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Our motivation is less dramatic. . .

The kinds of structures which actually arise in the practice
of geometry and analysis are far from being ‘arbitrary’ . ..,
as concentrated in the thesis that fundamental structures
are themselves categories.?

?F. William Lawvere. “Metric spaces, generalized logic, and closed
categories”. In: Rendiconti del Seminario Matematico e Fisico di Milano 43.(1)
(1973), pp. 135-166.
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Lawvere's metric spaces
Metric space = category

enriched in [0, 00]: a “hom-function” a: X x X — [0, co] with

0 > a(x, x) and a(x,y) + a(y,z) > a(x, z).

Metric distributors. . .

. are [0, oo]-enriched relations ¢: X x Y — [0, 00] so that

a(x,x") + (X', y) = o(x,y),  @x,y)+bly',y) = ¢(x,y).

A metric map f: X — Y defines distributors f, - *:
f(x,y) = b(f(x),y),  f(y,x) = f(y, f(x)).

Theorem (Lawvere (1973))

Every left adjoint distributor p: X -+ Y comes from a metric map
if and only if Y is Cauchy-complete.
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Assymetric Cauchy completeness

Directed distributors
The notions of forward and backward Cauchy sequences

Ve >0Vm>n ... a(Xm,xn) <€ and ...

generalise eventually increasing resp. decreasing sequences.

Marcello M. Bonsangue, Franck van Breugel, and Jan Rutten. “Generalized
metric spaces: completion, topology, and powerdomains via the Yoneda
embedding”. In: Theoretical Computer Science 193.(1-2) (1998), pp. 1-51.
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Forward-Cauchy nets in metric spaces correspond precisely to those
[0, oo]-distributors v: X e+ 1 (called flat) where

’(b T [07 OO]_DiSt(]-aX) — [0,00], pr— ¢ "'z

preserves finite meets.

Steven Vickers. “Localic completion of generalized metric spaces. 1". In:
Theory and Applications of Categories 14.(15) (2005), pp. 328-356.




Assymetric Cauchy completeness

Directed distributors
The notions of forward and backward Cauchy sequences

Ve >0Vm>n ... a(Xm,xn) <€ and ...

generalise eventually increasing resp. decreasing sequences.

Theorem

| \

Forward-Cauchy nets in metric spaces correspond precisely to those
[0, oo]-distributors v: X e+ 1 (called flat) where

’(b T [07 OO]_DiSt(]-aX) — [0,00], pr— ¢ 'z

preserves finite meets.

RENELS

A downset B C X is directed iff Up(X) — 2, A+— [BN A # 2]
preserves finite meets.
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Order from topology
A fundamental adjunction ...

... linking topology and order:

S Ord

TOp Y

Topology — natural order defined by x < y if x — y.

Order — Alexandroff topology.

There is also the Scott topology. . .
Metric variants: in Windels (2000) and Li and Zhang (2018).

Continuous lattice = injective topological space.
Metric variant: Gutierres and Hofmann (2013).

Metric version?
Windels (2001): “Solve[order/topology == quasi-metric/x, x|".

Idea: Use approach spaces instead of topological spaces.
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Ordered topological structures

@ Sets X equipped with order and topology so that the order
relation is closed in X x X.

Leopoldo Nachbin. Topologia e Ordem. University of
Chicago Press, 1950

@ Of particular interest to us are ordered compact Hausdorff
spaces, where we have:

PosComp ~ StablyComp.

A topological space is stably compact whenever X is sober,
locally compact and stable.

Gerhard Gierz et al. A compendium of continuous lattices.
Berlin: Springer-Verlag, 1980. xx + 371




Topology and order (via convergence)

For a compact Hausdorff topology o.: UX — X and an order
relation <: X -+ X, the following are equivalent:

(i) The order is closed in X x X.
(i) a: (UX,U<) — (X, <) is monotone.

In general, for a relation r: X - Y one defines

(Ur)y whenever VA, B3x,y.xry.

Walter Tholen. “Ordered topological structures”. In: Topology and its
Applications 156.(12) (2009), pp. 2148-2157.
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For a compact Hausdorff topology o.: UX — X and an order
relation <: X -+ X, the following are equivalent:

(i) The order is closed in X x X.
(i) a: (UX,U<) — (X, <) is monotone.

v
Theorem

The ultrafilter monad U on Set extends to Ord and then

OrdV ~ OrdCH.

The canonical functor OrdV — Top with

(X, <, 0) — (X, <a: UX — X - X)

restricts to an equivalence PosComp ~ StablyComp.
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Metric compact Hausdorff space

Extending the monad
The ultrafilter monad U on Set extends to Met via

Ud(z,n) = \/ \d(x,y),

A,B X,y

for a metric d on X.

Definition

A metric compact Hausdorff space is an algebra for U on Met (a
compact Hausdorff space with a compatible metric).

Remark

Every compact metric space is a metric compact Hausdorff space.?

“Dirk Hofmann and Carla D. Reis. “Convergence and quantale-enriched
categories”. In: Categories and General Algebraic Structures with Applications
9.(1) (2018), pp. 77-138.
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MetCH — App
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... Vs. approach spaces

Theorem

There is a canonical comparison functor
MetCH — App

sending (X,d,a) to (X,d - ). (a(x, x) = d(a(r), x))
Here, separated metric compact Hausdorff spaces correspond
precisely to

@ core-compact (somehow exponentiable),

@ sober (ask in two minutes) and

@ stable (dont ask)

approach spaces.
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Vietoris functors
The lower Vietoris functor

@ For a topological space X, the lower Vietoris space of X is
VX ={AC X | Ais closed}
with the topology generated by
{Ae VX | ANnB # @} (B open).
For a continuous map f : X — Y/, the map

VF: VX — VY, A f(A)

is continuous too.

Metric version

@ topological space ~» approach space,

@ AC X closed ~» ¢: X — [0,00] approach map.

@ We obtain a monad on App which restricts to “stably

compact approach spaces” (= metric compact Hausdorff
spaces).
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Alternatively, a metric space with all weighted limits and
finite weigthed colimits.
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Duality theory

We all know the dual adjunction

°° T 7 Frm

Top ~_

space X — OX ~ hom(X,2), frame L +— spec(L) ~ hom(L,2).

Approach frame
Banaschewski, Lowen, and Van Olmen (2006):

App°? ~ 1 7 AFrm

@ approach frame = (co)frame with actions of [0, 0],
@ space X — OX ~ hom(X, [0, x]),
e frame L — spec(L) ~ hom(L, [0, c0]).
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Stone-Halmos dualities

h
PosCompy, hom(=[020), {metric distributive lattice}°P

v

Related work

o Gelfand (1941): CompHaus ~ C*-Alg®P.
@ Jung, Kegelmann, and Moshier (2001):
StablyCompy, ~ StContDLati}’<<

Note: From this we can deduce that StablyCompy, is
idempotent split complete.
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Metric distributive lattice

= metric space which is “finitaly cocomplete” and has a
commutative monoid structure which preserves finite colimits in
each variable.
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regularly projective regular generator with copowers and
coequalizers of pseudoequivalences.
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@ PosComp®? is a quasivariety.

@ The Ni-copresentable objects in PosComp are precisely the
metrisable partially ordered compact spaces.?

?Dirk Hofmann, Renato Neves, and Pedro Nora. “Generating the algebraic
theory of C(X): the case of partially ordered compact spaces”. In: Theory and
Applications of Categories 33.(12) (2018), pp. 276—295.
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@ OrdCH is complete and cocomplete. Moreover, the full
subcategory PosComp — OrdCH Js reflective.

e The unit interval [0, 1] is is an initial cogenerator on
PosComp.

@ The unit interval [0, 1] is injective in PosComp with respect
to embeddings.

@ The regular monomorphisms in PosComp are the
embeddings, and the epimorphisms are the surjections.

@ PosComp®? is a quasivariety.

@ The Ni-copresentable objects in PosComp are precisely the

metrisable partially ordered compact spaces. In particular,
[0, 1] is Ny-copresentable.

@ PosComp®P js a Ny-quasivariety.




Metric spaces as categories (again)

1. For [0, 00]4 with ® =+ and k = 0:
iO, OO]+—C3t ~ Met.

Metric space: X with a: X x X — [0, oo] with
0> a(x,x)  and  d(x,y)+a(y.2) = d(x,2).




Metric spaces as categories (again)

1. For [0, 00]4 with ® =+ and k = 0:
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2. For ETOO]/\ with ® = max and k = 0:
0, co]A-Cat ~ UMet.

Ultrametric space: X with a: X x X — [0, co] with
0 > a(x, x) and max(d(x,y), a(y,z)) > d(x, z).
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Metric spaces as categories (again)

1. For [0, 00]4 with ® =+ and k = 0:
fTooh—Cat ~ Met.
2. For ETOO]/\ with ® = max and k = 0:
0, co]A-Cat ~ UMet.
3. For [0, 1]g with ® = @ and k = 0:
[0, 1]o-Cat ~ BMet.
4. For [0,1], with ® = % and k = 1: [0, 1], ~ fTooh.

5. For [0,1]n with ® = A and k = 1: [0, 1]x =~ [0, o0]A.
6. For [0,1]o with u® v=u+v —1and k =1:

[0, 1] ~ {0, e




Continuous quantale structures on [0, 1]

If Time > 9h26m then skip J
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Continuous quantale structures on [0, 1]

Faucett (1955) and Mostert and Shields (1957)

consider continuous quantale structures ® on [0, 1] with neutral
element 1.

Assume that 0 and 1 are the only idempotent elements of [0,1]. If

1. [0,1] has no nilpotent elements, then ® = % is multiplication.
2. [0,1] has a nilpotent element, then ® = © is the tukasiewicz
tensor (and every element x with 0 < x < 1 is nilpotent).

3. every element is idempotent, then @ = A.

For every non-idempotent x € [0, 1], there exist idempotent
elements e, f € [0,1], with e < x < f, such that the quantale [e, f]
is isomorphic to the quantale [0, 1] with either multiplication or
tukasiewicz tensor.
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x <y whenever 1 < a(x, y).




Metric spaces vs. ordered sets
Forgetting something

The functor [0, 1]-Cat — Ord is defined by

x <y whenever 1 < a(x, y).

Definition

| \

A [0, 1]-category (X, a) is called copowered whenever
a(x,—): X — [0,1] has a left adjoint x ® —: [0,1] — X

in [0, 1]-Cat, for every x € X.




Metric spaces vs. ordered sets

Forgetting something
The functor [0, 1]-Cat — Ord is defined by

x <y whenever 1 < a(x, y).

Definition

A [0, 1]-category (X, a) is called copowered whenever
a(x,—): X — [0,1] has a left adjoint x ® —: [0,1] — X

in [0, 1]-Cat, for every x € X.
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This action of [0, 1] satisfies . ..
1. x®1=x,
2. (xQu)®v=xQ (u®v),

3. X®\/u,-:\/(x®u,');

icl iel
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...every ordered set with such an action becomes a [0, 1]-category:

define a: X x X — [0,1] by x ® — 4 a(x, —).




Metric spaces vs. ordered sets
This action of [0, 1] satisfies ...

1. x®1 = x,
2. (x@u)@v=x®((u®v),
3. x®\/u;:\/(x®Ui);

i€l i€l

Vice versa. . .

...every ordered set with such an action becomes a [0, 1]-category:

define a: X x X — [0,1] by x ® — 4 a(x, —).

Finitely cocomplete metric space

= ordered set with an action of [0, 1] with finite suprema preserved
by the action.

v




Our setting (see Pedro’s PhD thesis)

PosCompy, < LaxMon([0, 1]-FinSup)°P,

\ A,[o,l]w)

PosComp

where, for ¢ : X <+ Y in PosCompy,,

Cp: CY — CX, ¢ —> <x — supw(y)>.
xpy

Lax means

®(1) <1 and  O(P1 ® o) < (1) @ O(¢2).




Our setting (see Pedro’s PhD thesis)

PosCompy, LaxMon([0, 1]-FinSup)°P,
\ %[0 1]°P)
PosComp

where, for ¢ : X <+ Y in PosCompy,,

xpy

Cp: CY — CX, ¢ —> <x — supw(y)>.
The induced monad morphism j is given by the family of maps
Jx: VX — [CX,[0,1]], Ar— Dy,
with ®4: CX — [0, 1], ¢ = sup,ca(x).




Restricting to functions

Proposition

Let X be in PosComp ~ StablyComp and A C X closed and
upper. Then A is irreducible if and only if ® 4 satisfies

Pa(l) =1 and Pa(Y1 @ Y2) = Pa(Y1) ® Pa(¥2).
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Restricting to functions

Proposition

Let X be in PosComp ~ StablyComp and A C X closed and
upper. Then A is irreducible if and only if ® 4 satisfies

Pa(l) =1 and Pa(Y1 @ Y2) = Pa(Y1) ® Pa(¥2).

Every stably compact space is sober.

Let ¢: X o+ Y in PosCompy,. Then @ is a function if and only if
Cp preserves 1 and ®.
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Some full embeddings

For ® = % or ® = ®, the monad morphism j is an isomorphism.
Therefore the functors

C: PosCompy, — LaxMon(][0, 1]-FinSup)°?
C: PosComp — Mon([0, 1]-FinSup)°?

are fully faithful.

Can we do better?

Probably but
e For ® = %,®: C: PosCompy, — [0, 1]-FinSup®? is not full.
e C: PosCompy — LaxMon([0, 1]5-FinSup)©°P is not full.
e C: CompHausy — LaxMon([0, 1]A-FinSup)®? is not full.
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Restricting to functions

C: PosComp — Mon([0, 1]x-FinSup)®? is not full.

For the separated ordered compact space X = {0 < 1},
CX ={(u,v) €[0,1] x [0,1] | u < v}.
VX contains three elements; however, for every a € [0, 1], the map

o, : CX —[0,1], (u,v) — uV (axAv)

is in Mon([0, 1]A-FinSup).




Restricting to functions

C: PosComp — Mon([0, 1]x-FinSup)®? is not full.

C: CompHaus — Mon([0, 1]x-FinSup)°? is fully faithful.

Bernhard Banaschewski. “On lattices of continuous functions”. In:
Quaestiones Mathematicae 6.(1-3) (1983), pp. 1-12.

RENELS

Banaschewski does not consider Mon([0, 1]5-FinSup) but the
category of distributive lattices with constants from [0, 1].

| A\
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Restricting to functions

C: PosComp — Mon([0, 1]x-FinSup)®? is not full.

C: CompHaus — Mon([0, 1]x-FinSup)°? is fully faithful.

Bernhard Banaschewski. “On lattices of continuous functions”. In:
Quaestiones Mathematicae 6.(1-3) (1983), pp. 1-12.

C: CompHaus — Mon([0, 1]-FinSup)®? is fully faithful.

We consider an additional operation © in our theory (which is
truncated minus in [0,1]). Then

C: PosCompy, — LaxMong([0, 1]-FinSup)°? is fully faithful.
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Restricting the codomain of C

We consider only ® = % or ® = ©. At the codomain of
C: PosCompy, — ...

we add

@ powers from [0, 1],

’a(—,x): X — [0, 1] has a left adjoint in [0, 1]-Cat. ‘
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Dual equivalences

Restricting the codomain of C

We consider only ® = % or ® = ®. At the codomain of
C: PosCompy, — ...

we add

@ powers from [0, 1],

e Cauchy completeness (a /a Lawvere),

e if ® = «x: truncated minus © (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone (¢: A — [0,1]),, point-separating?

Recall: A lattice L is distributive iff the cone (¢: L — 2), is
point-separating.
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Dual equivalences

Restricting the codomain of C

We consider only ® = % or ® = ®. At the codomain of
C: PosCompy, — ...

we add

@ powers from [0, 1],

e Cauchy completeness (a /a Lawvere),

e if ® = «x: truncated minus © (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone (¢: A — [0,1]),, point-separating?

Answer: We don't know. If you do, please send it to dirk@ua.pt.
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Dual equivalences

Restricting the codomain of C

We consider only ® = % or ® = ®. At the codomain of
C: PosCompy, — ...

we add

@ powers from [0, 1],

e Cauchy completeness (a /a Lawvere),

e if ® = «x: truncated minus © (unfortunately);
and morphisms preserving these additional operations.
Question: Is the cone (¢: A — [0,1]),, point-separating?

Answer: We don't know. If you do, please send it to dirk@ua.pt.

| A

Theorem

Restricting to those objects, C: PosCompy, — ... becomes an
equivalence.
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A bit more general

We consider only ® = % or ® = ©®. Moreover
@ PosComp ~» MetCH,,.

@ classical Vietoris ~»  enriched Vietoris.

Recall: The elementos of VX are “approach maps”
@: X — [0,1] instead of closed subsets A C X (that is,
continuous maps X — 2).




A bit more general

We consider only ® = % or ® = ©®. Moreover
@ PosComp ~» MetCH,,.

@ classical Vietoris ~»  enriched Vietoris.

| \

The setting

(MetCHgep,)v ey [0, 1]-FinSup®?

\ A(,[o,uop)

MetCH,.,

induces the monad morphism

Jx: VX — [CX,[0,1]], (¢: 1> X) — (¢ — - ).




Metric compact Hausdorff spaces

Is [0, 1]°P an initial cogenerator in MetCHge,?

We don't know. Please send the answer. ..
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[0,1]°P % [0, 1] in MetCH.
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Is [0, 1]°P an initial cogenerator in MetCHge,?

We don't know. Please send the answer. ..

Proposition

—

X is [0, 1]°P-cogenerated —> VX is [0, 1]°P-cogenerated.

MetCHg 100 = the full subcategory of MetCH defined by
[0, 1]°P-cogenerated objects.

Every partially ordered compact space is [0, 1]°P-cogenerated.




Metric compact Hausdorff spaces

Is [0, 1]°P an initial cogenerator in MetCHge,?

We don't know. Please send the answer. ..

Proposition
X is [0, 1]°P-cogenerated —> VX is [0, 1]°P-cogenerated.

MetCHg 100 = the full subcategory of MetCH defined by
[0, 1]°P-cogenerated objects.

v
Theorem

The functor
C: (MetCHg yjo» )y, — [0, 1]-FinSup®?

is fully faithful.




Restricting to functions

Before
C: PosCompy, — LaxMon([0, 1]-FinSup)°P
o AC X closed s o : CX — [0,1].

Now
C: (MetCHg yjop ), — ([0, 1]-FinSup)°”
e p: X —[0,1] s o: CX —[0,1].
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Restricting to functions

Before

C: PosCompy, — LaxMon([0, 1]-FinSup)°P
o AC X closed s o : CX — [0,1].
o Aisirreducible <= ® is in Mon([0, 1]-FinSup).
@ Every X in StablyComp is a sober space.

Now
C: (MetCHg yjop ), — ([0, 1]-FinSup)°”
e p: X —[0,1] s o: CX —[0,1].

o 1 -5 Xisirreducible(?) <«  ®is 7777

@ Every X in MetCH is a sober(?) approach space 77?7
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Cauchy complete approach spaces

For approach spaces X and Y, a distributor ¢: X -~ Y is a map
p: UX x Y —[0,1] so that ....

@ p: 1Y = approach map ¢: Y — [0,1].
@ ¢p: X o1 = approach map ¥: (UX)°? — [0, 1].

Definition
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X is Cauchy complete if every adjunction ¢ - % is induced by
some x € X.? (thatis: ¢ = d({x},—))

“Maria Manuel Clementino and Dirk Hofmann. “Lawvere completeness in
topology”. In: Applied Categorical Structures 17.(2) (2009), pp. 175-210.
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Distributors

For approach spaces X and Y, a distributor ¢: X -~ Y is a map
p: UX x Y —[0,1] so that ....

@ p: 1Y = approach map ¢: Y — [0,1].
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Definition
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X is Cauchy complete if every adjunction ¢ - % is induced by
some x € X. (thatis: ¢ = d({x},—))

\

@ In Top: Cauchy complete = sober.




Cauchy complete approach spaces

For approach spaces X and Y, a distributor ¢: X -~ Y is a map
p: UX x Y —[0,1] so that ....

@ p: 1Y = approach map ¢: Y — [0,1].

@ ¢p: X o1 = approach map ¥: (UX)°? — [0, 1].

v

X is Cauchy complete if every adjunction ¢ - % is induced by
some x € X. (thatis: ¢ = d({x},—))

@ In Top: Cauchy complete = sober.

@ In App: Cauchy complete = approach sober?.

“Bernhard Banaschewski, Robert Lowen, and Cristophe Van Olmen. “Sober

approach spaces”. In: Topology and its Applications 153.(16) (2006),
pp. 3059-3070.




Cauchy complete approach spaces

For approach spaces X and Y, a distributor ¢: X -~ Y is a map
p: UX x Y —[0,1] so that ....

@ p: 1Y = approach map ¢: Y — [0,1].
@ ¢p: X o1 = approach map ¥: (UX)°? — [0, 1].

v

X is Cauchy complete if every adjunction ¢ - % is induced by
some x € X. (thatis: ¢ = d({x},—))

@ In Top: Cauchy complete = sober.

@ In App: Cauchy complete = approach sober .

Proposition

Every metric compact Hausdorff space is Cauchy complete.




Adjoint distributors

The following are equivalent.?
(i) ¢: 1 = X is left adjoint.

?Dirk Hofmann and Isar Stubbe. “Towards Stone duality for topological
theories”. In: Topology and its Applications 158.(7) (2011), pp. 913-925.
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Adjoint distributors

The following are equivalent.?
(i) ¢: 1 -~ X is left adjoint.
(ii) The metric map [p,—]: App(X,[0,1]) — [0, 1] preserves
tensors and suprema (continuously) indexed by compact
Hausdorff spaces.

Not what one expects!! For a topological space, A C X is
irreducible iff

[AC —]: Top(X,2) — 2

preserves finite suprema.

“Dirk Hofmann and Isar Stubbe. “Towards Stone duality for topological
theories”. In: Topology and its Applications 158.(7) (2011), pp. 913-925.




Adjoint distributors

Proposition

The following are equivalent.?
(i) ¢: 1 -~ X is left adjoint.
(ii) The metric map [p,—]: App(X,[0,1]) — [0, 1] preserves
tensors and suprema (continuously) indexed by compact
Hausdorff spaces.

(iii) The metric map [¢, —]: App(X, [0, 1]) — [0, 1] preserves
tensors and finite suprema.?

?Dirk Hofmann and Isar Stubbe. “Towards Stone duality for topological
theories”. In: Topology and its Applications 158.(7) (2011), pp. 913-925.

b eopoldo Nachbin. “Compact unions of closed subsets are closed and
compact intersections of open subsets are open”. In: Portugalize Mathematica
49.(4) (1992), pp. 403-4009.




Adjoint distributors

The following are equivalent.?

(i) ¢: 1 = X is left adjoint.

(ii) The metric map [p,—]: App(X,[0,1]) — [0, 1] preserves
tensors and suprema (continuously) indexed by compact
Hausdorff spaces.

(iii) The metric map [¢, —]: App(X, [0, 1]) — [0, 1] preserves
tensors and finite suprema.

?Dirk Hofmann and Isar Stubbe. “Towards Stone duality for topological
theories”. In: Topology and its Applications 158.(7) (2011), pp. 913-925.

RENEILS

This is not what we need. We wish to study the map ¢ - — instead
of [907 _]'




Restriction further

We consider only the tukasiewicz tensor ® = ©®




Restriction further

We consider only the tukasiewicz tensor ® = © ...because it is a
Girard quantale: for every u € [0, 1],

u = hom(hom(u, 1), L) where hom(u, L) =1 — u =: ut.




Restriction further

We consider only the tukasiewicz tensor ® = © ...because it is a
Girard quantale: for every u € [0, 1],

u = hom(hom(u, 1), L) where hom(u, L) =1 — u =: ut.

<

Why is that useful?

N
[0, 1]-Dist(X, 1) =L [0, 1]-Dist(1, X)°P

(-so)l J[%]‘Jp

[0,1] [0, 1]°P

,)l

commutes in [0, 1]-Cat




Restriction further

We consider only the tukasiewicz tensor ® = © ...because it is a
Girard quantale: for every u € [0, 1],

u = hom(hom(u, 1), L) where hom(u, L) =1 — u =: ut.

<

Why is that useful?

o )" o
App(X, [0,1]°P) —— App(X, [0, 1])°P

(-v)l l[%]”p

commutes in [0, 1]-Cat




Restriction further

We consider only the tukasiewicz tensor ® = © ...because it is a
Girard quantale: for every u € [0, 1],

u = hom(hom(u, 1), L) where hom(u, L) =1 — u =: ut.

<

Why is that useful?

L
CX—— App(X, [0, 1]°?) =5 App(X, [0, 1)

\-wl J[%]Op

commutes in [0, 1]-Cat and CX — App(X, [0, 1]°P) is \/-dense.




Putting it together

We still consider only the tukasiewicz tensor ® = ©,
p: 1 e X is left adjoint <= ® preserves finite weighted limits. \




Putting it together

We still consider only the tukasiewicz tensor ® = ©,
p: 1 e X is left adjoint <= ® preserves finite weighted limits.

Corollary

The fully faithful functor

C: (MetCHg yjo» )y, — [0, 1]-FinSup®?
restricts to a fully faithful functor

C: MetCHyg jjo0 — [0, 1]-FinLat®®.
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