{K}_3 - \mathcal{K}_4) \end{split}$$

C. Borlido (LJAD)

X = Priestley space, V = clopen subset of X, define:

 $K_1 = \uparrow V$, $K_{2i} = \uparrow (K_{2i-1} - V)$, $K_{2i+1} = \uparrow (K_{2i} \cap V)$.

X = Priestley space, V = clopen subset of X, define:

 $K_1 = \uparrow V$, $K_{2i} = \uparrow (K_{2i-1} - V)$, $K_{2i+1} = \uparrow (K_{2i} \cap V)$.

Then, $K_n = \{x \in X \mid \deg_V(x) \ge n\}$

 $X = \text{Priestley space}, \quad V = \text{clopen subset of } X, \quad \text{define:}$ $K_1 = \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V).$ Then, $K_n = \{x \in X \mid \deg_V(x) \ge n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \cdots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \dots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\cdots - (G_{2p-1} - G_{2p})) \dots)$$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \dots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

 $p \ge m$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \dots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

 $p \ge m$, $K_i \subseteq G_i$ $(i = 1, \dots 2m)$

 $\begin{aligned} X &= \text{Priestley space,} \quad V = \text{clopen subset of } X, \quad \text{define:} \\ K_1 &= \uparrow V, \quad K_{2i} = \uparrow (K_{2i-1} - V), \quad K_{2i+1} = \uparrow (K_{2i} \cap V). \end{aligned}$ Then, $K_n = \{x \in X \mid \deg_V(x) \geq n\}$ and so,

$$V = \bigcup_{i=1}^{m} (K_{2i-1} - K_{2i}) = K_1 - (K_2 - (\cdots - (K_{2m-1} - K_{2m})) \cdots),$$

where $2m - 1 = \max\{\deg_V(x) \mid x \in V\}$.

Moreover, if $G_1 \supseteq G_2 \supseteq \cdots \supseteq G_{2p}$ is a chain of closed upsets satisfying

$$V = G_1 - (G_2 - (\dots - (G_{2p-1} - G_{2p}))\dots),$$
 then

 $p \geq m, \qquad K_i \subseteq G_i, \qquad \bigcup_{i=1}^n (G_{2i-1} - G_{2i}) \subseteq \bigcup_{i=1}^n (K_{2i-1} - K_{2i})$ $(i = 1, \dots 2m) \qquad (n = 1, \dots m)$

Recall: A co-Heyting algebra is a bounded distributive lattice *D* equipped with a binary operation _/_ such that for every $a \in D$, (_/a) is lower adjoint of $(a \lor _)$: $(x/a \le b \iff x \le a \lor b)$. **Recall:** A co-Heyting algebra is a bounded distributive lattice *D* equipped with a binary operation $_{-/_{-}}$ such that for every $a \in D$, $(_{-/a})$ is lower adjoint of $(a \lor _{-})$: $(x/a \le b \iff x \le a \lor b)$.

Fact

A bounded distributive lattice D admits a co-Heyting structure if and only if it is equipped with a ceiling function

$$D^- \longrightarrow D$$
, $b \mapsto \lceil b \rceil = \bigwedge \{ c \in D \mid b \leq c \}$.

When that is the case, taking upsets preserves clopens of the dual X_D and the functions

$$[-]: D^- \to D$$
 and $\uparrow_-: \operatorname{Clopen}(X_D) \to \operatorname{UpClopen}(X_D)$

are naturally isomorphic.

COROLLARY

 $D = ext{co-Heyting algebra}, \quad b \in D^-.$

Define:

for

$$a_1 = \lceil b \rceil,$$
 $a_{2i} = \lceil a_{2i-1} - b \rceil,$ and $a_{2i+1} = \lceil a_{2i} \wedge b \rceil,$
 $i \ge 1.$

Then, the sequence $\{a_i\}_{i\geq 0}$ is decreasing, and there exists $m\geq 1$ such that $a_{2m+1}=0$ and

$$b = a_1 - (a_2 - (\dots (a_{2m-1} - a_{2m}) \dots)),$$

and this is a canonical writing!

 $\circ\,$ Every finite distributive lattice is a co-Heyting algebra.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $(\lim_{\rightarrow} D_i)^- = \lim_{\rightarrow} D_i^-$.

- Every finite distributive lattice is a co-Heyting algebra.
- Every bounded distributive lattice is the direct limit of its finite sublattices.
- Booleanization commutes with direct limits of bounded distributive lattices: $(\lim_{\to} D_i)^- = \lim_{\to} D_i^-$.

COROLLARY

Every Boolean element over any bounded distributive lattice may be written as a difference chain of elements of the lattice.

The point-free approach

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\bigwedge S' \leq \bigvee T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\bigwedge S \leq \bigvee T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\bigwedge S' \leq \bigvee T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Set $B = D^-$, X = Priestley space of D.

- \circ $F(D^{\delta}) \cong UpClosed(X)$ and $F(B^{\delta}) \cong Closed(X)$.
- $\circ D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(_)} : B^{\delta} \to D^{\delta}$ given by $\overline{u} = \min\{v \in D^{\delta} \mid u \leq v\}$, which preserves filter elements.

Recall: If D is a bounded distributive lattice, its canonical extension is an embedding $D \hookrightarrow D^{\delta}$ into a complete lattice D^{δ} such that:

- *D* is dense in D^{δ} , ie, each element of D^{δ} is a join of meets and a meet of joins of elements of *D*;
- the embedding is compact, ie, for every $S, T \subseteq D$, if $\land S \leq \lor T$, then there are finite subsets $S' \subseteq S$ and $T' \subseteq S$ so that $\land S' \leq \lor T'$.

The filter elements of D^{δ} , $F(D^{\delta})$, are those in the meet-closure of D.

Set $B = D^-$, X = Priestley space of D.

- \circ $F(D^{\delta}) \cong UpClosed(X)$ and $F(B^{\delta}) \cong Closed(X)$.
- $\circ D \hookrightarrow B$ extends to a complete embedding $D^{\delta} \hookrightarrow B^{\delta}$.
- This embedding has a lower adjoint $\overline{(_)} : B^{\delta} \to D^{\delta}$ given by $\overline{u} = \min\{v \in D^{\delta} \mid u \leq v\}$, which preserves filter elements.

In particular, $\overline{(_)} : F(B^{\delta}) \to F(D^{\delta})$ and $\uparrow_{_} : Closed(X) \to UpClosed(X)$ are naturally isomorphic.

C. Borlido (LJAD)

Our previous result may be stated as follows:

Theorem

 $D = bounded \ distributive \ lattice, \ b \in D^-$, define

$$k_1 = \overline{b}, \qquad k_{2n} = \overline{k_{2n-1} - b}, \qquad k_{2n+1} = \overline{k_{2n} \wedge b}.$$

Then,

$$b = k_1 - (k_2 - (\dots (k_{2n-1} - k_{2n}))\dots).$$

B = Boolean algebra, I = directed poset,

 $\{S_i\}_{i \in I}$ = family of meet-semilattices, $\{f_i : B \rightleftharpoons S_i : g_i\}_{i \in I}$ = family of adjunctions

st: $Im(g_i) \subseteq Im(g_j)$ when $i \leq j$; $\bigcup_{i \in I} Im(g_i) = D$ is a bounded sublattice of B.

B = Boolean algebra, I = directed poset,

 $\{S_i\}_{i \in I} = \text{family of meet-semilattices, } \{f_i : B \rightleftharpoons S_i : g_i\}_{i \in I} = \text{family of adjunctions}$

st: $Im(g_i) \subseteq Im(g_j)$ when $i \leq j$; $\bigcup_{i \in I} Im(g_i) = D$ is a bounded sublattice of B.

PROPOSITION

$$\circ \overline{(_{-})}^{i} = g_{i}f_{i}: B
ightarrow B$$
 is a closure operator,

• for every $x \in B$, we have $\overline{x} = \bigwedge_{i \in I} \overline{x}^i$, where the meet is taken in B^{δ} .

B = Boolean algebra, I = directed poset,

 $\{S_i\}_{i \in I} = \text{family of meet-semilattices, } \{f_i : B \rightleftharpoons S_i : g_i\}_{i \in I} = \text{family of adjunctions}$

st: $Im(g_i) \subseteq Im(g_j)$ when $i \leq j$; $\bigcup_{i \in I} Im(g_i) = D$ is a bounded sublattice of B.

PROPOSITION

$$\circ \overline{(_{-})}^{i} = g_{i}f_{i}: B
ightarrow B$$
 is a closure operator,

• for every $x \in B$, we have $\overline{x} = \bigwedge_{i \in I} \overline{x}^i$, where the meet is taken in B^{δ} .

Theorem

For $b \in B$, define $c_{1,i} = \overline{b}^{i}$, $c_{2k,i} = \overline{c_{2k-1,i} - b}^{i}$, $c_{2k+1,i} = \overline{c_{2k,i} \wedge b}^{i}$

If $b \in D^- \subseteq B$, then there is $n \in \mathbb{N}$, $i \in I$ so that, for every $j \ge i$ we have

$$b = c_{1,j} - (c_{2,j} - (\cdots - (c_{2n-1,j} - c_{2n})) \dots).$$

Using the most general form of our result, we may prove the following:

$$\mathcal{B}\Sigma_1[\mathit{arb}] \cap \mathit{Reg} = \mathcal{B}\Sigma_1[\mathit{Reg}]$$

Meaning: A regular language is given by a Boolean combination of purely universal sentences using arbitrary numerical predicates if and only if it is given by a Boolean combination of purely universal sentences using only regular numerical predicates.

Idea: Take B = Reg, $S_n = \Sigma_1^n[Reg]$ and use $\Sigma_1[arb] \cap Reg = \Sigma_1[Reg]$.

C. Borlido (LJAD)

Thank you!