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Motivation and background



Motivation

The Name of the Rose
I started to write in March of 1978, moved by a vague
idea: I wanted to poison a monk. a

aUmberto Eco, Postille a ,Il nome della rosa’.

Our motivation is less dramatic. . .
The kinds of structures which actually arise in the practice
of geometry and analysis are far from being ‘arbitrary’ . . . ,
as concentrated in the thesis that fundamental structures
are themselves categories.a

aF. William Lawvere. “Metric spaces, generalized logic, and closed
categories”. In: Rendiconti del Seminario Matemàtico e Fisico di Milano 43.(1)
(1973), pp. 135–166.
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Lawvere’s metric spaces

Metric space = category
enriched in [0,∞]: a “hom-function” a : X × X → [0,∞] with

0 ≥ a(x , x) and a(x , y) + a(y , z) ≥ a(x , z).

Metric distributors. . .
. . . are [0,∞]-enriched relations ϕ : X × Y → [0,∞] so that

a(x , x ′) + ϕ(x ′, y) ≥ ϕ(x , y), ϕ(x , y ′) + b(y ′, y) ≥ ϕ(x , y).

A metric map f : X → Y defines distributors f∗ a f ∗:

f∗(x , y) = b(f (x), y), f ∗(y , x) = f (y , f (x)).

Theorem (Lawvere (1973))
Every left adjoint distributor ϕ : X −→◦ Y comes from a metric map
if and only if Y is Cauchy-complete.
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Assymetric Cauchy completeness

Directed distributors
The notions of forward and backward Cauchy sequences

∀ε > 0 ∀m ≥ n . . . a(xm, xn) < ε and . . .

generalise eventually increasing resp. decreasing sequences.

Marcello M. Bonsangue, Franck van Breugel, and Jan Rutten. “Generalized
metric spaces: completion, topology, and powerdomains via the Yoneda
embedding”. In: Theoretical Computer Science 193.(1-2) (1998), pp. 1–51.

Theorem
Forward-Cauchy nets in metric spaces correspond precisely to those
[0,∞]-distributors ψ : X −→◦ 1 (called flat) where

ψ · − : [0,∞]-Dist(1,X ) −→ [0,∞], ϕ 7−→ ψ · ϕ

preserves finite meets.

Remark
A downset B ⊆ X is directed iff Up(X ) −→ 2, A 7−→ [B ∩ A 6= ∅]
preserves finite meets.
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Order from topology

A fundamental adjunction . . .
. . . linking topology and order:

Top >
((

hh Ord

Topology 7−→ natural order defined by x ≤ y if �x → y .
Order 7−→ Alexandroff topology.
There is also the Scott topology. . .

Metric variants: in Windels (2000) and Li and Zhang (2018).

Continuous lattice = injective topological space.

Metric variant: Gutierres and Hofmann (2013).

Metric version?
Windels (2001): “Solve[order/topology == quasi-metric/x, x]”.

Idea: Use approach spaces instead of topological spaces.
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Order and topology

Ordered topological structures

Sets X equipped with order and topology so that the order
relation is closed in X × X .
Leopoldo Nachbin. Topologia e Ordem. University of
Chicago Press, 1950
Of particular interest to us are ordered compact Hausdorff
spaces, where we have:

PosComp ∼ StablyComp.

A topological space is stably compact whenever X is sober,
locally compact and stable.

Gerhard Gierz et al. A compendium of continuous lattices.
Berlin: Springer-Verlag, 1980. xx + 371
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Topology and order (via convergence)

Theorem
For a compact Hausdorff topology α : UX → X and an order
relation ≤ : X −→7 X, the following are equivalent:
(i) The order is closed in X × X.
(ii) α : (UX ,U≤) −→ (X ,≤) is monotone.

In general, for a relation r : X −→7 Y one defines

x(Ur)y whenever ∀A,B ∃x , y . x r y .

Walter Tholen. “Ordered topological structures”. In: Topology and its
Applications 156.(12) (2009), pp. 2148–2157.

Theorem
The ultrafilter monad U on Set extends to Ord and then

OrdU ∼ OrdCH.

Remark
The canonical functor OrdU −→ Top with

(X ,≤, α) 7−→ (X ,≤ ·α : UX → X −→7 X )

restricts to an equivalence PosComp ∼ StablyComp.
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Metric compact Hausdorff space

Extending the monad
The ultrafilter monad U on Set extends to Met via

Ud(x, y) =
∨
A,B

∧
x ,y

d(x , y),

for a metric d on X .

Definition
A metric compact Hausdorff space is an algebra for U on Met (a
compact Hausdorff space with a compatible metric).

Remark
Every compact metric space is a metric compact Hausdorff space.a

aDirk Hofmann and Carla D. Reis. “Convergence and quantale-enriched
categories”. In: Categories and General Algebraic Structures with Applications
9.(1) (2018), pp. 77–138.
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. . . vs. approach spaces

Theorem
There is a canonical comparison functor

MetCH −→ App

sending (X , d , α) to (X , d · α). (a(x, x) = d(α(x), x))

Here, separated metric compact Hausdorff spaces correspond
precisely to

core-compact (somehow exponentiable),
sober (ask in two minutes) and
stable (dont ask)

approach spaces.
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Vietoris functors

The lower Vietoris functor
For a topological space X , the lower Vietoris space of X is

VX = {A ⊆ X | A is closed}
with the topology generated by

{A ∈ VX | A ∩ B 6= ∅} (B open).
For a continuous map f : X → Y , the map

Vf : VX −→ VY , A 7−→ f (A)
is continuous too.

Metric version

topological space  approach space,
A ⊆ X closed  ϕ : X → [0,∞] approach map.
We obtain a monad on App which restricts to “stably
compact approach spaces” (= metric compact Hausdorff
spaces).
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Our motivation: Stone (and Halmos) dualities



Stone-Halmos dualities

Stone (1936), Stone (1938), Priestley (1970), and Priestley (1972)

Spec ∼ Priest ∼

hom(−,2)
((

hom(−,2)
hh DLop, BooSp ∼

hom(−,2)
((

hom(−,2)
hh BAop.

Priestley space = partially ordered compact space X so that
(X → 2) is point-separating and initial.
Spectral space = stably compact space X so that (X → 2) is
point-separating and initial.

Our aim

PosCompV
hom(−,[0,∞])−−−−−−−−→ {metric distributive lattice}op

Related work

Gelfand (1941): CompHaus ∼ C∗-Algop.
Jung, Kegelmann, and Moshier (2001):

StablyCompV ∼ StContDLatop∨
,�.

Note: From this we can deduce that StablyCompV is
idempotent split complete.

Metric distributive lattice
= metric space which is “finitaly cocomplete” and has a
commutative monoid structure which preserves finite colimits in
each variable.
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Some facts about (partially) ordered compact spaces

Theorem
OrdCH is complete and cocomplete. Moreover, the full
subcategory PosComp ↪→ OrdCH is reflective.

The unit interval [0, 1] is is an initial cogenerator on
PosComp.
The unit interval [0, 1] is injective in PosComp with respect
to embeddings.
The regular monomorphisms in PosComp are the
embeddings, and the epimorphisms are the surjections.
PosCompop is a quasivariety.
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Metric spaces as categories (again)

Examples

1. For
←−−−
[0,∞]+ with ⊗ = + and k = 0:

←−−−
[0,∞]+-Cat 'Met.

Metric space: X with a : X × X → [0,∞] with
0 ≥ a(x , x) and d(x , y) + a(y , z) ≥ d(x , z).

2. For
←−−−
[0,∞]∧ with ⊗ = max and k = 0:

←−−−
[0,∞]∧-Cat ' UMet.

5. For [0, 1]∧ with ⊗ = ∧ and k = 1: [0, 1]∧ '
←−−−
[0,∞]∧.
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Continuous quantale structures on [0, 1]

If Time � 9h26m then skip

Faucett (1955) and Mostert and Shields (1957)
consider continuous quantale structures ⊗ on [0, 1] with neutral
element 1.

Proposition
Assume that 0 and 1 are the only idempotent elements of [0, 1]. If

1. [0, 1] has no nilpotent elements, then ⊗ = ∗ is multiplication.
2. [0, 1] has a nilpotent element, then ⊗ = � is the Łukasiewicz

tensor (and every element x with 0 < x < 1 is nilpotent).
3. every element is idempotent, then ⊗ = ∧.

Theorem
For every non-idempotent x ∈ [0, 1], there exist idempotent
elements e, f ∈ [0, 1], with e < x < f , such that the quantale [e, f ]
is isomorphic to the quantale [0, 1] with either multiplication or
Łukasiewicz tensor.
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Metric spaces vs. ordered sets

Forgetting something
The functor [0, 1]-Cat −→ Ord is defined by

x ≤ y whenever 1 ≤ a(x , y).

This action of [0, 1] satisfies . . .
1. x ⊗ 1 = x ,
2. (x ⊗ u)⊗ v = x ⊗ (u ⊗ v),
3. x ⊗

∨
i∈I

ui =
∨
i∈I

(x ⊗ ui );

Vice versa. . .
. . . every ordered set with such an action becomes a [0, 1]-category:

define a : X × X → [0, 1] by x ⊗− a a(x ,−).

Finitely cocomplete metric space
= ordered set with an action of [0, 1] with finite suprema preserved
by the action.
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Our setting (see Pedro’s PhD thesis)

We consider:

PosCompV
C // LaxMon([0, 1]-FinSup)op,

PosComp

gg

C=hom(−,[0,1]op)

55

where, for ϕ : X −→◦ Y in PosCompV,

Cϕ : CY −→ CX , ψ 7−→
(
x 7→ sup

x ϕ y
ψ(y)

)
.

Lax means

Φ(1) ≤ 1 and Φ(ψ1 ⊗ ψ2) ≤ Φ(ψ1)⊗ Φ(ψ2).
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gg
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where, for ϕ : X −→◦ Y in PosCompV,

Cϕ : CY −→ CX , ψ 7−→
(
x 7→ sup

x ϕ y
ψ(y)

)
.

The induced monad morphism j is given by the family of maps

jX : VX −→ [CX , [0, 1]], A 7−→ ΦA,

with ΦA : CX → [0, 1], ψ 7→ supx∈A ψ(x).



Restricting to functions

Proposition
Let X be in PosComp ∼ StablyComp and A ⊆ X closed and
upper. Then A is irreducible if and only if ΦA satisfies

ΦA(1) = 1 and ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

Remark
Every stably compact space is sober.

Corollary
Let ϕ : X −→◦ Y in PosCompV. Then ϕ is a function if and only if
Cϕ preserves 1 and ⊗.



Restricting to functions

Proposition
Let X be in PosComp ∼ StablyComp and A ⊆ X closed and
upper. Then A is irreducible if and only if ΦA satisfies

ΦA(1) = 1 and ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

Remark
Every stably compact space is sober.

Corollary
Let ϕ : X −→◦ Y in PosCompV. Then ϕ is a function if and only if
Cϕ preserves 1 and ⊗.



Restricting to functions

Proposition
Let X be in PosComp ∼ StablyComp and A ⊆ X closed and
upper. Then A is irreducible if and only if ΦA satisfies

ΦA(1) = 1 and ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

Remark
Every stably compact space is sober.

Corollary
Let ϕ : X −→◦ Y in PosCompV. Then ϕ is a function if and only if
Cϕ preserves 1 and ⊗.



Some full embeddings

Theorem
For ⊗ = ∗ or ⊗ = �, the monad morphism j is an isomorphism.
Therefore the functors

C : PosCompV −→ LaxMon([0, 1]-FinSup)op

C : PosComp −→ Mon([0, 1]-FinSup)op

are fully faithful.

Can we do better?
Probably but

For ⊗ = ∗,�: C : PosCompV → [0, 1]-FinSupop is not full.
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We consider an additional operation 	 in our theory (which is
truncated minus in [0, 1]).
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C : PosCompV −→ LaxMon	([0, 1]-FinSup)op is fully faithful.
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Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add

powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],

a(−, x) : X op → [0, 1] has a left adjoint in [0, 1]-Cat.

Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),

if ⊗ = ∗: truncated minus 	 (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.

Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?

Recall: A lattice L is distributive iff the cone (ϕ : L→ 2)ϕ is
point-separating.

Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


Dual equivalences

Restricting the codomain of C
We consider only ⊗ = ∗ or ⊗ = �. At the codomain of

C : PosCompV −→ . . .

we add
powers from [0, 1],
Cauchy completeness (à la Lawvere),
if ⊗ = ∗: truncated minus 	 (unfortunately);

and morphisms preserving these additional operations.
Question: Is the cone (ϕ : A→ [0, 1])ϕ point-separating?
Answer: We don’t know. If you do, please send it to dirk@ua.pt.

Theorem
Restricting to those objects, C : PosCompV → . . . becomes an
equivalence.

dirk@ua.pt


A bit more general

Assumptions
We consider only ⊗ = ∗ or ⊗ = �. Moreover

PosComp  MetCHsep.
classical Vietoris  enriched Vietoris.

The setting

(MetCHsep)V
C=hom(−,1)

// [0, 1]-FinSupop

MetCHsep

hh

C=hom(−,[0,1]op)

66

induces the monad morphism

jX : VX −→ [CX , [0, 1]], (ϕ : 1 −→◦ X ) 7−→ (ψ 7→ ψ · ϕ).
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Metric compact Hausdorff spaces

Question
Is [0, 1]op an initial cogenerator in MetCHsep?

We don’t know. Please send the answer. . .

Proposition
X is [0, 1]op-cogenerated =⇒ VX is [0, 1]op-cogenerated.

Notation
MetCH[0,1]op = the full subcategory of MetCH defined by

[0, 1]op-cogenerated objects.

Theorem
The functor

C :
(
MetCH[0,1]op

)
V
−→ [0, 1]-FinSupop

is fully faithful.
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A ⊆ X closed ! Φ : CX −→ [0, 1].

A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
Every X in StablyComp is a sober space.
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1 ϕ
−◦−→ X is irreducible(?) ⇐⇒ Φ is ????

Every X in MetCH is a sober(?) approach space ???
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1 ϕ
−◦−→ X is irreducible(?) ⇐⇒ Φ is ????

Every X in MetCH is a sober(?) approach space ???



Cauchy complete approach spaces

Distributors
For approach spaces X and Y , a distributor ϕ : X −⇀◦ Y is a map
ϕ : UX × Y → [0, 1] so that . . . .

ϕ : 1 −⇀◦ Y = approach map ϕ : Y → [0, 1].
ψ : X −⇀◦ 1 = approach map ψ : (UX )op → [0, 1].

Definition
X is Cauchy complete if every adjunction ϕ a ψ is induced by
some x ∈ X . (that is: ϕ = d({x},−))

Examples

In Top: Cauchy complete = sober.
In App: Cauchy complete = approach sober .

Proposition
Every metric compact Hausdorff space is Cauchy complete.
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Definition
X is Cauchy complete if every adjunction ϕ a ψ is induced by
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aMaria Manuel Clementino and Dirk Hofmann. “Lawvere completeness in
topology”. In: Applied Categorical Structures 17.(2) (2009), pp. 175–210.
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Definition
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Examples
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In App: Cauchy complete = approach sobera.

aBernhard Banaschewski, Robert Lowen, and Cristophe Van Olmen. “Sober
approach spaces”. In: Topology and its Applications 153.(16) (2006),
pp. 3059–3070.
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Adjoint distributors

Proposition
The following are equivalent.a

(i) ϕ : 1 −⇀◦ X is left adjoint.

(ii) The metric map [ϕ,−] : App(X , [0, 1])→ [0, 1] preserves
tensors and suprema (continuously) indexed by compact
Hausdorff spaces.

(iii) The metric map [ϕ,−] : App(X , [0, 1])→ [0, 1] preserves
tensors and finite suprema.

aDirk Hofmann and Isar Stubbe. “Towards Stone duality for topological
theories”. In: Topology and its Applications 158.(7) (2011), pp. 913–925.

Remark
This is not what we need. We wish to study the map ϕ · − instead
of [ϕ,−].
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Restriction further

Assumption
We consider only the Łukasiewicz tensor ⊗ = �

. . . because it is a
Girard quantale: for every u ∈ [0, 1],

u = hom(hom(u,⊥),⊥) where hom(u,⊥) = 1− u =: u⊥.

Why is that useful?

CX

App(X , [0, 1]op)
(−)⊥

//

(−·ϕ)
��

App(X , [0, 1])op

[ϕ,−]op

��

[0, 1]
(−)⊥

// [0, 1]op

commutes in [0, 1]-Cat

and CX ↪→ App(X , [0, 1]op) is
∨
-dense.
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Putting it together

Assumption
We still consider only the Łukasiewicz tensor ⊗ = �,

Theorem
ϕ : 1 −⇀◦ X is left adjoint ⇐⇒ Φ preserves finite weighted limits.

Corollary
The fully faithful functor

C :
(
MetCH[0,1]op

)
V
−→ [0, 1]-FinSupop

restricts to a fully faithful functor

C : MetCH[0,1]op −→ [0, 1]-FinLatop.
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