Order theory, enriched

Dirk Hofmann

CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk/

September 29, 2018

Happy Birthday, Aleš

Motivation and background

Motivation

The Name of the Rose

I started to write in March of 1978, moved by a vague idea: I wanted to poison a monk. ${ }^{\text {a }}$

${ }^{\text {a }}$ Umberto Eco, Postille a ,II nome della rosa'.

Motivation

The Name of the Rose

I started to write in March of 1978, moved by a vague idea: I wanted to poison a monk. ${ }^{\text {a }}$

${ }^{a}$ Umberto Eco, Postille a ,II nome della rosa'.

Our motivation is less dramatic. . .

The kinds of structures which actually arise in the practice of geometry and analysis are far from being 'arbitrary'...., as concentrated in the thesis that fundamental structures are themselves categories. ${ }^{\text {a }}$

[^0]Lawvere's metric spaces

Metric space = category
enriched in $[0, \infty]$: a "hom-function" $a: X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Lawvere's metric spaces

Metric space $=$ category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Relations and functions

Lawvere's metric spaces

Metric space $=$ category

 enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z) .
$$

Relations and functions

- For every function $f: X \rightarrow Y, f \dashv f^{\circ}$ in Rel.

Lawvere's metric spaces

Metric space $=$ category

 enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Relations and functions

- For every function $f: X \rightarrow Y, f \dashv f^{\circ}$ in Rel.
- A relation $r: X \rightarrow Y$ is a function $\Longleftrightarrow r \dashv s$ in Rel.

Lawvere's metric spaces

Metric space $=$ category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z) .
$$

Relations and functions

- For every function $f: X \rightarrow Y, f \dashv f^{\circ}$ in Rel.
- A relation $r: X \rightarrow Y$ is a function $\Longleftrightarrow r \dashv s$ in Rel.

and the ordered version

- Distributor (or order ideal ...): relation $r: X \rightarrow Y$ so that

$$
\begin{aligned}
& \left(x \leq x^{\prime}\right) \&\left(x^{\prime} r y\right) \Longrightarrow(x r y), \\
& \left(x r y^{\prime}\right) \&\left(y^{\prime} \leq y\right) \Longrightarrow(x r y) .
\end{aligned}
$$

Lawvere's metric spaces

Metric space = category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z) .
$$

Relations and functions

- For every function $f: X \rightarrow Y, f \dashv f^{\circ}$ in Rel.
- A relation $r: X \rightarrow Y$ is a function $\Longleftrightarrow r \dashv s$ in Rel.
and the ordered version
- Distributor (or order ideal ...): relation $r: X \leftrightarrow Y$ so that

$$
\begin{aligned}
& \left(x \leq x^{\prime}\right) \&\left(x^{\prime} r y\right) \Longrightarrow(x r y), \\
& \left(x r y^{\prime}\right) \&\left(y^{\prime} \leq y\right) \Longrightarrow(x r y) .
\end{aligned}
$$

- A monotone map $f: X \rightarrow Y$ defines distributors $f_{*} \dashv f^{*}$:

$$
x f_{*} y \quad \text { if } \quad f(x) \leq y, \quad y f^{*} x \quad \text { if } \quad y \leq f(x)
$$

Lawvere's metric spaces

Metric space = category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Relations and functions

- For every function $f: X \rightarrow Y, f \dashv f^{\circ}$ in Rel.
- A relation $r: X \rightarrow Y$ is a function $\Longleftrightarrow r \dashv s$ in Rel.
and the ordered version
- Distributor (or order ideal ...): relation $r: X \leftrightarrow Y$ so that

$$
\begin{aligned}
& \left(x \leq x^{\prime}\right) \&\left(x^{\prime} r y\right) \Longrightarrow(x r y), \\
& \left(x r y^{\prime}\right) \&\left(y^{\prime} \leq y\right) \Longrightarrow(x r y) .
\end{aligned}
$$

- A monotone map $f: X \rightarrow Y$ defines distributors $f_{*} \dashv f^{*}$:

$$
x f_{*} y \quad \text { if } \quad f(x) \leq y, \quad y f^{*} x \quad \text { if } \quad y \leq f(x)
$$

- $r=f_{*} \Longleftrightarrow r$ is left adjoint.

Lawvere's metric spaces

Metric space = category

 enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Metric distributors. . .

\ldots are $[0, \infty]$-enriched relations $\varphi: X \times Y \rightarrow[0, \infty]$ so that

$$
a\left(x, x^{\prime}\right)+\varphi\left(x^{\prime}, y\right) \geq \varphi(x, y), \quad \varphi\left(x, y^{\prime}\right)+b\left(y^{\prime}, y\right) \geq \varphi(x, y)
$$

Lawvere's metric spaces

Metric space $=$ category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Metric distributors. . .

\ldots are $[0, \infty]$-enriched relations $\varphi: X \times Y \rightarrow[0, \infty]$ so that

$$
a\left(x, x^{\prime}\right)+\varphi\left(x^{\prime}, y\right) \geq \varphi(x, y), \quad \varphi\left(x, y^{\prime}\right)+b\left(y^{\prime}, y\right) \geq \varphi(x, y)
$$

A metric map $f: X \rightarrow Y$ defines distributors $f_{*} \dashv f^{*}$:

$$
f_{*}(x, y)=b(f(x), y), \quad f^{*}(y, x)=f(y, f(x))
$$

Lawvere's metric spaces

Metric space $=$ category

enriched in $[0, \infty]$: a "hom-function" a : $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad a(x, y)+a(y, z) \geq a(x, z)
$$

Metric distributors. . .

\ldots are $[0, \infty]$-enriched relations $\varphi: X \times Y \rightarrow[0, \infty]$ so that

$$
a\left(x, x^{\prime}\right)+\varphi\left(x^{\prime}, y\right) \geq \varphi(x, y), \quad \varphi\left(x, y^{\prime}\right)+b\left(y^{\prime}, y\right) \geq \varphi(x, y)
$$

A metric map $f: X \rightarrow Y$ defines distributors $f_{*} \dashv f^{*}$:

$$
f_{*}(x, y)=b(f(x), y), \quad f^{*}(y, x)=f(y, f(x))
$$

Theorem (Lawvere (1973))

Every left adjoint distributor $\varphi: X \leftrightarrow Y$ comes from a metric map if and only if Y is Cauchy-complete.

Assymetric Cauchy completeness

Directed distributors

The notions of forward and backward Cauchy sequences

$$
\forall \varepsilon>0 \forall m \geq n \ldots a\left(x_{m}, x_{n}\right)<\varepsilon \text { and } \ldots
$$

generalise eventually increasing resp. decreasing sequences.
Marcello M. Bonsangue, Franck van Breugel, and Jan Rutten. "Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding". In: Theoretical Computer Science 193.(1-2) (1998), pp. 1-51.

Assymetric Cauchy completeness

Directed distributors

The notions of forward and backward Cauchy sequences

$$
\forall \varepsilon>0 \forall m \geq n \ldots a\left(x_{m}, x_{n}\right)<\varepsilon \text { and } \ldots
$$

generalise eventually increasing resp. decreasing sequences.

Theorem

Forward-Cauchy nets in metric spaces correspond precisely to those $[0, \infty]$-distributors $\psi: X \leftrightarrow 1$ (called flat) where

$$
\psi \cdot-:[0, \infty]-\operatorname{Dist}(1, X) \longrightarrow[0, \infty], \varphi \longmapsto \psi \cdot \varphi
$$

preserves finite meets.
Steven Vickers. "Localic completion of generalized metric spaces. I". In: Theory and Applications of Categories 14.(15) (2005), pp. 328-356.

Assymetric Cauchy completeness

Directed distributors

The notions of forward and backward Cauchy sequences

$$
\forall \varepsilon>0 \forall m \geq n \ldots a\left(x_{m}, x_{n}\right)<\varepsilon \text { and } \ldots
$$

generalise eventually increasing resp. decreasing sequences.

Theorem

Forward-Cauchy nets in metric spaces correspond precisely to those $[0, \infty]$-distributors $\psi: X \leftrightarrow 1$ (called flat) where

$$
\psi \cdot-:[0, \infty]-\operatorname{Dist}(1, X) \longrightarrow[0, \infty], \varphi \longmapsto \psi \cdot \varphi
$$

preserves finite meets.

Remark

A downset $B \subseteq X$ is directed iff $\operatorname{Up}(X) \longrightarrow 2, A \longmapsto[B \cap A \neq \varnothing]$ preserves finite meets.

Order from topology

A fundamental adjunction...
... linking topology and order:
Top $\underset{K}{ }$ Ord

Order from topology

A fundamental adjunction ...
. . . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.

Order from topology

A fundamental adjunction...
. . . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology...

Order from topology

A fundamental adjunction...
... linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology...
- Continuous lattice $=$ injective topological space.

Order from topology

A fundamental adjunction ...

.. . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology...
- Continuous lattice $=$ injective topological space.

Metric version?

Windels (2001): "Solve[order/topology == quasi-metric/x, x]".

Order from topology

A fundamental adjunction

. . . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology. . .
- Continuous lattice $=$ injective topological space.

Metric version?

Windels (2001): "Solve[order/topology == quasi-metric/x, x]". Idea: Use approach spaces instead of topological spaces.

Order from topology

A fundamental adjunction

.. . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology. . . Metric variants: in Windels (2000) and Li and Zhang (2018).
- Continuous lattice $=$ injective topological space.

Metric version?

Windels (2001): "Solve[order/topology == quasi-metric/x, x]". Idea: Use approach spaces instead of topological spaces.

Order from topology

A fundamental adjunction

.. . linking topology and order:

- Topology \longmapsto natural order defined by $x \leq y$ if $\dot{x} \rightarrow y$.
- Order \longmapsto Alexandroff topology.
- There is also the Scott topology.... Metric variants: in Windels (2000) and Li and Zhang (2018).
- Continuous lattice $=$ injective topological space. Metric variant: Gutierres and Hofmann (2013).

Metric version?

Windels (2001): "Solve[order/topology == quasi-metric/x, x]". Idea: Use approach spaces instead of topological spaces.

Order and topology

Ordered topological structures

Order and topology

Ordered topological structures

- Sets X equipped with order and topology so that the order relation is closed in $X \times X$.

Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950

Order and topology

Ordered topological structures

- Sets X equipped with order and topology so that the order relation is closed in $X \times X$.

Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950

- Of particular interest to us are ordered compact Hausdorff spaces, where we have:

PosComp ~StablyComp.

A topological space is stably compact whenever X is sober, locally compact and stable.

Gerhard Gierz et al. A compendium of continuous lattices. Berlin: Springer-Verlag, 1980. xx +371

Theorem

For a compact Hausdorff topology $\alpha: U X \rightarrow X$ and an order relation $\leq: X \rightarrow X$, the following are equivalent:
(i) The order is closed in $X \times X$.
(ii) $\alpha:(U X, U \leq) \longrightarrow(X, \leq)$ is monotone.

In general, for a relation $r: X \rightarrow Y$ one defines

$$
\mathfrak{x}(U r) \mathfrak{y} \quad \text { whenever } \quad \forall A, B \exists x, y . x r y .
$$

Walter Tholen. "Ordered topological structures". In: Topology and its Applications 156.(12) (2009), pp. 2148-2157.

Topology and order (via convergence)

Theorem

For a compact Hausdorff topology $\alpha: U X \rightarrow X$ and an order relation $\leq: X \rightarrow X$, the following are equivalent:
(i) The order is closed in $X \times X$.
(ii) $\alpha:(U X, U \leq) \longrightarrow(X, \leq)$ is monotone.

Theorem

The ultrafilter monad \mathbb{U} on Set extends to Ord and then $\mathrm{Ord}^{\mathbb{U}} \sim \mathrm{OrdCH}$.

Topology and order (via convergence)

Theorem

For a compact Hausdorff topology $\alpha: U X \rightarrow X$ and an order relation $\leq: X \rightarrow X$, the following are equivalent:
(i) The order is closed in $X \times X$.
(ii) $\alpha:(U X, U \leq) \longrightarrow(X, \leq)$ is monotone.

Theorem

The ultrafilter monad \mathbb{U} on Set extends to Ord and then

$$
\mathrm{Ord}^{\mathbb{U}} \sim \mathrm{OrdCH}
$$

Remark

The canonical functor $\mathbf{O r d}{ }^{\mathbb{U}} \longrightarrow$ Top with

$$
(X, \leq, \alpha) \longmapsto(X, \leq \cdot \alpha: U X \rightarrow X \rightarrow X)
$$

restricts to an equivalence PosComp \sim StablyComp.

Metric compact Hausdorff space

Extending the monad

The ultrafilter monad \mathbb{U} on Set extends to Met via

$$
U d(\mathfrak{x}, \mathfrak{y})=\bigvee_{A, B \times, y} \bigwedge d(x, y)
$$

for a metric d on X.

Metric compact Hausdorff space

Extending the monad

The ultrafilter monad \mathbb{U} on Set extends to Met via

$$
U d(\mathfrak{x}, \mathfrak{y})=\bigvee_{A, B \times, y} \bigwedge d(x, y)
$$

for a metric d on X.

Definition

A metric compact Hausdorff space is an algebra for \mathbb{U} on Met (a compact Hausdorff space with a compatible metric).

Metric compact Hausdorff space

Extending the monad

The ultrafilter monad \mathbb{U} on Set extends to Met via

$$
U d(\mathfrak{x}, \mathfrak{y})=\bigvee_{A, B \times, y} \bigwedge d(x, y),
$$

for a metric d on X.

Definition

A metric compact Hausdorff space is an algebra for \mathbb{U} on Met (a compact Hausdorff space with a compatible metric).

Remark

Every compact metric space is a metric compact Hausdorff space. ${ }^{a}$
${ }^{\text {a }}$ Dirk Hofmann and Carla D. Reis. "Convergence and quantale-enriched categories". In: Categories and General Algebraic Structures with Applications 9.(1) (2018), pp. 77-138.

... vs. approach spaces

Theorem

There is a canonical comparison functor

MetCH \longrightarrow App

sending (X, d, α) to $(X, d \cdot \alpha) . \quad(a(\mathfrak{x}, x)=d(\alpha(\mathfrak{x}), x))$

... vs. approach spaces

Theorem

There is a canonical comparison functor

MetCH \longrightarrow App

sending (X, d, α) to $(X, d \cdot \alpha) . \quad(a(\mathfrak{x}, x)=d(\alpha(\mathfrak{x}), x))$
Here, separated metric compact Hausdorff spaces correspond precisely to

- core-compact (somehow exponentiable),
- sober (ask in two minutes) and
- stable (dont ask)
approach spaces.

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open }) .
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open })
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

- This defines V : Top \rightarrow Top, which is part of a monad $\mathbb{V}=(V, m, e)$ on Top (almost as the powerset monad).

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open })
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

- This defines V : Top \rightarrow Top, which is part of a monad $\mathbb{V}=(V, m, e)$ on Top (almost as the powerset monad).
- \mathbb{V} restricts to a monad on StablyComp \sim PosComp.

Vietoris functors

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open }) .
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

Metric version

Vietoris functors

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open }) .
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

Metric version

- topological space \rightsquigarrow approach space,

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open })
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

Metric version

- topological space \rightsquigarrow approach space,
- $A \subseteq X$ closed $\rightsquigarrow \varphi: X \rightarrow[0, \infty]$ approach map.

Vietoris functors

The lower Vietoris functor

- For a topological space X, the lower Vietoris space of X is

$$
V X=\{A \subseteq X \mid A \text { is closed }\}
$$

with the topology generated by

$$
\{A \in V X \mid A \cap B \neq \varnothing\} \quad(B \text { open }) .
$$

For a continuous map $f: X \rightarrow Y$, the map

$$
V f: V X \longrightarrow V Y, A \longmapsto \overline{f(A)}
$$

is continuous too.

Metric version

- topological space \rightsquigarrow approach space,
- $A \subseteq X$ closed $\rightsquigarrow \varphi: X \rightarrow[0, \infty]$ approach map.
- We obtain a monad on App which restricts to "stably compact approach spaces" (= metric compact Hausdorff spaces).

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Duality theory

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Approach frame

Banaschewski, Lowen, and Van Olmen (2006):

Duality theory

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Approach frame

Banaschewski, Lowen, and Van Olmen (2006):

- approach frame $=(c o)$ frame with actions of $[0, \infty]$,

Duality theory

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Approach frame

Banaschewski, Lowen, and Van Olmen (2006):

- approach frame $=(c o)$ frame with actions of $[0, \infty]$,

Alternatively, a metric space with all weighted limits and finite weigthed colimits.

Duality theory

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Approach frame

Banaschewski, Lowen, and Van Olmen (2006):

- approach frame $=(c o)$ frame with actions of $[0, \infty]$,
- space $X \longmapsto \mathcal{O} X \simeq \operatorname{hom}(X,[0, \infty])$,

Duality theory

Frames

We all know the dual adjunction

space $X \mapsto \mathcal{O} X \simeq \operatorname{hom}(X, 2), \quad$ frame $L \mapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L, 2)$.

Approach frame

Banaschewski, Lowen, and Van Olmen (2006):

- approach frame $=(c o)$ frame with actions of $[0, \infty]$,
- space $X \longmapsto \mathcal{O} X \simeq \operatorname{hom}(X,[0, \infty])$,
- frame $L \longmapsto \operatorname{spec}(L) \simeq \operatorname{hom}(L,[0, \infty])$.

Our motivation: Stone (and Halmos) dualities

Stone-Halmos dualities

Stone (1936), Stone (1938), Priestley (1970), and Priestley (1972)

- Priestley space $=$ partially ordered compact space X so that $(X \rightarrow 2)$ is point-separating and initial.
- Spectral space $=$ stably compact space X so that $(X \rightarrow 2)$ is point-separating and initial.

Stone-Halmos dualities

Stone (1936), Stone (1938), Priestley (1970), and Priestley (1972)

- Priestley space $=$ partially ordered compact space X so that $(X \rightarrow 2)$ is point-separating and initial.
- Spectral space $=$ stably compact space X so that $(X \rightarrow 2)$ is point-separating and initial.

Halmos (1956) and Cignoli, Lafalce, and Petrovich (1991)

$$
\text { Priest }_{\mathbb{V}} \sim \mathbf{D L}_{\perp, \vee}^{\mathrm{op}} \quad \text { and } \quad \operatorname{BooSp}_{\mathbb{V}} \sim \mathbf{B A}_{\perp, \mathrm{v}}^{\mathrm{op}}
$$

Stone-Halmos dualities

Stone (1936), Stone (1938), Priestley (1970), and Priestley (1972)

- Priestley space $=$ partially ordered compact space X so that $(X \rightarrow 2)$ is point-separating and initial.
- Spectral space $=$ stably compact space X so that $(X \rightarrow 2)$ is point-separating and initial.

Halmos (1956) and Cignoli, Lafalce, and Petrovich (1991)

$$
\text { Priest }_{\mathbb{V}} \sim \mathbf{D L}_{\perp, \vee}^{\mathrm{op}} \quad \text { and } \quad \mathbf{B o o S p}_{\mathbb{V}} \sim \mathbf{B A}_{\perp, \mathrm{V}}^{\mathrm{op}}
$$

Our aim

$$
\operatorname{PosComp}_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])} \quad \text { ??? }{ }^{\text {op }}
$$

Stone-Halmos dualities

Stone (1936), Stone (1938), Priestley (1970), and Priestley (1972)

$$
\begin{aligned}
& \xrightarrow[\text { hom }(-, 2)]{\sim}{ }_{\sim}^{\text {hom }(-, 2)} D^{\text {op }}, \\
& \text { BooSp } \underset{\text { hom }(-, 2)}{\sim} \text { BA }^{\text {hom }(-, 2)} \text {. }
\end{aligned}
$$

- Priestley space $=$ partially ordered compact space X so that $(X \rightarrow 2)$ is point-separating and initial.
- Spectral space $=$ stably compact space X so that $(X \rightarrow 2)$ is point-separating and initial.

Halmos (1956) and Cignoli, Lafalce, and Petrovich (1991)

$$
\text { Priest }_{\mathbb{V}} \sim \mathbf{D L}_{\perp, \vee}^{\mathrm{op}} \quad \text { and } \quad \operatorname{BooSp}_{\mathbb{V}} \sim \mathbf{B A}_{\perp, \mathrm{v}}^{\mathrm{op}}
$$

Our aim

$$
\operatorname{PosComp}_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])}\{\text { metric distributive lattice }\}^{\text {op }}
$$

Stone-Halmos dualities

Our aim

$$
\text { PosComp }_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])}\{\text { metric distributive lattice }\}^{\text {op }}
$$

Related work

- Gelfand (1941): CompHaus $\sim C^{*}$ - $\mathbf{A l g}^{\text {op }}$.

Stone-Halmos dualities

Our aim

$$
\operatorname{PosComp}_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])}\{\text { metric distributive lattice }\}^{\text {op }}
$$

Related work

- Gelfand (1941): CompHaus $\sim C^{*}-\mathbf{A l g}^{\mathrm{op}}$.
- Jung, Kegelmann, and Moshier (2001):

StablyComp $_{\mathbb{V}} \sim$ StContDLat $_{\bigvee, \ll}^{\mathrm{op}}$.

Stone-Halmos dualities

Our aim

$$
\operatorname{PosComp}_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])}\{\text { metric distributive lattice }\}^{\text {op }}
$$

Related work

- Gelfand (1941): CompHaus $\sim C^{*}$ - $\mathbf{A l g}^{\text {op }}$.
- Jung, Kegelmann, and Moshier (2001): StablyComp $_{\mathbb{V}} \sim$ StContDLat $_{\bigvee, \ll}^{\mathrm{op}}$.

Note: From this we can deduce that StablyComp $\mathbb{V}_{\mathbb{V}}$ is idempotent split complete.

Stone-Halmos dualities

Our aim

$$
\operatorname{PosComp}_{\mathbb{V}} \xrightarrow{\text { hom }(-,[0, \infty])}\{\text { metric distributive lattice }\}^{\text {op }}
$$

Related work

- Gelfand (1941): CompHaus $\sim C^{*}$ - $\mathbf{A l g}^{\text {op }}$.
- Jung, Kegelmann, and Moshier (2001): StablyComp $_{\mathbb{V}} \sim$ StContDLat $_{\bigvee}^{\mathrm{op}}, \lll$

Note: From this we can deduce that StablyComp $\mathbb{V}_{\mathbb{V}}$ is idempotent split complete.

Metric distributive lattice

$=$ metric space which is "finitaly cocomplete" and has a commutative monoid structure which preserves finite colimits in each variable.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp. ${ }^{\text {a }}$

[^1]
Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings. ${ }^{a}$

[^2]
Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings.
- The regular monomorphisms in PosComp are the embeddings, and the epimorphisms are the surjections.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings.
- The regular monomorphisms in PosComp are the embeddings, and the epimorphisms are the surjections.
- PosComp ${ }^{\text {op }}$ is a quasivariety.

Recall: A category is equivalent to a quasivariety iff it has a regularly projective regular generator with copowers and coequalizers of pseudoequivalences.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings.
- The regular monomorphisms in PosComp are the embeddings, and the epimorphisms are the surjections.
- PosComp ${ }^{\text {op }}$ is a quasivariety.
- The \aleph_{1}-copresentable objects in PosComp are precisely the metrisable partially ordered compact spaces. ${ }^{a}$
${ }^{\text {a }}$ Dirk Hofmann, Renato Neves, and Pedro Nora. "Generating the algebraic theory of $C(X)$: the case of partially ordered compact spaces". In: Theory and Applications of Categories 33.(12) (2018), pp. 276-295.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings.
- The regular monomorphisms in PosComp are the embeddings, and the epimorphisms are the surjections.
- PosComp ${ }^{\text {op }}$ is a quasivariety.
- The \aleph_{1}-copresentable objects in PosComp are precisely the metrisable partially ordered compact spaces. In particular, $[0,1]$ is \aleph_{1}-copresentable.

Some facts about (partially) ordered compact spaces

Theorem

- OrdCH is complete and cocomplete. Moreover, the full subcategory PosComp \hookrightarrow OrdCH is reflective.
- The unit interval $[0,1]$ is is an initial cogenerator on PosComp.
- The unit interval $[0,1]$ is injective in PosComp with respect to embeddings.
- The regular monomorphisms in PosComp are the embeddings, and the epimorphisms are the surjections.
- PosComp ${ }^{\text {op }}$ is a quasivariety.
- The \aleph_{1}-copresentable objects in PosComp are precisely the metrisable partially ordered compact spaces. In particular, $[0,1]$ is \aleph_{1}-copresentable.
- PosComp ${ }^{\text {op }}$ is a \aleph_{1}-quasivariety.

Metric spaces as categories (again)

Examples

1. For $\overleftarrow{[0, \infty}_{+}$with $\otimes=+$ and $k=0$: $\left[{ }_{[0, \infty}\right]_{+}$Cat \simeq Met.

Metric space: X with a: $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad d(x, y)+a(y, z) \geq d(x, z)
$$

Metric spaces as categories (again)

Examples

1. For $\left[\overleftarrow{0, \infty}_{+}\right.$with $\otimes=+$ and $k=0$: $\overleftarrow{[0, \infty}+-$ Cat \simeq Met.
2. For $\overleftarrow{[0, \infty]} \wedge$ with $\otimes=\max$ and $k=0$:

$$
[0, \infty]_{\wedge}-\text { Cat } \simeq \text { UMet }
$$

Ultrametric space: X with a: $X \times X \rightarrow[0, \infty]$ with

$$
0 \geq a(x, x) \quad \text { and } \quad \max (d(x, y), a(y, z)) \geq d(x, z)
$$

Metric spaces as categories (again)

Examples

1. For $[\overleftarrow{0, \infty}]_{+}$with $\otimes=+$ and $k=0$: $\overleftarrow{[0, \infty}]_{+}$Cat \simeq Met.
2. For $\left[\left[0, \infty^{\wedge}\right.\right.$ with $\otimes=\max$ and $k=0$:

$$
\overleftarrow{[0, \infty}_{\wedge}-\text { Cat } \simeq \text { UMet }
$$

3. For $\overleftarrow{[0,1]} \oplus$ with $\otimes=\oplus$ and $k=0$:
$\overleftarrow{[0,1]}{ }_{\oplus}$-Cat \simeq BMet.

Metric spaces as categories (again)

Examples

1. For $[\overleftarrow{0, \infty}]_{+}$with $\otimes=+$ and $k=0$: $\overleftarrow{[0, \infty}]_{+}$Cat \simeq Met.
2. For $\left[[0, \infty]_{\wedge}\right.$ with $\otimes=\max$ and $k=0$:

$$
\overleftarrow{[0, \infty}_{\wedge}-\text { Cat } \simeq \text { UMet }
$$

3. For $\overleftarrow{[0,1]} \oplus$ with $\otimes=\oplus$ and $k=0$:

$$
\overleftarrow{[0,1]}_{\oplus_{-} \text {Cat } \simeq \text { BMet } . ~}^{\text {BM }}
$$

4. For $[0,1]_{*}$ with $\otimes=*$ and $\left.k=1:[0,1]_{*} \simeq \overleftarrow{[0, \infty}\right]_{+}$.

Metric spaces as categories (again)

Examples

1. For $\left[\overleftarrow{0, \infty}_{+}\right.$with $\otimes=+$ and $k=0$: $\overleftarrow{[0, \infty}]_{+}$Cat \simeq Met.
2. For $\left[\left[0, \infty^{\wedge}\right.\right.$ with $\otimes=\max$ and $k=0$:

$$
\left[\overleftarrow{0, \infty}^{\wedge}{ }_{\wedge} \text { Cat } \simeq\right. \text { UMet }
$$

3. For $\overleftarrow{[0,1]} \oplus$ with $\otimes=\oplus$ and $k=0$:

$$
{\overleftarrow{[0,1}]_{\oplus}} \text { Cat } \simeq \text { BMet } .
$$

4. For $[0,1]_{*}$ with $\otimes=*$ and $k=1$: $\left.[0,1]_{*} \simeq \overleftarrow{[0, \infty}\right]_{+}$.
5. For $[0,1]_{\wedge}$ with $\otimes=\wedge$ and $\left.k=1:[0,1]_{\wedge} \simeq \overleftarrow{[0, \infty}\right]_{\wedge}$.

Metric spaces as categories (again)

Examples

1. For $\left[\overleftarrow{0, \infty}_{+}\right.$with $\otimes=+$ and $k=0$:

$$
{\overleftarrow{[0, \infty}]_{+}-\text {Cat } \simeq \text { Met } . ~}_{\text {. }}
$$

2. For $\left[\left[0, \infty^{\wedge}\right.\right.$ with $\otimes=\max$ and $k=0$:

$$
\left[\overleftarrow{0, \infty}^{\wedge}{ }_{\wedge} \text { Cat } \simeq\right. \text { UMet }
$$

3. For $\overleftarrow{[0,1]} \oplus$ with $\otimes=\oplus$ and $k=0$:

$$
\overleftarrow{[0,1]}_{\oplus_{-} \text {Cat } \simeq \text { BMet } . ~}^{\text {BM }}
$$

4. For $[0,1]_{*}$ with $\otimes=*$ and $k=1:[0,1]_{*} \simeq \overleftarrow{[0, \infty}_{+}$.
5. For $[0,1]_{\wedge}$ with $\otimes=\wedge$ and $\left.k=1:[0,1]_{\wedge} \simeq \overleftarrow{[0, \infty}\right]_{\wedge}$.

6 . For $[0,1] \odot$ with $u \otimes v=u+v-1$ and $k=1$:

$$
[0,1]_{\odot} \simeq \overleftarrow{[0,1}_{\oplus}^{\oplus}
$$

Continuous quantale structures on $[0,1]$

If Time $\gg 9 \mathrm{~h} 26 \mathrm{~m}$ then skip

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)
consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)
consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Proposition
Assume that 0 and 1 are the only idempotent elements of $[0,1]$. If

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)

consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Proposition
Assume that 0 and 1 are the only idempotent elements of $[0,1]$. If

1. $[0,1]$ has no nilpotent elements, then $\otimes=*$ is multiplication.

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)

consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Proposition

Assume that 0 and 1 are the only idempotent elements of $[0,1]$. If

1. $[0,1]$ has no nilpotent elements, then $\otimes=*$ is multiplication.
2. $[0,1]$ has a nilpotent element, then $\otimes=\odot$ is the Łukasiewicz tensor (and every element x with $0<x<1$ is nilpotent).

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)

consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Proposition

Assume that 0 and 1 are the only idempotent elements of $[0,1]$. If

1. $[0,1]$ has no nilpotent elements, then $\otimes=*$ is multiplication.
2. $[0,1]$ has a nilpotent element, then $\otimes=\odot$ is the Łukasiewicz tensor (and every element x with $0<x<1$ is nilpotent).
3. every element is idempotent, then $\otimes=\wedge$.

Continuous quantale structures on $[0,1]$

Faucett (1955) and Mostert and Shields (1957)

consider continuous quantale structures \otimes on $[0,1]$ with neutral element 1.

Proposition

Assume that 0 and 1 are the only idempotent elements of $[0,1]$. If

1. $[0,1]$ has no nilpotent elements, then $\otimes=*$ is multiplication.
2. $[0,1]$ has a nilpotent element, then $\otimes=\odot$ is the Łukasiewicz tensor (and every element x with $0<x<1$ is nilpotent).
3. every element is idempotent, then $\otimes=\wedge$.

Theorem

For every non-idempotent $x \in[0,1]$, there exist idempotent elements $e, f \in[0,1]$, with $e<x<f$, such that the quantale $[e, f]$ is isomorphic to the quantale $[0,1]$ with either multiplication or Łukasiewicz tensor.

Metric spaces vs. ordered sets

Forgetting something

The functor $[0,1]$-Cat \longrightarrow Ord is defined by

$$
x \leq y \text { whenever } 1 \leq a(x, y)
$$

Metric spaces vs. ordered sets

Forgetting something

The functor $[0,1]$-Cat \longrightarrow Ord is defined by

$$
x \leq y \text { whenever } 1 \leq a(x, y)
$$

Definition

A $[0,1]$-category (X, a) is called copowered whenever

$$
a(x,-): X \rightarrow[0,1] \text { has a left adjoint } x \otimes-:[0,1] \rightarrow X
$$

in $[0,1]$-Cat, for every $x \in X$.

Metric spaces vs. ordered sets

Forgetting something

The functor $[0,1]$-Cat \longrightarrow Ord is defined by

$$
x \leq y \text { whenever } 1 \leq a(x, y)
$$

Definition

A $[0,1]$-category (X, a) is called copowered whenever

$$
a(x,-): X \rightarrow[0,1] \text { has a left adjoint } x \otimes-:[0,1] \rightarrow X
$$

in $[0,1]$-Cat, for every $x \in X$.
This action of $[0,1]$ satisfies

1. $x \otimes 1=x$,
2. $(x \otimes u) \otimes v=x \otimes(u \otimes v)$,
3. $x \otimes \bigvee_{i \in I} u_{i}=\bigvee_{i \in I}\left(x \otimes u_{i}\right)$;

Metric spaces vs. ordered sets

This action of $[0,1]$ satisfies ...

1. $x \otimes 1=x$,
2. $(x \otimes u) \otimes v=x \otimes(u \otimes v)$,
3. $x \otimes \bigvee_{i \in I} u_{i}=\bigvee_{i \in I}\left(x \otimes u_{i}\right)$;

Metric spaces vs. ordered sets

This action of $[0,1]$ satisfies ...

1. $x \otimes 1=x$,
2. $(x \otimes u) \otimes v=x \otimes(u \otimes v)$,
3. $x \otimes \bigvee_{i \in I} u_{i}=\bigvee_{i \in I}\left(x \otimes u_{i}\right)$;

Vice versa...
\ldots. every ordered set with such an action becomes a $[0,1]$-category: define $a: X \times X \rightarrow[0,1]$ by $x \otimes-\dashv a(x,-)$.

Metric spaces vs. ordered sets

This action of $[0,1]$ satisfies ...

1. $x \otimes 1=x$,
2. $(x \otimes u) \otimes v=x \otimes(u \otimes v)$,
3. $x \otimes \bigvee_{i \in I} u_{i}=\bigvee_{i \in I}\left(x \otimes u_{i}\right)$;

Vice versa...
\ldots. . every ordered set with such an action becomes a $[0,1]$-category: define $a: X \times X \rightarrow[0,1]$ by $x \otimes-\dashv a(x,-)$.

Finitely cocomplete metric space

$=$ ordered set with an action of $[0,1]$ with finite suprema preserved by the action.

Our setting (see Pedro's PhD thesis)

We consider:

where, for $\varphi: X \leftrightarrow Y$ in $\operatorname{PosComp}_{\mathbb{V}}$,

$$
C \varphi: C Y \longrightarrow C X, \psi \longmapsto\left(x \mapsto \sup _{x \varphi y} \psi(y)\right)
$$

Lax means

$$
\Phi(1) \leq 1 \quad \text { and } \quad \Phi\left(\psi_{1} \otimes \psi_{2}\right) \leq \Phi\left(\psi_{1}\right) \otimes \Phi\left(\psi_{2}\right) .
$$

Our setting (see Pedro's PhD thesis)

We consider:

where, for $\varphi: X \leftrightarrow Y$ in $\operatorname{PosComp}_{\mathbb{V}}$,

$$
C \varphi: C Y \longrightarrow C X, \psi \longmapsto\left(x \mapsto \sup _{x \varphi y} \psi(y)\right)
$$

The induced monad morphism j is given by the family of maps

$$
j_{X}: V X \longrightarrow[C X,[0,1]], A \longmapsto \Phi_{A}
$$

with $\Phi_{A}: C X \rightarrow[0,1], \psi \mapsto \sup _{x \in A} \psi(x)$.

Restricting to functions

Proposition

Let X be in PosComp \sim StablyComp and $A \subseteq X$ closed and upper. Then A is irreducible if and only if Φ_{A} satisfies

$$
\Phi_{A}(1)=1 \quad \text { and } \quad \Phi_{A}\left(\psi_{1} \otimes \psi_{2}\right)=\Phi_{A}\left(\psi_{1}\right) \otimes \Phi_{A}\left(\psi_{2}\right) .
$$

Restricting to functions

Proposition

Let X be in PosComp \sim StablyComp and $A \subseteq X$ closed and upper. Then A is irreducible if and only if Φ_{A} satisfies

$$
\Phi_{A}(1)=1 \quad \text { and } \quad \Phi_{A}\left(\psi_{1} \otimes \psi_{2}\right)=\Phi_{A}\left(\psi_{1}\right) \otimes \Phi_{A}\left(\psi_{2}\right)
$$

Remark

Every stably compact space is sober.

Restricting to functions

Proposition

Let X be in PosComp \sim StablyComp and $A \subseteq X$ closed and upper. Then A is irreducible if and only if Φ_{A} satisfies

$$
\Phi_{A}(1)=1 \quad \text { and } \quad \Phi_{A}\left(\psi_{1} \otimes \psi_{2}\right)=\Phi_{A}\left(\psi_{1}\right) \otimes \Phi_{A}\left(\psi_{2}\right)
$$

Remark

Every stably compact space is sober.

Corollary

Let $\varphi: X \leftrightarrow Y$ in $\operatorname{PosComp}_{\mathbb{V}}$. Then φ is a function if and only if $C \varphi$ preserves 1 and \otimes.

Theorem

For $\otimes=*$ or $\otimes=\odot$, the monad morphism j is an isomorphism.
Therefore the functors

$$
\begin{aligned}
C: \text { PosComp }_{\mathbb{V}} & \longrightarrow \operatorname{LaxMon}([0,1] \text {-FinSup })^{\mathrm{op}} \\
C: \operatorname{PosComp} & \longrightarrow \operatorname{Mon}([0,1] \text {-FinSup })^{\mathrm{op}}
\end{aligned}
$$

are fully faithful.

Theorem

For $\otimes=*$ or $\otimes=\odot$, the monad morphism j is an isomorphism.
Therefore the functors

$$
\begin{aligned}
C: \text { PosComp }_{\mathbb{V}} & \longrightarrow \operatorname{LaxMon}([0,1] \text {-FinSup })^{\mathrm{op}} \\
C: \operatorname{PosComp} & \longrightarrow \operatorname{Mon}([0,1] \text {-FinSup })^{\mathrm{op}}
\end{aligned}
$$

are fully faithful.

Can we do better?

Probably but

Theorem

For $\otimes=*$ or $\otimes=\odot$, the monad morphism j is an isomorphism.
Therefore the functors

$$
\begin{aligned}
C: \text { PosComp }_{\mathbb{V}} & \longrightarrow \operatorname{LaxMon}([0,1] \text {-FinSup })^{\mathrm{op}} \\
C: \operatorname{PosComp} & \longrightarrow \operatorname{Mon}([0,1] \text {-FinSup })^{\mathrm{op}}
\end{aligned}
$$

are fully faithful.

Can we do better?

Probably but

- For $\otimes=*, \odot: C:$ PosComp $_{\mathbb{V}} \rightarrow[0,1]$-FinSup ${ }^{\text {op }}$ is not full.

It is full for the "enriched" Vietoris monad.

Theorem

For $\otimes=*$ or $\otimes=\odot$, the monad morphism j is an isomorphism.
Therefore the functors

$$
\begin{aligned}
C: \text { PosComp }_{\mathbb{V}} & \longrightarrow \operatorname{LaxMon}([0,1]-\text { FinSup })^{\mathrm{op}} \\
C: \operatorname{PosComp} & \longrightarrow \operatorname{Mon}([0,1]-\text { FinSup })^{\mathrm{op}}
\end{aligned}
$$

are fully faithful.

Can we do better?

Probably but

- For $\otimes=*, \odot: C:$ PosComp $_{\mathbb{V}} \rightarrow[0,1]-$ FinSup $^{\mathrm{op}}$ is not full.
- $C: \operatorname{PosComp}_{\mathbb{V}} \rightarrow \operatorname{LaxMon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\mathrm{op}}$ is not full.
$V 1$ contains two elements; however, for every $\alpha \in[0,1]$, the $\operatorname{map} \Phi=\alpha \wedge-:[0,1] \rightarrow[0,1]$ is in $\operatorname{LaxMon}\left([0,1]_{\wedge}-\right.$ FinSup $)$

Theorem

For $\otimes=*$ or $\otimes=\odot$, the monad morphism j is an isomorphism.
Therefore the functors

$$
\begin{aligned}
C: \text { PosComp }_{\mathbb{V}} & \longrightarrow \operatorname{LaxMon}([0,1] \text {-FinSup })^{\mathrm{op}} \\
C: \operatorname{PosComp} & \longrightarrow \operatorname{Mon}([0,1] \text {-FinSup })^{\mathrm{op}}
\end{aligned}
$$

are fully faithful.

Can we do better?

Probably but

- For $\otimes=*, \odot: C:$ PosComp $_{\mathbb{V}} \rightarrow[0,1]-$ FinSup $^{\text {op }}$ is not full.
- $C: \operatorname{PosComp}_{\mathbb{V}} \rightarrow \operatorname{LaxMon}\left([0,1]_{\wedge} \text {-FinSup }\right)^{\mathrm{op}}$ is not full.
- C: CompHaus $\mathbb{V}_{\mathbb{V}} \rightarrow \operatorname{LaxMon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Restricting to functions

Example

$C:$ PosComp \longrightarrow Mon $\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Restricting to functions

Example

$C:$ PosComp \longrightarrow Mon $\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.
For the separated ordered compact space $X=\{0 \leq 1\}$,

$$
C X=\{(u, v) \in[0,1] \times[0,1] \mid u \leq v\} .
$$

$V X$ contains three elements; however, for every $\alpha \in[0,1]$, the map

$$
\Phi_{\alpha}: C X \longrightarrow[0,1],(u, v) \longmapsto u \vee(\alpha \wedge v)
$$

is in $\operatorname{Mon}\left([0,1]_{\wedge}-\right.$ FinSup $)$.

Restricting to functions

Example

$C:$ PosComp $\longrightarrow \operatorname{Mon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Theorem

$C:$ CompHaus \longrightarrow Mon $\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is fully faithful.
Bernhard Banaschewski. "On lattices of continuous functions". In: Quaestiones Mathematicæ 6.(1-3) (1983), pp. 1-12.

Remark

Banaschewski does not consider Mon($[0,1]_{\wedge}$-FinSup) but the category of distributive lattices with constants from $[0,1]$.

Restricting to functions

Example

$C:$ PosComp \longrightarrow Mon $\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Theorem

C CompHaus $\longrightarrow \operatorname{Mon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\mathrm{op}}$ is fully faithful.
Bernhard Banaschewski. "On lattices of continuous functions". In: Quaestiones Mathematicæ 6.(1-3) (1983), pp. 1-12.

Theorem

C : CompHaus \longrightarrow Mon([0, 1]-FinSup $)^{\mathrm{op}}$ is fully faithful.

Restricting to functions

Example

$C:$ PosComp \longrightarrow Mon $\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Theorem

$C:$ CompHaus $\longrightarrow \operatorname{Mon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\mathrm{op}}$ is fully faithful.
Bernhard Banaschewski. "On lattices of continuous functions". In:
Quaestiones Mathematicæ 6.(1-3) (1983), pp. 1-12.

Theorem

$C:$ CompHaus \longrightarrow Mon $([0,1] \text {-FinSup })^{\mathrm{op}}$ is fully faithful.

Theorem

We consider an additional operation \ominus in our theory (which is truncated minus in $[0,1]$).

Restricting to functions

Example

$C:$ PosComp $\longrightarrow \operatorname{Mon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\text {op }}$ is not full.

Theorem

$C:$ CompHaus $\longrightarrow \operatorname{Mon}\left([0,1]_{\wedge}-\text { FinSup }\right)^{\mathrm{op}}$ is fully faithful.
Bernhard Banaschewski. "On lattices of continuous functions". In:
Quaestiones Mathematicæ 6.(1-3) (1983), pp. 1-12.

Theorem

$C:$ CompHaus \longrightarrow Mon $([0,1] \text {-FinSup })^{\mathrm{op}}$ is fully faithful.

Theorem

We consider an additional operation \ominus in our theory (which is truncated minus in $[0,1]$). Then
$C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \operatorname{LaxMon}_{\ominus}([0,1] \text {-FinSup })^{\mathrm{op}}$ is fully faithful.

Restricting the codomain of C
We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

Dual equivalences

Restricting the codomain of C
We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,

$$
a(-, x): X^{\mathrm{op}} \rightarrow[0,1] \text { has a left adjoint in }[0,1] \text {-Cat. }
$$

Restricting the codomain of C
We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),

Restricting the codomain of C
We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),
- if $\otimes=*$: truncated minus \ominus (unfortunately);

Dual equivalences

Restricting the codomain of C

We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),
- if $\otimes=*$: truncated minus \ominus (unfortunately); and morphisms preserving these additional operations.

Dual equivalences

Restricting the codomain of C

We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),
- if $\otimes=*$: truncated minus \ominus (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone $(\varphi: A \rightarrow[0,1])_{\varphi}$ point-separating?
Recall: A lattice L is distributive iff the cone $(\varphi: L \rightarrow 2)_{\varphi}$ is point-separating.

Dual equivalences

Restricting the codomain of C

We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),
- if $\otimes=*$: truncated minus \ominus (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone $(\varphi: A \rightarrow[0,1])_{\varphi}$ point-separating?
Answer: We don't know. If you do, please send it to dirk@ua.pt.

Dual equivalences

Restricting the codomain of C

We consider only $\otimes=*$ or $\otimes=\odot$. At the codomain of

$$
C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow \ldots
$$

we add

- powers from $[0,1]$,
- Cauchy completeness (à la Lawvere),
- if $\otimes=*$: truncated minus \ominus (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone $(\varphi: A \rightarrow[0,1])_{\varphi}$ point-separating?
Answer: We don't know. If you do, please send it to dirk@ua.pt.

Theorem

Restricting to those objects, C : PosComp $\mathbb{V}_{\mathbb{V}} \rightarrow \ldots$ becomes an equivalence.

A bit more general

Assumptions

We consider only $\otimes=*$ or $\otimes=\odot$. Moreover

A bit more general

Assumptions

We consider only $\otimes=*$ or $\otimes=\odot$. Moreover - PosComp \rightsquigarrow MetCH $_{\text {sep }}$.

Assumptions

We consider only $\otimes=*$ or $\otimes=\odot$. Moreover

- PosComp \rightsquigarrow MetCH $_{\text {sep }}$.
- classical Vietoris \rightsquigarrow enriched Vietoris.

Recall: The elementos of $V X$ are "approach maps" $\varphi: X \rightarrow[0,1]$ instead of closed subsets $A \subseteq X$ (that is, continuous maps $X \rightarrow 2$).

A bit more general

Assumptions

We consider only $\otimes=*$ or $\otimes=\odot$. Moreover

- PosComp \rightsquigarrow MetCH $_{\text {sep }}$.
- classical Vietoris \rightsquigarrow enriched Vietoris.

The setting

induces the monad morphism

$$
j x: V X \longrightarrow[C X,[0,1]],(\varphi: 1 \leftrightarrow X) \longmapsto(\psi \mapsto \psi \cdot \varphi) .
$$

Metric compact Hausdorff spaces

Question
Is $[0,1]^{\text {op }}$ an initial cogenerator in MetCH $_{\text {sep }}$?
We don't know. Please send the answer. . .

Metric compact Hausdorff spaces

Question

Is $[0,1]^{\text {op }}$ an initial cogenerator in MetCH ${ }_{\text {sep }}$?
We don't know. Please send the answer. . .

Remark

$[0,1]^{\mathrm{op}} \not 千[0,1]$ in MetCH.

Metric compact Hausdorff spaces

Question

Is $[0,1]^{\text {op }}$ an initial cogenerator in $\mathrm{MetCH}_{\text {sep }}$?
We don't know. Please send the answer. . .

```
Proposition \(X\) is \([0,1]^{\mathrm{op}}\)-cogenerated \(\Longrightarrow V X\) is \([0,1]^{\mathrm{op}}\)-cogenerated.
```


Metric compact Hausdorff spaces

Question

Is $[0,1]^{\text {op }}$ an initial cogenerator in MetCH ${ }_{\text {sep }}$?
We don't know. Please send the answer. . .

```
Proposition
```


Notation
MetCH $_{[0,1]^{\text {op }}}=$ the full subcategory of MetCH defined by $[0,1]^{\mathrm{op}}$-cogenerated objects.

Metric compact Hausdorff spaces

Question

Is $[0,1]^{\text {op }}$ an initial cogenerator in $\mathrm{MetCH}_{\text {sep }}$?
We don't know. Please send the answer. . .

Proposition

X is $[0,1]^{\mathrm{op}}$-cogenerated $\Longrightarrow V X$ is $[0,1]^{\mathrm{op}}$-cogenerated.
Notation
MetCH $_{[0,1]^{\text {op }}}=$ the full subcategory of MetCH defined by $[0,1]^{\mathrm{op}}$-cogenerated objects.

Every partially ordered compact space is $[0,1]^{\mathrm{op}}$-cogenerated.

Metric compact Hausdorff spaces

Question

Is $[0,1]^{\text {op }}$ an initial cogenerator in $\mathrm{MetCH}_{\text {sep }}$?
We don't know. Please send the answer. . .

Proposition

X is $[0,1]^{\mathrm{op}}$-cogenerated $\Longrightarrow V X$ is $[0,1]^{\mathrm{op}}$-cogenerated.
Notation
MetCH $_{[0,1]^{\text {op }}}=$ the full subcategory of MetCH defined by $[0,1]^{\mathrm{op}}$-cogenerated objects.

Theorem

The functor

$$
C:\left(\text { MetCH}_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow[0,1]-\text { FinSup }^{\mathrm{op}}
$$

is fully faithful.

Restricting to functions

Before

$C: \operatorname{PosComp}_{\mathbb{V}} \longrightarrow$ LaxMon([0, 1]-FinSup $)^{\mathrm{op}}$

- $A \subseteq X$ closed $\quad \Phi \rightarrow C X \longrightarrow[0,1]$.

Now
$C:\left(\text { MetCH }_{[0,1]^{\text {op }}}\right)_{\mathbb{V}} \longrightarrow([0,1]-\text { FinSup })^{\mathrm{op}}$

$$
\text { - } \varphi: X \longrightarrow[0,1] \quad \leftrightarrow \quad \Phi: C X \longrightarrow[0,1] \text {. }
$$

Restricting to functions

Before

$C:$ PosComp $_{\mathbb{V}} \longrightarrow \operatorname{LaxMon}([0,1]-\text { FinSup })^{\mathrm{op}}$

- $A \subseteq X$ closed $\quad \Phi \rightarrow C X \longrightarrow[0,1]$.
- A is irreducible $\Longleftrightarrow \Phi$ is in Mon([0, 1]-FinSup).

Now

$C:\left(\text { MetCH }_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow([0,1] \text {-FinSup })^{\mathrm{op}}$

$$
\text { - } \varphi: X \longrightarrow[0,1] \quad \text { н } \quad \Phi: C X \longrightarrow[0,1] .
$$

Restricting to functions

Before

$C:$ PosComp $_{\mathbb{V}} \longrightarrow$ LaxMon([0, 1]-FinSup $)^{\mathrm{op}}$

- $A \subseteq X$ closed $\quad \Phi \rightarrow C X \longrightarrow[0,1]$.
- A is irreducible $\Longleftrightarrow \Phi$ is in Mon([0, 1]-FinSup).

Now

$C:\left(\text { MetCH }_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow([0,1] \text {-FinSup })^{\mathrm{op}}$

- $\varphi: X \longrightarrow[0,1]$
th \rightarrow
$\Phi: C X \longrightarrow[0,1]$.
- $1 \xrightarrow{\varphi} X$ is irreducible(?)
\Longleftrightarrow
Φ is ????

Restricting to functions

Before

$C:$ PosComp $_{\mathbb{V}} \longrightarrow \operatorname{LaxMon}([0,1]-\text { FinSup })^{\mathrm{op}}$

- $A \subseteq X$ closed $\quad \Phi \rightarrow C X \longrightarrow[0,1]$.
- A is irreducible $\Longleftrightarrow \Phi$ is in Mon([0, 1]-FinSup).
- Every X in StablyComp is a sober space.

Now

$C:\left(\text { MetCH }_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow([0,1] \text {-FinSup })^{\mathrm{op}}$

- $\varphi: X \longrightarrow[0,1]$
th
$\Phi: C X \longrightarrow[0,1]$.
- $1 \xrightarrow{\varphi} X$ is irreducible(?)
\Longleftrightarrow
Φ is ????

Restricting to functions

Before

$C:$ PosComp $_{\mathbb{V}} \longrightarrow$ LaxMon([0, 1]-FinSup $)^{\mathrm{op}}$

- $A \subseteq X$ closed $\quad \Phi \rightarrow C X \longrightarrow[0,1]$.
- A is irreducible $\Longleftrightarrow \Phi$ is in Mon([0, 1]-FinSup).
- Every X in StablyComp is a sober space.

Now

$C:\left(\text { MetCH }_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow([0,1] \text {-FinSup })^{\mathrm{op}}$

- $\varphi: X \longrightarrow[0,1]$
$\rightarrow 4$
$\Phi: C X \longrightarrow[0,1]$.
- $1 \xrightarrow{\varphi} X$ is irreducible(?)
\Longleftrightarrow
Φ is ????
- Every X in MetCH is a sober(?) approach space ???

Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \curvearrowleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \triangleleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \leftrightarrow Y=\quad$ approach map $\varphi: Y \rightarrow[0,1]$.

Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \triangleleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \leftrightarrow Y=$ approach map $\varphi: Y \rightarrow[0,1]$.
- $\psi: X \circ 1=$ approach map $\psi:(U X)^{\mathrm{op}} \rightarrow[0,1]$.

Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \curvearrowleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \triangleleft Y=\quad$ approach map $\varphi: Y \rightarrow[0,1]$.
- $\psi: X \& 1=$ approach map $\psi:(U X)^{\mathrm{op}} \rightarrow[0,1]$.

Definition

X is Cauchy complete if every adjunction $\varphi \dashv \psi$ is induced by some $x \in X$. $^{a} \quad$ (that is: $\left.\varphi=d(\{x\},-)\right)$

[^3]
Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \curvearrowleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \triangleleft Y=\quad$ approach map $\varphi: Y \rightarrow[0,1]$.
- $\psi: X \& 1=$ approach map $\psi:(U X)^{\mathrm{op}} \rightarrow[0,1]$.

Definition

X is Cauchy complete if every adjunction $\varphi \dashv \psi$ is induced by some $x \in X . \quad$ (that is: $\varphi=d(\{x\},-))$

Examples

- In Top: Cauchy complete $=$ sober.

Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \curvearrowleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \triangleleft Y=$ approach map $\varphi: Y \rightarrow[0,1]$.
- $\psi: X \& 1=$ approach map $\psi:(U X)^{\mathrm{op}} \rightarrow[0,1]$.

Definition

X is Cauchy complete if every adjunction $\varphi \dashv \psi$ is induced by some $x \in X . \quad$ (that is: $\varphi=d(\{x\},-))$

Examples

- In Top: Cauchy complete = sober.
- In App: Cauchy complete $=$ approach sober ${ }^{a}$.

[^4]
Cauchy complete approach spaces

Distributors

For approach spaces X and Y, a distributor $\varphi: X \curvearrowleft Y$ is a map $\varphi: U X \times Y \rightarrow[0,1]$ so that \ldots.

- $\varphi: 1 \triangleleft Y=$ approach map $\varphi: Y \rightarrow[0,1]$.
- $\psi: X \& 1=$ approach map $\psi:(U X)^{\mathrm{op}} \rightarrow[0,1]$.

Definition

X is Cauchy complete if every adjunction $\varphi \dashv \psi$ is induced by some $x \in X . \quad$ (that is: $\varphi=d(\{x\},-))$

Examples

- In Top: Cauchy complete = sober.
- In App: Cauchy complete $=$ approach sober .

Proposition

Every metric compact Hausdorff space is Cauchy complete.

Adjoint distributors

Proposition

The following are equivalent. ${ }^{a}$
(i) $\varphi: 1 \triangleleft X$ is left adjoint.
${ }^{\text {a }}$ Dirk Hofmann and Isar Stubbe. "Towards Stone duality for topological theories". In: Topology and its Applications 158.(7) (2011), pp. 913-925.

Adjoint distributors

Proposition

The following are equivalent. ${ }^{a}$
(i) $\varphi: 1 \triangleleft X$ is left adjoint.
(ii) The metric map $[\varphi,-]: \operatorname{App}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and suprema (continuously) indexed by compact Hausdorff spaces.
${ }^{\text {a }}$ Dirk Hofmann and Isar Stubbe. "Towards Stone duality for topological theories". In: Topology and its Applications 158.(7) (2011), pp. 913-925.

Adjoint distributors

Proposition

The following are equivalent. ${ }^{a}$
(i) $\varphi: 1 \triangleleft X$ is left adjoint.
(ii) The metric map $[\varphi,-]: \operatorname{App}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and suprema (continuously) indexed by compact Hausdorff spaces.

Not what one expects!! For a topological space, $A \subseteq X$ is irreducible iff

$$
[A \subseteq-]: \operatorname{Top}(X, 2) \rightarrow 2
$$

preserves finite suprema.
${ }^{\text {a }}$ Dirk Hofmann and Isar Stubbe. "Towards Stone duality for topological theories". In: Topology and its Applications 158.(7) (2011), pp. 913-925.

Adjoint distributors

Proposition

The following are equivalent. ${ }^{a}$
(i) $\varphi: 1 \triangleleft X$ is left adjoint.
(ii) The metric map $[\varphi,-]: \operatorname{App}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and suprema (continuously) indexed by compact Hausdorff spaces.
(iii) The metric map $[\varphi,-]: \operatorname{App}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and finite suprema. ${ }^{b}$

[^5]
Adjoint distributors

Proposition

The following are equivalent. ${ }^{a}$
(i) $\varphi: 1 \triangleleft X$ is left adjoint.
(ii) The metric map $[\varphi,-]: \operatorname{App}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and suprema (continuously) indexed by compact Hausdorff spaces.
(iii) The metric map $[\varphi,-]$: $\mathbf{A p p}(X,[0,1]) \rightarrow[0,1]$ preserves tensors and finite suprema.
${ }^{\text {a Dirk Hofmann and Isar Stubbe. "Towards Stone duality for topological }}$ theories". In: Topology and its Applications 158.(7) (2011), pp. 913-925.

Remark

This is not what we need. We wish to study the map $\varphi \cdot-$ instead of $[\varphi,-]$.

Restriction further

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot$

Restriction further

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot \ldots$ because it is a
Girard quantale: for every $u \in[0,1]$,

$$
u=\operatorname{hom}(\operatorname{hom}(u, \perp), \perp) \text { where hom }(u, \perp)=1-u=: u^{\perp} .
$$

Restriction further

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot \ldots$ because it is a Girard quantale: for every $u \in[0,1]$,

$$
u=\operatorname{hom}(\operatorname{hom}(u, \perp), \perp) \text { where hom }(u, \perp)=1-u=: u^{\perp} .
$$

Why is that useful?

$$
\begin{aligned}
& {[0,1]-\operatorname{Dist}(X, 1) \xrightarrow{(-)^{\perp}}[0,1]-\operatorname{Dist}(1, X)^{\mathrm{op}}} \\
& \quad \underset{(-\cdot \varphi)}{\downarrow} \underset{(0,1]}{\text { [}} \underset{(-)^{\perp}}{[\varphi,-]^{\mathrm{op}}}[0,1]^{\mathrm{op}}
\end{aligned}
$$

commutes in $[0,1]$-Cat

Restriction further

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot \ldots$ because it is a Girard quantale: for every $u \in[0,1]$,

$$
u=\operatorname{hom}(\operatorname{hom}(u, \perp), \perp) \text { where hom }(u, \perp)=1-u=: u^{\perp} .
$$

Why is that useful?

$$
\begin{gathered}
\operatorname{App}\left(X,[0,1]^{\mathrm{op}}\right) \xrightarrow{(-)^{\perp}} \boldsymbol{\operatorname { A p p }}(X,[0,1])^{\mathrm{op}} \\
{[0,1] \xrightarrow[(-)^{\perp}]{[}[0,1]^{\mathrm{op}}}
\end{gathered}
$$

commutes in $[0,1]$-Cat

Restriction further

Assumption

We consider only the Łukasiewicz tensor $\otimes=\odot \ldots$ because it is a Girard quantale: for every $u \in[0,1]$,

$$
u=\operatorname{hom}(\operatorname{hom}(u, \perp), \perp) \text { where hom }(u, \perp)=1-u=: u^{\perp} .
$$

Why is that useful?

$$
C X C \operatorname{App}\left(X,[0,1]^{\mathrm{op}}\right) \xrightarrow{(-)^{\perp}} \mathbf{A p p}(X,[0,1])^{\mathrm{op}}
$$

commutes in $[0,1]$-Cat and $C X \hookrightarrow \boldsymbol{A p p}\left(X,[0,1]^{\mathrm{op}}\right)$ is \bigvee-dense.

Putting it together

Assumption

We still consider only the Łukasiewicz tensor $\otimes=\odot$,

Theorem

$\varphi: 1 \triangleleft X$ is left adjoint $\Longleftrightarrow \Phi$ preserves finite weighted limits.

Putting it together

Assumption

We still consider only the Łukasiewicz tensor $\otimes=\odot$,

Theorem

$\varphi: 1 \triangleleft X$ is left adjoint $\Longleftrightarrow \Phi$ preserves finite weighted limits.

Corollary
The fully faithful functor

$$
C:\left(\text { MetCH }_{[0,1]^{\mathrm{op}}}\right)_{\mathbb{V}} \longrightarrow[0,1] \text {-FinSup }{ }^{\mathrm{op}}
$$

restricts to a fully faithful functor

$$
C: \text { MetCH }_{[0,1]^{\mathrm{op}}} \longrightarrow[0,1] \text {-FinLat }{ }^{\mathrm{op}} .
$$

[^0]: ${ }^{a}$ F. William Lawvere. "Metric spaces, generalized logic, and closed categories". In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1) (1973), pp. 135-166.

[^1]: ${ }^{a}$ Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950.

[^2]: ${ }^{a}$ Leopoldo Nachbin. Topologia e Ordem. University of Chicago Press, 1950.

[^3]: ${ }^{a}$ Maria Manuel Clementino and Dirk Hofmann. "Lawvere completeness in topology". In: Applied Categorical Structures 17.(2) (2009), pp. 175-210.

[^4]: ${ }^{a}$ Bernhard Banaschewski, Robert Lowen, and Cristophe Van Olmen. "Sober approach spaces". In: Topology and its Applications 153.(16) (2006), pp. 3059-3070.

[^5]: ${ }^{\text {a }}$ Dirk Hofmann and Isar Stubbe. "Towards Stone duality for topological theories". In: Topology and its Applications 158.(7) (2011), pp. 913-925.
 ${ }^{b}$ Leopoldo Nachbin. "Compact unions of closed subsets are closed and compact intersections of open subsets are open". In: Portugaliæ Mathematica 49. (4) (1992), pp. 403-409.

