The Vietoris Uniformity for Locales

Dharmanand Baboolal
(joint with Paranjothi Pillay and Aleš Pultr)

University of KwaZulu-Natal
baboolald@ukzn.ac.za
26 September 2018

Overview

(1) Introduction

- Uniform hyperspaces - some background remarks
- Hyperspace of a topological space
- Properties of t and m
(2) The Vietoris Locale
- Some properties of $V(A)$
- Some properties of $H(A)$
(3) The Vietoris uniformity

The theory of uniform hyperspaces is well known in the literature:

1. J. R. Isbell, Uniform spaces (1964)

- hyperspace of non-empty closed sets of a uniform space.
- supercomplete.

2. K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, Gen. Top. and its Appl.,(1974), 217-233.

- completeness result.

3. P. T. Johnstone, Vietoris Locales and Localic Semilattices, Continuous lattices and their applications (Bremen, 1982), 155-180, Lecture Notes in Pure and Appl. Math., 101, Dekker, New York (1985)

We recall the classical construction of the hyperspace of non-empty compact subsets of any topological space X. Let

$$
2^{X}=\{\emptyset \neq A \subseteq X \mid A \text { is compact. }\}
$$

We recall the classical construction of the hyperspace of non-empty compact subsets of any topological space X. Let

$$
2^{X}=\{\emptyset \neq A \subseteq X \mid A \text { is compact. }\}
$$

For every open $U \subseteq X$, let

$$
t(U)=\left\{A \in 2^{X} \mid A \subseteq U\right\} \text { and } m(U)=\left\{A \in 2^{X} \mid A \cap U \neq \emptyset\right\} .
$$

We recall the classical construction of the hyperspace of non-empty compact subsets of any topological space X. Let

$$
2^{X}=\{\emptyset \neq A \subseteq X \mid A \text { is compact. }\}
$$

For every open $U \subseteq X$, let

$$
t(U)=\left\{A \in 2^{X} \mid A \subseteq U\right\} \text { and } m(U)=\left\{A \in 2^{X} \mid A \cap U \neq \emptyset\right\} .
$$

The Vietoris topology on 2^{X} is the topology having as subbase the collection $\alpha=\{t(U), m(U) \mid U \in \mathcal{O} X\}$, where $\mathcal{O} X$ is the frame of all open subsets of X.

We recall the classical construction of the hyperspace of non-empty compact subsets of any topological space X. Let

$$
2^{X}=\{\emptyset \neq A \subseteq X \mid A \text { is compact. }\}
$$

For every open $U \subseteq X$, let

$$
t(U)=\left\{A \in 2^{X} \mid A \subseteq U\right\} \text { and } m(U)=\left\{A \in 2^{X} \mid A \cap U \neq \emptyset\right\} .
$$

The Vietoris topology on 2^{X} is the topology having as subbase the collection $\alpha=\{t(U), m(U) \mid U \in \mathcal{O} X\}$, where $\mathcal{O} X$ is the frame of all open subsets of X. This subbase determines a base β, which can be described in the following way:
For a finite collection $U_{1}, U_{2}, \ldots, U_{n}$ in $\mathcal{O} X$, let

$$
<U_{1}, U_{2}, \ldots, U_{n}>=\left\{A \in 2^{X} \mid A \subseteq \bigcup_{i=1}^{n} U_{i} \text { and } A \cap U_{i} \neq \emptyset \text { for each } i=1,2,\right.
$$

Then $\beta=\left\{<U_{1}, U_{2}, \ldots, U_{n}>\mid U_{i} \in \mathcal{O} X\right.$ for each i, and $\left.n \in \mathbb{N}\right\}$.

We list below the properties satisfied by t and m, all of which follow easily from their definitions. These properties give insight into the definition of the Vietoris locale defined by Johnstone [3], which we discuss later.

$$
\begin{align*}
t(U \cap V) & =t(U) \cap t(V) \text { for all } U, V \in \mathcal{O} X, \text { and } \tag{i}\\
t(X) & =2^{X} . \\
t\left(\bigcup U_{i}\right) & =\bigcup t\left(U_{i}\right) \text { whenever }\left\{U_{i}\right\} \text { is updirected. } \tag{ii}\\
m\left(\bigcup U_{i}\right) & =\bigcup m\left(U_{i}\right) \text { for all subcollections }\left\{U_{i}\right\}, \text { and } \tag{iii}\\
m(\emptyset) & =\emptyset . \\
t(U) \cap m(V) & \subseteq m(U \cap V) \text { for all } U, V \in \mathcal{O} X . \tag{iv}\\
t(U \cup V) & \subseteq t(U) \cup m(V) \text { for all } U, V \in \mathcal{O} X . \tag{v}\\
t(\emptyset) & =\emptyset . \tag{vi}
\end{align*}
$$

Remark

(a) Note that in (ii) above, the fact that $t\left(\bigcup U_{i}\right) \subseteq \bigcup t\left(U_{i}\right)$ for updirected $\left\{U_{i}\right\}$ is because all $A \in 2^{X}$ are compact.

Remark

(a) Note that in (ii) above, the fact that $t\left(\bigcup U_{i}\right) \subseteq \bigcup t\left(U_{i}\right)$ for updirected $\left\{U_{i}\right\}$ is because all $A \in 2^{X}$ are compact.
(b) Note that in (vi) above, $t(\emptyset)=\emptyset$ follows because we are considering the hyperspace of all non-empty compact sets. If we were to consider all compact sets, i.e. including the empty set, then $t(\emptyset)=\{\emptyset\}$.

Remark

(a) Note that in (ii) above, the fact that $t\left(\bigcup U_{i}\right) \subseteq \bigcup t\left(U_{i}\right)$ for updirected $\left\{U_{i}\right\}$ is because all $A \in 2^{X}$ are compact.
(b) Note that in (vi) above, $t(\emptyset)=\emptyset$ follows because we are considering the hyperspace of all non-empty compact sets. If we were to consider all compact sets, i.e. including the empty set, then $t(\emptyset)=\{\emptyset\}$.
(c) It is customary in spaces that the definition of hyperspace deals with non-empty sets, since otherwise \emptyset would be an isolated point in the hyperspace. This is mentioned by Isbell in ([2], p. 28).

Johnstone [3] makes use of the properties (i) - (v) above satisfied by t and m, to define the Vietoris locale $V(A)$ of a locale A in terms of generators and relations. Specifically, for each $a \in A$ let $t(a)$ and $m(a)$ be abstract symbols. Then $V(A)$ is the frame freely generated by these symbols subject to the following relations:

$$
\begin{align*}
t(a \wedge b) & =t(a) \wedge t(b) \text { for all } a, b \in A, \text { and } \tag{i}\\
t(1) & =1 \\
t(\bigvee S) & =\bigvee t(s)(s \in S) \text { for all updirected } S \subseteq A . \tag{ii}\\
m(\bigvee S) & =\bigvee m(s)(s \in S) \text { for all } S \subseteq A, \text { and } \tag{iii}\\
m(0) & =0 \\
m(a \wedge b) & \geq t(a) \wedge m(b) \text { for all } a, b \in A . \tag{iv}\\
t(a \vee b) & \leq t(a) \vee m(b) \text { for all } a, b \in A . \tag{v}
\end{align*}
$$

As Johnstone remarks in his paper one can think informally of $V(A)$ as the space of all compact subspaces, of $t(a)$ of those compact subspaces contained in a, and of $m(a)$ as the set of those compact subspaces that meet a.

As Johnstone remarks in his paper one can think informally of $V(A)$ as the space of all compact subspaces, of $t(a)$ of those compact subspaces contained in a, and of $m(a)$ as the set of those compact subspaces that meet a.
Let $X=\{m(a), t(a) \mid a \in A\}$. The above relations give the construction of $V(A)$ diagrammatically as shown below:

Here f is the map $t(a) \longmapsto a$, and $m(a) \longmapsto a, X \hookrightarrow F X$ is the insertion of generators, and \bar{f} is the unique frame homomorphism making the left triangle in the diagram commute.

Here f is the map $t(a) \longmapsto a$, and $m(a) \longmapsto a, X \hookrightarrow F X$ is the insertion of generators, and \bar{f} is the unique frame homomorphism making the left triangle in the diagram commute.
It is easily verified that the relation R on $F X$ determined by the relations (i)-(v) is such that $R \subseteq \operatorname{ker} \bar{f}$. Thus if Θ is the congruence on $F X$ generated by R, we obtain a unique frame homomorphism $\varphi: F X / \Theta \longrightarrow A$ making the second triangle in the diagram commute. The Vietoris locale $V(A)$ is defined to be the frame $F X / \Theta$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$. Hence:
(a) $\varphi: V(A) \longrightarrow A$ is an onto frame homomorphism. Thus, A is a sublocale of $V(A)([3])$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$. Hence:
(a) $\varphi: V(A) \longrightarrow A$ is an onto frame homomorphism. Thus, A is a sublocale of $V(A)([3])$.
(b) $t(0)$ and $m(1)$ are complements of each other in $V(A)([3])$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$. Hence:
(a) $\varphi: V(A) \longrightarrow A$ is an onto frame homomorphism. Thus, A is a sublocale of $V(A)([3])$.
(b) $t(0)$ and $m(1)$ are complements of each other in $V(A)([3])$.

To see this, note from the relation (iv) above that $t(0) \wedge m(1) \leq m(0 \wedge 1)=m(0)=0$. Thus $t(0) \wedge m(1)=0$. Also $1=t(1)=t(0 \vee 1) \leq t(0) \vee m(1)$, hence $t(0) \vee m(1)=1$. Of course $m(0)$ and $t(1)$ are also complements of each other in $V(A)$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$. Hence:
(a) $\varphi: V(A) \longrightarrow A$ is an onto frame homomorphism. Thus, A is a sublocale of $V(A)([3])$.
(b) $t(0)$ and $m(1)$ are complements of each other in $V(A)([3])$.

To see this, note from the relation (iv) above that $t(0) \wedge m(1) \leq m(0 \wedge 1)=m(0)=0$. Thus $t(0) \wedge m(1)=0$. Also $1=t(1)=t(0 \vee 1) \leq t(0) \vee m(1)$, hence $t(0) \vee m(1)=1$. Of course $m(0)$ and $t(1)$ are also complements of each other in $V(A)$.
(c) Every element x of $V(A)$ is a join of elements of the type $t\left(a_{1}\right) \wedge t\left(a_{2}\right) \wedge \ldots \wedge t\left(a_{m}\right) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)$.

If $w \in F X$, then $\nu(w) \in V(A)$. We will write $\nu(w)$ as w, i.e. we will suppress the quotient map ν. Bearing this in mind, we then see that $\varphi(t(a))=a$ and $\varphi(m(a))=a$. Hence:
(a) $\varphi: V(A) \longrightarrow A$ is an onto frame homomorphism. Thus, A is a sublocale of $V(A)([3])$.
(b) $t(0)$ and $m(1)$ are complements of each other in $V(A)([3])$.

To see this, note from the relation (iv) above that $t(0) \wedge m(1) \leq m(0 \wedge 1)=m(0)=0$. Thus $t(0) \wedge m(1)=0$. Also $1=t(1)=t(0 \vee 1) \leq t(0) \vee m(1)$, hence $t(0) \vee m(1)=1$. Of course $m(0)$ and $t(1)$ are also complements of each other in $V(A)$.
(c) Every element x of $V(A)$ is a join of elements of the type $t\left(a_{1}\right) \wedge t\left(a_{2}\right) \wedge \ldots \wedge t\left(a_{m}\right) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)$.

Using the fact that t preserves finite meet, and using relation (iv) above we can show that the basic generators have the form $t(a) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)$ where $b_{i} \leq a$ for each $i_{\text {(}}([3])$.
(d) From (b) above we see that $V(A)$ can be written as the disjoint join of the two closed sublocales $\uparrow m(1)$ and $\uparrow t(0)$. Of course these sublocales are also open, hence they are clopen ([3]).
(d) From (b) above we see that $V(A)$ can be written as the disjoint join of the two closed sublocales $\uparrow m(1)$ and $\uparrow t(0)$. Of course these sublocales are also open, hence they are clopen ([3]).
(e) If one adjoins the relation

$$
t(0)=1
$$

to those relations (i)-(v) that define $V(A)$, then one gets the sublocale $V_{0}(A)$ referred to in $([3])$. Note that $t(0)=1 \Leftrightarrow m(1)=0$ since $t(0)$ and $m(1)$ are complementary. Now the identification of $m(1)$ with 0 in $V(A)$ determines the closed sublocale $\uparrow m(1)$ of $V(A)$. Hence $V_{0}(A)=\uparrow m(1)$. It is shown in [3] that $V_{0}(A) \cong \mathbf{2}$, where 2 is the terminal object in Loc. Hence $\uparrow m(1)$ is a one-point sublocale of $V(A)$, and therefore $m(1)$ is a prime element of $V(A)$ (see III,10 [7]).
(f) If one adjoins the relation

$$
t(0)=0
$$

to those relations (i)-(v) that define $V(A)$, then one gets what is referred to in ([3]) as the sublocale $V^{+}(A)$ of $V(A)$. Hence $V^{+}(A)=\uparrow t(0)$. The sublocale $V^{+}(A)$ corresponds to the hyperspace 2^{X} in the setting of spaces.

Since $V^{+}(A)$ would be our primary interest of study from now on, it may be better to change notation and refer to $V^{+}(A)$ as $H(A)$. Thus $H(A)$ is the Vietoris (or hyperlocale) of all "non-empty compact subspaces" of A. The relations (i)-(v) as well as (vi) $t(0)=0$, then determine $H(A)$, and we can represent this diagrammatically as

Just as before, g is a frame homomorphism which is onto since $g(m(a))=a$ and $g(t(a))=a$ for all $a \in A$.

The extra relation $t(0)=0$ means that $H(A)$ satisfies some properties not enjoyed by $V(A)$. We list these useful properties which are of crucial importance in the sequel.
(a) $t(0)=0 \Leftrightarrow t(a) \leq m(a)$ for all $a \in A$.

The extra relation $t(0)=0$ means that $H(A)$ satisfies some properties not enjoyed by $V(A)$. We list these useful properties which are of crucial importance in the sequel.
(a) $t(0)=0 \Leftrightarrow t(a) \leq m(a)$ for all $a \in A$.

To see this note that $t(a)=t(0 \vee a) \leq t(0) \vee m(a)=0 \vee m(a)=m(a)$. For the other direction, if $t(a) \leq m(a)$ for all a, then $t(0) \leq m(0)=0$. Hence $t(0)=0$.

The extra relation $t(0)=0$ means that $H(A)$ satisfies some properties not enjoyed by $V(A)$. We list these useful properties which are of crucial importance in the sequel.
(a) $t(0)=0 \Leftrightarrow t(a) \leq m(a)$ for all $a \in A$.

To see this note that $t(a)=t(0 \vee a) \leq t(0) \vee m(a)=0 \vee m(a)=m(a)$. For the other direction, if $t(a) \leq m(a)$ for all a, then $t(0) \leq m(0)=0$. Hence $t(0)=0$.
(b) $m(1)=1$.

This follows since, as we saw before, $t(0)$ and $m(1)$ are complementary.

Proposition

In $H(A)$, the collection
$T=\left\{t(a) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right) \mid a=b_{1} \vee b_{2} \vee \ldots \vee b_{n}, a \in A, b_{i} \in A, n\right.$ is a basis for $H(A)$.

Proof.

Take a basic generator of $H(A)$, say, $t(a) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)$ with $b_{i} \leq a$ for all i. Since $t(a) \leq m(a)$ in $H(A)$, we have
$t(a) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)=t(a) \wedge m(a) \wedge m\left(b_{1}\right) \wedge m\left(b_{2}\right) \wedge \ldots \wedge m\left(b_{n}\right)$ with $a \vee b_{1} \vee b_{2} \vee \ldots \vee b_{n}=a$, and the latter is in T.

The following lemma will be useful in the section on the Vietoris uniformity.

Lemma

For elements $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}$ in A, we have: $t\left(a_{1} \vee \ldots \vee a_{n+1}\right) \wedge m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n}\right) \leq\left[t\left(a_{1} \vee \ldots \vee a_{n+1}\right) \wedge\left(m\left(a_{1}\right) \wedge\right.\right.$ $\left.\left.m\left(a_{2}\right) \wedge \ldots m\left(a_{n+1}\right)\right)\right] \vee\left[t\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge\left(m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n}\right)\right)\right]$.

Proof.

$$
\begin{aligned}
L H S & \leq\left[t\left(a_{1} \vee \ldots \vee a_{n}\right) \vee m\left(a_{n+1}\right)\right] \wedge\left[m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n}\right)\right] \\
& =\left[t\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n}\right)\right] \vee\left[m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n+1}\right)\right] \\
& \leq t\left(a_{1} \vee \ldots \vee a_{n+1}\right) \wedge\left\{[t (a _ { 1 } \vee \ldots \vee a _ { n }) \wedge m (a _ { 1 }) \wedge \ldots \wedge m (a _ { n })] \vee \left[m \left(a_{1}\right.\right.\right. \\
& =\left[t\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge m\left(a_{1}\right) \wedge \ldots \wedge m\left(a_{n}\right)\right] \vee\left[t\left(a_{1} \vee \ldots \vee a_{n+1}\right) \wedge m\left(a_{1}\right)\right.
\end{aligned}
$$

We note that the two terms in square brackets that appear in the last line in the above proof each have the following property: The join of the arguments of m is the argument of t. We shall refer to these terms as terms of type A. The above lemma allows us to make some computations:

$$
t\left(a_{1} \vee a_{2}\right) \wedge m\left(a_{1}\right) \leq\left[t\left(a_{1} \vee a_{2}\right) \wedge m\left(a_{1}\right) \wedge m\left(a_{2}\right)\right] \vee\left[t\left(a_{1}\right) \wedge m\left(a_{1}\right)\right] .
$$

Thus the lhs of the above expression is less than or equal to the join of terms of type A.

Lemma

For elements $a_{1}, a_{2}, \ldots, a_{n}$ in A, we have that the expression $t\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge m\left(a_{1}\right)$ is less than or equal to the join of terms of type A.

Let (A, μ) be a uniform locale.

Proposition

If $C \in \mu$, then

$$
\tilde{C}=\left\{t\left(c_{1} \vee c_{2} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \mid c_{i} \in C, n \in \mathbb{N}\right\}
$$

is a cover of $H(A)$.

Proof.

Since C is a cover of A, we have

$$
1=t(1)=t(\bigvee C)=t(\bigvee\{\vee F \mid F \subseteq C \text { is finite }\})=\bigvee\{t(\vee F) \mid F \subseteq C \text { is finit }
$$

the latter following because t preserves directed joins. Also $1=m(1)=m(\bigvee C)=\bigvee\{m(c) \mid c \in C\}$. Hence

$$
\begin{aligned}
1 & =\bigvee\{t(\vee F) \mid F \subseteq C \text { is finite }\} \wedge \bigvee\{m(c) \mid c \in C\} \\
& =\bigvee\{t(\vee F) \wedge m(c) \mid F \subseteq C \text { is finite }, c \in C\}
\end{aligned}
$$

Consider a typical element $t(\vee F) \wedge m(c)$ in the above join. If the element c is not already in F, we can let $F^{\prime}=F \cup\{c\}$, and then $t(\vee F) \wedge m(c) \leq t\left(F^{\prime}\right) \wedge m(c)$. The latter term is, according to Lemma 2.3, less than or equal to the join of terms of type A. Each of these terms of type A are in \tilde{C}. Hence \tilde{C} is a cover of $H(A)$.

Proposition

If $C, D \in \mu$ with $C \leq^{*} D$, then $\tilde{C} \leq^{*} \tilde{D}$ in $H(A)$.

Proof. Take any $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \in \tilde{C}$. Now $C c_{i} \leq d_{i}$ for some $d_{i} \in D$, and for all $i=1,2, \ldots, n$. We claim that
$\tilde{C}\left(t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \ldots \wedge m\left(c_{n}\right)\right) \leq t\left(d_{1} \vee \ldots \vee d_{n}\right) \wedge m\left(d_{1}\right) \wedge \ldots \wedge m\left(d_{n}\right):$ Take any $t\left(c_{1}^{\prime} \vee \ldots \vee c_{k}^{\prime}\right) \wedge m\left(c_{1}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \in \tilde{C}$ such that $t\left(c_{1}^{\prime} \vee \ldots \vee c_{k}^{\prime}\right) \wedge m\left(c_{1}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \wedge t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \neq 0$. For each $j \in\{1,2, \ldots, k\}, c_{j}^{\prime} \wedge c_{i} \neq 0$ for some $i \in\{1,2, \ldots, m\}$, otherwise there exists a j such that $c_{j}^{\prime} \wedge \bigvee_{i=1}^{n} c_{i}=0$. But then from the relation(iv) in Section 2 we get $t\left(\bigvee_{i=1}^{n} c_{i}\right) \wedge m\left(c_{j}^{\prime}\right)=0$. This is not possible. Thus for each $j \in\{1,2, \ldots, k\}$ there exists $i(j) \in\{1,2, \ldots, n\}$ such that $c_{j}^{\prime} \wedge c_{i(j)} \neq 0$. Thus $c_{j}^{\prime} \leq d_{i(j)}$.
Similarly, for each $i \in\{1,2, \ldots, n\}$ there exists $j(i) \in\{1,2, \ldots, k\}$ such that $c_{i} \wedge c_{j(i)}^{\prime} \neq 0$. Then $c_{j(i)}^{\prime} \leq d_{i}$. Thus every d_{i} is above some $c_{j(i)}^{\prime}$. Now since $c_{j}^{\prime} \leq d_{i(j)}$ for each $j=1,2, \ldots, n$, we have

$$
m\left(c_{1}^{\prime}\right) \wedge m\left(c_{2}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \leq m\left(d_{i(1)}\right) \wedge m\left(d_{i(2)}\right) \wedge \ldots \wedge m\left(d_{i(k)}\right)
$$

But since every d_{i} is above some $c_{j(i)}^{\prime}$, we have $m\left(c_{j(i)}^{\prime}\right) \leq m\left(d_{i}\right)$, and hence

$$
m\left(c_{1}^{\prime}\right) \wedge m\left(c_{2}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \leq m\left(d_{i}\right) \text { for all } i
$$

Thus

$$
m\left(c_{1}^{\prime}\right) \wedge m\left(c_{2}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \leq m\left(d_{1}\right) \wedge m\left(d_{2}\right) \wedge \ldots \wedge m\left(d_{n}\right)
$$

Also each $c_{j}^{\prime} \leq d_{i(j)}$ for each $j=1,2, \ldots, k$, so $c_{1}^{\prime} \vee \ldots \vee c_{k}^{\prime} \leq d_{1} \vee \ldots \vee d_{n}$ and thus $t\left(c_{1}^{\prime} \vee \ldots \vee c_{k}^{\prime}\right) \leq t\left(d_{1} \vee \ldots \vee d_{n}\right)$. Hence
$t\left(c_{1}^{\prime} \vee \ldots \vee c_{k}^{\prime}\right) \wedge m\left(c_{1}^{\prime}\right) \wedge m\left(c_{2}^{\prime}\right) \wedge \ldots \wedge m\left(c_{k}^{\prime}\right) \leq t\left(d_{1} \vee \ldots \vee d_{n}\right) \wedge m\left(d_{1}\right) \wedge m\left(d_{2}\right) \wedge \ldots$
This proves the claim, and shows $\tilde{C} \leq^{*} \tilde{D}$.

Proposition

$$
\text { If } C, D \in \mu \text { and } C \leq D \text {, then } \tilde{C} \leq \tilde{D}
$$

Proof.

Take any $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \in \tilde{C}$ with the $c_{i} \in C$. Now each $c_{i} \leq d_{i}$ for some $d_{i} \in D$. Thus $c_{1} \vee \ldots \vee c_{n} \leq d_{1} \vee \ldots \vee d_{n}$, and hence $t\left(c_{1} \vee \ldots \vee c_{n}\right) \leq t\left(d_{1} \vee \ldots \vee d_{n}\right)$. Also $m\left(c_{i}\right) \leq m\left(d_{i}\right)$ for each i, so $m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \leq m\left(d_{1}\right) \wedge \ldots \wedge m\left(d_{n}\right)$. Hence
$t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \leq t\left(d_{1} \vee \ldots \vee d_{n}\right) \wedge m\left(d_{1}\right) \wedge \ldots \wedge m\left(d_{n}\right)$ and the latter element belongs to \tilde{D}. \square

Corollary

If $C, D \in \mu$, then $\widetilde{C \wedge D} \leq \tilde{C} \wedge \tilde{D}$.

Definition

We say that $x \triangleleft y$ in $H(A)$ if there exists $C \in \mu$ such that $\tilde{C} x \leq y$.

Proposition

If $a \triangleleft b$ in A, then $t(a) \triangleleft t(b)$ in $H(A)$.

Proof.

If $a \triangleleft b$, then there exists $C \in \mu$ such that $C a \leq b$. We claim that $\tilde{C} t(a) \leq t(b)$: Suppose that $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \in \tilde{C}$, and $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \wedge t(a) \neq 0$. Now for every i we have $c_{i} \wedge a \neq 0$, for otherwise $m\left(c_{i}\right) \wedge t(a)=0$ for some i, and this is not possible. Thus $c_{i} \leq b$ for every i, and this implies $t\left(c_{1} \vee \ldots \vee c_{n}\right) \leq t(b)$. Hence $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \leq t(b)$, thus proving the claim. Therefore $t(a) \triangleleft t(b)$.

Proposition

If $a \triangleleft b$ in A, then $m(a) \triangleleft m(b)$ in $H(A)$.

Proof.

If $a \triangleleft b$, then there exists $C \in \mu$ such that $C a \leq b$. We claim that $\tilde{C} m(a) \leq m(b)$: Suppose that $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \in \tilde{C}$, and $t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \wedge m(a) \neq 0$. Now there must exist i such that $c_{i} \wedge a \neq 0$. If not, then $\bigvee_{i=1}^{n} c_{i} \wedge a=0$. But this implies $t\left(\bigvee_{i=1}^{n} c_{i}\right) \wedge m(a)=0$, which is not possible. Thus $c_{i} \leq b$. Hence $m\left(c_{i}\right) \leq m(b)$, and so
$t\left(c_{1} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge \ldots \wedge m\left(c_{n}\right) \leq m\left(c_{i}\right) \leq m(b)$. This proves the claim. Therefore $m(a) \triangleleft m(b)$.

Proposition

For $x, y, z \in H(A)$, the relation \triangleleft satisfies:
(i) $x, y \triangleleft z \Longrightarrow x \vee y \triangleleft z$.
(ii) $z \triangleleft x, y \Longrightarrow z \triangleleft x \wedge y$.

Proof.

(i) If $x, y \triangleleft z$, then we can find $C, D \in \mu$ such that $\tilde{C} x \leq z$ and $\tilde{D} y \leq z$. Put $E=C \wedge D \in \mu$. Then $E \leq C$ and $E \leq D$, so by Proposition 3.3, $\tilde{E} \leq \tilde{C}$ and $\tilde{E} \leq \tilde{D}$. Thus $\tilde{E} x \leq z$ and $\tilde{E} y \leq z$. This implies $\tilde{E}(x \vee y) \leq z$, so $x \vee y \triangleleft z$.
(ii) If $z \triangleleft x, y$, then then we can find $C, D \in \mu$ such that $\tilde{C} z \leq x$ and $\tilde{D} z \leq y$. Put $E=C \wedge D \in \mu$. Then as in (i) above we can get $\tilde{E} z \leq x$ and $\tilde{E} z \leq y$. This implies $\tilde{E} z \leq x \wedge y$, so $z \triangleleft x \wedge y$.

Proposition

If $a \triangleleft a^{\prime}$, and $b_{i} \triangleleft b_{i}^{\prime}$ for $i=1,2, \ldots, n$ in A, then $t(a) \wedge m\left(b_{1}\right) \wedge \ldots \wedge m\left(b_{n}\right) \triangleleft t\left(a^{\prime}\right) \wedge m\left(b_{1}^{\prime}\right) \wedge \ldots \wedge m\left(b_{n}^{\prime}\right)$ in $H(A)$.

Proof.

This follows from the last three propositions.

Proposition

The relation \triangleleft is an admissible relation on $H(A)$, i.e. for each $x \in H(A)$, $x=\bigvee y(y \triangleleft x)$.

Proof.

Take any basic generator $t(a) \wedge m\left(b_{1}\right) \wedge \ldots \wedge m\left(b_{n}\right)$ of $H(A)$. Now $a=\bigvee a^{\prime}\left(a^{\prime} \triangleleft a\right)$, and for each $i, b_{i}=\bigvee b_{i}^{\prime}\left(b_{i}^{\prime} \triangleleft b_{i}\right)$. Since the collection $\left\{a^{\prime} \in A \mid a^{\prime} \triangleleft a\right\}$ is updirected, we have $t(a)=\bigvee t\left(a^{\prime}\right)\left(a^{\prime} \triangleleft a\right)$. Also for each i we have $m\left(b_{i}\right)=\bigvee m\left(b_{i}^{\prime}\right)\left(b_{i}^{\prime} \triangleleft b_{i}\right)$. Thus

$$
\begin{aligned}
t(a) \wedge m\left(b_{1}\right) \wedge \ldots \wedge m\left(b_{n}\right) & =\bigvee t\left(a^{\prime}\right)\left(a^{\prime} \triangleleft a\right) \wedge \bigvee m\left(b_{1}^{\prime}\right)\left(b_{1}^{\prime} \triangleleft b_{1}\right) \wedge \ldots \wedge \bigvee \\
& =\bigvee\left\{t\left(a^{\prime}\right) \wedge m\left(b_{1}^{\prime}\right) \wedge \ldots \wedge m\left(b_{n}^{\prime}\right) \mid a^{\prime} \triangleleft a, b_{1}^{\prime} \triangleleft b_{1},\right.
\end{aligned}
$$

From the previous proposition

$$
t\left(a^{\prime}\right) \wedge m\left(b_{1}^{\prime}\right) \wedge \ldots \wedge m\left(b_{n}^{\prime}\right) \triangleleft t(a) \wedge m\left(b_{1}\right) \wedge \ldots \wedge m\left(b_{n}\right)
$$

From this we conclude that \triangleleft is an admissible relation.

From the above sequence of propositions we obtain:

Theorem

Let (A, μ) be a uniform locale, and let $H(A)$ be the Vietoris locale of A. The collection $\{\tilde{C} \mid C \in \mu\}$ forms a basis for a uniformity $\tilde{\mu}$ on $H(A)$.

We will refer to $(H(A), \tilde{\mu})$ as the Vietoris uniform locale associated with the uniform locale (A, μ), and to the uniformity on $H(A)$ as the Vietoris uniformity.

Proposition

The map $g: H(A) \longrightarrow A$ is uniform and surjective.

Proof.

Take $\tilde{C}=\left\{t\left(c_{1} \vee c_{2} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge m\left(c_{2}\right) \wedge \ldots \wedge m\left(c_{n}\right) \mid c_{i} \in C, n \in \mathbb{N}\right\}$ any basic uniform cover of $H(A)$. Then

$$
\begin{aligned}
g(\tilde{C}) & =\left\{g\left(t\left(c_{1} \vee c_{2} \vee \ldots \vee c_{n}\right) \wedge m\left(c_{1}\right) \wedge m\left(c_{2}\right) \wedge \ldots \wedge m\left(c_{n}\right)\right) \mid c_{i} \in C, n \in \mathbb{N}\right. \\
& =\left\{c_{1} \wedge c_{2} \wedge \ldots \wedge c_{n} \mid c_{i} \in C, n \in \mathbb{N}\right\}
\end{aligned}
$$

Now $C \leq g(\tilde{C})$, so $g(\tilde{C}) \in \mu$ and hence g is uniform. The map g is onto as we saw earlier, and for any $C \in \mu$ we have $g(\tilde{C}) \leq C$, so g is also surjective.

References

B．Banaschewski and A．Pultr，Samuel compactification and completion of uniform frames，Math．Proc．Camb．Phil．Soc．， 108 （1990），63－78．

目 J．R．Isbell，Uniform Spaces，Amer．Math．Soc．，Providence（1964）
國 P．T．Johnstone，Vietoris Locales and Localic Semilattices，Continuous lattices and their applications（Bremen，1982），155－180，Lecture Notes in Pure and Appl． Math．，101，Dekker，New York（1985）．

A．Illanes and S．B．Nadler，Hyperspaces，Marcel Dekker（1999）．
E．Michael，Topologies on spaces of subsets，Trans．Am．Math．Soc．， 71 （1951）， 152－182．
T
K．Morita，Completion of hyperspaces of compact subsets and topological completion of open－closed maps，Gen．Top．and its Appl．，（1974），217－233．

國 J．Picado and A．Pultr，Frames and Locales，Birkhäuser（2012）．

The End

